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Abstract. We define a finite-control fragment of the ambient calculus, a formal-
ism for describing distributed and mobile computations. A series of examples
demonstrates the expressiveness of our fragment. In particular, we encode the
choice-free, finite-control, synchronouscalculus. We present an algorithm for
model checking this fragment against the ambient logic (without composition
adjunct). This is the first proposal of a model checking algorithm for ambients
to deal with recursively-defined, possibly nonterminating, processes. Moreover,
we show that the problem is PSPACE-complete, like other fragments considered
in the literature. Finite-control versions of other process calculi are obtained via
various syntactic restrictions. Instead, we rely on a novel type system that bounds
the number of active ambients and outputs in a process; any typable process has
only a finite number of derivatives.

1 Introduction

The ambient calculugl[6] is a formalism for describing distributed and mobile compu-
tation in terms ofambients named collections of running processes and nested sub-
ambients. A state of computation has a tree structure induced by ambient nesting. Mo-
bility is represented by re-arrangement of this tree (an ambient may move inside or
outside other ambients) or by deletion of a part of this tree (a process may dissolve the
boundary of some ambient, revealing its content).

There are proposals for analysing systems expressed in the ambient calculus and
its variants [2,14] via several techniques, such as equational reasaning [3], type sys-
tems [8], control flow analysisT16], and abstract interpretation [13]. Still, the ambient
calculus is Turing-complete, and little attention has been paid to finding expressive
finite-state fragments that admit automatic verification via state-space exploration. The
goal of this work is to identity such a fragment, and to develop a model checking al-
gorithm for verifying properties expressible in the ambient logicl [5,7]. The long term
intention is that automatic verification tools for a finite-state ambient calculus will be
useful either by themselves or in conjunction with methods for obtaining finite-state
abstractions of infinite-state systems. Similar abstractions [9] are being developed for
ther-calculus [15], the formalism from which the ambient calculus derives.

A finite-state version ofr exists [T2]. It is described as a finite-control calcu-
lus because its control structure is finite. Starting in any state, the number of states
reachable via internal reduction steps is finite. However, if we allow inputs of exter-
nal data, the number of reachable states may be infinite. We define in this paper a



finite-control ambient calculus. It is a substantial extension of the replication-free frag-
ment [BIT0;T1] (sometimes referred to as the “finite-state ambient calculus”). In partic-
ular, in the replication-free fragment every process can make only a finite number of
computation steps—no recursion or iteration is possible.

We begin, in Sectiof] 2, by presenting a variant of the ambient calculus in which
recursion is defined by means of an explicit recursive definition instead of replication.
We specify standard spatial rearrangements via a structural congruence relation on pro-
cesses, and specify the operational semantics as a reduction relation on processes. This
variant is easily seen to simulate the original one. Then, in Segtion 3, we design a type
system for ambient processes and show that typability of a process guarantees finitary
behaviour. The basic idea of the type system is to count the number of active outputs and
ambients in a process. Theor§m 1 asserts that the number of processes, up to structural
congruence, reachable from any typable process is finite. We define the finite-control
fragment as those processes that are typable. In contrast, finite-control fragments of
the w-calculus are defined via simple syntactic restrictions. In Segiion 4, we explore
the expressivity of our calculus by presenting and developing some standard examples,
including an encoding of a finite-contretcalculus.

Turning to the verification problem, Sectign 5 reviews the syntax and semantics of
the ambient logic we use to specify process properties. We prove that the verification
problem—model checking against the ambient logic without composition adjunct—is
decidable for the finite-control fragment. To achieve this, we adapt the model checking
algorithm from [T1]. Theorem) 2 states that the algorithm is correct with respect to the
semantics of the logic. Moreover, our final result is Theofgm 3, that the verification
problem remains PSPACE-complete, which is the same complexity as verifying the
replication-free fragment against the same logic.

A difficulty in designing a finite-control fragment of a process calculus is striking a
balance between the expressivity of the fragment and the complexity of the verification
problem. The general goal is to make the calculus as expressive as possible while keep-
ing the verification problem decidable. The methods we use differ substantially from the
methods used to define finite-contrekalculi. Therefore, for the sake of a simple expo-
sition we omit several possible features from our finite-control ambient calculus while
including enough to model interesting iterative computations. Segtion 6 discusses some
of these additional features. Sectjdn 7 concludes the paper.

2 An Ambient Calculus with Recursion

We present in this section an ambient calculus with recursive definitions instead of
replication. We give examples of the calculus in Secfion 4; See [6] for more elementary
examples.

The following table defines the syntax cdpabilitiesand processe®f our calcu-
lus. We assume countably mangmeganging over byn, m, a, b, ¢, ... and countably
manyidentifiersranging over byA, B, C, . ... For the sake of a simple presentation we
allow only names to be communicated whereas the original calculus allows also the
transmission of sequences of capabilities.



Processes and Capabilities:
I

a = capabilities
inn can entemn outn can exitn
openn can opem

P,Q,R:= processes
0 inactivity P|Q composition
n[P] ambient a.P action prefix
(n).P input (n) output
(vn)P name restriction A identifier
(fix A=P) recursion

We consider inpufn), name restrictiofivn) to be binders for the nameandfix A
to be a binder for the identifiet. A namen or an identifierdA occurring in the scope of
respectively(n),(vn) andfix A is bound Otherwise it isfree We write fn(P) for the
set of free names . We say that a process @osedif it contains no free identifier.
We identify processes up-to capture-avoidisgenaming of both bound names and
bound identifiers. For instancéfix A=(vn)open n.A) and (fix B=(vm)open m.B)
are identical processes. Slightly abusing the notation, we \rité®) for the bound
names in an implicitly given syntactic representatiorPofVe write P{m+«n} for the
outcome of substituting for each free occurrence of in P. Similarly, P{A—Q}
is the outcome of substituting for each free occurrence of in P. We will assume
without loss of generality that two distinct bound identifiers are different as well as
being distinct from any free identifier.

