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Streszczenie

Praca przedstawia nowe algorytmy dla krzywych Béziera, krzywych B-sklejanych i dual-
nych wielomianów Bernsteina. Zaproponowane metody pozwalają na przyspieszenie obliczeń
wykonywanych m.in. w grafice komputerowej i analizie numerycznej.

Nowy algorytm szybkiego wyznaczania wartości krzywej Béziera łączy zalety znanych
wcześniej metod rozwiązywania tego problemu: liniową złożoność schematu Hornera oraz
interpretację geometryczną, własność otoczki wypukłej i operowanie na kombinacjach wy-
pukłych właściwe algorytmowi de Casteljau. Zaproponowaną metodę można stosować nie
tylko do wielomianowych i wymiernych krzywych Béziera, ale też do tzw. wymiernych obiek-
tów parametrycznych. Ważnym ich przykładem są wymierne tensorowe i trójkątne powierzch-
nie Béziera. Zastosowanie zaprezentowanego w pracy podejścia pozwala osiągnąć optymalną
złożoność, tj. proporcjonalną do liczby punktów kontrolnych definiujących te obiekty.

Opisano też nowy algorytm wyznaczania współczynników funkcji B-sklejanych w bazie
Bernsteina-Béziera, oparty na nowej zależności różniczkowo-rekurencyjnej spełnianej przez te
funkcje. Przy pewnych założeniach o węzłach definiujących te funkcje, algorytm jest opty-
malny. Przedstawiony został również szkic podobnego algorytmu dla reprezentacji funkcji
B-sklejanych w bazie potęgowej. Jeżeli znane są współczynniki Bernsteina-Béziera funkcji
B-sklejanych, można zastosować nowy algorytm ewaluacji krzywej Béziera, by przyspieszyć
procedurę wyznaczenia punktu na krzywej B-sklejanej. Przy obliczaniu w wielu punktach
wartości wielu opartych na tych samych węzłach krzywych B-sklejanych uzyskuje się algorytm
mający niższą złożoność niż w metodzie wykorzystującej algorytm de Boora-Coxa. Stosując
podobne podejście można wyznaczyć każdą funkcję B-sklejaną w czasie liniowym względem
jej stopnia.

W pracy podano też wiele nowych związków różniczkowych, różniczkowo-rekurencyjnych
i rekurencyjnych spełnianych przez dualne wielomiany Bernsteina tego samego stopnia. Zna-
jomość takich związków rekurencyjnych pozwala, na przykład, na znalezienie wartości wszys-
tkich n + 1 dualnych wielomianów Bernsteina tego samego stopnia n w optymalnym czasie
O(n). Rekurencji tych można też użyć do ewaluacji dowolnej kombinacji liniowej dualnych
wielomianów Bernsteina stopnia n, np. poprzez użycie algorytmu typu Clenshawa. Taką pro-
cedurę można wykonać w czasie liniowym względem stopnia wielomianu zapisanego w bazie
dualnych wielomianów Bernsteina, czyli równym złożoności obliczeniowej schematu Hornera.
W pracy przedstawiono kilka związków rekurencyjnych łączących kolejne dualne wielomiany
Bernsteina tego samego stopnia: jednorodne rzędu czwartego, trzeciego i drugiego oraz niejed-
norodny rzędu pierwszego. Związek niejednorodny rzędu pierwszego został przetestowany pod
względem efektywności numerycznej. Przeprowadzone eksperymenty pokazują, że algorytm
wykorzystujący ten związek daje dobre wyniki nawet dla tak wysokich stopni dualnych wielo-
mianów Bernsteina jak 3000 czy 5000.

Związki rekurencyjne między dualnymi wielomianami Bernsteina tego samego stopnia
można też zastosować do równoległego obniżania stopnia krzywej Béziera z ograniczeniami.
Dzięki nim można istotnie ułatwić korzystanie z obliczeń równoległych, choć przy zachowa-
niu dotychczasowej złożoności, poprzez przekształcenie związku rekurencyjnego wykorzysty-
wanego w podejściu opartym na bazach dualnych.



Abstract

The thesis presents new algorithms for Bézier curves, B-spline curves, and dual Bernstein
polynomials. The proposed methods allow to accelerate the computations performed, e.g., in
computer graphics and numerical analysis.

A new algorithm for fast evaluation of a Bézier curve combines the qualities of previously
known methods for solving this problem, i.e., the linear complexity of the Horner’s scheme
and the geometric interpretation, the convex hull property, and operating only on convex
combinations which are the advantages of the de Casteljau algorithm. The new method
can be used not only for polynomial and rational Bézier curves but also for so-called rational
parametric objects. Their prominent examples are rational rectangular and rational triangular
Bézier surfaces. The algorithm has optimal complexity, i.e., proportional to the number of
control points which define these objects.

Additionally, a new algorithm for computing the Bernstein-Bézier coefficients of B-spline
functions which is based on a new differential-recurrence relation satisfied by B-spline func-
tions has been described. Under some assumptions about the knots which define these func-
tions, the algorithm is optimal. A sketch of a similar algorithm for the power basis coefficients
of B-spline functions has been presented as well. If the Bernstein-Bézier coefficients of B-spline
functions are known, one can evaluate one of the functions in linear time with respect to its
coefficients. The new algorithm for evaluating a Bézier curve can also be used to accelerate
the evaluation of many B-spline curves at multiple points, thus getting a method with lower
complexity than the one based on the de Boor-Cox algorithm.

In this thesis, many new diferential, differential-recurrence, and recurrence relations sat-
isfied by dual Bernstein polynomials of the same degree have been given. Such recurrence
relations allow, e.g., to find the values of all n + 1 dual Bernstein polynomials of degree
n in the optimal O(n) time. Moreover, these relations can be used to evaluate any linear
combination of dual Bernstein polynomials of degree n, e.g., by applying the Clenshaw-type
algorithm. Such procedure can be performed in linear time with respect to the degree of the
dual Bernstein basis used, i.e., it has the same complexity as the Horner’s scheme. The new
recurrence relations for dual Bernstein polynomials of the same degree are: homogeneous of
orders four, three, and two, as well as non-homogeneous of order one. The numerical efficiency
of the non-homogeneous relation of order one has been tested. According to performed exper-
iments, an algorithm based on this relation works well even for high degrees of dual Bernstein
polynomials, like 3000 or 5000.

The recurrence relations which connect dual Bernstein polynomials of the same degree can
find their application in parallel constrained degree reduction of a Bézier curve. They can
simplify the recurrence relation previously used in the approach which applies dual bases, thus
allowing to use simpler parallel computations, although the total complexity of this method
remains the same.
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1.8 Bézier surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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Chapter 1

Introduction

In this thesis, algorithms for evaluating various parametric objects — in particular, Bézier
curves and surfaces as well as B-spline curves — are accelerated, which can result in much
faster rendering of CAGD objects. Similarly, the evaluation of dual Bernstein polynomials —
which find many applications in, e.g., computer graphics, approximation theory, numerical
analysis — has been accelerated. This allows to use dual basis techniques for Bernstein
polynomials with much higher efficiency, thus reducing the computational bottleneck of dual
projections.

Chapter 1 introduces the concepts and notions which are necessary for the remaining
chapters.

Chapter 2 presents and expands the results given previously in [96]. More precisely, a ge-
ometric algorithm for evaluating (polynomial or rational) Bézier curves has been introduced.
For a d-dimensional curve of degree n, its computational complexity is O(nd), which is opti-
mal. To the best of the author’s knowledge, this is the first known algorithm which evaluates
a Bézier curve and is both geometric and has O(nd) complexity. Notice that the de Casteljau
algorithm is geometric but has O(n2d) complexity, while the Horner’s scheme has the desired
O(nd) complexity while not being geometric. The algorithm can be generalized to other
rational parametric objects. In particular, in the case of rectangular and triangular Bézier
surfaces, the complexity is proportional to the number of control points (i.e., the method is
optimal), which is a significant improvement over the corresponding de Casteljau algorithms.

In Chapter 3, a new differential-recurrence relation for the B-spline functions of the same
degree is shown. From this relation, a recursive method of computing the coefficients of B-
spline functions of degree m in Bernstein-Bézier form is derived. Its complexity is proportional
to the number of coefficients in the case of coincident boundary knots. This means that,
asymptotically, the algorithm is optimal. In other cases, the complexity is increased by at
most O(m3). When the Bernstein-Bézier coefficients of B-spline basis functions are known,
one can, e.g., compute any of them in O(m) time or convert a piece of a d-dimensional B-spline
curve of degree m over one knot span to a Bézier curve in O(m2) time and then evaluate it
in O(md) time using the geometric algorithm given in Chapter 2. Since one only needs to
convert each knot span once, it scales well when evaluating many B-spline curves at multiple
points, e.g., in order to render it. Such approach has lower computational complexity than
using the de Boor-Cox algorithm. The problem of finding the coefficients of the B-spline
functions in the power basis can be solved similarly.

Chapter 4 is based on [18] and presents new differential and differential-recurrence relations

1



CHAPTER 1. INTRODUCTION 2

satisfied by dual Bernstein polynomials. They find their application in proving new recurrence
relations for dual Bernstein polynomials in the following chapter.

Chapter 5 presents, in greater detail, the recurrence relations for dual Bernstein polyno-
mials which were previously shown in [18, 19]. These results allow to solve several problems
posed when using dual Bernstein basis. In particular, such a result allows to compute a linear
combination of dual Bernstein polynomials of degree n in O(n) time, reducing the complexity
by an order of magnitude. One of the recurrence relations is analyzed in greater detail and it
is shown that its numerical performance is good even for dual Bernstein bases of high degree
(n ≈ 3000, 5000). This makes dual Bernstein bases a more potent tool in a multitude of their
applications.

In Chapter 6, the recurrence relation for dual Bernstein polynomials given in the previous
chapter finds another application, as it can be used to simplify the computation of coefficients
for k, l-constrained degree reduction of Bézier curves given in [97]. While the new approach
does not improve the computational complexity of the degree reduction, it allows more parallel
computations.

As of the time of writing, the results presented in Chapters 3 and 6 have not yet been
published. Most of the relations, equations and algorithms which are given in this thesis have
been checked using the computer algebra system Maple� (see [71]).

1.1 Remarks on points and vectors

In computer-aided geometric design, to preserve the geometric interpretations of some meth-
ods, the algorithms often operate not in the vector space Rd but in the point space Ed. The
approach presented here can be examined in greater detail, e.g., in [78, Chapter 1], [36, Chap-
ter 2]. It will be of use in Chapter 2. To avoid confusion, points in Ed will be denoted using
the upper-case letters A,B, . . ., while vectors in Rd will be denoted using the lower-case letters
a, b, . . ..

Fact 1.1. The following types of operations are well-defined in Ed and Rd:

point - point = vector,
point + vector = point (translation),
vector + vector = vector (vector composition),
scalar × vector = vector (vector scaling).

The basic operation types given in Fact 1.1 can be combined to create more sophisticated
ones.

Example 1.2. Let A,B ∈ Ed. The operation

2

5
A+

3

5
B

gives a point in Ed. It can be interpreted as an equivalent form

A+
3

5
B− 3

5
A = A+

3

5
(B− A),

which consists of operations explicitly shown in Fact 1.1. The result is the point A translated

by the vector
3

5
(B− A), i.e., a vector B− A scaled by

3

5
.
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A similar restructuring can be done for any weighted sum of points under the condition
that the sum of all weights equals 1.

Fact 1.3. Let α0, α1, . . . , αn ∈ R and
∑n

k=0 αk = 1. Let A0,A1, . . . ,An ∈ Ed. The weighted
sum

n∑
k=0

αkAk

is a barycentric combination of points A0,A1, . . . ,An and is a point in Ed. It can be repre-
sented, for example, as

A0 +

n∑
k=1

αk(Ak − A0).

Remark 1.4. In the approach presented here, of all linear combinations of points, only the
barycentric ones are interpreted as points. This allows the operations on points to be invariant
with respect to translation. More precisely, the barycentric combination of A0,A1, . . . ,An ∈ Ed,
i.e.,

n∑
k=0

αkAk,

satisfies
n∑
k=0

αk (Ak + b) =
n∑
k=0

αkAk +

(
n∑
k=0

αk

)
b =

n∑
k=0

αkAk + b

for any vector b in Rd, thus

n∑
k=0

αk (Ak + b)− b =

n∑
k=0

αkAk

Just as in the case of points, the basic operations given in Fact 1.1 can be combined to
create more sophisticated expressions for vectors.

Example 1.5. Let A,B,C ∈ Ed. The operation

2

5
A+

3

5
B− C

gives a vector in Rd. It can be interpreted as an equivalent form

2

5
(A− C) +

3

5
(B− C),

which consists of operations explicitly shown in Fact 1.1.

One can check that this example can be extended to any weighted sum of points if the
sum of all weights equals 0.

Fact 1.6. Let α0, α1, . . . , αn ∈ R and
∑n

k=0 αk = 0. Let A0,A1, . . . ,An ∈ Ed. The weighted
sum

n∑
k=0

αkAk

is a vector in Rd.
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Definition 1.7. A barycentric combination of A0,A1, . . . ,An ∈ Ed with weights ω0, ω1, . . . , ωn,

n∑
k=0

ωkAk,

is a convex combination if ω0, ω1, . . . , ωn ≥ 0.

Definition 1.8. Let C ⊆ Ed. A convex hull of C, denoted as

conv C,

is the smallest convex set such that C ⊆ conv C. Equivalently,

conv C = {A ∈ Ed : A is a convex combination of C}.

The divide and conquer algorithm for finding a convex hull of n points in Ed, if d ∈ {2, 3} is
given in [79]. Its complexity is O(n log n). Some additional classical algorithms can be found
in [5, 48]. The lower bound for finding a convex hull of n points in two or three dimensions
is, however, O(n log h), where h is the number of points which form the convex hull. Two
algorithms which have this optimal complexity can be found in [55] and [16], with the latter
being simpler.

For a higher dimension count, the complexity is O(nbd/2c). See [26, p. 256–257].

1.2 Parametric curves

Parametric curves are useful in computer-aided geometric design. They serve as a memory-
efficient way of representing certain geometric objects.

Definition 1.9. Let [a, b] ⊆ R. A parametric curve is a continuous function F : [a, b]→ Ed.

When F is known, one can evaluate the parametric curve for any t ∈ [a, b].

Example 1.10. A parametric curve F : [0, 20π]→ E2 is given by

F(t) := (t sin 2t, cos 3t) .

Figure 1.1 illustrates this case.

Example 1.11. A spiral can be obtained using a parametric curve F : [0, T ]→ E2 given by

F(t) := (t cos t, t sin t) .

Figure 1.2 illustrates this case for T = 30π.

Definition 1.12. Let the parametric curves

F : [a, b]→ Ed

and
G : [b, c]→ Ed
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Figure 1.1: An illustration of Example 1.10.

Figure 1.2: An illustration of Example 1.11.

satisfy
F(k)(b) = G(k)(b) (k = 0, 1, . . . , n).

A composite curve
H : [a, c]→ Ed
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given by the formula

H(t) :=

{
F(t) (t ∈ [a, b)),
G(t) (t ∈ [b, c])

contains a joining of the curves F and G of the Cn class.

Example 1.13. A composite curve F : [0, 3]→ E2 is given by

F(t) :=



(
−16089

4
t3 +

26437

4
t2 − 1882t+ 315,−12027

4
t3 +

14255

4
t2 − 453t− 1215

)
(t ∈ [0, 1]),

(
1129t3 − 5514t2 + 8288t− 2883,−1849t3 + 8250t2 − 10812t+ 3300

)
(t ∈ [1, 2]),

(
−1394t3 + 9624t2 − 21988t+ 17301, 1745t3 − 13314t2 + 32316t− 25452

)
(t ∈ [2, 3]).

Figure 1.3 illustrates this case.

Example 1.14. A segment with ends at points A,B ∈ E2 can be expressed as a parametric
curve F : [0, 1]→ E2 given by

F(t) := (1− t)A+ tB.

In Example 1.14, the formula for a parametric curve has been expressed using a convex
combination of points in E2. This is a common approach when defining the parametric curves.

Definition 1.15. Let a, b ∈ R and a ≤ b. For W0,W1, . . . ,Wn ∈ Ed and continuous functions
b0, b1, b2, . . . , bn : [a, b]→ R such that

∑n
k=0 bk(t) ≡ 1 for all t ∈ [a, b], the function

F(t) :=
n∑
k=0

bk(t)Wk (t ∈ [a, b])

is a parametric curve. The points W0,W1, . . . ,Wn are the control points of the curve F and
b0, b1, . . . , bn are its basis functions.

Usually, the basis functions are selected so that b0(a) = bn(b) = 1 and bk(t) ≥ 0 for all
k = 0, 1, . . . , n and t ∈ [a, b]. The former implies that F(a) = W0 and F(b) = Wn, while the
latter guarantees that

F(t) ∈ conv {W0,W1, . . . ,Wn} (t ∈ [a, b]).

Example 1.16. Let A,B,C ∈ Ed. The function

F(t) := (1− t)A+ t sin2(2πt)B+ t cos2(2πt)C (t ∈ [0, 1])

is a parametric curve with control points A,B,C and their corresponding basis functions 1 −
t, t sin2(2πt), t cos2(2πt).

Figure 1.4 illustrates this case for

A = (3, 4) ,B = (−2, 7) ,C = (0,−3) .

Note that for t ∈ [0, 1], all points on a curve stay within the convex hull of A,B,C.

In particular, the basis functions of a curve can be defined using polynomials or rational
functions. A well-known example is the family of polynomial or rational Bézier curves and
B-spline curves, which will be presented in more detail in Sections 1.6 and 1.9, respectively.
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Figure 1.3: An illustration of Example 1.13. Note the different types of joinings: C0 at
[1020,−1111]T , C1 at [315,−1215]T , and C2 at [669,−116]T .
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Figure 1.4: An illustration of Example 1.16.
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1.3 Hypergeometric functions

Many special functions or orthogonal polynomials which find their applications in approxi-
mation theory or numerical analysis can be expressed as a function from the hypergeometric
functions family, i.e., in their hypergeometric form.

Hypergeometric functions are themselves considered special functions and they satisfy a
multitude of identities, some of which will be used to prove new results in the subsequent
chapters. Some of the functions which appear throughout the thesis can be expressed in their
hypergeometric form, which will be used to prove some of their properties.

First, let us introduce the Pochhammer symbol, which is frequently used when dealing
with hypergeometric functions.

Definition 1.17 ([3, Eq. (1.1.2)]). The Pochhammer symbol (x)n is defined for any x ∈ C
and n ∈ N in a following way:

(x)0 := 1, (x)n :=

n−1∏
k=0

(x+ k) (k ∈ N \ {0}).

The Pochhammer symbol is a generalization of a factorial. One can easily see that

k! = (1)k (k ∈ N).

The value of (x)n can be expressed, if x, x + n /∈ Z \ N, as a ratio of two gamma functions
(cf. [25]):

(x)n =
Γ(x+ n)

Γ(x)
.

This, in particular, means that for k ∈ N \ {0},

(k)n =
(k + n− 1)!

(k − 1)!
.

Using gamma functions, the binomial coefficient can be generalized so that it has two real
arguments: (

x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
.

In particular, if n ∈ N, the relation simplifies to(
x

n

)
=

(x− n+ 1)n
n!

. (1.1)

The Pochhammer symbol is useful in expressing hypergeometric functions in a concise
fashion.