The semantics of our calculus is given by two relations. Tddction relation
P — @ describes the evolution of ambient processes over time. We witéor the
reflexive and transitive closure ef. Thestructural congruenceelationP = Q relates
different syntactic representations of the same process; it is used to define the reduction
relation.

Structural Congruence P = Q:

P=P (Str Refl) P=Q=wn)P=(n)Q (Str Res)
P=Q=Q=P (Str Symm) P=Q=P|R=Q|R (Str Par)
P=Q,Q=R=P=R (StrTrans) P =Q = n[P] =n[Q)] (Str Amb)
rP|lo=P (StrParZero) P=Q = a.P = a.Q (Str Action)
P|lQ=Q|P (StrParComm)P =Q = (n).P = (n).Q (Str Input)
(P|Q)|R=P|(Q|R) (StrParAssoc) P =Q = (fix A=P) = (fix A=Q) (Str Fix)
vn)0 =0 (Str Res Zero) (fix A=A)=0 (Str Fix 1d)
vn)(vm)P = (vm)(vn)P (StrRes Res) (fix A=P) = P{A—(fix A=P)} (Str Fix Rec)

(
(P|Q)=P|(vn)Qifn ¢ fn(P) (Str Res Par)
(m[P]) = m[(vn)P]ifn#m (Str Res Amb)

Reduction: P — @
nlinm.P | Q] | m[R] — m[n[P | Q] | R] (Red In)

m[njoutm.P | Q] | R] — n[P | Q] | m[R)] (Red Out)
openn.P | n[Q]— P|Q (Red Open)

(m) | (n).P — P{n—m} (Red 1/O)



P—-Q=P|R—Q|R (Red Par)

P — Q = n[P] — n|Q] (Red Amb)
P— Q= (vn)P — (vn)Q (Red Res)
PP=PP—-Q,QR=Q =P —qQ (Red=)

As in other process calculi with recursion, it is convenient to regard certain
unwanted recursive processes as ill-formed, and to disregard them. An example is
(fix A=A | A). We define a well-formed process as follows.

Definition 1. A processP is said to bewell-formed if every recursive subprocess
(fix A=Q) of P satisfies the following two requirements: @) is the only free iden-
tifier in Q, and (ii) A occurs at most once Q.

From now on, we only consider well-formed processes. These processes are stable
with respect to structural congruence and reductior® ifs well-formed and either
P = P or P — P’ thenP’ is well-formed.

As in ther-calculus [15], we can easily simulate replication with recursion. To sim-
ulate! P, which behaves like an unbounded number of replical nfnning in parallel,
we introduce a new identifiedr and replaceP by (fix Ap=P | Ap). The result-
ing process is well-formed. This encoding of replication fulfils the axioms of structural
congruence for replicatiol® = P | P and!0 = 0 given in [6]. It does not obey the
two additional axiom$P = !lP and!(P | @) = !P | !Q from [8], but these axioms are
unnecessary for computing reduction steps.

Sangiorgi [17] also considers an ambient calculus with recursion. A difference
is that our formulation allows recursively defined ambient structures. In a recursion
(fix A=P), the identifierA can appear irP within an ambient construct; for example,
the processeffix A=m[A]) and(fix A=open n.m[A]) are well-formed. The latter but
not the former belongs to the finite-control fragment defined next.

3 A Finite-Control Ambient Calculus

The finite-control (synchronousj-calculus [12] is obtained by disallowing parallel
composition through recursion. So, a finite-contredalculus process is a finite parallel
composition of threads each of which is a recursive process without parallel composi-
tion. This ensures that there is only finitely many pairwise non-congruent configurations
reachable from such a process. In the ambient calculus this restriction is both too strong
and too weak. It is too strong because it limits the admissible computation too much.
In particular, due to the asynchronous communication mechanism in the ambient cal-
culus, it completely excludes communication in recursive programs. On the other hand,
it is too weak, as exemplified below, because it does not ensure finitary behaviour of
processes. The example shows that in the ambient calculus a bound on the number of
parallel threads gives neither a bound on the size of reachable processes nor a bound
on the number of possible interactions between threads. This is in contrast to the situa-
tion in ther-calculus, and seems to arise from the spatial characteristics of the ambient
calculus.



Example 1.Consider the two ambient processes and Pg defined respectively by

(fix A=n[open m.A]) and (fix B=mlin n.B]). Neither process contains parallel com-

position. However, the proce$s, | Pg reduces ir2k steps ton[---n[Pa | Pg]---],
N—_——

k

denoted P4 | Pp)y. Since fork # k', (P4 | Pp)r # (Pa | Pp)i, there are infinitely
many non-congruent processes reachable ffom Pg.

Now, if we place another process|(fix C=inn.C') | (fix D=out n.D)] in parallel
with P4 | Pp, this process can traverse the structur€®f | Pg), in an arbitrary
way. Thus, although there are only four recursively defined processes and none of them
contains parallel composition, they may create an arbitrary number of locations and
interact in any of these locations.

This example shows that directly adopting the syntactic restriction from the finite-
control synchronous-calculus is problematic, but it does not show undecidability of
the verification problem. However, if we adopt a more liberal condition from the finite-
control asynchronous-calculus [1] (which ensures that there is only a bounded number
of active threads and seems more appropriate here due to the asynchronous communi-
cation used in ambient calculus), we obtain undecidability even for the reachability
problem. One can adapt the encoding of the Post correspondence problernifrom [11], in
which only finitely many active threads are used.

Thus, one may consider a more severe syntactic restriction, to forbid both parallel
composition and ambient construction within recursion. We will see later on that this
restriction indeed ensures finite-control. Still, we can see at once that it is too drastic. In
such a restricted process only sequences of action prefixes, each invoking a capability,
could be defined recursively. Moreover, those sequences would operate on a process
whose spatial structure has a bounded size. Inspecting the individual effect of such
sequences, one sees thatdhen capability is somehow the more powerful as it changes
the spatial structure of the process by deleting part of it whereas both capatviliied
out only re-arrange this structure. As a consequence, only finitely many occurrences of
the powerful capabilitppen can be executed by such a restricted process.

Instead of defining finite-control by means of syntactic restrictions over processes,
we adopt a semantic point of view based on a type system. Intuitively, a type of a
processP is a natural number that bounds the number of active outputs and ambients in
any process reachable frafh We present the type system in Secfion 3.1. In Se¢fign 3.2
we show that typability ensures finitary computation.

3.1 The Type SystenFC

A type environmenf' is a finite set of pair§(Ai, 1), ..., (An, 7,)} such that each;
is an identifier;r; is a natural number and for any two paie$;, 7;) and(A;, 7;), i # j
implies A; # A;. We say that an environmeitis defined forA if I" contains a pair
(A, 7). Whenever is defined for no identifier, we simply write.

Definition 2. Given a type environmerit, a type judgmeni” - @ : 7 holds for
a process) and a natural number- if there exists a finite proof tree built with the
inference rules from the table below such that its root is labelled’dy @ : = and
none of its leaves contains a type judgment.



Process Typing:I' =P : 7

I
(Identifier) (Zero) (Par) (Res)
Ais identifier,(A,7) € I’ I'tP:7,I'FQ : 0 I'EP:71
I'-A:r I'+0:0 r-P|Q:7+6 I'-@wn)P :
(Output) (Input) (In/Out)
I'+-P:r1 I'-P : 7,cap€ {in,out}
') :1 I'+(n).P : max(r—1,1) I'+capn.P : max(7,1)
(Amb) (Open) (Fix)
I'-pP: 71 I'-pP:71 ru{(4,n}rP:0, 6<r
I'tn[P]: 741 I'Fopenn.P : max (7 —1,1) I't+ (fix A=P) : 7
L

The basic idea of the type system is to bound the number of active outputs and
ambients in all processes reachable from a given one. In the rules (Input) and (Open)
the process’ is guarded and thus not active. These rules expresstmady become
active only after dissolving some active output or ambient. The functier(-, 1) is
used to avoid negative types. Without it some processes of unbounded (or even infinite)
size like (fix A=open n.0 | m][] | A) could be still typable. We take maximum with
1 and not0 to obtain a property—used in some proofs—t@as the only process of
type0.

Example 2.The proof tree stating that the type judgment- (fix A=open n.m[A]) |
n[0] : 2 holds is given below. In a similar way we can build a proof tree dot-
(fix A=open n.m[A]) | n[0] : 3.

(A, 1) e {(A D}

{(A,1)}HA:1
{(A, 1)} Fm[A] : 2
{(A, 1)} Fopenn.m[A] : 1, 1<1 ZF0:0
&+ (fix A=open n.m[A]) : 1 @Fnl0] ;1

@ F (fix A=open n.m[A]) | n[0] : 2

Recall Exampld]1. The proceéx A=n[open m.A]) | (fix B=m][in n.B]) is not
typable becauséix B=m/[in n.B]) is not typable.

Definition 3. A type environmenk’ well-typesa processP if there exists some natural
numberrp such that the type judgmeftt P : 7p holds. A proces$ is typableif
there exists a type environmefitthat well-typesP.

If P is typable and does not contain free identifiers, themell-typesP.

We say that a proceds is balancedif the number of occurrences of ambients and
outputs inP is equal to the number of occurrencesopkn capabilities and inputs
in P. We say that a recursive procg$ix A=P) has a balanced type if for every type
environment"U{(A : 7)} suchthal"U{(A,7)} - P : 6 andd < 7 we haved = 7. In
most natural examples, like {fix A=n[openn.A]), if P is balanced theffix A=P) is
typable. But there are exceptions likéx A=A | openn.n[0]) which is balanced but not
typable. If P is not balanced because it contains more outputs and ambients than inputs
and opens (like iffix A=n[A])) then(fix A=P) is not typable. Finally, note that not all



typable processes have balanced types. For exa(fiplé=open n.A) is typable but it
does not have a balanced type (the environrjént 2)} being a counter-example).

In most examples of typable recursive processes that are considered in this paper
we will want the types to be balanced. This is because if such a process does not have
a balanced type then in each execution it consumes some (strictly more than it creates)
messages or ambients in the global context in which it is placed, and thus it can be
executed only finitely many times.

For a given type environmerit and a given procesB there may be many natural
numbersr such that the type judgmentt P : 7 holds. For exampleg I (fix A=A) :

7 holds for any naturat. However, since every set of natural numbers has a least
element, we may define a least type.

Definition 4 (Least Type).For any process” and any type environmeiit that well-
typesP, theleasttype of P with respect tal”, denotedCF¢(P, I), is the least natural
numberr such thatl" - P : 7 holds.

Proposition 1 (Type Stability). Let P and P’ be typable processes and Etbe a type
environment that well-typeR and P’. ThenP = P’ impliesCFC(P, I") = £LF¢(P', I).

Proof. The proof goes by induction over the proof tree for= P’. The only difficult
case is for the axiorffix A=Q) = Q{A—(fix A=Q)} (Str Fix Rec) which requires an
induction over the structure @j. O

Proposition 2 (Type Checking - Type Inference).Type checking (that is, deciding,
givenl’, P and 7, whether the type judgment P : 7 holds) is decidable. For any
processP and type environmerit, we can decide whethér well-typesP and compute

LFC(P ).

Proof. Both type checking and type inference amount to solving easy systems of in-
equalities with addition, subtraction of a constant, andk as the only arithmetic op-
erations. 0

Proposition 3 (Subject Reduction).Let P be a process and” an environment that
well-typesP. Then for all processe®’ such thatP — P’, I well-typesP’ and
LFp,ry < e ).