Definition 1.18 ([3, §2.1]). A generalized hypergeometric function pFq is defined by

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣x) :=
∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

· x
k

k!
,

where p, q ∈ N, ai ∈ C (i = 1, 2, . . . , p), bj ∈ C (j = 1, 2, . . . , q), x ∈ C.
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Example 1.19 ([3, §2]). Some classical functions can be expressed in the hypergeometric
form. For example:

ex =
∞∑
k=0

xk

k!
= 0F0

(
−
−

∣∣∣∣x) ,
ln(1 + x) =

∞∑
k=0

(−1)kxk+1

k + 1
= x 2F1

(
1, 1

2

∣∣∣∣−x) (|x| < 1),

sinx =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= x 0F1

(
−

3/2

∣∣∣∣−x2/4) ,
cosx =

∞∑
k=0

(−1)kx2k

(2k)!
= 0F1

(
−

1/2

∣∣∣∣−x2/4) .
If any of the upper parameters is a non-positive integer then the series is finite and is a

polynomial in x.

Example 1.20.

2F1

(
−2, a2
b1

∣∣∣∣x) =

2∑
k=0

(−2)k(a2)k
(b1)kk!

xk = 1 +
−2a2
b1

x+
(−2)(−1)a2(a2 + 1)

(b1)(b1 + 1)2!
x2.

The hypergeometric functions used in this thesis will be, in fact, polynomials. The hyper-
geometric representation of polynomials is useful due to the fact that there is a sizable amount
of known hypergeometric identities. A long, but by no means exhaustive, list can be found
in [3]. A particular hypergeometric identity which will find its application in proving some
properties of dual Bernstein polynomials (cf. §1.5.2) in Chapter 6 is the Chu-Vandermonde
identity.

Theorem 1.21 ([3, Corollary 2.2.3]). For n ∈ N, and a, b, c ∈ R such that c− a+ n > 0, the
following Chu-Vandermonde identity holds:

2F1

(
−n, a
c

∣∣∣∣ 1) =
(c− a)n

(c)n
. (1.2)

1.3.1 The Zeilberger’s algorithm

There is a wide array of algorithms which allow to discover and prove new identities, with
hypergeometric identities among them. The best-known algorithms are presented, e.g., in
[57, 75].

In this thesis, the Zeilberger’s algorithm will be used to prove one identity in Chapter 4.
The main idea of the algorithm is to construct a recurrence relation for f(n) such that

f(n) :=
∑
k∈Z

F (n, k),

where F (n, k) is a given hypergeometric term, i.e. F (n+1, k)/F (n, k) and F (n, k+1)/F (n, k)
are both rational functions of n and k.
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Let us set J ≥ 1. The Zeilberger’s algorithm finds polynomials a0, a1, . . . , aJ in n which

are also independent of k and a function G(n, k) such that
G(n, k)

F (n, k)
is a rational function of

n, k, so that a relation

J∑
j=0

aj(n)F (n+ j, k) = G(n, k + 1)−G(n, k)

is satisfied, or proves that this relation cannot be satisfied for the chosen J .
After applying the sum over k to both sides, one gets

J∑
j=0

aj(n)f(n+ j) =
∑
k∈Z

G(n, k + 1)−
∑
k∈Z

G(n, k) = 0.

This gives a recurrence relation for f which can be used to efficiently compute f(n). In
some cases, such as J = 1 or aj(n) being constant (with respect to n) for low J , solving the
recurrence relation is simple.

A big advantage of the Zeilberger’s algorithm is that the process can be done almost auto-
matically and efficiently realized in symbolic computing environments, e.g., Maple� (cf. [71]).
For more details regarding the Zeilberger’s algorithm, see [75, §6], [57, §7], [100, 101].

Example 1.22. The Chu-Vandermonde identity can be proved using the Zeilberger’s algo-
rithm in the following way. Let

f(n) := 2F1

(
−n, a
c

∣∣∣∣ 1) =
∞∑
k=0

(−n)k(a)k
(c)kk!

≡
∞∑
k=0

F (n, k).

Since (−n)k = 0 and, in consequence, F (n, k) = 0 for k > n, k only takes natural values from
0 to n in the sums, giving

f(n) :=
n∑
k=0

F (n, k).

Let us set J := 1. Then, one seeks such a0(n), a1(n), G(n, k) that the relation

a0(n)F (n, k) + a1(n)F (n+ 1, k) = G(n, k + 1)−G(n, k)

holds. Applying the Zeilberger’s algorithm gives

a0(n) := c+ n− a, a1(n) := −(c+ n),

G(n, k) := (c+ k − 1) · k · (c+ n− a)F (n, k)− (c+ n)F (n+ 1, k)

(c+ n− a)(n+ 1− k)− (c+ n)(n+ 1)
.

Certainly, G(n, 0) = G(n, n+ 2) = 0. Applying the sum over k = 0, 1, . . . , n+ 1, would give

a0(n)

n+1∑
k=0

F (n, k) + a1(n)

n+1∑
k=0

F (n+ 1, k) = G(n, n+ 2)−G(n, 0) = 0,

thus
(c+ n− a)f(n)− (c+ n)f(n+ 1) = 0.
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This leaves the first-order homogeneous recurrence relation

f(n+ 1) =
c+ n− a
c+ n

f(n),

which, for f(0) = 1, has the explicit solution

f(n) =
(c− a)n

(c)n
.

See Theorem 1.21.

1.4 Orthogonal and dual bases

Orthogonality is an extremely useful concept in least-squares approximation. If a basis of
space S is known and if the basis is orthogonal, one can easily find an optimal least-square
approximation in S of objects from the space T such that S ⊆ T . In this thesis, the space
S will always be a space of polynomials of degree at most n (denoted as Πn). In §1.4.1, the
concepts of orthogonal bases and orthogonal projection will be introduced, along with two
families of orthogonal polynomials — Jacobi and Hahn polynomials — which will find their
applications in this thesis.

The concept of orthogonal bases can be generalized to get dual bases. This allows to use
a primary basis of S together with its associated dual basis.

1.4.1 Orthogonal bases and orthogonal polynomials

Definition 1.23. Let B = {b0, b1, . . . , bn} be a basis of S. Let 〈·, ·〉 : S × S → R be a scalar
product in S. B is an orthogonal basis of S if, for j 6= k, 〈bj , bk〉 = 0 and 〈bj , bj〉 > 0. If,
additionally, 〈bj , bj〉 = 1, the basis is also called orthonormal.

Theorem 1.24 ([22, Theorem 4.5.13]). Let {b0, b1, . . . , bn} be an orthogonal basis of S. Let
〈·, ·〉 : S × S → R be a scalar product in S. Let ‖ · ‖ be a norm associated with the scalar
product 〈·, ·〉, i.e., ‖f‖2 := 〈f, f〉.

Then

min
w∈S
‖f − w‖ =

∥∥∥∥∥f −
n∑
k=0

〈f, bk〉
〈bk, bk〉

bk

∥∥∥∥∥ .
In particular, if f ∈ S,

f =
n∑
k=0

〈f, bk〉
〈bk, bk〉

bk.

Often, due to their efficiency and applications in approximation, orthogonal polynomial
bases are used.

Theorem 1.25 ([22, Theorem 4.5.19]). For every scalar product 〈·, ·〉, there is a family of
orthogonal polynomials pk (k = 0, 1, . . .) such that pk has exactly degree k and is orthogonal
to polynomials of degree less than k. The family is uniquely determined apart from the fact
that the leading coefficients can be given arbitrary positive values.
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The polynomials from the family pk (k = 0, 1, . . .) satisfy the recurrence relation of the
form

pk+1(x) =

(
x− 〈xpk, pk〉

〈pk, pk〉

)
pk(x)− 〈pk, pk〉

〈pk−1, pk−1〉
pk−1(x) (k ≥ 1),

with initial values p0(x) = 1 and p1(x) = x− 〈x, 1〉
〈1, 1〉

.

Jacobi polynomials

The Jacobi polynomials are orthogonal with respect to the scalar product∫ 1

−1
(1− x)α(1 + x)βf(x)g(x)dx, (1.3)

where the parameters α, β ∈ R satisfy α, β > −1. The Jacobi polynomials, certainly, satisfy
Theorem 1.25. For the reader’s convenience, an explicit recurrence relation is given.

Theorem 1.26. Let P (α,β)
n be the nth Jacobi polynomial with parameters α, β. The following

recurrence relation holds:

φ2(n)P (α,β)
n (x) = φ1(n)P

(α,β)
n−1 (x)− φ0(n)P

(α,β)
n−2 (x) (n ≥ 2), (1.4)

where

φ0(n) := 2(n+ α− 1)(n+ β − 1)(2n+ α+ β),

φ1(n) := (2n+ α+ β − 1), [(2n+ α+ β)(2n+ α+ β − 2)x+ α2 − β2],
φ2(n) := 2n(n+ α+ β)(2n+ α+ β − 2).

Additionally, a hypergeometric representation (see §1.3) of Jacobi polynomials is known:

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1

∣∣∣∣ 1− x
2

)
(n = 0, 1, . . .) (1.5)

(cf. [3, Definition 2.5.1]).
Some parameter choices for α, β give well-known families of orthogonal polynomials. The

recurrence relations for them can be derived from Eq. (1.4). When α = β = 0, i.e., the
considered scalar product simplifies to∫ 1

−1
f(x)g(x)dx,

then
P (0,0)
n (x) ≡ Ln(x),

where Ln is the nth Legendre polynomial (cf. [58, Table 18.3.1]). A hypergeometric form of
Legendre polynomials follows from Eq. (1.5):

Ln(x) = 2F1

(
−n, n+ 1

1

∣∣∣∣ 1− x
2

)
(n = 0, 1, . . .).
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Another well-established subtype of Jacobi polynomials are Chebyshev polynomials Tn
(cf. [58, Table 18.3.1]):

Tn ≡ 22n
(

2n

n

)−1
P (−1/2,−1/2)
n .

Similarly to the Legendre polynomials, a hypergeometric form of Chebyshev polynomials is
known:

Tn(x) = 2F1

(
−n, n
1/2

∣∣∣∣ 1− x
2

)
(n = 0, 1, . . .).

Shifted Jacobi polynomials

In this thesis, shifted Jacobi polynomials R(α,β)
n will be of particular interest. They can be

obtained by using the relation

R(α,β)
n (x) = P (α,β)

n (2x− 1) (n = 0, 1, . . .).

Certainly, then, the shifted Jacobi polynomials are orthogonal with respect to the scalar
product

〈f, g〉α,β =

∫ 1

0
(1− x)αxβf(x)g(x)dx (1.6)

(cf. (1.3)). More precisely,〈
R

(α,β)
k , R

(α,β)
l

〉
α,β

= δklhk (k, l ∈ N), (1.7)

where δkl is the Kronecker delta (δkl = 0 for k 6= l and δkk = 1) and

hk := K
(α+ 1)k(β + 1)k
k!(2k/σ + 1)(σ)k

(k = 0, 1, . . .)

with
σ := α+ β + 1 (1.8)

and
K ≡ Kα,β := Γ(α+ 1)Γ(β + 1)/Γ(σ + 1). (1.9)

A version of Theorem 1.26 is given for shifted Jacobi polynomials.

Theorem 1.27 ([56, §1.8]). Shifted Jacobi polynomials satisfy the second-order recurrence
relation of the form

ξ0(n)R(α,β)
n (x) + ξ1(n)R

(α,β)
n+1 (x) + ξ2(n)R

(α,β)
n+2 (x) = 0 (n = 0, 1, . . .), (1.10)

where

ξ0(n) := −2(n+ α+ 1)(n+ β + 1)(2n+ σ + 3), (1.11)

ξ1(n) := (2n+ σ + 2){(2n+ σ + 1)(2n+ σ + 3)(2x− 1) + α2 − β2}, (1.12)

ξ2(n) := −2(n+ 2)(n+ σ + 1)(2n+ σ + 1) (1.13)

(cf. (1.8)).
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Remark 1.28. The recurrence relation (1.10) can be used, for example, in fast and accurate
methods for evaluating the values R(α,β)

n (x) for a given x, α, β and all 0 ≤ n ≤ N , where
N is a fixed natural number, with O(N) computational complexity. For more details about
performing computations with recurrence relations properly, see [93].

The representation of shifted Jacobi polynomials in the (1 − x)j basis is given in the
hypergeometric form as

R(α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1

∣∣∣∣ 1− x) (n = 0, 1, . . .) (1.14)

(cf., e.g., [56, §1.8]).

Theorem 1.29 ([3, p. 117]). Shifted Jacobi polynomials satisfy the symmetry relation

R(α,β)
n (x) = (−1)nR(β,α)

n (1− x) (1.15)

for n ∈ N and α, β > −1.

Theorem 1.30 ([3, Eq. (6.3.8)]). Shifted Jacobi polynomials satisfy the relation:(
R(α,β)
n (x)

)′
= (n+ α+ β + 1)R

(α+1,β+1)
n−1 (x). (1.16)

for n ∈ N and α, β > −1.

Theorem 1.31 ([3, Eq. (6.4.20) and (6.4.23)]). Shifted Jacobi polynomials satisfy the rela-
tions:

(1− x)R(α+1,β)
n (x) = − n+ 1

2n+ σ + 1
R

(α,β)
n+1 (x) +

n+ α+ 1

2n+ σ + 1
R(α,β)
n (x), (1.17)

xR(α,β+1)
n (x) =

n+ 1

2n+ σ + 1
R

(α,β)
n+1 (x) +

n+ β + 1

2n+ σ + 1
R(α,β)
n (x), (1.18)

for n ∈ N, α, β > −1 and σ given by (1.8).

Theorem 1.32 ([56, Eq. (1.8.5)]). Shifted Jacobi polynomials satisfy the second-order differ-
ential equation with polynomial coefficients of the form:

L(α,β)R
(α,β)
k (x) = λ

(α,β)
k R

(α,β)
k (x) (k = 0, 1, . . .), (1.19)

where

L(α,β) := x(x− 1)D2 + 1
2 (α− β + (σ + 1)(2x− 1))D, λ

(α,β)
k := k(k + σ),

and D :=
d

dx
is a differentiation operator with respect to the variable x.

For more properties and applications of Jacobi polynomials, see, e.g., [3, 56].
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Hahn polynomials

Another family of orthogonal polynomials which will be used in this thesis are Hahn polyno-
mials.

Definition 1.33 ([56, §1.5]). The kth Hahn polynomial with parameters α, β > −1 and N ≥ k
is given in the hypergeometric form

Qk(x;α, β;N) := 3F2

(
−k, k + α+ β + 1, −x

α+ 1, −N

∣∣∣∣ 1) (k = 0, 1, . . . , N ; N ∈ N) (1.20)

(see §1.3).

Theorem 1.34 ([97, Eq. (2.4)], [56, §1.5]). Hahn polynomials are orthogonal with respect to
the scalar product

〈f, g〉H :=

N∑
x=0

(
α+ x

x

)(
β +N − x
N − x

)
f(x)g(x) (α, β > −1)

(cf. (1.1)), i.e.,
〈Qk, Q`〉H = δk`h

(α,β,N)
k (0 ≤ k, ` ≤ N)

for some positive h(α,β,N)
k .

Theorem 1.35 ([32, p. 9],[53, Eq. (1.15)]). Hahn polynomials satisfy a symmetry relation:

(α+ 1)kQk(x;α, β,N) = (−1)k(β + 1)kQk(N − x;β, α,N). (1.21)

A difference equation is known for Hahn polynomials.

Theorem 1.36 ([56, Eq. (1.5.5)], [56, §1.5], [97, Eq. (A.17)]). Hahn polynomials satisfy the
second-order difference equation with polynomial coefficients of the form

L(α,β,N)
x Qk(x;α, β;N) = λ

(α,β)
k Qk(x;α, β;N) (k = 0, 1, . . .), (1.22)

where
L(α,β,N)
x f(x) := a(x)f(x+ 1)− c(x)f(x) + b(x)f(x− 1), (1.23)

and

a(x) := (x−N)(x+ α+ 1), b(x) := x(x− β −N − 1), c(x) := a(x) + b(x).

1.4.2 Dual bases

While the orthogonal projection is certainly useful as a tool for least-square approximation,
it has significant drawbacks. Often, when solving an approximation problem, the solution
is needed in a specific (and usually not orthogonal) basis. In order to use the orthogonal
projection, then, one needs to find the solution’s representation in the orthogonal basis and
then change the basis to the desired one. Changing the basis is, however, computationally
costly and can be numerically unstable.

Dual bases allow to perform the approximation directly in the desired basis, which reduces
the numerical risks and can speed up the computations. Figure 1.5 presents the difference
between using dual bases and the orthogonal projection.



CHAPTER 1. INTRODUCTION 17

f

orthogonal projection (Thm. 1.24)
g∗ in P

dual projection (Thm. 1.38)
g∗ in B

connection

Figure 1.5: A diagram illustrating two approaches to solving the following problem: for given
functions f , a space S and inner product 〈·, ·〉 (with P being the orthogonal basis of S with
respect to 〈·, ·〉), find the representation of g∗ ∈ S in the basis B (where lin B = S) such that
‖f − g∗‖ = ming∈S ‖f − g‖, for ‖ · ‖ :=

√
〈·, ·〉.

Definition 1.37 ([94, Eq. (1.1)]). Let B = {b0, b1, . . . , bn} be a basis of S. Let 〈·, ·〉 : S×S →
R be a scalar product in S. Then D = {d0, d1, . . . , dn} is dual to B with respect to 〈·, ·〉 if:

1. lin B = lin D = S,

2. 〈bk, dj〉 = δkj,

where δkj is the Kronecker delta (δkk = 1, if k 6= j then δkj = 0).

Dual bases are a generalization of orthogonal bases — note that an orthonormal basis is
dual to itself. One can also generalize the orthogonal projection (see Theorem 1.24) to find
the representation of a function in the primary base.

Theorem 1.38 ([94, §4]). Let {b0, b1, . . . , bn} be a basis of S. Let {d0, d1, . . . , dn} be its dual
basis with respect to 〈·, ·〉. Let ‖ · ‖2 :=

√
〈·, ·〉. Then

min
w∈S
‖f − w‖2 =

∥∥∥∥∥f −
n∑
k=0

〈f, dk〉bk

∥∥∥∥∥
2

.

In particular, when f ∈ S,

f =
n∑
k=0

〈f, dk〉bk.

Dual bases have an interesting connection with the orthonormal basis which spans the
same space. It is a useful tool for discovering the representation of dual bases.

Theorem 1.39 ([60, Lemma 2.1]). Let B = {b0, b1, . . . , bn}, D = {d0, d1, . . . , dn} be two
bases of S such that D is dual to B with respect to 〈·, ·〉. Let P = {p0, p1, . . . , pn} be the
orthonormal basis of S wrt. the same scalar product. Let cij (i, j = 0, 1, . . . , n) be defined so
that

pi =

n∑
j=0

cijbj (0 ≤ i ≤ n).

The elements of D have the following representation in the basis P :

dj =

n∑
i=0

cijpi (0 ≤ j ≤ n).
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Corollary 1.40. From Theorem 1.39, it follows that

dj =
n∑
k=0

( n∑
i=0

cijcik

)
bk.

Some more general properties of dual bases can be found in [44, 94, 95]. Additional
properties for dual polynomial bases are proposed in [42]. In this thesis, the main dual basis
that will be considered is the dual Bernstein polynomial basis. It will be introduced, along
with Bernstein polynomials, in §1.5. A second important dual basis which will be used in this
thesis is the dual discrete Bernstein polynomial basis (cf. §1.5.4).