Sketch of proofThe reductions (Red In) and (Red Out) do not change the type of a
process at all. The reductions (Red Open) and (Red I/O) reducing processes of the form
open n.Q or (n).Q, respectively, do not change the typeCfi(Q, I') > 1. Otherwise,
they strictly decrease the type by removing the ambiemt consuming a message. For
the other reductions (Red Par), (Red Amb), (Red Res), and fHed follows from
induction overP, using Propositioff 1 in case of (Reg). O

Due to Propositiofi 1, the least type of any process congrughis0. Conversely,
we have:

Proposition 4. For all closed and typable processgsif £L7¢(P, @) = 0 thenP = 0.

Proof. Itis easy to see that if a closed procéssontains either an ambient construct, a
capability, an input or an output, then its least type is greater or equal to one. Therefore,
it is enough to show that closed and well-formed processes built up with identifiers,
parallel composition, name restriction, afixlare congruent t®. The proof goes by
induction on the structure d?. O



Additionally, we can prove some other properties. All recursion-free processes are
typable. The encoding of replicatidi#® given earlier is not typable for an§ non-
congruent td. Processes built without parallel composition and ambient construct are
typable. This last property implies that processes are typable if they satisfy the syntactic
restriction—to forbid both composition and ambients within recursion—considered in
SectionB. As we see in the next section, it follows that processes obeying this syntactic
restriction are finite-state.

3.2 Typability and Finite-Control

The goal of this section is to prove that for a typable and closed process, there exist
finitely many =-congruence classé§,, ... , K,, such that for all processe?’ with

P —* P’, there existsg for which P’ € K;. Instead of proving this directly, we show
that for any typable and closed procd3sand any process’ reachable fronP, there

exists arepresentative®”’ of P’ (that is,P’ = P") such that:

— the size ofP” is bounded and depends only
— the set of free names @’ is a subset of the free namesBf

Here, by the sizéP| of a process® we mean the number of nodes in the tree repre-
sentation ofP. The two statements above imply that there exist only finitely many pair-
wise non-congruent processes reachable flansimply showing the size is bounded
is insufficient as there are infinitely many different names. For example, processes from
the set{n[0] | n being a namghave a bounded size, but being non-congruent with each
other, they represent infinitely magmy-congruence classes.

The second requirement about free names is straightforward and actually does not
rely on typability.

Proposition 5. For all processes?, P, if P = P’ or P — P’ thenfn(P’) C fn(P).

The first requirement is much more involved for various reasons. We need to char-
acterize representatives of structural congruence classes of reachable processes; this
requires to consider a process split into several parts.

First, we define pre-normalized processes. Let a praPdss pre-normalizedf it
takes the form(vn;)... (vn;)Q and, (i) everyn; occurs free inQ, (ii) ni,... ,ng
are pairwise distinct, andi:) any other name restriction occurring@happears in the
scope of some input or of some action prefix. Intuitively, pre-normalization is rewriting
a process using the scope extrusion rules (Str Res Par) and (Str Res Amb) to a kind of
prenex normal form.

The second part of processes consistaitermost guardedubprocesses. A process
P is guardedif either P = 0, P = (M), P = «.P’ for someP’ and somey, P =
(z).P’ for someP’, or recursivelyP = (vn)Q for some guarded). This property is
clearly stable with respect to structural congruence, that Bjsfguarded and® = P’
then P’ is guarded as well. Let a subproceBs be outermost guardedn a process
P if P’ is guarded and for any subproceg$ of P enclosingP’, P is not guarded.

For instanceput m.0 is outermost guarded injout m.0] and as a consequendgeis
guarded but not outermost guardedn[outm.0 | 0], outm.0 | O is outermost guarded



(becauseout m.0 | 0 is congruent to a process of the foumP, namelyout m.0)
and thusput m.0 is not outermost guarded. This last example shows that outermost
guardedness is a pure syntactic condition and is not stable with respect to structural
congruence.

Finally, the remaining part of the process is captured by a contexiomextC
with [ holes (or, for short, afrcontext) is a process where exadtlyubprocesses have
been replaced by a hole occurring exactly once i@. We writeC[P,, ... , P] for the
process obtained by filling each halgin C with P;.

A context isactiveif it consists only of holes, ambients, parallel compositions, and
void processe® and furthermore if each proce8®ccurs as a child node of an ambient
in the tree representation of the context.

A process isiormalizedf this process is eithed or a pre-normalized process of the
form (vny) ... (vny)Q, whereQ is of the formC[ P, . .. , P;] such that:

— Cis an activd-context,
— Py,..., P are the outermost guarded subprocesses {pattmat are not congruent
to 0.

By the one-step unfoldingf a process” we mean the process obtained frdm
by replacing every subprocess of the foffix A=Q) by Q{A—(fix A=Q)}. If Q is
obtained by one-step unfolding frofithen|Q| < |P|.

Lemma 1. Any typable and closed processadmits a congruent normalized process
Q such thal@| < |P|2.

Sketch of proofFirst, by structural induction we prove that in any recursive process
(fix A=Q) either A is guarded in) or (fix A=Q) is congruent t®. We obtain a nor-
malized version of a pre-normalized process by replacing all recursive definitions con-
gruent to0 by 0, applying a one-step unfolding to the result, and then removingjsall
from the context that are not child nodes of an ambient. O

We say that a proces3 is asubprocess up to renamirad a process if Q can be
obtained from some subprocessidby renaming its free names.