Other dual bases are also considered in the literature, such as, for example, dual B-spline
functions ([95]) and functionals ([49]), dual Wang-Bézier and dual Bézier-Said-Wang type
generalized Ball polynomials ([4, 102, 103, 105]), dual NS-power bases ([104]), bivariate dual
Bernstein polynomials ([64, 98]), dual tensor product Bernstein polynomials ([62]).

Constructing a dual basis from the definition

One approach to construct a dual basis (see, e.g., [94, §2]) applies Definition 1.37. Let
B = {b0, b1, . . . , bn}, D = {d0, d1, . . . , dn} be two bases of S such that D is dual to B with
respect to 〈·, ·〉. Let aij (i, j = 0, 1, . . . , n) be the coefficients of the representation of di in the
basis B, i.e.,

di =
n∑
j=0

aijbj (i = 0, 1, . . . , n).

The conditions in Definition 1.37 give (n+ 1)2 equations

〈di, bk〉 =

n∑
j=0

aij = 〈bj , bk〉 = δjk (i, k = 0, 1, . . . , n),

which can be expressed in the matrix form

G×A = I (G := [gij ], A := [aij ]; G,A ∈ R(n+1)×(n+1)),

where gij := 〈bi, bj〉 and I is the identity matrix. The matrix G is the so-called Gram matrix
and, clearly, A is its inverse.

While this method is very simple, its high complexity and numerical risks of inverting
the Gram matrix are its significant drawbacks. One thus needs other methods for dual basis
construction.

Constructing a dual basis using recurrence relations

Some methods to construct the dual basis have been given by Woźny in [94, 95]. The method
described here is the one which was proposed in [95] (with amendments given in [44]).

Let Bn := {b0, b1, . . . , bn} be a basis of the space Sn. Let a known basis

Dn := {d(n)0 , d
(n)
1 , . . . , d(n)n }

be dual to Bn with respect to 〈·, ·〉. Now, let Bn+1 := Bn∪{bn+1} such that Bn+1 is the basis

of the space Sn+1. Let Dn+1 :=
{
d
(n+1)
0 , d

(n+1)
1 , . . . , d

(n+1)
n+1

}
be dual to Bn+1 with respect to

the same scalar product. In order to construct Dn+1 from the elements of Bn+1 and Dn, a
recurrence relation can be used.
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Theorem 1.41 ([95, Theorem 2.3]). The elements of the dual bases Dn and Dn+1 satisfy the
relations

d
(n+1)
j = d

(n)
j − w

(n+1)
j d

(n+1)
n+1 (i = 0, 1, . . . , n),

where w(n+1)
j := 〈d(n)j , bn+1〉.

In order to find d(n+1)
n+1 , one can express it in the basis Dn ∪ {bn+1}, which certainly spans

Sn+1 because Dn and Bn span exactly the same space:

d
(n+1)
n+1 =

n∑
k=0

c
(n+1)
k d

(n)
k + c

(n+1)
n+1 bn+1.

After applying the orthogonality conditions from Definition 1.37, one gets n+ 1 equations of
the form

〈d(n+1)
n+1 , bi〉 = c

(n+1)
i + c

(n+1)
n+1 〈bn+1, bi〉 = 0 (i = 0, 1, . . . , n),

〈d(n+1)
n+1 , bn+1〉 =

n∑
k=0

c
(n+1)
k 〈d(n)k , bn+1〉+ c

(n+1)
n+1 〈bn+1, bn+1〉 = 1.

These equations have a simple solution:
c
(n+1)
i = −c(n+1)

n+1 〈bn+1, bi〉 (i = 0, 1, . . . , n),

c
(n+1)
n+1 =

(
〈bn+1, bn+1〉 −

n∑
k=0

〈bn+1, bk〉〈d
(n)
k , bn+1〉

)−1
.

In some particular applications, such as in degree reduction of Bézier curves with box
constraints (see [44]), sometimes it is desirable to reduce the size of the basis, i.e., when the
basis Dn+1 (dual to Bn+1) is known, one needs to find Dn (dual to Bn).

Theorem 1.42 ([44, Theorem 4.3]). The following relations between the elements of Dn and
Dn+1 hold:

d
(n)
i = d

(n+1)
i −

〈
d
(n+1)
i , d

(n+1)
n+1

〉
〈
d
(n+1)
n+1 , d

(n+1)
n+1

〉d(n+1)
n+1 (i = 0, 1, . . . , n).

1.5 Bernstein polynomials, dual Bernstein polynomials and
their properties

1.5.1 Bernstein polynomials

The family of Bernstein polynomials was used by S. N. Bernstein in his constructive proof
of the Weierstrass approximation theorem, which states that any continuous function can be
approximated over a closed and bounded interval with arbitrary precision using polynomials.
For more details, see [24, §10.3]. They came into prominence, however, half a century later
when they became a basis for a particular family of parametric curves (cf. Section 1.2) —
Bézier curves. Section 1.6 describes these objects in more detail.
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Definition 1.43. For a set n ∈ N and i ∈ {0, 1, . . . , n}, Bn
i is the ith Bernstein polynomial

of degree n. Bn
i is given by the formula

Bn
i (t) :=

(
n

i

)
ti(1− t)n−i. (1.24)

An example family of Bernstein polynomials of degree 5 is shown in Figure 1.6. The
widespread use of Bernstein polynomials is due to their simplicity and useful properties.

Figure 1.6: The family of Bernstein polynomials of degree 5 in the interval [0, 1].

Remark 1.44. From Definition 1.43, several properties follow.

1. Bn
k has a root with multiplicity k at 0 (for k = 1, 2, . . . , n) and a root with multiplicity

n− k at 1 (for k = 0, 1, . . . , n− 1). For t ∈ (0, 1), Bn
k (t) > 0 for all k = 0, 1, . . . , n.

2. Bn
k has exactly one local maximum in [0, 1] at

k

n
.

3. Bernstein polynomials satisfy the symmetry relation Bn
k (t) = Bn

n−k(1− t).

Theorem 1.45 ([36, Eq. (6.20) and (6.21)]). The polynomial Bn
i can be expressed as a linear

combination of tk monomials (k = i, i+ 1, . . . , n):

Bn
i (t) =

n∑
k=i

(−1)i+k
(
n

k

)(
k

i

)
tk. (1.25)
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The monomial tk can be expressed as a linear combination of Bn
k , B

n
k+1, . . . , B

n
n :

tk =

(
n

k

)−1 n∑
i=k

(
i

k

)
Bn
i (t). (1.26)

Corollary 1.46. From equations (1.25) and (1.26), it follows that Bernstein polynomials of
degree n form a basis of Πn.

Bernstein polynomials possess the partition of unity property, which is useful in their
applications in computer graphics (cf. Section 1.1) and provides greater numerical stability
than using a basis without that property (see, e.g., [39]).

Remark 1.47 ([77, P1.1, P1.2]). For any n ∈ N and t ∈ R,

n∑
i=0

Bn
i (t) =

n∑
i=0

(
n

i

)
ti(1− t)n−i = (t+ 1− t)n ≡ 1. (1.27)

Additionally, if t ∈ [0, 1], then Bn
i (t) ≥ 0.

In practice, this property means that the values of Bernstein polynomials for a certain t can
be used as weights in a barycentric combination (cf. Fact 1.3). If t ∈ [0, 1], this combination
is not only barycentric but also convex (cf. Definition 1.7).

Remark 1.48. In the sequel, the convention is applied that Bn
i ≡ 0 if i < 0 or i > n.

Theorem 1.49 ([36, Eq. (5.2) and (6.26)]). For any t ∈ R, Bernstein polynomials satisfy the
recurrence relations connecting the polynomials of two consecutive degrees:

Bn
i (t) = tBn−1

i−1 (t) + (1− t)Bn−1
i (t) (i = 0, 1, . . . , n), (1.28)

Bn
i (t) =

n− i+ 1

n+ 1
Bn+1
i (t) +

i+ 1

n+ 1
Bn+1
i+1 (t) (i = 0, 1, . . . , n). (1.29)

The relation (1.29) is known as the degree elevation formula.

Theorem 1.50 ([36, Eq. (6.22)]). For n ∈ N, k = 0, 1, . . . , n and c, t ∈ R, Bernstein polyno-
mials satisfy the relation

Bn
k (ct) =

n∑
j=0

Bj
k(c)B

n
j (t). (1.30)

The equation (1.30) will be applied in §1.7.2 in the problem of Bézier curve subdivision.
In this thesis, differential-recurrence relations for Bernstein polynomials will find their

application.

Theorem 1.51 ([77, P1.7]). For n ∈ N and k = 0, 1, . . . , n, the following differential-
recurrence relation for Bernstein polynomials holds:(

Bn
k (t)

)′
= n

(
Bn−1
k−1 (t)−Bn−1

k (t)
)
. (1.31)

Theorem 1.51 can be combined with Definition 1.43 and Eq. (1.29) to get additional
relations.
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Theorem 1.52. Let n ∈ N, k = 0, 1, . . . , n and t ∈ R. Bernstein polynomials satisfy the
following differential-recurrence relations:(

Bn
k (t)

)′
= (n− k + 1)Bn

k−1(t) + (2k − n)Bn
k (t)− (k + 1)Bn

k+1(t), (1.32)

t
(
Bn
k (t)

)′
= kBn

k (t)− (k + 1)Bn
k+1(t). (1.33)

Proof. Applying Eq. (1.29) to elevate the degree of the right-hand side of Eq. (1.31) and
grouping the elements on the right-hand side proves Eq. (1.32). Eq. (1.33) follows from
applying the identity

ntBn−1
k (t) = n

(
n− 1

k

)
tk+1(1− t)n−(k+1) = (k + 1)Bn

k+1(t)

to Eq. (1.29) twice.

Bernstein polynomials have a nice connection with two families of orthogonal polynomials,
namely shifted Jacobi polynomials and Hahn polynomials (see §1.4.1).

Theorem 1.53 ([60, Eq. (5.4)]). Bernstein polynomials have the following shifted Jacobi
form:

Bn
k (x) =

(
n

k

)
(α+ 1)n−k(β + 1)k

n∑
i=0

(2i+ σ)(−n)i
(α+ 1)i(i+ σ)n+1

Qi(k;β, α, n)R
(α,β)
i (x) (1.34)

for k = 0, 1, . . . , n.

For more properties, history and applications of Bernstein polynomials, see [38].

1.5.2 Dual Bernstein polynomials

For many years, Bernstein basis polynomials have been used in computer-aided geometric
design, approximation theory, numerical analysis and computational mathematics. See, e.g.,
books [11, 36] and the article [38], as well as the papers cited therein. These applications of
Bernstein polynomials can be further expanded if dual Bernstein polynomials are known and
can be evaluated efficiently.

Dual Bernstein polynomials associated with the Legendre inner product were introduced
by Ciesielski in 1987 [20]. Their properties and generalizations were studied, e.g., by Jüttler
[52], Rababah and Al-Natour [80, 81], as well as by Lewanowicz and Woźny [60, 61, 97]. A
more general version of dual Bernstein polynomials was introduced in [60]. These polynomials
are associated with the shifted Jacobi inner product (cf. (1.6)), which is a generalization of
the previously considered Legendre inner product (see p. 13).

Dual Bernstein polynomials appear in the formulas for the coefficients of dual projections
into the Bernstein-Bézier basis. For that reason, dual Bernstein polynomials have recently
been extensively studied and found many theoretical (see [20, 52, 60, 61, 80]) and practical
applications. For example, these dual polynomials are very useful in: curve intersection using
Bézier clipping ([7, 66, 90]); degree reduction and merging of Bézier curves ([46, 47, 97, 99]);
polynomial approximation of rational Bézier curves ([63]); numerical solving of boundary value
problems ([45]) or even fractional partial differential equations ([50, 51]). Skillful use of these
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polynomials often results in less costly algorithms of solving many computational problems.
More properties of dual Bernstein polynomials and algorithms for their fast evaluation will
be given in Chapters 4 and 5.

The inner product with respect to which dual Bernstein polynomials are constructed is
the shifted Jacobi inner product (cf. (1.6)), with the parameters α, β > −1.

Definition 1.54 ([60, §5]). Let the inner product 〈·, ·〉α,β be given by Eq. (1.6). Dual Bernstein
polynomials of degree n,

Dn
0 (x;α, β), Dn

1 (x;α, β), . . . , Dn
n(x;α, β) ∈ Πn,

are defined so that the following conditions hold:〈
Bn
i , D

n
j (·;α, β)

〉
α,β

= δij (i, j = 0, 1, . . . , n). (1.35)

In the case α = β = 0, these polynomials were introduced earlier by Ciesielski in [20].
One can prove that dual Bernstein polynomials form a basis of the Πn space.

Remark 1.55. In the sequel, the convention is adopted that Dn
i (x;α, β) := 0 for i < 0 or

i > n.

Definition 1.54 does not give explicit expressions for dual Bernstein polynomials. The
expressions for them can be derived, for example, by using Theorems 1.39 and 1.53.

Theorem 1.56 ([60, Theorem 5.2]). For i = 0, 1, . . . , n, one can express dual Bernstein
polynomials Dn

i (x;α, β) using Hahn polynomials and shifted Jacobi polynomials (cf. Defini-
tion 1.33 and Eq. (1.14)) as follows:

Dn
i (x;α, β) = K−1

n∑
k=0

(−1)k
(2k/σ + 1)(σ)k

(α+ 1)k
Qk(i;β, α;n)R

(α,β)
k (x), (1.36)

with σ := α+ β + 1 and K := Γ(α+ 1)Γ(β + 1)/Γ(σ + 1).

Remark 1.57 ([60, Corollary 5.3]). Dual Bernstein polynomials satisfy a symmetry prop-
erty. From Eq. (1.36) and the symmetry properties of Jacobi (see Eq. (1.15)) and Hahn (see
Eq. (1.21)) polynomials, it follows that

Dn
i (x;α, β) = Dn

n−i(1− x;β, α) (i = 0, 1, . . . , n). (1.37)

Theorem 1.58 ([60, Corollary 5.4]). The polynomial Dn
i (x;α, β) can be expressed as a short

linear combination of min(i, n− i) + 1 shifted Jacobi polynomials with shifted parameters:

Dn
i (x;α, β) =

(−1)n−i(σ + 1)n
K (α+ 1)n−i(β + 1)i

i∑
k=0

(−i)k
(−n)k

R
(α,β+k+1)
n−k (x), (1.38)

Dn
n−i(x;α, β) =

(−1)i(σ + 1)n
K (α+ 1)i(β + 1)n−i

i∑
k=0

(−1)k
(−i)k
(−n)k

R
(α+k+1,β)
n−k (x),

where i = 0, 1, . . . , n.
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Additionally, [61, §2] gives a Bernstein-Bézier representation of dual Bernstein polynomials
and a recurrence relation for its coefficients. Some symmetries between the coefficients of such
representation are given in [61, Remark 3.5] and [67, Proposition 3].

When i = 0 or i = n, the sums in Theorem 1.58 simplify to:

Dn
0 (x;α, β) =

(−1)n(σ + 1)n
K (α+ 1)n

R(α,β+1)
n (x), (1.39)

Dn
n(x;α, β) =

(σ + 1)n
K (β + 1)n

R(α+1,β)
n (x). (1.40)

Bernstein polynomials are usually considered in the interval [0, 1] and the formulas for
their values at x = 0 or x = 1 are significantly simpler than in the general case. That is the
case with dual Bernstein polynomials as well.

Remark 1.59. Using [18, Eq. (3.1)], Eq. (1.2) and symmetry (1.37), one can check that

Dn
i (1;α, β) = (−1)n−i

(σ + 1)n(n− i+ α+ 2)i
K n!(β + 1)i

(0 ≤ i ≤ n), (1.41)

Dn
i (0;α, β) = (−1)i

(σ + 1)n(i+ β + 2)n−i
K n!(α+ 1)n−i

(0 ≤ i ≤ n). (1.42)

Theorem 1.60. A representation of dual Bernstein polynomials in the basis (1 − x)j, for
j = 0, 1, . . . , n, is given by the following expression:

Dn
i (x;α, β) = A

(α,β)
ni

(α+ 1)n
(n+ 1)!

n∑
j=0

B
(α,β)
nj 3F2

(
j − n, −i, 1

−n, −n− α

∣∣∣∣ 1) · (1− x)j ,

where

A
(α,β)
ni :=

(−1)n−i(n+ 1)(σ + 1)n
K (α+ 1)n−i(β + 1)i

, B
(α,β)
nj :=

(−n)j(n+ σ + 1)j
j!(α+ 1)j

. (1.43)

Proof. The hypothesis follows from applying the representation of shifted Jacobi polynomials
in the (1− x)j basis (given in Eq. (1.14)) to Eq. (1.38) and doing some algebra.

Recurrence relations can be an efficient way of computing the value of some polynomial
families. In [60], a relation connecting dual Bernstein polynomials of two subsequent degrees
was given.

Theorem 1.61 ([60, Theorem 5.1]). The following recurrence relation, which connects dual
Bernstein polynomials of degrees n + 1 and n, as well as the shifted Jacobi polynomial of
degree n+ 1, holds:

Dn+1
i (x;α, β) =

(
1− i

n+ 1

)
Dn
i (x;α, β) +

i

n+ 1
Dn
i−1(x;α, β) + C

(α,β)
ni R

(α,β)
n+1 (x), (1.44)

where 0 ≤ i ≤ n+ 1, and

C
(α,β)
ni := (−1)n−i+1 (2n+ σ + 2)(σ + 1)n

K(α+ 1)n−i+1(β + 1)i
. (1.45)
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The case α = β = 0 of this relation was found earlier by Ciesielski in [20]. The recurrence
relation allows to compute Dn

i (x;α, β) for fixed i using the triangular recurrence scheme. The
necessary sequence of shifted Jacobi polynomials can be computed in O(n) time using, for
example, the recurrence relation (1.10), thus giving the total O(n2) complexity. Using the
same recursive approach, one can compute all dual Bernstein polynomials of degree n in the
same O(n2) time.

Recurrence relations connecting the dual Bernstein polynomials of the same degree were
presented in [18] and [96] and are expanded upon in Chapter 5. Applying this approach
reduces the complexity of finding all dual Bernstein polynomials

Dn
0 (x;α, β), Dn

1 (x;α, β), . . . , Dn
n(x;α, β)

to O(n) time.

1.5.3 Dual constrained Bernstein polynomials

For k + l ≤ n, let Π
(k,l)
n := {p ∈ Πn : p(i)(0) = 0, and p(j)(1) = 0 for 0 ≤ i ≤ k − 1, 0 ≤ j ≤

l−1}. Certainly, the Bernstein polynomials Bn
k , B

n
k+1, . . . , B

n
n−l form a constrained Bernstein

basis of Π
(k,l)
n (and thus dim Π

(k,l)
n = n − k − l + 1). The basis dual to it, i.e., the dual

constrained Bernstein basis,

D
(n,k,l)
k (x;α, β), D

(n,k,l)
k+1 (x;α, β), . . . , D

(n,k,l)
n−l (x;α, β) ∈ Π(k,l)

n ,

consists of the so-called dual constrained Bernstein polynomials, i.e.,

〈D(n,k,l)
i , Bn

j 〉α,β = δij (k ≤ i, j ≤ n− l)

(cf. (1.6) and (1.35)). Obviously,

D
(n,0,0)
k (x;α, β) = Dn

k (x;α, β).