Proposition 6. Let P be a closed, typable, normalized and non-congruebtpoocess
and P’ be its one-step unfolding. Then for all proces§eseachable fromP (that is,
such thatP —* @), there exists a normalized proce@sn,) ... (vny)C[P1,... , P]
structurally congruent t@) and such that

— k is bounded by the size 6f
— the size ot is bounded by - L7 (P, @),
— each(); is a subprocess up to renaming of some outermost guarded partffom

Sketch of proofSince(vny) ... (vng)C[ Py, ... , P] is pre-normalized, every restricted
name from the sefn,, ... ,n;} must occur freely ir€. Thusk is bounded by the size
of C.

Since the process is normalized, the subproceBses . , P, are not congruent to
0 and thus have strictly positive typ&sis an active context, so its tree representation
consists of four kinds of nodes:



— leaves representing a hole, whose number is smaller fi&0P;, @) + ... +
EFC(B, @),

— leaves representin@ whose number is smaller than the number of unary nodes,

— binary nodes representing parallel compositions whose number is smaller than the
number of leaves,

— unary nodes representing ambients; the number of such nodes summed with
LFC(P, @)+ ...+ LFC(P, @) givesLFC(Q, @).

This together with the subject reduction theorem (Proposiiion 3) gives that the size of
C is bounded by - LF¢(P, @).

Finally, the processeg; are either directly subprocesses up to renaming of the ini-
tial processP or of unfoldings of the recursive definitions, which are already unfolded
in P’. This is because the only possibility (apart from using the structural congruence)
to modify a process below a guard is to substitute some of its free names with other
names coming from communication. O

The following theorem is a direct corollary from Propositighs 5 gnd 6.

Theorem 1 (Finite-State). For any closed and typable proceg$y there exist only
finitely many pairwise non-congruent processes reachable ffom

4 Examples

The model checking algorithm fromi[5] is limited to replication-free processes. We
want to have at least some restricted version of recursion that would help us in mod-
elling mobile computations while keeping model checking decidable. This section gives
examples of programs that are typable and that therefore, by Th€orem 1, are finite-state.

4.1 Simple Examples with Infinite Behaviour

Probably the simplest possible example with infinite behaviow{#34] | m[] where
P4 is the procesgfix A=in m.out m.A). It is typable with the type o4 equal tol
and the type of the whole process behdVe haven[P4] | m[] — m[n[outm.P4]] —
n[Pa] | m[], which creates an infinite loop.

Another simple example i8, | P whereP, is (fix A=a[open b.A]) and Pg is
(fix B=open a.bB]). Here the least type dP4 is 2 and the least type Pz is 1. One
can see it as a simple synchronization mechanism—uwe will use such a mechanism later
in the encoding of the (synchronous) finite-contretalculus. We haveé®y | Pp =
alopen b.P,] | open a.b[Pg] — open b.P4 | b[Pg] — P4 | Pp.

A similar behaviour can be obtained from a simpler prodéissA=open a.A) |
(fix B=a[B]), but we cannot use it since it is not typable.

Our last example in this section shows that we can obtain not only infinite computa-
tion paths, but also infinitely many syntactically different processes along these paths.
Consider the procesBy | P whereP, is (fix A=(va)open n.open m.({a) | a[A]))
and Pg is (fix B=n[m|[(x).open x.B]]). The process is typable with the least types of
P4 and Pg being respectively and3. Here, in every iteration, the proceBg creates
a new fresh name and sends it/g.



4.2 Objective Moves

The only iterative definition in the encoding of objective moveslin [63idow n =

lopen n. This can be directly translated {éix A=open n.A), but such a translation
leads to a definition afiv in n.P where the type ofiv in n.P is one greater than the
type of P, and so does not allow the use of objective moves inside recursion. Therefore
we propose an alternative definition.

allown = (fix A=open n.n[A])
n![P] = n[P | allow in]
n![P] = n[P] | allow out
n!'[P] = n[P | allowin] | allow out
mv inn.P = (vk)k[in n.infout k.open k.open in.P]|
mv out n.P = (vk)k[out n.out[out k.open k.open out.P]|

e 1

It is easy to see that all these processes are typable and are balanced; the least
type of allow n is 1, the least type aofiv in n.P andmv out n.P is the maximum
of the type of P and2. One can check that![Q] | mv in n.P —* n![P | Q] and
n![mv out n.P | Q] —* n'[Q] | P.

4.3 Firewalls

Consider the firewall from]6]. This is a replication-free process
firewall = (vw)k[in k.in w] | wlopen k.P],

but it allows only one agent to enter the firewall. Let us first extend this example to
allow for more agents. To avoid some confusion we replace one of the two occurrences
of the namek with &’ firewall = (vw)!k[in k'.in w] | w[lopen k¥’ | P]. Then we have
k'[open k.Q)] | firewall —* (vw)!k[in k".in w] | w[lopen k' | P | Q] and the firewall is
still ready to allow more agents that are aware of the passyard).

We still have a little problem with modelling this firewall as a typable program. The
processk[in k'.in w] is at the beginning outside the ambient but at the end (after
the agent enters the firewall) it is inside In typable programs we need to always start
a recursion in the same place that we end it. Therefore we first modify the firewall:
firewall = (vw)w['k[out w.in k".in w] |lopen k' | P].

Now it is easy to see that this process behaves in the same way as the following
programfirewall where

firewall = (vw)wlhook | initiator | P]
hook = (fix A=k[out w.in k.in w.open b.A])
instiator = (fix B=open k.b[B])

We use the additional ambiethto balance the bodies of the procedukesk and
nitiator.



4.4 Routable Packets

Following [6] we defingpacket pkias an empty packet nampHtthat can be routed re-
peatedly to various destinations. Contraryiio [6], we do not model routing as communi-
cating the path to be followed (we restricted the calculus not to contain communication
of compound messages), but by sending it another ambient containing the path.

packet pkt = pkt[(fix R=open route.route[R])]
route pkt with P to M = route[in pkt.open route.M | P]
forward pkt to M = route pkt with 0 to M

Then there is an executigrucket pkt | route pkt with P to M —* pkt[M | P |
Pr] where Py, is the procesgfix R=open route.route[R]). Similarly, pkt[P | Pg] |
forward pkt to M —* pkt[M | P | Pg].

4.5 A Finite-Control w-Calculus

Here we encode a version of the finite-contretalculus [T2] without name passing in
recursive procedures (that is, with parameterless recursive definitions) and without non-
deterministic choice. An encoding of the full finite-controlcalculus seems possible
using the extensions of our calculus discussed in Seftion 6.

Processes of the finite-controk-calculus

P = process
(vn)P name restriction
T ... | T parallel threads
T:= thread
0 inactivity (vn)T name restriction
a.T action A identifier
(fix A=T) recursion
o= action
n(x) input on channeh
n(x) output on channet

The encoding of the (asynchronousialculus given in(i6] cannot be used here
for at least two reasons. First, the finite-contretalculus uses synchronous commu-
nication while the communication in the ambient calculus is asynchronous. In order to
simulate synchronous communication we have to run a synchronisation protocol. Sec-
ond, dynamic generation of new channels strictly increases the size of the encoding
and thus cannot be typable. Instead of this, we create new channels for every single
communication and we destroy this channel immediately after the communication is
finished.

To synchronize the communication, for every thrdadve introduce an ambient
sync;[] that avoids mixing the order of actions taken by this thread: every thread can
send or receive at most one message at a time. Additionally we introduce one ambient
lock[] that allows processing only one communication at a time. These ambients are



present at the beginning, but they disappear (that is, they get opened) when the respec-
tive action starts and they reappear when the action is finished.

In the encoding given below we use an ambient nawrieds a place where com-
munication happens. The idea of this encoding is as follows. If two procesaés. P
andn(z).Q in threadsT; andT; are willing to communicate, they start by opening
the respective ambientgnc; andsync; (if some of these ambients are not present, it
means that the thread is busy with some other action, and the process has to wait). Then
the output process leaves an ambiefit(this is the information that there is a message
sent over the channel) and moves inside the ambietti. There it sends the message
(M) within another ambient. The input process opens the ambiefjt(if there is no
such ambient, it means that there is no message sent over chaandlthe process
has to wait), then it openisck[] (again, if there is ndock[] ambient, it means that there
is another communication just taking place and the process has to wait until it is fin-
ished) and goes insidé: and insiden where it reads the messadé. The rest of the
encoding is just to clean up afterwards: both processes go auit afid together with
the auxiliary processeSync; and Sync; they synchronize the two threads and release
the lock on communication, and remove all auxiliary ambients used in the meantime
(more precisely, after the communication the ambiegets openeddone; goes out
of n andn goes insidedone; where it gets opened; thefone; moves outsideh, ¢
gets opened, and the tv@yncprocesses opetione; and done;; at this moment the
ambientssync,[], sync,[] andlock[] appear again at the top level). The ambients c
are used to balance the process and to move ingide

Formally, the encoding is defined by the functiph from processes of the finite-
controlr-calculus to the finite-control ambient calculus. Except from communication,
the encoding is quite straightforward: we hdyen)P] = (vn)[P],

[Ty | ... [Tl = [T1]y | Syney |- | [Tilw | Syney | '] | lock]
[0]; 2 0, [(vn)T]; 2 (wn)[T];, [A]: 2 A, [(fix A=T)]; 2 (fix A=[T],),

[n(M).P]; = open sync,.(n[] | mv in ch.n[(M) | open a.PostOut;(P)]
[n(z).Q]; = open sync;.open n.open lock.mv in ch.a[in n.(z). PostIn;(Q)]
where A _
Sync; = sync;|] | (fix S;=open done;.(sync;[] | Si))
PostOut;(P) = open b.(in done;.lock]] | done;[out n.open n.out ch.open c.[P];])
PostIn;(Q) 2 bleldone; ([QL,]]

5 Ambient Logic and Model Checking

To reason about distributed and mobile computations programmed in the ambient calcu-
lus, Cardelli and Gordori][5] introduce a modal logic that apart from standard temporal
modalities for describing the evolution of processes includes novel spatial modalities
for describing the tree structure of ambient processes. In a recent paper, Cardelli and
Gordon extend the logic with the constructs for describing private names [7].

Themodel checkingroblem is to decide whether a given object (in our case, an am-
bient process) satisfies (that is, is a model of) a given formula. Cardelli and Gardon [5]



give a model checking algorithm for the fragment of the calculus in which the pro-
cesses contain no replications and no dynamic name generation against a fragment of
the logic in which formulas contain no composition adjunct. It was then provediin [10]
that model checking this fragment of the calculus against this fragment of the logic is
PSPACE-complete. Recently, in]11] it has been shown that on the one hand, extending
the calculus with name restriction and the logic with corresponding logical operators
is harmless for the complexity of model checking—it remains PSPACE—and on the
other hand that either considering replication in the calculus or composition adjunct in
the logic makes the model checking problem undecidable.

5.1 Ambient Logic

We recall in this section definitions concerning this logic (omitting the composition
adjunct).

In addition to the reduction relation and the structural congruence, we introduce an
additional relation calletbcationand denoted to reason about the shape of ambients
(that is, space). The location relation is definedPag Q if there exist3)’, n such that
P =n[Q] | Q. We write | * for the reflexive and transitive closure pf

We describe the syntax of the ambient logic and its satisfaction relation in the fol-
lowing tables.

Logical Formulas:
I

n a namen or a variabler
A, B = formula n[A] location
T true AQn location adjunct
-A negation ndA revelation
AV B disjunction Aon revelation adjunct
0 void OA sometime modality
Al B composition match 0.A somewhere modality
Jz. A existential quantification

We assume that names and variables belong to two disjoint vocabularies. We write
A{x+—m} for the outcome of substituting each free occurrence of the variaisi¢he
formula.A with the namen. We say a formula4 is closed if and only if it has no free
variables (though it may contain free names).