For k = l, i.e., in the space Π
(k,k)
n , the representation of dual constrained Bernstein polynomi-

als in the Bernstein basis is given for α = β = 0 in [52], and, for any α, β > −1, in [81]. In the
general case, i.e., k + l ≤ n and α, β > −1, the representation of dual constrained Bernstein
polynomials in the Bernstein basis is given in [61, Theorem 3.1], with a recurrence relation
satisfied by its coefficients. Some symmetries between the coefficients of such representation
are given in [61, Remark 3.5] and [67, Proposition 3].

Dual constrained Bernstein polynomials can be expressed using the (unconstrained) dual
Bernstein polynomials of lower degree.

Theorem 1.62 ([97, Theorem 3.1]). For i = k, k + 1, . . . , n− l, the following formula holds:

D
(n,k,l)
i (x;α, β) =

(
n− k − l
i− k

)(
n

i

)−1
xk(1− x)lDn−k−l

i−k (x;α+ 2l, β + 2k).

Dual constrained Bernstein polynomials have their applications in reducing the degree of
Bézier curves with constraints (see [97] and §1.7.4).
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1.5.4 Discrete Bernstein and dual Bernstein polynomials

Discrete Bernstein polynomials of degree n ∈ N are defined as

bni (x;N) :=
1

(−N)n

(
N

i

)
(−x)i(x−N)n−i (0 ≤ i ≤ n ≤ N ;N ∈ N)

(cf. [86, 87], [97, §A.3]). A family of polynomials

dn0 (x;α, β,N), dn1 (x;α, β,N), . . . , dnn(x;α, β,N) ∈ Πn,

which is dual to the discrete Bernstein polynomials with respect to the Hahn scalar product
〈·, ·〉H (cf. Theorem 1.34), i.e.,

〈dni (·;α, β,N), Bn
j 〉H = δij (k ≤ i, j ≤ n− l)

(cf. (1.35)), will be considered. These polynomials are known as discrete dual Bernstein
polynomials.

Discrete dual Bernstein polynomials satisfy certain properties, of which some find appli-
cation in reducing the degree of Bézier curves with constraints (see [97] and §1.7.4).

Remark 1.63 ([97, Corollary A.4]). Discrete dual Bernstein polynomials satisfy the following
symmetry property:

dni (x;α, β,N) = dnn−i(N − x, β, α,N) (0 ≤ i ≤ n ≤ N). (1.46)

Theorem 1.64 ([97, Theorem A.5]). Discrete dual Bernstein polynomials have the following
form as a short linear combination of Hahn polynomials with shifted parameters:

dni (x;α, β,N) = ANn
(−n− β)i
(α+ 1)i

i∑
k=0

(−i)k(−n− σ −N)k
(−n− β)k(1−N)k

Qn−k(N − x;β, α+ k+ 1, N − k− 1),

(1.47)
where i = 0, 1, . . . , n (n ≤ N), and

ANn :=
N !(1−N)n

n!(n+ σ + 1)N
.

Theorem 1.65 ([97, Theorem A.6]). Discrete dual Bernstein polynomials

dni (x) ≡ dni (x;α, β,N)

satisfy the following difference-recurrence relation:

aN (x)dni (x+ 1) +
[
cn(i)− cN (x)

]
dni (x) + bN (x)dni (x− 1)− an(i)dni+1(x)− bn(i)dni−1(x) = 0

for 0 ≤ i ≤ n ≤ N , where dn−1(x) = dnn+1(x) := 0, and

an(x) := (x− n)(x+ α+ 1), bn(x) := x(x− β − n− 1), cn(x) := an(x) + bn(x).
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Figure 1.7: A Bézier curve of degree 5 with control points W0 = (2, 1), W1 = (5, 1.5),
W2 = (3, 4), W3 = (1, 3), W4 = (6, 3), W5 = (5.5, 5). The dashed line connecting the control
points is called the control polygon of the curve.

1.6 Bézier curves

The intention behind inventing Bézier curves was to make computer-aided techniques for
automobile design possible and intuitive. Pierre Bézier and Paul de Casteljau’s work resulted
in settling on a polynomial curve with control points and used Bernstein polynomials as a
basis. Such approach gives a family of curves which have very neat properties, allowing the
designers to easily control their shape and behavior. For more information about the history
of Bézier curves, see, e.g., [9, 12–14, 29–31], as well as [36, §1] and [38, §4].

Polynomial Bézier curves are a particular family of parametric curves which is defined as
a convex combination of control points (cf. §1.2). The points are weighted using Bernstein
polynomials.

Definition 1.66. A (polynomial) Bézier curve Pn : [0, 1]→ Ed of degree n with control points
W0,W1, . . . ,Wn ∈ Ed is defined by the formula

Pn(t) :=

n∑
k=0

Bn
k (t)Wk, (1.48)

where Bn
k is the kth Bernstein polynomial of degree n (see Definition 1.43).

An example polynomial Bézier curve is shown in Figure 1.7.
Rational Bézier curves are a generalized version of Bézier curves, with each control point

additionally having an assigned weight.
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Figure 1.8: A rational Bézier curve of degree 5 with the same control points as in Figure 1.7,
with weights ω0 = ω2 = ω4 = ω5 = 1 and ω1 = 0.2, ω3 = 8. Note that, compared to
Figure 1.7, the curve stays much closer to the point W3, while the opposite can be observed
for the point W1. The dashed line is the control polygon of the curve (cf. Figure 1.7).

Definition 1.67. A rational Bézier curve Rn : [0, 1] → Ed of degree n with control points
W0,W1, . . . ,Wn ∈ Ed and their corresponding weights ω0, ω1, . . . , ωn > 0 is defined by the
formula

Rn(t) :=

n∑
k=0

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

, (1.49)

where Bn
k is the kth Bernstein polynomial of degree n.

Figure 1.8 shows an example rational Bézier curve.

Remark 1.68. When ω0 = ω1 = . . . = ωn, the weights can be eliminated from Eq. (1.49)
and, after using Eq. (1.27) in the denominator, a polynomial Bézier curve is obtained.

From the properties of Bernstein polynomials, some properties of Bézier curves follow.

Theorem 1.69. A rational Bézier curve Rn of degree n with control points W0,W1, . . . ,Wn ∈
Ed and their corresponding weights ω0, ω1, . . . , ωn > 0 satisfies the following properties.

1. Rn(0) =W0 and Rn(1) =Wn.
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2. From the symmetry property of Bernstein polynomials, it follows that

n∑
k=0

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

=

n∑
k=0

ωn−kB
n
k (1− t)Wn−k

n∑
k=0

ωn−kB
n
k (1− t)

.

3. One can define a rational Bézier curve over t ∈ [a, b] using the linear parameter trans-
formation:

Rn(t) =

n∑
k=0

ωkB
n
k (u)Wk

n∑
k=0

ωkB
n
k (u)

(
u :=

t− a
b− a

)
.

Remark 1.70. Both polynomial and rational Bézier curves have the convex hull property.
Let Rn be a rational Bézier curve with control points W0,W1, . . . ,Wn and positive weights
ω0, ω1, . . . , ωn. Let C be the convex hull of points {W0,W1, . . . ,Wn}. For any t ∈ [0, 1],
Rn(t) ∈ C.

For more properties of Bézier curves, see, e.g., [36, §4-6, §13].

1.7 Algorithms for Bézier curves

Now, some well-known results related to the most important algorithms for Bézier curves are
described briefly. See, e.g., [22, 36, 54, 77, 78].

1.7.1 Evaluating a point on the curve

One can evaluate a point on a (polynomial or rational) Bézier curve using the de Casteljau
algorithm. It is a classic result, covered extensively in literature (see, e.g., [9], [36, §4.2] for the
polynomial de Casteljau algorithm and [36, §13.2] for the rational de Casteljau algorithm).
The algorithms presented here will be improved in Chapter 2.

The algorithm is based on Eq. (1.28). When applied to Eq. (1.48), one gets

Pn(t) =

n∑
k=0

[tBn−1
k−1 (t) + (1− t)Bn−1

k (t)]Wk =
n−1∑
k=0

Bn−1
k (t)[tWk+1 + (1− t)Wk],

which is a formula for a polynomial Bézier curve of lower degree with new control points
(dependent on the value of the parameter t ∈ [0, 1]) given as convex combinations of control
points W0,W1, . . . ,Wn. The process can be repeated until the degree of the curve reaches
zero and only one control point remains. Figure 1.9 illustrates the computation of the de
Casteljau algorithm. An implementation of the polynomial de Casteljau algorithm is given
in Algorithm 1.1.

The case of rational Bézier curves is similar and Eq. (1.28) is used here as well. This
time, however, one has to take the weights ω0, ω1, . . . , ωn into account. Applying Eq. (1.28)
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Q41
Pn(t) = Q50

Figure 1.9: Computation of a point on a planar polynomial Bézier curve of degree n = 5
using the de Casteljau algorithm, with the notation as in (1.50).

Algorithm 1.1 De Casteljau algorithm

1: procedure BEval(n, t,W)
2: t1 ← 1− t
3: for i← 0, n do
4: Qi ←Wi

5: end for
6: for k ← 1, n do
7: for i← 0, n− k do
8: Qi ← t1 · Qi + t · Qi+1

9: end for
10: end for
11: return Q0

12: end procedure

to Eq. (1.49) gives

Rn(t) =

n∑
k=0

ωk[tB
n−1
k−1 (t) + (1− t)Bn−1

k (t)]Wk

n∑
k=0

ωk[tB
n−1
k−1 (t) + (1− t)Bn−1

k (t)]

=

n−1∑
k=0

Bn−1
k (t)[ωk+1tWk+1 + ωk(1− t)Wk]

n−1∑
k=0

Bn−1
k (t)[ωk+1t+ ωk(1− t)]

.
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Let the new weights ω′0, ω
′
1, . . . , ω

′
n−1 be defined as

ω′k := ωk+1t+ ωk(1− t) (k = 0, 1, . . . , n− 1).

Note that the new weights (dependent on the parameter t ∈ [0, 1]) are given as convex
combinations of non-negative weights, therefore all of them are non-negative as well. Thus,
we have

Rn(t) =

n−1∑
k=0

ω′kB
n−1
k (t)

[
ωk+1t

ω′k
Wk+1 +

(
1− ωk+1t

ω′k

)
Wk

]
n−1∑
k=0

Bn−1
k (t)ω′k

.

Just as in the case of polynomial Bézier curves, a rational Bézier curve has been expressed
as a rational Bézier curve of lower degree, with new weights ω′k and control points. The new
control points, also dependent on the parameter t ∈ [0, 1], given by

W ′k :=
ωk+1t

ω′k
Wk+1 +

(
1− ωk+1t

ω′k

)
Wk (k = 0, 1, . . . , n− 1),

are convex combinations of the original control points. An implementation of this method is
given in Algorithm 1.2.

Algorithm 1.2 Rational de Casteljau algorithm

1: procedure RatBEval(n, t, ω,W)
2: t1 ← 1− t
3: for i← 0, n do
4: wi ← ωi
5: Qi ←Wi

6: end for
7: for k ← 1, n do
8: for i← 0, n− k do
9: u← t1 · wi
10: v ← t · wi+1

11: wi ← u+ v
12: u← u/wi
13: v ← 1− u
14: Qi ← u · Qi + v · Qi+1

15: end for
16: end for
17: return Q0

18: end procedure

In some applications, such as curve subdivision, it is useful to store all the intermediate
points computed in the (polynomial or rational) de Casteljau algorithm. In the polynomial
case, one can express the algorithm using the following recurrence scheme:

Q0k := Wk (k = 0, 1, . . . , n),
Qjk := (1− t)Qj−1,k + tQj−1,k+1 (j = 1, 2, . . . , n; k = 0, 1, . . . , n− j),
Pn(t) = Qn0.

(1.50)
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One can find an explicit expression for all the points.

Theorem 1.71. The points Qjk (j = 0, 1, . . . , n; k = 0, 1, . . . , n − j) which are defined in
Eq. (1.50) can be expressed explicitly as

Qjk =

j∑
i=0

Bj
i (t)Wi+k.

Proof. Let us fix a natural number n. For j = 0, the theorem holds, as Q0k = B0
0(t) ·Wk.

Now, assuming that the theorem holds for all Qj−1,k (k = 0, 1, . . . , n − j + 1), one needs to
check that it also holds for all Qjk. Applying the induction assumption twice in Eq. (1.50)
gives

Qjk = (1− t)
j−1∑
i=0

Bj−1
i (t)Wi+k + t

j−1∑
i=0

Bj−1
i (t)Wi+k+1 =

j∑
i=0

[
(1− t)Bj−1

i (t) + tBj−1
i−1 (t)

]
Wi+k

which, after applying Eq. (1.28), gives

Qjk =

j∑
i=0

Bj
i (t)Wi+k.

Analogous properties hold for rational Bézier curves and the rational de Casteljau algo-
rithm. For rational Bézier curves, the following recurrence scheme can be used to compute
the required weights and points:

w0k := ωk Q0k := Wk (k = 0, 1, . . . , n),

wjk := (1− t)wj−1,k + twj−1,k+1 (j = 1, 2, . . . , n; k = 0, 1, . . . , n− j),

Qjk :=

(
1−

wj−1,k+1t

wjk

)
Qj−1,k +

wj−1,k+1t

wjk
Qj−1,k+1

(j = 1, 2, . . . , n; k = 0, 1, . . . , n− j),

Rn(t) = Qn0.

(1.51)

Same as before, one can find an explicit expression for all the points and weights.

Theorem 1.72. The points Qjk and their corresponding weights wjk (j = 0, 1, . . . , n; k =
0, 1, . . . , n− j), which are defined in Eq. (1.51), can be expressed explicitly as

wjk =

j∑
i=0

ωi+kB
j
i (t), Qjk =

j∑
i=0

ωi+kB
j
i (t)Wi+k

j∑
i=0

ωi+kB
j
i (t)

.
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Proof. Let us fix n ∈ N. For j = 0, the theorem holds, as w0k = ωk and Q0k = Wk. Now,
assuming that the theorem holds for all wj−1,k,Qj−1,k (k = 0, 1, . . . , n − j + 1), one needs
to check that it also holds for all wjk,Qjk. Applying the induction assumption in Eq. (1.51)
gives 

wjk :=

j∑
i=0

ωi+k

[
(1− t)Bj−1

i (t) + tBj−1
i−1 (t)

]
=

j∑
i=0

ωi+kB
j
i (t),

Qjk :=

j∑
i=0

ωi+k

[
(1− t)Bj−1

i (t) + tBj−1
i−1 (t)

]
Wi+k

wjk
=

j∑
i=0

ωi+kB
j
i (t)Wi+k

wjk
.

1.7.2 Curve subdivision

Curve subdivision is a very common problem to consider. Given a Bézier curve Pn of degree n
with control points W0,W1, . . . ,Wn and u ∈ [0, 1], one needs to find two Bézier curves PLn ,P

R
n

of degree n such that {
Pn(u · t) = PLn(t) (t ∈ [0, 1]),

Pn(u+ (1− u) · t) = PRn (t) (t ∈ [0, 1]).
(1.52)

It is sufficient to find the control points of PLn ,P
R
n .

In this problem, the intermediate points computed in the de Casteljau algorithm find their
application.

Theorem 1.73 ([36, Eq. (5.29)]). Let Pn be a Bézier curve of degree n with control points
W0,W1, . . . ,Wn. Let u ∈ [0, 1]. Then the fragment PLn(t) ≡ Pn ([0, u]) (cf. (1.52)) is a Bézier
curve of degree n with control points Q00,Q10, . . . ,Qn0, where the points Qj0 (j = 0, 1, . . . , n)
are defined as in Eq. (1.50).

Corollary 1.74. One can find a Bézier curve PRn of degree n such that PRn ≡ Pn ([u, 1])
(cf. (1.52)). Its control points are Qn0,Qn−1,1, . . . ,Q1,n−1,Q0n.

Proof. By reversing the order of the control points of Pn, the problem can be reduced to the
case covered by Theorem 1.73. The Bézier curve Sn obtained in this way satisfies a condition

Sn(t) = PRn (1− t) (0 ≤ t ≤ 1).

Therefore, to get the control points of PRn , one has to reverse the order of the control points
of Sn, thus giving Qn0,Qn−1,1, . . . ,Q1,n−1,Q0n.

An analogous reasoning gives the subdivision of a rational Bézier curve.

Theorem 1.75 ([36, §13.2]). Let Rn be a rational Bézier curve of degree n. Let its control
points and weights beW0,W1, . . . ,Wn and ω0, ω1, . . . , ωn, respectively. Let u ∈ [0, 1]. Then the
fragment Rn ([0, u]) is a rational Bézier curve of degree n with control points V00,V10, . . . ,Vn0
and weights v00, v10, . . . , vn0, where the points Vj0 and weights vj0 (j = 0, 1, . . . , n) are defined
as in Eq. (1.51).
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Proof. One seeks a rational Bézier curve RLn of degree n which satisfies the relation

RLn(t) = Rn(t · u).

The right-hand side, by Definition 1.67, can be expressed as

Rn(t · u) =

n∑
i=0

ωiB
n
i (t · u)Wi

n∑
i=0

ωiB
n
i (t · u)

,

which, after applying Eq. (1.30), gives

Rn(t · u) =

n∑
i=0

ωi

n∑
j=0

Bj
i (u)Bn

j (t)Wi

n∑
i=0

ωi

n∑
j=0

Bj
i (u)Bn

j (t)

.

After changing the order of the summation and applying Remark 1.48 in the inner sum, one
gets

Rn(ut) =

n∑
j=0

Bn
j (t)

(
j∑
i=0

ωiB
j
i (u)Wi

)
n∑
j=0

(
j∑
i=0

ωiB
j
i (u)

)
Bn
j (t)

,

which, by Theorem 1.72, is

Rn(ut) =

n∑
j=0

vj0B
n
j (t)

∑j
i=0 ωiB

j
i (u)Wi

vj0

n∑
j=0

vj0B
n
j (t)

=

n∑
j=0

vj0B
n
j (t)Vj0

n∑
j=0

vj0B
n
j (t)

.

The control points of RLn thus are V00,V10, . . . ,Vn0, with weights v00, v10, . . . , vn0.

Corollary 1.76. One can find a rational Bézier curve RRn of degree n such that RRn ([0, 1]) =
Rn ([u, 1]) (0 ≤ u ≤ 1). The curve RRn satisfies the condition

RRn (t) = Pn((1− u)t+ u) (0 ≤ t ≤ 1).

Its control points are
Vn0,Vn−1,1, . . . ,V1,n−1,V0n

and their corresponding weights are

vn0, vn−1,1, . . . , v1,n−1, v0n.

The proof of Corollary 1.76 is analogous to the proof of Corollary 1.74.
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1.7.3 Degree elevation

A Bézier curve of degree n can be expressed as a Bézier curve of degree n + 1. This effect
can be achieved using degree elevation. The method described in this section is also classical
and can be found in more detail in, e.g., [78, §3.11], [36, §6.1]. More precisely, when given the
control points W0,W1, . . . ,Wn of a polynomial Bézier curve Pn, one has to find the control
points V0,V1, . . . ,Vn+1 of a curve Pn+1 so that

Pn(t) = Pn+1(t) (0 ≤ t ≤ 1)

or, explicitly,
n∑
k=0

Bn
k (t)Wk =

n+1∑
k=0

Bn+1
k (t)Vk (0 ≤ t ≤ 1).