The satisfaction relationP = A provides the semantics of our logic. It is stable
with respect to structural congruence, that iRi= A andP = P’ thenP’ = A.

Satisfaction P |= A (for A closed):
I

PET Pln[A] £23P . P=n[PIAP EA
PE-A 2Pk A4 Pl AQn £p[Pl= A
P=AVB2PEAVPEB PlEndA 23P . P=@wn)P NP EA
PEO 2p=o PEAOnZ wn)PEA
P=A|B 23P P .P=P |P'AN PEOGA 23P.P-*P AP EA
P EANP"EB P=OA 23PP|*P AP EA

PE3r.A =3m.PE Alz—m}




5.2 Model Checking Finite-Control Mobile Ambients

In this section we show how closed and typable processes can be model checked against
formulas of the ambient logic. We assume that in any process bound identifiers are
pairwise distinct and that bound names are pairwise distinct and different from free
names (not only free names from the process itself, but also free names occurring in
formulas).

We consider here normalized processes as introduced in Sgciion 3.2. To single out
name restrictions, we write a normalized proogss, ) . . . (vny)C[P4, ... , P;] as a pair
{n1,...,nk},ClPy, ..., P]), separating name restriction prefix from the rest of the
process and considering these name restrictions as a set of flames.

In a normalized process, only the active-context part is addressed by spatial modal-
ities from the logic, that is, the modalitie$ | B, n[A], 0.4 and0. This allows us to
control the size and the number of normalized processes considered for model checking
these spatial modalities.

The following propositions (Propositiori$ [7310) express that in polynomial space
we can test whether a process is congrueri@,tave can decompose it in all possible
ways to a parallel composition of two other processes, we can remove the given lead-
ing ambient (if it exists), and we can compute all sublocations of the process. This is
possible because it requires examining only the active context of the given process. The
proof of these propositions is based on the following lemma.

Lemma 2 (Inversion). Let P, Q, Q' be normalized processes.
1. (wn)P =0ifand only if P = 0.
2. If n andm are different names, thefpn)P = m[Q] if and only if there exists a
normalized procesg® such thatP = m[R] andQ = (vn)R.
3. (vn)P = @ | Q' if and only if there exist normalized processesR’ such that
P =R | R andeitherQ = (vn)Rand@’ = R’ andn ¢ fn(Q’) or @ = R and
Q' = (vn)R' andn & fn(Q).

Proof. The proof is the same as for the replication-free fragment of the ambient calculus
(Proposition 5.1 in[{11]), observing that we have to examine only the active context of
a normalized process. ad

Proposition 7. For any normalized processV, P), (N, P) = 0 if and only if P = 0.
Furthermore, we can test whethris congruent t@ in polynomial-time.

Proposition 8. For any normalized proces&V, ]5>, we can compute in polynomial
space a finite set of pairs of normalized processes that we denatenp((N, P))
and defined ag((N1, Q1), (N1, R1)), - .. , ((Np, Qp), (N, )} satisfying:

— for all Q,R satisfying(N, P) = Q | R, there exists such that(N;, Q;) = Q and
(N!,R;) = R.

—foralliinl...p, NyUN/ = NandN; N N; = @, fn(Q;) N N/ = @ and
fn(R;) N N; = @ and|Q;|, |R;| < |P).

1 Whenever two different normalized procesdesand P’ have the same pair-representation,
thenP = P’ by the axiom (Str Res Res) from the structural congruence.



Proposition 9. For any normalized procesgV, P) and any namer, we can test in
polynomial time if there exist§ such that(N, P) = n[Q]. Moreover, if such &Q
exists, them ¢ N and we can compute in polynomial time the normalized version
(N, Q) of Q such thatQ| < |P|.

Combining the two previous propositions, we obtain:

Proposition 10. For any normalized processV, P), we can compute a finite set of nor-
malized processeublocations((N, P)) ={(N1,Q1), ... , (Np, @p)} such that) for
all Q such that(\, P) |* Q, there existg satisfying thaQ (N;,Q;) and(ii) for all
iinl...p, N; C N and|Q;| < |P|.

Moreover, using results from Sectipn]3.2, we obtain:

Proposition 11. For any typable and normalized proceSs, P), we can compute a fi-
nite set of normalized processBsachable((N, P)) ={(N1,Q1), ... , (N,,Q,)} such
that (i) for all Q such that(N, P) —* @, there exists satisfying thatQ = (N;, Q;)
and(ii) foralliin1...p, N; € N and|Q,| < |P|>.

The algorithm presented here is very close to the one givenlin [11].

Model Checking Algorithm: Check({N, P), A) where N N fn(A) = @, by convention

), A)
P ,A\/ B) £ Ch~eck(< , P), A) V Check((N, P), B)
0) 2 {T if P=0
’ F otherwise
JPY, A1 B) =V (b, poyeDecomp((N.F) Check(Py, A) A Check (P2, B)
Py, P, being respectivelyN1, P1) and({Na, P)
Check((N, P),n[A]) 2 P = n[Q] A Check((N,Q), A)
Check((N, P), AQn) = Check((N,n[P]), A)
N,P),n0A) 2\, .y Check((N — {m}, P{m«<n}), A)
V(n & fn(P) A Check({N, P), A))

Q
>
)
Q
=
—~
_
~
3

Check((N, P), A® n) = Check({(N U {n}, P), A)
Check((N, P),0.A) = V (57, By e Reachabie( (v, By) Check((N', P'), A)
N A o
CheCk(<N7 {)>7 DA) = v(N P’y GSublocatzons(N P) Cthk(<N’ P >’ A)
Check((N, P),3z.A) = letng ¢ N U fn(P) U bn(P) U fn(A) be a fresh name in

vnEfn(N,P)ufn(A)u{no} Check((N, P>aA{$‘—”})

Theorem 2 (Correctness) For all normalized and typable processes, P> and all
closed formulas4, we have(N, P) |= A if and only if Check({N, P), A) = T.