This can be achieved by applying Eq. (1.29) to the left-hand side:

n∑
k=0

Bn
k (t)Wk = Bn+1

0 (t)W0 +
n∑
k=1

Bn+1
k (t)

[
n− k + 1

n+ 1
Wk +

k

n+ 1
Wk−1

]
+Bn+1

n+1(t)Wn.

This means that the control points of Pn+1 can be expressed as the convex combinations of
W0,W1, . . . ,Wn:

Vk :=
n− k + 1

n+ 1
Wk +

k

n+ 1
Wk−1 (k = 0, 1, . . . , n+ 1). (1.53)

Note that, for k = 0 and k = n+ 1, even though there are undefined points W−1 and Wn+1,
their corresponding coefficient is zero and they can be omitted.

An analogous procedure can be done with rational Bézier curves. One needs to find the
control points V0,V1, . . . ,Vn+1 and their corresponding weights v0, v1, . . . , vn+1 so that

n∑
k=0

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

=

n+1∑
k=0

vkB
n+1
k (t)Vk

n+1∑
k=0

vkB
n+1
k (t)

(0 ≤ t ≤ 1).

One can apply Eq. (1.29) to the left-hand side to get

n∑
k=0

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

=

n+1∑
k=0

Bn+1
k (t)

[
ωk
n− k + 1

n+ 1
Wk + ωk−1

k

n+ 1
Wk−1

]
n+1∑
k=0

[
ωk
n− k + 1

n+ 1
+ ωk−1

k

n+ 1

]
Bn+1
k (t)

,

where the convention as in the case of polynomial Bézier curves is used, i.e., ω−1, ωn+1 := 0.
One can express vk as

vk :=
n− k + 1

n+ 1
ωk +

k

n+ 1
ωk−1 (k = 0, 1, . . . , n+ 1),
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which immediately gives an expression for Vk:

Vk :=
(n− k + 1)ωkWk + kωk−1Wk−1

(n− k + 1)ωk + kωk−1
(k = 0, 1, . . . , n+ 1).

The presented methods only elevate the curve’s degree by one. In order to elevate the
curve’s degree by more than one, one can use this technique multiple times or, alternatively,
use the explicit formula for degree elevation by any positive r:

Bn
k (t) =

k+r∑
j=k

(
n
k

)(
r
j−k
)(

n+r
j

) Bn+r
j (t)

(cf. [40, Eq. (26)]).
Both in the polynomial and the rational case, for a curve with control points in Ed, the

computational complexity of elevating its degree from n to n + 1 is O(nd). If one needs to
elevate the curve’s degree by r, the computational complexity is O((n+ r)rd).

1.7.4 Degree reduction

In some cases, it may be necessary to reduce the degree of a Bézier curve. The problem is then
to find a curve of lower degree which is a good enough approximation of the higher-degree
curve. There are practical reasons to reduce the degree of a curve such as data compression
and data exchange between CAD systems. As it is evident from the problem of degree
elevation, a curve of low degree can have its degree elevated by an arbitrary number. The
same effect can be achieved unintentionally while designing the curve.

Two methods for degree reduction will be presented here. The first is based on the degree
elevation algorithm and is useful due to its simplicity while the second applies dual bases to
find the optimal curve of lower degree in terms of least-square approximation.

One method of degree reduction is based on Eq. (1.53) which was used in the process
of degree elevation. It can be found, e.g., in [73, 76], [54, §1.9.2] or [77, §5.6]. When re-
ducing the degree, however, one has to solve the opposite problem: given the control points
V0,V1, . . . ,Vn+1 of a curve, one needs to find the control points W0,W1, . . . ,Wn of a curve
of degree n. The Eq. (1.53) is thus re-expressed as

Wk :=
n+ 1

n− k + 1
Vk −

k

n− k + 1
Wk−1 (k = 0, 1, . . . , n) (1.54)

or

Wk−1 :=
n+ 1

k
Vk −

n− k + 1

k
Wk (k = 1, . . . , n+ 1). (1.55)

Analogous relations can be derived for rational Bézier curves.
The idea behind this approach is to select a natural k (such that k ≤ n — usually k ≈ n/2)

and compute the points W0,W1, . . . ,Wk using Eq. (1.54) and the points Wn,Wn−1, . . . ,Wk

using Eq. (1.55). Note that the point Wk is computed twice — if the curve’s real degree is n
or less, both results are identical. In numerical practice, the values of Wk may differ slightly
due to error accumulation. If two values of Wk are different, an average is used.

This method of degree reduction is widely used because of its simplicity. However, a
significant drawback of this approach is that the lower-degree curve is not optimal in terms
of approximation and thus its shape may significantly differ from the optimal curve of the
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same degree. The effect is especially visible around t = 0.5. For such t, the curve’s shape
is influenced the most by the control points which have been computed in the last iterations
of equations (1.54) and (1.55). This method can be used to reduce the degree of a curve by
more than one. The approach used is similar to the one used for degree elevation.

Alternatively, one can use dual projection to reduce the degree of a curve (see, e.g., [97,
§1] and the papers cited therein). Given a Bézier curve Pn of degree n with control points
W0,W1, . . . ,Wn ∈ Ed, i.e.,

Pn(t) :=
n∑
i=0

WiB
n
i (t) (0 ≤ t ≤ 1), (1.56)

one can find the Bézier curve Pm of degree m < n, i.e.,

Pm(t) :=
m∑
i=0

ViBm
i (t) (0 ≤ t ≤ 1), (1.57)

where V0,V1, . . . ,Vm ∈ Ed, such that:

(a)
P(i)
n (0) = P(i)

m (0) (i = 0, 1, . . . , k − 1),

P(j)
n (1) = P(j)

m (1) (j = 0, 1, . . . , l − 1),
(1.58)

where k + l ≤ m,

(b) the value ∫ 1

0
(1− t)αtβ‖Pn(t)− Pm(t)‖22dt

is minimized.

Here, ‖v‖2 denotes the length of vector v ∈ Rd, i.e.,

‖v‖2 ≡ ‖[v1, v2, . . . , vd]T ‖2 :=

√√√√ d∑
k=1

v2k. (1.59)

The quantities k, l serve as constraints which preserve the shape of the curve at its ends.
One needs to find the solution in the Π

(k,l)
n space (cf. §1.5.3), which is spanned by both the

constrained Bernstein basis and its dual counterpart. For an unconstrained version of the
problem, one can take k = l = 0.

The problem has been considered in multiple papers, both in constrained and uncon-
strained versions, e.g., in [1, 2, 10, 17, 34, 37, 59, 68, 69, 82, 91, 92, 97, 106]. Out of these
works, the method given in [97] has the lowest O(mn) complexity which has not yet been
further improved. In chapter 6, this method is modified so that a significant part of the
computations can be done in parallel, while maintaining the total complexity.

In this section, the results given by Woźny and Lewanowicz in [97] will be presented. Note,
in particular, the coefficients Φ and Ψ, which will be extensively used in the degree reduction
algorithm and in Chapter 6.
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Theorem 1.77 ([97, Theorem 3.2]). For i = k, k + 1, . . . ,m − l and 0 ≤ k + l ≤ m, the
following formula holds:

D
(m,k,l)
i (x;α, β) =

n−l∑
j=k

ΦijD
(n,k,l)
j (x;α, β)

(cf. §1.5.3), where the coefficients Φij ≡ Φ
(n,m,k,l)
ij (α, β) are given in terms of discrete dual

Bernstein polynomials (cf. §1.5.4), namely, for j = k, k + 1, . . . , n− l,

Φij =

(
m− k − l
i− k

)(
n

j

)(
m

i

)−1 (α+ 2l + 1)n−l−j(β + 2k + 1)j−k
(n− k − l)!

Ψij , (1.60)

with
Ψij := dm−k−li−k (j − k;β + 2k, α+ 2l, n− k − l). (1.61)

Remark 1.78 ([97, Remark 3.3]). Obviously, for k ≤ i ≤ m− l and l ≤ j ≤ n− l,

Φij =
〈
Bn
j , D

(m,k,l)
i

〉
α,β
, (1.62)

where the inner product 〈·, ·〉α,β is given by

〈f, g〉α,β :=

∫ 1

0
(1− x)αxβf(x)g(x)dx (α, β > −1)

(cf. [97, Eq. (1.3)]) and (1.6).

Theorem 1.79 ([97, Theorem 4.1]). Given the coefficients W0,W1, . . . ,Wn of (1.56), the
coefficients V0,V1, . . . ,Vm of (1.57) such that

‖Pn − Rm‖22 ≡ 〈Pn − Rm,Pn − Rm〉α,β

is minimized subject to the constraints (1.58) are given by

Vi =

(
n

i

)(
m

i

)−1 i−1∑
h=0

(−1)i+h
(
i

h

)
Vh (i = 0, 1, . . . , k − 1), (1.63)

Vm−i = (−1)i
(
n

i

)(
m

i

)−1 i∑
h=0

(−1)i+h
(
i

h

)
Wn−i+h −

i∑
h=1

(−1)h
(
i

h

)
Vm−i+h (1.64)

(i = 0, 1, . . . , l − 1),

Vi =

(
m− k − l
i− k

)(
m

i

)−1
(n− k − l)!−1

n−l∑
j=k

vjΨij (i = k, k + 1, . . . ,m− l),(1.65)

where

vj := (α+ 2l + 1)n−l−j(β + 2k + 1)j−k

[(
n

j

)
−
( k−1∑
h=0

+
m∑

h=m−l+1

)(n−m
j − h

)(
m

h

)
Vh

]
(j = k, k + 1, . . . , n− l), (1.66)

and Ψij is defined as in Theorem 1.77.
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0 0 · · · 0
0 Ψkk Ψk,k+1 · · · Ψk,n−l 0
0 Ψk+1,k Ψk+1,k+1 · · · Ψk+1,n−l 0
...

...
...

. . .
...

...
0 Ψm−l,k Ψm−l,k+1 · · · Ψm−l,n−l 0

0 0 · · · 0

Figure 1.10: The Ψ table.

The elements Ψij (k ≤ i ≤ m− l, k ≤ j ≤ n− l), with using the convention that Ψij = 0
for other choices of i, j (cf. (1.61)), can be arranged into a Ψ table (cf. Figure 1.10). In order
to efficiently use Theorem 1.79, one needs to compute the elements of the Ψ table fast, i.e.,
in the O(nm) time. To do so, the following recurrence relations are useful.

Theorem 1.80 ([97, Theorem 5.1]). The quantities

Ψkk,Ψk,k+1, . . . ,Ψk,n−l

satisfy the recurrence relation

Ψkk := (k + l − n)C

m−k−l∑
h=0

(−1)h
(
m− k − l

h

)
(m+ k + l + σ + 1)h

(k + l + h− n)(α+ 2l + 1)h
,

Ψk,k+1 := (−1)m−k−lC
(β + 2k + 2)m−k−l
(α+ 2l + 1)m−k−l

,

Ψk,j+1 = E(j)Ψkj + F (j)Ψk,j−1 (k + 1 ≤ j ≤ n− l − 1),

(1.67)

where

C :=
(n− k − l)!(1− n)m(m+ σ + 1)k+l
(m− k − l)!(1− n)k+l(m+ σ + 1)n

,

E(j) := 1− F (j)− (m− k − l)(m+ k + l + σ + 1)

(n− l − j)(j + k + β + 1)
,

F (j) :=
(k − j + 1)(n+ l − j + α+ 1)

(n− l − j)(j + k + β + 1)
,

and σ := α+ β + 1.

Theorem 1.81 ([97, Theorem 5.2]). The quantities Ψij satisfy the following recurrence re-
lation:

Ψi+1,j = B(m, i)−1
(
A(n, j)Ψi,j−1 + [C(m, i)− C(n, j)]Ψij +B(n, j)Ψi,j+1 −A(m, i)Ψi−1,j

)
,

(1.68)
where 

A(r, s) := (k − s)(r + l − s+ α+ 1),
B(r, s) := (s+ l − r)(k + s+ β + 1),
C(r, s) := A(r, s) +B(r, s).

(1.69)
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Algorithm 1.3 gives the full procedure for reducing a Bézier curve’s degree with constraints
in O(nm) time.

Remark 1.82 ([97, Remark 5.3]). If α = β and k = l, the Ψ table satisfies the following
symmetry property:

Ψij = Ψm−i,n−j (k ≤ i ≤ m− k, k ≤ j ≤ n− k).

It is thus sufficient to compute half of the Ψ table using Theorems 1.80 and 1.81.

Algorithm 1.3 Degree reduction of a Bézier curve using the Ψ table organized using Theo-
rems 1.80 and 1.81
1: procedure BezierDegRedPsi(m,n, k, l, α, β,W0, . . . ,Wn)
2: Ψ← Matrix(m,n)
3: for j ← 0, k − 1 do
4: Vj ← Eq. (1.63)
5: end for
6: for j ← m,m− l + 1 do
7: Vj ← Eq. (1.64)
8: end for
9: for j ← k, n− l do
10: vj ← Eq. (1.66)
11: end for
12: for j ← k, n− l do
13: Ψkj ← recurrence relation (1.67)
14: end for
15: for i← k,m− l − 1 do
16: for j ← k, n− l do
17: Ψi+1,j ← recurrence relation (1.68)
18: end for
19: end for
20: for j ← k,m− l do
21: Vj ← Eq. (1.65)
22: end for
23: return V
24: end procedure

1.7.5 Approximating any parametric curve with a Bézier curve

By applying Theorem 1.38, one can use dual projection to approximate any parametric curve
with a Bézier curve. Let F : [0, 1]→ Ed be a parametric curve such that

F(t) := (F1(t),F2(t), . . . ,Fd(t)) (Fi : [0, 1]→ R; i = 1, 2, . . . , d)

and n ∈ N. Let P∗n : [0, 1]→ Ed be an optimal polynomial parametric curve of degree n that
minimizes the error ∫ 1

0
(1− t)αtβ‖F(t)− P∗n(t)‖22dt
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(cf. (1.59)). The control points I0, I1, . . . , In ∈ Ed of P∗n,

Ik ≡ (Ik1, Ik2, . . . , Ikd) (0 ≤ k ≤ n),

are given, using the dual projection, by scalar products:

Ikj ≡ 〈Fj , Dn
k 〉α,β =

∫ 1

0
(1− t)αtβFj(t)Dn

k (t;α, β)dt (0 ≤ k ≤ n; 1 ≤ j ≤ d). (1.70)

Thus, we have

P∗n(t) =
n∑
k=0

IkB
n
k (t).

Certainly, if F is a polynomial curve of degree n then this method gives an exact Bernstein-
Bézier representation of F.

If the formula for F does not allow to compute the integrals symbolically or no such formula
is available, a quadrature approach (see, e.g., [22, §5]) can be used to find the approximate
values of the integrals (1.70) for all k = 0, 1, . . . , n and j = 1, 2, . . . , d. This approach cre-
ates the need for a method which allows to find the value of Dn

k (·;α, β) for many nodes
t0, t1, . . . , tM ∈ [0, 1], for all 0 ≤ k ≤ n. An efficient algorithm with O(Mn) complexity, for
doing that will be introduced in Chapter 5.

1.8 Bézier surfaces

Bézier surfaces are an extension of the ideas used to develop Bézier curves. Instead of using
the univariate Bernstein polynomials as the basis functions, bivariate versions can be used.
The two most prominent Bézier surface types are rectangular (tensor product) and triangular
Bézier surfaces (sometimes also called Bézier patches).

According to Farin [36, p. 245, p. 309], both rectangular and triangular Bézier surfaces
were explored by de Casteljau at Citroën [29, 30]. He considered triangular surfaces as a
more natural extension than rectangular surfaces. For a more detailed overview of triangular
Bézier patches, see the surveys [6, 28, 35], as well as the papers cited therein.

Here, the Bézier surfaces will be considered only in their rational variant. To get the
polynomial Bézier surfaces, it is sufficient to assume that all weights are equal, which allows
to eliminate them from the equations.

Many fundamental operations which can be performed on a (polynomial or rational) Bézier
curve can also be done for (polynomial or rational) Bézier surfaces, e.g., creating composite
surfaces, subdivision, degree elevation or reduction. The algorithms for these operations can
be found in, e.g., the articles [61, 98] and the papers cited therein, as well as the books
[36, 54, 78]. Just as in the case of one-dimensional Bézier curves, algorithms analogous to the
de Casteljau algorithm can be used to evaluate a point on a Bézier surface. In Section 2.4,
more efficient algorithms for such evaluation will be given.

1.8.1 Rational rectangular Bézier surfaces

Definition 1.83 ([78, §9.2]). For m,n, d ∈ N, weights ωij > 0 and control points Wij ∈ Ed
(0 ≤ i ≤ m, 0 ≤ j ≤ n), a rational rectangular Bézier surface is a function Smn : [0, 1]2 → Ed
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Figure 1.11: The Utah Teapot modeled using 64 composite triangular Bézier patches. Image
taken from [85, Fig. 14].

given by the formula

Smn(s, t) :=

m∑
i=0

n∑
j=0

ωijWijB
m
i (s)Bn

j (t)

m∑
i=0

n∑
j=0

ωijB
m
i (s)Bn

j (t)

.

Obviously,
Bm
i (s)Bn

j (t) ≥ 0 (s, t ∈ [0, 1])

and
m∑
i=0

n∑
j=0

Bm
i (s)Bn

j (t) =
m∑
i=0

Bm
i (s)

n∑
j=0

Bn
j (t) = 1.

This means that Smn(s, t) is a convex combination of its control points for all s, t ∈ [0, 1].
Thus, the entire surface is within the convex hull (cf. Definition 1.8) of the control points.

To compute a point on a rational rectangular Bézier surface, one can use the rational
rectangular de Casteljau algorithm. Just as the rational de Casteljau algorithm (cf. §1.7.1),
it is based on Eq. (1.28). An implementation is given in Algorithm 1.4 (cf. Algorithm 1.2).

The computational complexity of Algorithm 1.4 is O((n2 + m)md). When m ≥ n, fewer
arithmetic operations have to be performed. Thus, if n > m, one can consider evaluating the
rational rectangular Bézier surface with control points

Vij := Wji (0 ≤ i ≤ n; 0 ≤ j ≤ m)

at point (t, s). It can easily be checked that the resulting point is exactly Smn(s, t).
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Algorithm 1.4 Rational rectangular de Casteljau algorithm

1: procedure RatRectBEval(m,n, s, t, ω,W)
2: t1 ← 1− t
3: for i← 0,m do
4: for j ← 0, n do
5: wij ← ωij
6: Qij ←Wij

7: end for
8: end for
9: for k ← n− 1, 0 do
10: for j = 0, k do
11: for i = 0,m do
12: u← t · wi,j+1 + t1 · wij
13: Qij ←

t · wi,j+1

u
· Qi,j+1 +

t1 · wij
u

· Qij

14: wij ← u
15: end for
16: end for
17: end for
18: return RatBEval(m, s,w·0,Q·0)
19: end procedure

1.8.2 Rational triangular Bézier surfaces

A second type of rational Bézier surfaces are rational triangular Bézier surfaces. Unlike
rectangular surfaces, which had the domain of [0, 1]2, the triangular surfaces’ domain is
{(s, t) : s, t ≥ 0, s + t ≤ 1}. Because of that, it operates using a different family of ba-
sis functions.

Definition 1.84 ([78, §10.1]). The (i, j)th triangular Bernstein polynomial of degree n is
given by the following formula:

Bn
ij(s, t) :=

n!

i!j!(n− i− j)!
sitj(1− s− t)n−i−j (0 ≤ i+ j ≤ n).

The triangular Bernstein polynomials satisfy a recurrence relation which connects trian-
gular Bernstein polynomials of subsequent degrees.

Theorem 1.85 ([36, Eq. (17.8)]). The following relation holds for i, j ≥ 0, i+ j ≤ n:

Bn
ij(s, t) = sBn−1

i−1,j(s, t) + tBn−1
i,j−1(s, t) + (1− s− t)Bn−1

ij (s, t). (1.71)

A convention analogous to the one for univariate Bernstein polynomials (cf. Remark 1.48) is
adopted, i.e., if i < 0 ∨ j < 0 ∨ i+ j > n, then Bn

ij(s, t) ≡ 0.

Remark 1.86 ([78, §10.1]). From Definition 1.84, it is clear that Bn
ij(s, t) ≥ 0 for (s, t) ∈

{(s, t) : s, t ≥ 0; s+ t ≤ 1}.
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Theorem 1.87 ([78, §10.1]). The triangular Bernstein polynomials satisfy the partition of
unity property, i.e.,

n∑
i=0

n−i∑
j=0

Bn
ij(s, t) ≡ 1

for n ∈ N and s, t ∈ R.

Remark 1.86 and Theorem 1.87 imply that the triangular Bernstein polynomials are a
sound choice for a basis which can be used to construct a rational triangular parametric
surface.

Definition 1.88 ([78, §10.2]). For n, d ∈ N, weights vij > 0 and control points Vij ∈ Ed
(0 ≤ i ≤ n, 0 ≤ j ≤ n − i), a rational triangular Bézier surface is a function Tn : {(s, t) :
s, t ≥ 0, s+ t ≤ 1} → Ed given by the formula

Tn(s, t) :=

n∑
i=0

n−i∑
j=0

vijVijBn
ij(s, t)

n∑
i=0

n−i∑
j=0

vijB
n
ij(s, t)

.

For (s, t) in the domain of Tn, the point Tn(s, t) is a convex combination of the surface’s
control points. Thus, the entire surface Tn is within the convex hull (cf. Definition 1.8) of the
control points.

A point on a rational triangular Bézier surface can be computed using the rational trian-
gular de Casteljau algorithm. The idea behind the algorithm is similar to the one used in the
case of the rational de Casteljau algorithm for curves. In this case, however, the reduction
of the degree of the basis functions is achieved using Eq. (1.71) (see, e.g., [78, §10.4]). An
implementation of the rational triangular de Casteljau algorithm is given in Algorithm 1.5.
Its complexity is O(n3d).
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Algorithm 1.5 Rational triangular de Casteljau algorithm

1: procedure RatTriBEval(n, s, t, v,V)
2: st1← 1− s− t
3: for i← 0, n do
4: for j ← 0, n− i do
5: wij ← vij
6: Qij ← Vij
7: end for
8: end for
9: for k ← 1, n do
10: for i = 0, n− k do
11: for j = 0, n− k − i do
12: u← s · wi+1,j + t · wi,j+1 + st1 · wij
13: Qij ←

s · wi+1,j

u
· Qi+1,j +

t · wi,j+1

u
· Qi,j+1 +

st1 · wij
u

· Qij

14: wij ← u
15: end for
16: end for
17: end for
18: return Q00

19: end procedure

1.9 B-splines

Bézier-type objects are, by far, not the only parametric objects (curves or surfaces) used in
computer-aided design and modeling. Despite their elegance and some desirable properties,
Bernstein polynomials have a significant drawback. For any n, i ∈ N such that i ≤ n, the
value of a Bernstein polynomial Bn

i (t) (cf. Definition 1.43) is non-zero for all t ∈ (0, 1). In
practice, when operating on a Bézier curve (cf. Definition 1.66), any change in one control
point’s position modifies the curve over its whole length.

To address this issue, B-spline functions can be used. They are constructed in a way
which eliminates this drawback. When used as a basis for parametric curves (known as B-
spline curves), they cause any change to a control point to only have a local effect on a curve.
An example basis is presented in Figure 1.12, while Figure 1.13 gives an example of such a
B-spline curve.

Splines are commonly used in a wide variety of applications, e.g., in computer-aided
geometric design, approximation theory and numerical analysis. See, e.g., [33, 36, 41, 54, 77,
78]. The way in which the splines and B-splines are introduced in Sections §1.9.1-1.9.2 relies
heavily on [33, §1.1-1.2].

1.9.1 Spline functions

Definition 1.89 ([33, Definition 1.1]). A function s, defined on a finite interval [a, b], is
called a spline function of degree m, having as knots the strictly increasing sequence tj (j =
0, 1, . . . , n) such that t0 = a and tn = b, if the following two conditions are satisfied.
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Figure 1.12: An example of a polynomial basis over the interval [0, 5], consisting of B-spline
basis functions of degree 2. The knot sequence is {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}. Note that at any
point, there are at most three non-zero basis functions. Plot recreated from [72, Fig. 2].

Figure 1.13: Changing the coordinates of one control point of a B-spline curve results only
in a local change to the curve. To the left, a cubic B-spline curve is presented, along with
its control points. To the right, a new curve with its control points is given, differing only in
one control point’s coordinates. The pieces of the curve that remain unchanged are drawn in
blue. The modified part of the curve is drawn in green, while the grey dash line depicts the
curve before moving the control point.
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1. On each knot interval [tj , tj+1], s is given by a polynomial of degree m at most:

s|[tj ,tj+1] ∈ Πm (j = 0, 1, . . . , n− 1).

2. The function s and its derivatives up to order m− 1 are all continuous on [a, b]:

s ∈ Cm−1[a, b].

Remark 1.90. Every polynomial on [a, b] of degree ≤ m is also a spline function of degree
m on [a, b], for any sequence of knots. In general, a spline of degree m will, however, be given
by a different polynomial of degree ≤ m in each of the knot intervals.

In practice, it is sometimes desirable for some knots to be coincident, as will be apparent
in §1.9.2.

Remark 1.91 (cf. [33, p. 4]). Definition 1.89 states explicitly that the knots must be strictly
increasing. In what follows, it will sometimes be extended to consider splines with coincident
knots. In such case, the continuity condition would have to be relaxed in the sense that, for
` ≤ m, if ti−1 < ti = . . . = ti+` < ti+`+1 (in other words, if ti has multiplicity ` + 1), s will
only be required to have continuous derivatives up to order m− 1− ` at the point ti.

The set of all splines of the same degree and with the same knots forms a vector space.

Remark 1.92 ([33, Eq. (1.7)]). Let the space of splines of degree m having the knots

Ωn := {t0, t1, . . . , tn}

be denoted by Sm(Ωn). Since the spline is a polynomial of degree ≤ m over each of n knot
intervals and there are m continuity conditions at knots t1, t2, . . . , tn−1, the dimension of
Sm(Ωn) is:

dim(Sm(Ωn)) = (m+ 1)n− (n− 1)m = n+m.

Since the spline s ∈ Sm(Ωn) is piecewise polynomial, one can express it as a polynomial
over one of the knot intervals, e.g., in the following form:

s(x) := pmj(x) =
m∑
i=0

ai,j(x− tj)i (tj ≤ x ≤ tj+1, j = 0, 1, . . . , n− 1).

While, in some cases, it may be useful to use separate basis functions for each of the knot
intervals, one can instead use a common basis for all knot intervals. One of such bases uses
the so called truncated power functions:

(x− c)m+ :=

{
(x− c)m (x ≥ c),
0 (x < c).

Remark 1.93 ([33, Eq. (1.9)]). It can be proved that every spline s ∈ Sm(Ωn) has a unique
representation of the form

s(x) =
m∑
i=0

bix
i +

n−1∑
i=1

ci(x− ti)m+ .

The basis used in Remark 1.93 has a drawback of being ill-conditioned (cf. [33, p. 5]).
Instead, a numerically stable and useful, for example in CAGD, B-spline basis can be used.
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1.9.2 B-spline functions

In order to introduce a B-spline function, the generalized divided differences will be used.

Definition 1.94 ([22, §4.2.1]). The generalized divided difference of a univariate function
f at the knots xi, xi+1, . . . , xk (which may be coincident), denoted by [xi, xi+1, . . . , xk]f , is
defined in the following recursive way:

[xi, xi+1, . . . , xi+`]f :=


[xi+1, . . . , xi+`]f − [xi, . . . , xi+`−1]f

xi+` − xi
(xi 6= xi+`),

f (`)(xi)

`!
(xi = . . . = xi+`).

In particular, [xi]f =
f (0)(xi)

0!
= f(xi).

Definition 1.95 ([78, §5.11]). The B-spline function Nmi of degree m ∈ N with knots ti ≤
ti+1 ≤ . . . ≤ ti+m+1 is defined as

Nmi(u) := (ti+m+1 − ti)[ti, ti+1, . . . , ti+m+1](t− u)m+ ,

where the generalized divided difference acts on the variable t.

Certainly, Nmi ∈ Sm({ti, ti+1, . . . , ti+m+1}).
A knot tj can be both in the knot interval [tj−1, tj ] and [tj , tj+1]. To eliminate the

ambiguity, half-open knot spans are going to be used.

Definition 1.96 ([77, §2.2]). The half-open interval, [ti, ti+1), is called the ith knot span; it
can have zero length, since knots need not be distinct.

For a given sequence of knots t0, t1, . . . , tn, n−m linearly independent B-spline functions
of degree m (Nmi for i = 0, 1, . . . , n− 1−m) can be constructed. To form a basis of Sm(Ωn),
2m additional functions are required. They can be obtained by introducing 2m boundary
knots t−m, t−m+1, . . . , t−1, tn+1, tn+2, . . . , tn+m, such that

t−m ≤ t−m+1 ≤ . . . ≤ t−1 ≤ t0, tn ≤ tn+1 ≤ . . . ≤ tn+m.

The boundary knots can be chosen arbitrarily. This allows to construct additional B-splines
using Definition 1.95, giving n+m B-spline functions:

Nmi ∈ Sm(Ωn) (i = −m,−m+ 1, . . . , n− 1).

Theorem 1.97 ([78, §5.7]). The B-spline functions of degree m with a given knot sequence
that do not vanish over an arbitrary knot span [ti, ti+1) are linearly independent over [ti, ti+1).

A dimension count shows that the B-spline functions Nm,−m, Nm,−m+1, . . . , Nm,n−1 with
the knots t−m, t−m+1, . . . , tn+m form a basis of Sm(Ωn).

Each spline s ∈ Sm(Ωn) thus has a unique representation in the B-spline form:

s(u) =

n−1∑
i=−m

ciNmi(u). (1.72)
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A popular choice for the boundary knots is to make them coincident with t0 and tn, i.e.,

t−m = t−m+1 = . . . = t−1 = t0 = a, b = tn = tn+1 = . . . = tn+m. (1.73)

In this case,
s(a) = c−m, s(b) = cn−1.

If n = 1 and the boundary knots are coincident, it can be proved that the B-spline basis
reduces to the Bernstein-Bézier basis, i.e.,

Nmi(u) = Bm
i+m

(u− a
b− a

)
.

See Section 1.5.
The continuity conditions for splines hold as well for B-splines.

Theorem 1.98 ([77, Property 2.5]). All derivatives of Nmi exist in the interior of a knot span
(where it is a polynomial). At a knot Nmi is m− k times continuously differentiable, where k
is the multiplicity of the knot. Hence, increasing m increases continuity, and increasing knot
multiplicity decreases continuity.

The B-spline functions, like the family of Bernstein polynomials of an arbitrary degree,
have properties which make them a good choice for a parameterization of a family of curves.

Theorem 1.99 ([77, Properties 2.3, 2.4, 2.6]). B-spline functions satisfy the following prop-
erties.

1. Nmi(u) ≥ 0 for all m, i, u (non-negativity).

2. For an arbitrary knot span, [tj , tj+1),

j∑
i=j−m

Nmi(u) = 1

for all u ∈ [tj , tj+1) (partition of unity).

3. Except for the case m = 0, Nmi attains exactly one maximum value.

1.9.3 Differential and recurrence relations for B-splines

Computing the B-spline functions or their derivatives using Definition 1.95, while possible,
is costly. Instead, one can use the recurrence and differential-recurrence relations. One such
relation will serve as a foundation for an algorithm which computes the value of a spline curve
given in the form (1.72) at a given point.

Theorem 1.100 ([77, Property 2.2]). In any given knot span, [tj , tj+1), at most m + 1 of
the Nmi are non-zero, namely the functions Nm,j−m, Nm,j−m+1, . . . , Nmj. In other words, the
B-spline function Nmi has support [ti, tm+i+1].

Remark 1.101. In the sequel, a convention is adopted that
Nmk(u)

tm+k+1 − tk
:= 0 if tk = tm+k+1.
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The B-spline functions satisfy the following de Boor-Mansfield-Cox recursion formula (see,
e.g., [27, §2], [21, Eq. (6.1)], [41, Eq. (7.8)]).

Theorem 1.102. The B-spline functions satisfy the recurrence relation of the form

Nmi(u) = (u− ti)
Nm−1,i(u)

tm+i − ti
+ (tm+i+1 − u)

Nm−1,i+1(u)

tm+i+1 − ti+1
(1.74)

(cf. Remark 1.101).

Additionally, it can be checked that

N0i(u) =

{
1 (u ∈ [ti, ti+1)),
0 otherwise.

(1.75)

This observation serves as a base for recursive computations with B-spline functions. This,
along with Theorem 1.102, allows the computation of a B-spline function or their linear
combination. An algorithm to do so will be given in §1.9.5.

Moreover, a differential-recurrence relation between N ′mi and Nm−1,i, Nm−1,i+1 is known.

Theorem 1.103 ([77, Eq. (2.7)]). The derivative of a B-spline function can be expressed as

N ′mi(u) = m ·
(
Nm−1,i(u)

tm+i − ti
− Nm−1,i+1(u)

tm+i+1 − ti+1

)
(1.76)

(cf. Remark 1.101).

1.9.4 B-spline curves

From the graphical perspective, B-spline curves are of use and interest due to their properties.
While they have good numerical properties, their advantage over Bézier curves (cf. Section 1.6)
lies in their locality — a change to one of the curve’s control points changes only a fragment
of the curve which is influenced by the corresponding B-spline function’s support. See Fig-
ures 1.12 and 1.13. Due to their properties such as non-negativity and partition of unity,
B-spline functions are well-suited to be used as a basis of a parametric curve family, i.e.,
B-spline curves.

Definition 1.104. A B-spline curve of degree m over the non-empty interval [a, b] with knots

t−m ≤ . . . ≤ t0 = a ≤ t1 ≤ . . . ≤ b = tn ≤ . . . ≤ tn+m

and control points W−m,W−m+1, . . . ,Wn−1 ∈ Ed is defined as

S(t) :=
n−1∑
i=−m

Nmi(t)Wi (t ∈ [a, b]).

Unlike the case of Bézier curves, a modification of a B-spline curve’s control point has
only local effect on the curve.

Remark 1.105 ([77, Property 3.6]). From Theorem 1.100, it folows that moving the control
point Wi changes S only in the interval [ti, ti+m+1).



CHAPTER 1. INTRODUCTION 51

Theorem 1.106 ([77, Property 3.5]). The B-spline curve S satisfies the convex hull property,
i.e.,

S([t0, tn]) ⊆ conv{W−m,W−m+1, . . . ,Wn−1}.

Additionally,

S([ti, ti+1)) ⊆ conv{Wi−m,Wi−m+1, . . . ,Wi} (i = 0, 1, . . . , n− 1).

Remark 1.107 ([77, Property 3.1]). Bézier curves are a particular subtype of B-spline curves.
More precisely, when n = 1, t−m = t−m+1 = . . . = t0 = 0 and t1 = t2 = . . . = tm+1 = 1,

Nm,i−m(t) = Bm
i (t) (t ∈ [0, 1], i = 0, 1, . . . ,m).

This means that, for control points W−m,W−m+1, . . . ,W0,

S(t) =

0∑
i=−m

Nmi(t)Wi =

m∑
i=0

Bm
i (t)Wi−m (t ∈ [0, 1]).

1.9.5 The de Boor-Cox algorithm

Theorem 1.102 and Eq. (1.75) can be used to compute a point on a B-spline curve. This
approach, applied to explicitly compute the values of B-spline functions, has been proposed
by de Boor in [27, p. 55–57]. The algorithm given in [27, p. 57–59] (see also [36, Eq. (8.3)]),
which directly computes a point on a B-spline curve is known as the de Boor-Cox algorithm
and has O(dm2) computational complexity.

Let u ∈ [tj , tj+1). Then, by Definition 1.104 and Theorem 1.100,

S(u) =

j∑
i=j−m

Nmi(u)Wi.

If m = 0 then, certainly, S(u) = Wj . If m > 0, however, Theorem 1.102 can be applied to get

S(u) =

j∑
i=j−m

(u− ti)
Nm−1,i(u)

tm+i − ti
Wi +

j+1∑
i=j−m+1

(tm+i − u)
Nm−1,i(u)

tm+i − ti
Wi−1,

which can be simplified to

S(u) =

j∑
i=j−m+1

Nm−1,i(u)
( u− ti
tm+i − ti

Wi +
tm+i − u
tm+i − ti

Wi−1

)
.

Let us take a look at the quantities
u− ti

tm+i − ti
,
tm+i − u
tm+i − ti

. Certainly,

ti ≤ tj ≤ u < tj+1 ≤ tm+i,

thus
u− ti

tm+i − ti
,
tm+i − u
tm+i − ti

≥ 0. Additionally,

u− ti
tm+i − ti

+
tm+i − u
tm+i − ti

= 1.
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Thus
u− ti

tm+i − ti
Wi +

tm+i − u
tm+i − ti

Wi−1

is a convex combination of Wi−1 and Wi.

Corollary 1.108. Let u ∈ [tj , tj+1), and W
(0)
i :=Wi (i = j −m, j −m+ 1, . . . , j),

W(k)
i :=

u− ti
tm+i+1−k − ti

W(k−1)
i +

tm+i+1−k − u
tm+i+1−k − ti

W(k−1)
i−1 (1 ≤ k ≤ m; j −m+ k ≤ i ≤ j).

Then S(u) =W(m)
j .

The recurrence scheme given in Corollary 1.108 is the foundation of the de Boor-Cox
algorithm. A more concrete implementation is presented in Algorithm 1.6, where t :=
t−m, t−m+1, . . . , tn+m.

Algorithm 1.6 The de Boor-Cox algorithm

1: procedure BSplineEval(m,u, t,W)
2: j ← GetKnotSpan(u, t)
3: for i← j −m, j do
4: W(0)

i ←Wi

5: end for
6: for k ← 1,m do
7: for i← j −m+ k, j do

8: a← u− ti
tm+i+1−k − ti

9: W(k)
i ← a ·W(k−1)

i + (1− a) ·W(k−1)
i−1

10: end for
11: end for
12: return W(m)

j

13: end procedure



Chapter 2

Fast evaluation of Bézier-type
objects

For a given t ∈ [0, 1], the corresponding point on a rational Bézier curve can be computed
using the de Casteljau algorithm (see Section 1.7 and, in particular, Algorithms 1.1 and 1.2).
The classic de Casteljau algorithm for evaluating a point on a rational or polynomial Bézier
curve has a geometric interpretation, good numerical properties (cf. [70]), and computes only
convex combinations of points in Ed. Such properties are desirable from a numerical and
geometric point of view.