Sketch of proofThe proof follows the lines of the proof of Theorem 5.1(inl[11] and goes
by induction on the formul&. In the cases dT’, - A, AV B, A@n, A ® n the result
follows directly from the definition of the satisfaction relation. In the case afidn[.A]

it follows from Proposition$]7 ang 9, and in the caseof B from Propositior{]8. The
cases ofl.4 and{.A follow from Propositiong 10 andL1. The casedf.A follows



the lines of the proof of Proposition 4.11 i [4]. Finally, the casewDfA reflects the
two possibilities that either is one of the bounded names occurring in the process or
it does not occur there (in the latter case observe that for all proc€sses? fn(Q)
implies(vn)Q = Q). ad
Theorem 3 (PSPACE-complete)The model checking problem for finite-control pro-
cesses against the ambient logic is decidable. Moreover, it is PSPACE-complete.

Sketch of proofDecidability follows from Theorenfi]2. One obtains the PSPACE up-
per bound by implementing disjunction in polynomial space, as is donelin [10]. The
PSPACE lower bound is proved inJ10]. O

6 Extensions of the System

In this section we discuss some extensions that are possible to the calculus without
affecting decidability or complexity of the model checking problem. We did not in-
troduce these extensions before because we want to keep our formal presentation of a
finite-control ambient calculus as simple as possible.

Parameters in recursive definitiondn the system we defined the identifiers used in
recursive definitions do not carry any name parameters. It is however quite straightfor-
ward to allow definitions of the forrffix A(x)=P[A(y)]) — one has to clearly distin-
guish between definitions\{abstractions) and calls\{application) of such functions

and then respectively handle the renaming of parameters.

Nondeterministic choiceln the ambient calculus one may encode an internal nonde-
terministic choiceP + @ (see [B] for an encoding of an external choice) as the process
(vn)(n]0] | open n.P | open n.Q).

Then reducingP + @ leads to eithe® | (vn)open n.Q orto @ | (vn)open n.P.

As (vn)open n.R is bisimilar to0, this is a good approximation of nondeterministic
choice. However, even this simple encoding is no longer possible in recursive processes
of the finite-control fragment, since it goes beyond well-formed processes. But even
if we ignore the well-formedness restriction, such an encoding does not work because
(vn)open n.R is not congruent (it is only bisimilar) t@, which means that its type

must be strictly positive, so it is not possible to balance the typP ef Q if P and

@ are balanced (and thu? + @ is not typable). In the encoding of the finite-control
m-calculus in Sectiof 4.5 all recursive processes have balanced types and thus to extend
the encoding to accommodate nondeterministic choice we need a balanced encoding of
choice.

A possible solution is to add nondeterministic choice as a primitive construct in
the calculus. To do so, we need to relax the definition of well-formed processes from
one occurrence of identifier in a recursive definition to one occurrence per option of a
nondeterministic choice. The reduction rules for processes can be then extended in a
straightforward way, and an appropriate typing rule is:

(Choice)
I'-P .7, '@ : 6
I'P+Q : max(r,0)




Replication-free fragment of the ambient calcul@ur initial motivation was to find a
fragment of the ambient calculus that extends the replication-free fragment (for which
the decidability and complexity of the model checking problem was knawinl[5,10]) to
allow some infinite computation, while retaining a decidable model checking problem.
The calculus of this paper does not extend the replication-free fragment because it does
not allow for sending capabilities inside messages. It is however quite obvious that a
typable finite-control process can be put in a replication-free context without any change
to the model checking algorithm. The only subtle point is that if one wants to achieve a
PSPACE algorithm one should apply the data structure fram [10] only to the replication-
free context; otherwise storing an explicit substitution for every communication might
lead (in the case of recursive communications) to infinitely growing substitutions.

Sending capabilities in communicatiom the current version of the calculus we allow
for sending only names. The extension to sending single capabilities is however not
difficult. The problem with sending single capabilities is probably best shown in the
following process {inn) | (fix A=(z).({inz) | A)). After the first iteration the process
sends the message(in n), thenin (in (in n)), and so on, growing infinitely. Probably
the simplest solution is to observe thatz cannot be executed if is not a name,
so it is enough to introduce a special deadlock capability and replace these complex
capabilities with the deadlock capability.

An intriguing alternative possibility to solve the problem would be to combine the
calculus with the type system df [8], wheire(in n) cannot be well-typed.

Sending sequences of capabilitiés.the original definition of the ambient calculus [6]

it is possible to send not only single capabilities but also sequences of capabilities. We
do not see a very easy solution to this problem. Consider as an example the following
process{in n) | (fix A=(z).({x.z) | A)). Here, afterk iterations we obtain a sequence

of capabilitiesin .. . . in n of length2*. Thus the process grows infinitely. A possible
solution is to distinguish between simple communications (sending a name or a sin-
gle capability) and complex communications (sending a sequence of lengthand

to give a simple output typé (as in the current version of the system) while a com-
plex output is typed (that is, to introduce an additional typing rule - (M) : 2

for complex M). Then the above process is not typable, but for example the pro-
cess(fix A=(x).(y).((z.y) | A)) is typable. The decidability of model checking relies
then on the observation that such a process cannot be executed infinitely many times
(roughly, it can be executed as many times as many outputs are present in the context
around).

Again, to achieve PSPACE complexity one has to be careful about substitutions—
one should apply the substitution in the case of simple communication but one should
store the substitution in the data structure (as is doné&in [10]) in the case of complex
communication.

7 Conclusion

Previous work on model checking the spatial and temporal logic of the ambient calculus
is limited to processes lacking any form of recursion or iteration. This work shows the



possibility of model checking a richer, more expressive class of mobile behaviours. We
hope it will lead to the discovery of further applications of the ambient logic.
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