However, the computational complexity of these algorithms is higher than the lower bound
of that problem, which is achieved by algorithms based on the Horner’s scheme. One of them
computes the coordinates of the point on a polynomial Bézier curve in Ed is to use the
algorithm proposed in [89] for evaluating a polynomial p given in the form

p(t) :=
n∑
k=0

pkt
k(1− t)n−k (pk ∈ R)

d times (once for each dimension). This method has O(dn) computational complexity and
O(1) memory complexity. It uses the concept of Horner’s rule (see, e.g., [22, Eq. (1.2.2)], [78,
§2.3]). This approach can be adapted for rational Bézier curves. For numerical reasons, using
the Horner’s rule is not recommended (see [23, 39, 40, 77]).

Other methods for evaluating a Bézier curve are also known. See, e.g., [8] or [74], where
the case of Bézier surfaces was also studied (cf. Section 2.4), and the papers cited therein.

The faster algorithms do not, however, have good numerical properties or a geometric
interpretation and cannot be expressed as a series of convex operations on points in Ed. An
algorithm which combines good numerical properties of the de Casteljau algorithm with the
efficiency of the Horner’s scheme would be widely useful. Given that in order to render a
Bézier curve one has to compute multiple points, such an improvement would allow for a
significant reduction of time required for such computations, even for curves of low degrees.

In this chapter, such algorithm will be presented for rational Bézier curves. Section 2.1
contains the reasoning behind the construction of a linear-time algorithm for evaluating Bézier
curves, while Section 2.2 focuses on its efficient implementation. Note that, although the
presented algorithm is designed with rational Bézier curves in mind, it can be easily applied
to polynomial Bézier curves as well.

53
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The approach used in the algorithm can be generalized and used for any rational para-
metric object which satisfies certain conditions. This generalization is expanded upon in
Section 2.3.

This generalized approach can be, for instance, used in case of rectangular and triangular
Bézier surfaces. An outline of the recommended approach to their computation is given in
Section 2.4.

This chapter contains the results obtained by Woźny and Chudy in [96], along with some
new observations, mainly in generalizing some formulas for rational Bézier curves and ap-
proaching the computations for Bézier surfaces. Although the idea used in the paper and,
consequently, in this chapter, appears to be simple, to the best of the author’s knowledge, it
was not presented or used previously. Despite this simplicity, the observation has significant
ramifications with respect to efficient computations of Bézier-type objects and other rational
parametric objects.

The algorithm presented in [96] and in this chapter can be used, as seen in [83], to pre-
compute some quantities to further accelerate the computations for Bézier curves of very high
degree or for computing many points on a single curve — however, at the cost of losing the
geometric interpretation.

Additionally, in [84], it is shown how to adapt the algorithm to evaluate algebraic-
hyperbolic PH curves (EPH curves) for a fixed parameter t. The approach presented there
is to convert an EPH curve into a Bézier curve such that they have the same value at t, and
then to evaluate the newly found Bézier curve using the method presented in [96] and in this
chapter.

2.1 New algorithm for evaluating Bézier curves

Let W0,W1, . . . ,Wn be points in Ed (n, d ∈ N). Recall that Bn
k , the kth Bernstein polynomial

of degree n, is defined in Eq. (1.24) as

Bn
k (t) :=

(
n

k

)
tk(1− t)n−k (0 ≤ k ≤ n).

A rational Bézier curve in Ed with control points W0,W1, . . . ,Wn ∈ Ed and weights
ω0, ω1, . . . , ωn ∈ R+ is given by Eq. (1.49) as

Rn(t) :=

n∑
k=0

ωkWkB
n
k (t)

n∑
k=0

ωkB
n
k (t)

(t ∈ [0, 1]).

One can separate the expression for a rational Bézier curve into a sum of two terms:

Rn(t) =

i∑
k=0

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

+

n∑
k=i+1

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

.
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The first term contains all the information from the first i+1 control points and their weights.
The idea for the algorithm is to represent it as a point with an assigned weight:

Rn(t) =

i∑
k=0

ωkB
n
k (t)

n∑
k=0

ωkB
n
k (t)

·

i∑
k=0

ωkB
n
k (t)Wk

i∑
k=0

ωkB
n
k (t)

+

n∑
k=i+1

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

.

Note that
i∑

k=0

ωkB
n
k (t)Wk

i∑
k=0

ωkB
n
k (t)

is a convex combination of points in Ed and, therefore, is also a point in Ed.
Let Qi be defined as

Qi ≡ Qi(t) :=

i∑
k=0

ωkB
n
k (t)Wk

i∑
k=0

ωkB
n
k (t)

. (2.1)

This allows to express Rn(t) as a convex combination of points Qi and Wi+1,Wi+2, . . . ,Wn:

Rn(t) =

i∑
k=0

ωkB
n
k (t)

n∑
k=0

ωkB
n
k (t)

Qi +

n∑
k=i+1

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

.

This means that Wi needs used only once to compute Qi. Note that, for i = n,

Rn(t) =

n∑
k=0

ωkB
n
k (t)

n∑
k=0

ωkB
n
k (t)

Qn +

n∑
k=n+1

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

= Qn.

Now, compare the expressions for Rn(t) using Qi and Qi−1, respectively,

i∑
k=0

ωkB
n
k (t)

n∑
k=0

ωkB
n
k (t)

Qi +

n∑
k=i+1

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

=

i−1∑
k=0

ωkB
n
k (t)

n∑
k=0

ωkB
n
k (t)

Qi−1 +

n∑
k=i

ωkB
n
k (t)Wk

n∑
k=0

ωkB
n
k (t)

,
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which can be simplified to

Qi =

i−1∑
k=0

ωkB
n
k (t)

i∑
k=0

ωkB
n
k (t)

Qi−1 +
ωiB

n
i (t)

i∑
k=0

ωkB
n
k (t)

Wi.

Let hi(t) be defined as

hi(t) :=
ωiB

n
i (t)

i∑
k=0

ωkB
n
k (t)

(i = 1, 2, . . . , n), (2.2)

with h0(t) := 1. This allows to present the recurrence relation for Qi in a concise form:

Qi = (1− hi(t))Qi−1 + hi(t)Wi. (2.3)

In particular, Q0 = W0.
One can use (2.2) to find a recurrence relation which connects hi−1(t) and hi(t) (i =

1, 2, . . . , n). Note that

ωiB
n
i (t)

hi(t)
=

i∑
k=0

ωkB
n
k (t) =

ωi−1B
n
i−1(t)

hi−1(t)
+ ωiB

n
i (t),

which, after some algebra, gives

hi(t) =
t(n− i+ 1)ωihi−1(t)

(1− t)iωi−1 + t(n− i+ 1)ωihi−1(t)
(i = 1, 2, . . . , n). (2.4)

Equations (2.4) and (2.3) together with the values for Q0 and h0, form a recursive scheme
of the form 

h0 := 1, Q0 := W0,

hi :=
ωihi−1t(n− i+ 1)

ωi−1i(1− t) + ωihi−1t(n− i+ 1)
,

Qi := (1− hi)Qi−1 + hiWi

(2.5)

for i = 1, 2, . . . , n, with hi ≡ hi(t).

Theorem 2.1. For all k = 0, 1, . . . , n, t ∈ [0, 1], the quantities hk and Qk satisfy:

1. hk ∈ [0, 1],

2. Qk ∈ Ed,

3. Qk ∈ Ck ≡ conv{W0,W1, . . . ,Wk} (consequently, conv{Q0,Q1, . . . ,Qk} ⊆ Ck).

Moreover, Rn(t) = Qn.
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Proof. Recall that, for t ∈ (0, 1), both Bn
k (t) and ωk are strictly positive for all 0 ≤ k ≤ n.

From (2.2), it follows that hk(t) ∈ [0, 1] for t ∈ (0, 1). It remains to check that, for t = 0 and
t = 1, the property still holds. Clearly, h0(t) ≡ 1. In Eq. (2.2), substituting t = 0 gives

hk(0) =
ωk
(
n
k

)
0k1n−k

ω0
= 0 (k = 1, 2, . . . , n).

Using induction, it follows from Eq. (2.4) that

hk(1) = 1 (k = 1, 2, . . . , n).

Therefore, for t ∈ [0, 1], hk(t) ∈ [0, 1].
From (2.1), it easily follows that Qk ∈ Ed, Qk ∈ conv{W0,W1, . . . ,Wk}, and Qn = Rn(t).

In each step of the proposed method, the point Qi (a convex combination of points Qi−1
and Wi) is computed. The last point Qn is equal to the point Rn(t). The method can be
thus used to compute a point on a rational Bézier curve in linear time. Moreover, the method
has a geometric interpretation and computes only convex combinations of the control points.
Efficient implementation of the method, along with its theoretical and practical costs, is
presented in Section 2.2.

One can prove the following result which tells even more about the geometric properties
of the new method.

Theorem 2.2. Let the numbers hk and the points Qk (0 ≤ k ≤ n) be computed by (2.5)
for a given t ∈ [0, 1]. The point Rn(u), where u ∈ [0, 1], is in the convex hull of the points
Q0,Q1, . . . ,Qn if u ≤ t. It means that

Rn([0, u]) ⊆ conv{Q0,Q1, . . . ,Qn} (u ≤ t).

Proof. Observe that for t = 0, Q0 = Q1 = . . . = Qn = W0 = Rn(0). For t = 1, Qi = Wi

(i = 0, 1, . . . , n). In these cases, the theorem follows immediately.
It remains to consider the case t ∈ (0, 1). From Eq. (2.4), it follows that

1− hi
hi

= h−1i−1
ωi−1B

n
i−1(t)

ωiBn
i (t)

,

which, in turn, gives the relation

1− hi =
hi
hi−1

ωi−1B
n
i−1(t)

ωiBn
i (t)

. (2.6)

This relation can be applied to Eq. (2.3) to obtain a subtraction-free version of the recursive
scheme.

Eq. (2.3), combined with Eq. (2.6), provides an expression of Wi in terms of Qi and Qi−1:

Wi =
1

hi
Qi −

1

hi−1

ωi−1(1− t)i
ωit(n− i+ 1)

Qi−1 (i = 1, 2, . . . , n).
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Additionally, W0 = Q0. Now, one can substitute the points Wi in the expression for Rn(u)
(cf. (1.49)):

Rn(u) =

ω0B
n
0 (u)Q0 +

n∑
i=1

ωiB
n
i (u)

( 1

hi
Qi −

1

hi−1

ωi−1(1− t)i
ωit(n− i+ 1)

Qi−1

)
n∑
k=0

ωkB
n
k (u)

.

After some algebra one gets

Rn(u) =

ωn
hn
Bn
n(u)Qn +

n−1∑
i=0

(
1− u(1− t)

(1− u)t

)ωi
hi
Bn
i (u)Qi

n∑
k=0

ωkB
n
k (u)

. (2.7)

If u, t ∈ (0, 1) and u ≤ t then 1 − u(1− t)
(1− u)t

≥ 0, thus the right-hand side of Eq. (2.7) is a

convex combination of points Qi.

This mimics a similar property of the de Casteljau algorithm and may come useful, e.g.,
in detecting curve intersections (see, e.g., [90]).

The recursive scheme presented in this section can also be used for polynomial Bézier
curves. In this case, all weights ωi are equal. This allows to simplify the recurrence relations:

h0 := 1, Q0 := W0,

hi :=
hi−1t(n− i+ 1)

i(1− t) + hi−1t(n− i+ 1)
,

Qi := (1− hi)Qi−1 + hiWi

(2.8)

for i = 1, 2, . . . , n. Similarly, Qn = Pn(t) (cf. (1.48)). Figure 2.1 illustrates the new method
in case of a planar polynomial Bézier curve of degree n = 5.

The proposed method can find additional application in curve subdivision (cf., e.g., Sec-
tion 1.7.2 and [36, §5.4]). Let u ∈ (0, 1) be fixed. Using Theorem 1.73, the points

Vi :=
i∑

k=0

Bi
k(u)Wk (0 ≤ i ≤ n)

are the control points of the polynomial Bézier curve PLn that is the left part of the Bézier
curve (1.48) with t ∈ [0, u], i.e., PLn [0, 1] ≡ Pn[0, u]. One can check that Vi =

i∑
k=0

h−1k
n− i
n− k

Bi
k(u)Qk (0 ≤ i ≤ n− 1),

Vn = Qn.

where the numbers hk and the points Qk (0 ≤ j ≤ n) are computed using (2.8) with t := u.
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W0 = Q0

W1

W2

W3

W4

W5

Q1

Q2 Q3

Q4

Pn(t) = Q5

Figure 2.1: Computation of a point on a planar polynomial Bézier curve of degree n = 5
using the new method. The method computes much fewer intermediate points compared to
the de Casteljau algorithm (cf. Figure 1.9 which illustrates using it for the same curve and t).

A similar result can be obtained for rational Bézier curves. Theorem 1.72 gives the control
points Vi along with their corresponding weights vi of the left part RLn of the rational Bézier
curve Rn:

Vi :=

∑i
k=0 ωkB

i
k(u)Wk∑i

k=0 ωkB
i
k(u)

, vi :=

i∑
k=0

ωkB
i
k(u),

i.e., RLn [0, 1] ≡ Rn[0, u]. Using the same approach as in the polynomial case, the points Vi can
be expressed as  Vi =

∑i
k=0 h

−1
k ωk

n− i
n− k

Bi
k(u)Qk∑i

k=0 ωkB
i
k(u)

(0 ≤ i ≤ n− 1),

Vn = Qn,

where the numbers hk and the points Qk (0 ≤ j ≤ n) are computed using (2.5) with t := u.

2.2 Implementation and cost

In this section, efficient and numerically safe implementations of the method given in Sec-
tion 2.1 will be presented. The new algorithms allow to evaluate a single curve at a single
point with O(dn) computational complexity and O(1) memory complexity.
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Algorithm 2.1 First implementation

1: procedure NewRatBEval1(n, t, ω,W)
2: h← 1
3: u← 1− t
4: n1 ← n+ 1
5: Q←W0

6: for k ← 1, n do
7: h← h · t · (n1 − k) · ωk
8: h← h/(k · u · ωk−1 + h)
9: h1 ← 1− h
10: Q← h1 · Q + h ·Wk

11: end for
12: return Q
13: end procedure

The implementation provided in Algorithm 2.1 is a straight-forward implementation of
the recursive scheme presented in (2.5). It requires (3d + 8)n + 1 floating-point arithmetic
operations (flops) to compute a point on a rational Bézier curve of degree n in Ed.

Algorithm 2.2 Second implementation

1: procedure NewRatBEval2(n, t, ω,W)
2: h← 1
3: u← 1− t
4: n1 ← n+ 1
5: Q←W0

6: if t ≤ 0.5 then
7: u← t/u
8: for k ← 1, n do
9: h← h · u · (n1 − k) · ωk
10: h← h/(k · ωk−1 + h)
11: h1 ← 1− h
12: Q← h1 · Q + h ·Wk

13: end for
14: else
15: u← u/t
16: for k ← 1, n do
17: h← h · (n1 − k) · ωk
18: h← h/(k · u · ωk−1 + h)
19: h1 ← 1− h
20: Q← h1 · Q + h ·Wk

21: end for
22: end if
23: return Q
24: end procedure

Algorithm 2.2 decreases the number of flops to (3d + 7)n + 2. The main idea is to
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precompute
t

1− t
or its inverse and use it in the subsequent computations. However, for

numerical reasons (cf. lines 7 and 15 in Algorithm 2.2), it is necessary to use a conditional
statement. More precisely, one has to check whether t ∈ [0, 0.5] or t ∈ (0.5, 1], which can be
easily done (it is enough to check the exponent of a floating-point number t).

Note that in the case of polynomial Bézier curves (1.48), one only needs to set ωk := 1
(0 ≤ k ≤ n) in the given algorithms, thus simplifying used formulas. Then the number of
flops is equal to (3d+ 6)n+ 1 in Algorithm 2.1 and (3d+ 5)n+ 2 in Algorithm 2.2.

new method
(Alg. 2.2)

de Casteljau
(Alg. 1.1, 1.2)

polynomial
Bézier curve

in total (3d+ 5)n+ 2
3dn(n+ 1)

2
+ 1

add/sub (d+ 2)n+ 1
dn(n+ 1)

2
+ 1

mult 2(d+ 1)n dn(n+ 1)

div n+ 1 0

rational
Bézier curve

in total (3d+ 7)n+ 2
(3d+ 5)n(n+ 1)

2
+ 1

add/sub (d+ 2)n+ 1
(d+ 2)n(n+ 1)

2
+ 1

mult 2(d+ 2)n (d+ 1)n(n+ 1)

div n+ 1
n(n+ 1)

2

Table 2.1: Numbers of flops.

The numbers of flops for both the polynomial and rational versions of the new algorithm
and the de Casteljau algorithm, which both have a geometric interpretation and compute
only convex combinations of control points, are given in Table 2.1.

Example 2.3. Table 2.2 shows the comparison between the running times of the de Casteljau
algorithm and Algorithm 2.2 both for Bézier curves and rational Bézier curves (in the case
of Bézier curves, Algorithm 2.2 has been simplified), for d ∈ {2, 3}. The results have been
obtained on a computer with Intel Core i5-2540M CPU at 2.60GHz processor and 4GB RAM,
using GNU C Compiler 7.4.0 (single precision).

The following numerical experiments have been conducted. For a fixed n, 10000 curves
of degree n are generated. Their control points Wk ∈ [−1, 1]d and — in the rational case —
weights ωk ∈ [0.01, 1] (0 ≤ k ≤ n) have been generated using the rand() C function. Each
curve is then evaluated at 501 points ti := i/500 (0 ≤ i ≤ 500). Each algorithm is tested using
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the same curves. Table 2.2 shows the total running time of all 501× 10000 evaluations.

Bézier curve rational Bézier curve

n d new method
(cf. Alg. 2.2)

de Casteljau
(cf. Alg. 1.1)

new method
(cf. Alg. 2.2)

de Casteljau
(cf. Alg. 1.2)

1 2 0.287 0.297 0.366 0.542

3 0.485 0.535 0.543 0.709

2 2 0.300 0.327 0.373 0.600

3 0.486 0.508 0.551 0.764

3 2 0.344 0.495 0.409 0.907

3 0.498 0.697 0.553 1.150

4 2 0.401 0.714 0.490 1.356

3 0.522 1.031 0.605 1.728

5 2 0.479 1.076 0.572 1.921

3 0.585 1.435 0.673 2.442

6 2 0.554 1.313 0.660 2.568

3 0.671 1.905 0.764 3.276

10 2 0.876 3.044 1.052 6.212

3 1.049 4.470 1.185 7.918

15 2 1.288 6.152 1.524 13.024

3 1.514 9.249 1.723 16.603

20 2 1.697 10.503 2.000 22.376

3 2.008 15.789 2.288 28.659

Table 2.2: Running times comparison (in seconds) for Example 2.3. The source code in C
which was used to perform the tests is available at https://bit.ly/fch-phd-ch2.

Observe that in the case of polynomial Bézier curves, the quantities h, which are computed
in the new algorithms, do not depend on the control points. One can use this fact in the fast
evaluation of M Bézier curves of the same degree n for the same value of the parameter t.
Such a method requires (3dM+5)n+2 flops while the direct use of the de Casteljau algorithm
means that all computations have to be repeated M times, i.e., the number of flops is equal
to 3Mdn(n+ 1)/2 + 1.

Example 2.4. Table 2.3 shows the comparison between the running times of the de Casteljau
algorithm for polynomial Bézier curves, a version of Algorithm 2.2 which has been simplified
for polynomial Bézier curves (cf. Table 2.2), as well as a modification of Algorithm 2.2 which
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computes the quantities h once for each t and uses them in evaluation of each polynomial
Bézier curve. The running times are computed for d ∈ {2, 3}. The results have been obtained
on a computer with Intel Core i5-2540M CPU at 2.60GHz processor and 4GB RAM, using GNU
C Compiler 7.4.0 (single precision).

The following numerical experiments have been conducted. For a fixed n, 10000 curves of
degree n are used. The curves are identical with those used in Example 2.3. Each curve is
evaluated at 501 points ti := i/500 (0 ≤ i ≤ 500). Each algorithm is tested using the same
curves. Table 2.3 shows the total running time of all 501× 10000 evaluations.

n d new method
with shared hi
(cf. Alg. 2.2)

new method
(cf. Alg. 2.2)

de Casteljau
(cf. Alg. 1.1)

1 2 0.288 0.287 0.297

3 0.492 0.485 0.535

2 2 0.290 0.300 0.327

3 0.487 0.486 0.508

3 2 0.305 0.344 0.495

3 0.477 0.498 0.697

4 2 0.319 0.401 0.714

3 0.492 0.522 1.031

5 2 0.354 0.479 1.076

3 0.511 0.585 1.435

6 2 0.395 0.554 1.313

3 0.545 0.671 1.905

10 2 0.602 0.876 3.044

3 0.786 1.049 4.470

15 2 0.856 1.288 6.152

3 1.123 1.514 9.249

20 2 1.121 1.697 10.503

3 1.470 2.008 15.789

Table 2.3: Running times comparison (in seconds) for Example 2.4. The source code in C
which was used to perform the tests is available at https://bit.ly/fch-phd-ch2.

Remark 2.5. In rather rare cases (hk ≈ 1), the problem of cancellation of digits ([22, §2.3.4])
can occur while 1−hk is computed (cf. h1 in Algorithms 2.1, 2.2). One can avoid this problem
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using the relation

1− hk =
hk
hk−1

ωk−1k(1− t)
ωkt(n− k + 1)

(1 ≤ k ≤ n),

if computations with high accuracy are necessary.

2.3 Generalizations of the algorithm

The algorithms presented in previous sections of this chapter can be generalized for a broader
family of objects. The nature of these objects is not limited to curves — as will be further
shown in Section 2.4, it can also be applied, e.g., to surfaces.

Let bk : D → R (k = 0, 1, . . . , N ; N ∈ N) be real-valued multivariate basis functions such
that

bk(t) ≥ 0,

N∑
k=0

bk(t) ≡ 1 (2.9)

for t ∈ C ⊆ D. Let a rational parametric object SN : C → Ed (d ∈ N) be defined by

SN (t) :=

N∑
k=0

ωkWkbk(t)

N∑
k=0

ωkbk(t)

(2.10)

with the weights ωk > 0, and control points Wk ∈ Ed (0 ≤ k ≤ N). If ω0 = ω1 = . . . = ωN ,
then

SN (t) =
N∑
k=0

Wkbk(t).

It is clear that rational Bézier curves are an example of such objects, with C = [0, 1], D = R,
t = t and bk(t) = BN

k (t).
In the sequel, it will be proven that for a given t ∈ C, the point SN (t) ∈ Ed can be

computed by Algorithm 2.3. Note that Algorithm 2.3 omits possible numerical difficulties
connected with a particular choice of functions bk. The implementation of this algorithm for
a concrete case should take said difficulties into account.

Remark 2.6. Let us fix t ∈ C. Suppose that there exists 1 ≤ k ≤ N such that bk(t) = 0.
Then one has the division by 0 in the line 5 of Algorithm 2.3. Such special cases should be
considered separately, e.g., by omitting them in Eq. (2.10). Observe that it is always possible
because for at least one 0 ≤ j ≤ N , bj(t) > 0 (cf. (2.9)). For the sake of simplicity, in the
sequel, it is assumed that these special cases do not occur, i.e., bk(t) > 0 for 0 ≤ k ≤ N .

The correctness of the algorithm, as well as some of its properties, is proven in the following
theorem, which is a generalized version of Theorem 2.1.

Theorem 2.7. The quantities hk and Qk (0 ≤ k ≤ N) computed by Algorithm 2.3 have the
following properties:

1. hk ∈ (0, 1],
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Algorithm 2.3 Computation of SN (t)

1: procedure GenAlg(N, t, ω,W)
2: h0 ← 1
3: Q0 ←W0

4: for k ← 1, N do

5: hk ←
(

1 +
ωk−1 · bk−1(t)
hk−1 · ωk · bk(t)

)−1
6: Qk ← (1− hk) · Qk−1 + hk ·Wk

7: end for
8: return QN

9: end procedure

2. Qk ∈ Ed,

3. Qk ∈ Ck ≡ conv{W0,W1, . . . ,Wk} (consequently, conv{Q0,Q1, . . . ,Qk} ⊆ Ck).

Moreover, SN (t) = QN .

Proof. Let us define h0 := 1, Q0 := W0, and

hk :=
ωkbk(t)
k∑
j=0

ωjbj(t)

, Qk :=

k∑
j=0

ωjWjbj(t)

k∑
j=0

ωjbj(t)

(k = 1, 2, . . . , N). It is clear that hk ∈ (0, 1], Qk ∈ Ed for 0 ≤ k ≤ N , and SN (t) = QN .
Certainly,

Qk ∈ conv{W0,W1, . . . ,Wk} (0 ≤ k ≤ N).

To complete the proof, it is enough to check that:{
(1− hk)Qk−1 + hkWk = Qk,

ωkbk(t)h
−1
k = ωk−1bk−1(t)h

−1
k−1 + ωkbk(t)

for 1 ≤ k ≤ N (cf. lines 5, 6 in Algorithm 2.3).

Algorithm 2.3 has a geometric interpretation, uses only convex combinations of control
points of SN and has linear complexity with respect to N — under the assumption that all
quotients of two consecutive basis functions can be computed in the total time O(N).

Remark 2.8. Similarly to the case of Bézier curves, the following relation holds

1− hk =
hk
hk−1

ωk−1bk−1(t)

ωkbk(t)
(2.11)

for 1 ≤ k ≤ N . Using this simple relation, one can propose a subtraction-free version of
Algorithm 2.3. Such formulation can be important for numerical reasons (cf. the problem of
cancellation of digits; see, e.g., [22, §2.3.4]).
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Relation (2.11) will be used to prove the following theorem which shows an important
property of Algorithm 2.3.

Theorem 2.9. Suppose that

bk(t)

bk+1(t)
≤ bk(u)

bk+1(u)
(0 ≤ k ≤ N − 1).

Then the point SN (u) ∈ Ed is in the convex hull of the points Q0,Q1, . . . ,QN computed by
Algorithm 2.3.

Proof. The proof follows the same path as the proof of its particular case, namely Theorem 2.2.
Let the numbers hk and the points Qk (0 ≤ k ≤ N) be computed by Algorithm 2.3 for a fixed
t ∈ C.

Using relation (2.11) and the assumption that hk 6= 0 (1 ≤ k ≤ N) (cf. Remark 2.6),
observe that

Wk = h−1k Qk − h−1k−1
ωk−1bk−1(t)

ωkbk(t)
Qk−1

for 1 ≤ k ≤ N . Thus, after simple algebra, one gets

SN (u) = DN (u)−1

(
ωN
hN

bN (u) · QN

+

N−1∑
k=0

ωk
hk
bk(u)

(
1− bk(t)bk+1(u)

bk+1(t)bk(u)

)
· Qk

)
,

where DN (u) :=
∑N

k=0 ωkbk(u) > 0.
Now, from the assumptions, it easily follows that because the values hk (0 ≤ k ≤ N) are

positive (cf. Theorem 2.7) the point SN (u) is in the set conv{Q0,Q1, . . . ,QN}.

2.4 Example: Bézier surfaces

The general algorithm presented in Section 2.3 is not limited to curves. It can be applied
to many other (rational) parametric objects, provided that their control points and basis
functions bk can be ordered in such a way that satisfies the algorithm’s principles.

In this section, applications of Algorithm 2.3 will be shown for two such families of para-
metric objects — rational rectangular Bézier surfaces and rational triangular Bézier surfaces
(see Definitions 1.83 and 1.88, respectively). Both surface types are rational parametric ob-
jects (cf. (2.10)), thus one can apply Algorithm 2.3 to derive efficient methods which have
geometric interpretations, compute only convex combinations of points and allow to evaluate
Bézier surfaces in linear time with respect to the number of control points.

In both cases, it is necessary to arrange the set of control points, along with their cor-
responding weights and basis functions (cf. (2.9)), into a one-dimensional sequence. Since
Algorithm 2.3 is agnostic of the chosen sequence (as long as satisfies necessary conditions),
many possible choices may be valid. For both surface types, two sequence choices will be pro-
posed in their corresponding subsections. Each approach will have a corresponding recursive
scheme for computing the intermediate values in Algorithm 2.3. Some technical details are
omitted for clarity.
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2.4.1 Computations for rational rectangular Bézier surfaces

Recall that a d-dimensional rational rectangular Bézier surface of degrees m,n ∈ N with
weights ωij > 0 and control points Wij ∈ Ed (0 ≤ i ≤ m, 0 ≤ j ≤ n) is given by the formula

Smn(s, t) :=

m∑
i=0

n∑
j=0

ωijWijB
m
i (s)Bn

j (t)

m∑
i=0

n∑
j=0

ωijB
m
i (s)Bn

j (t)

(cf. Definition 1.83). From the properties of its basis functions Bm
i (s) · Bn

j (t), it is clear
that a rational rectangular Bézier surface Smn(s, t) is a rational parametric object. The
desired computational complexity of Algorithm 2.3 is O(nm · d), proportional to the number
of control points, compared to the de Casteljau algorithm’s complexity of O(m(n2 + m)d).
See Algorithm 1.4.

Remark 2.10. If s ∈ {0, 1} ∨ t ∈ {0, 1}, then (s, t) lies on the boundary rational Bézier
curve with boundary control points and weights. The method described in Section 2.1 can be
used in this case.

It is thus sufficient to consider the problem of computing a point on a rational rectangular
Bézier surface only for (s, t) ∈ (0, 1)2. The basis functions for such s, t are strictly positive,
which eliminates the risk of division by zero when computing their ratios in Algorithm 2.3.

Now, let us consider the one-dimensional order in which the basis functions Bm
i (s) ·Bn

j (t),
along with their corresponding weights and control points, have to be arranged in order to
apply Algorithm 2.3 efficiently. In the case of rational rectangular Bézier surfaces, all ratios
of basis functions are of the form

Bm
i (s)

Bm
k (s)

·
Bn
j (t)

Bn
` (t)

.

Note that for k ∈ N, k ≤ m− i,

Bm
i+k(s)

Bm
i (s)

=
(m− i− k + 1)k

(i+ 1)k
·
( s

1− s

)k
.

It is reasonable to choose an order of basis functions which leads to simplified computations.
Additionally, one has to take into account some aspects related to numerical problems.

In the sequel, two choices for the ordering of the basis functions are presented and analyzed.
For the reader’s convenience, the analogues of quantities hk and points Qk from Algorithm 2.3
have two indices instead to correspond to the surface’s structure.

Row-by-row approach

One can interpret the set of control points of a rational rectangular Bézier surface as a
rectangular grid having m+ 1 rows with n+ 1 points in each row.

In such approach, the sequence of control points is as follows:

� the sequence begins with W00,

� Wi,j−1 is followed by Wij (0 ≤ i ≤ m, 1 ≤ j ≤ n),
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� Wi−1,n is followed by Wi0 (1 ≤ i ≤ m).

The sequences of weights ωij and basis functions Bm
i (s) · Bn

j (t) (0 ≤ i ≤ m, 0 ≤ j ≤ n) are
set accordingly. Figure 2.2 illustrates this approach.

Figure 2.2: The sequence of control points used in the row-by-row approach for rational
rectangular Bézier surfaces.

While executing Algorithm 2.3 for this ordering, ratios of the form

Bm
i (s)Bn

j+1(t)

Bm
i (s)Bn

j (t)
=
n− j
j + 1

· t

1− t
,

Bm
i+1(s)B

n
0 (t)

Bm
i (s)Bn

n(t)
=

(m− i)s
(i+ 1)(1− s)

·
(

1− t
t

)n
are used.

Let us fix (s, t) ∈ (0, 1)2 (cf. Remark 2.10). Now, based on Algorithm 2.3, the sequences
of quantities hij and points Qij ∈ Ed (0 ≤ i ≤ m, 0 ≤ j ≤ n) are defined in the following
recursive way using the order described above:

h00 := 1,

Q00 := W00,

hij :=

(
1 +

jωi,j−1(1− t)
njωijhi,j−1t

)−1
(i = 0, 1, . . . ,m, j = 1, 2, . . . , n),

Qij := (1− hij)Qi,j−1 + hijWij (i = 0, 1, . . . ,m, j = 1, 2, . . . , n),

hi0 :=

(
1 +

iωi−1,n(1− s)tn
miωi0hi−1,ns

)−1
(i = 1, 2, . . . ,m),

Qi0 := (1− hi0)Qi−1,n + hi0Wi0 (i = 1, 2, . . . ,m).

where tn :=
tn

(1− t)n
, mi := m− i+ 1, nj := n− j + 1. Theorem 2.7 implies that Smn(s, t) =

Qmn.
Algorithm 2.4 computes Smn(s, t) for (s, t) ∈ (0, 1)2 and presents a more concrete imple-

mentation of the general method. It uses the same approach as Algorithm 2.1 when computing
the values hij .

Let us take a look at the computational complexity of Algorithm 2.4. One has to perform
4+(m ·(n+1)+n) ·(3d+8)+T (tn)+T ((1− t)n) flops over the course of the algorithm, where
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Algorithm 2.4 Implementation of Alg. 2.3 for rational rectangular Bézier surface, row-by-
row-approach

1: procedure RectBEvalRR(m,n, s, t, ω,W)
2: st1← s · (1− t)n
3: st2← (1− s) · tn
4: u← 1− t
5: n1 ← n+ 1
6: m1 ← m+ 1
7: h← 1
8: Q←W00

9: for j ← 1, n do
10: h← (n1 − j) · ω0j · h · t
11: h← h/(h+ j · ω0,j−1 · u)
12: Q← (1− h) · Q + h ·W0j

13: end for
14: for i← 1,m do
15: h← (m1 − i) · ωi0 · h · st1
16: h← h/(h+ i · ωi−1,n · st2)
17: Q← (1− h) · Q + h ·Wi0

18: for j ← 1, n do
19: h← (n1 − j) · ωij · h · t
20: h← h/(h+ j · ωi,j−1 · u)
21: Q← (1− h) · Q + h ·Wij

22: end for
23: end for
24: return Q
25: end procedure

T (tn) and T ((1− t)n) are the numbers of flops to compute tn and (1− t)n, respectively. For
example, if exponentiation by squaring (see [43, §2.1]) is used, each of them is O(log n), with
the exact number of operations dependent on the number of ones in the binary representation
of n. This does not, however, change the total computational complexity of O(mn · d).

One can further reduce the number of arithmetic operations using the same technique
which has been used in Algorithm 2.2. This, however, creates numerical concerns which have
to be taken into account.

The idea is to pre-compute some elements of the basis function ratios. The ratio of two

consecutive basis functions in the same row contains the expression
1− t
t

. One can store this

expression (if t ≥ 0.5) or its inverse (if t < 0.5) to use it throughout the execution of the
algorithm. The ratios of two functions in different rows are not optimized and are computed
in the same way as in Algorithm 2.4. This saves (m+ 1)n− 1 flops.

Folding approach

The folding approach is an alternative to the row-by-row approach which eliminates the need
for computing tn and (1− t)n. Each step of the algorithm is computed in O(d) time.
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It differs from the row-by-row approach in the way of connecting rows. The folding
approach avoids using the more complex

Bm
i+1(s)B

n
0 (t)

Bm
i (s)Bn

n(t)
=

(m− i)s
(i+ 1)(1− s)

·
(

1− t
t

)n
ratio by transitioning between rows using simpler ratios:

Bm
i+1(s)B

n
0 (t)

Bm
i (s)Bn

0 (t)
=
Bm
i+1(s)B

n
n(t)

Bm
i (s)Bn

n(t)
=

(m− i)s
(i+ 1)(1− s)

.

This means that each ratio used is the ratio of two consecutive Bernstein polynomials and
thus can be computed in O(1) time. In the folding approach, the sequence of control points
is set as follows:

� the sequence begins with W00,

� Wi,j−1 is followed by Wij (0 ≤ i ≤ m, 2 | i, 1 ≤ j ≤ n),

� Wi,j+1 is followed by Wij (0 ≤ i ≤ m, 2 - i, 0 ≤ j ≤ n− 1),

� Wi−1,n is followed by Win (1 ≤ i ≤ m, 2 - i),

� Wi−1,0 is followed by Wi0 (1 ≤ i ≤ m, 2 | i),

with the sequences of weights ωij and basis functions Bm
i (s)Bn

j (t) (0 ≤ i ≤ m, 0 ≤ j ≤ n) set
accordingly. Figure 2.3 illustrates this approach.

Figure 2.3: The sequence of control points used in the folding approach for rational rectangular
Bézier surfaces.

Let us fix (s, t) ∈ (0, 1)2 (cf. Remark 2.10). Now, based on Algorithm 2.3, the sequences
of quantities hij and points Qij ∈ Ed (0 ≤ i ≤ m, 0 ≤ j ≤ n) are defined in the following
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recursive way using the order described above:

h00 := 1,

Q00 := W00,

hij :=

(
1 +

jωi,j−1(1− t)
njωijhi,j−1t

)−1
(i = 0, 1, . . . ,m; 2 | i; j = 1, 2, . . . , n),

Qij := (1− hij)Qi,j−1 + hijWij (i = 0, 1, . . . ,m; 2 | i; j = 1, 2, . . . , n),

hin :=

(
1 +

iωi−1,n(1− s)
miωinhi−1,ns

)−1
(i = 1, 2, . . . ,m; 2 - i),

Qin := (1− hin)Qi−1,n + hinWin (i = 1, 2, . . . ,m; 2 - i),

hij :=

(
1 +

(n− j)ωi,j+1t

(j + 1)ωijhi,j+1(1− t)

)−1
(i = 1, 2, . . . ,m; 2 - i; j = n− 1, n− 2, . . . , 1, 0),

Qij := (1− hij)Qi,j+1 + hijWij (i = 1, 2, . . . ,m; 2 - i; j = n− 1, n− 2, . . . , 1, 0),

hi0 :=

(
1 +

iωi−1,0(1− s)
miωi0hi−1,0s

)−1
(i = 1, 2, . . . ,m; 2 | i),

Qi0 := (1− hi0)Qi−1,0 + hi0Wi0 (i = 1, 2, . . . ,m; 2 | i),

where mi := m− i+ 1, nj := n− j + 1.
Theorem 2.7 implies that Smn(s, t) = Qmn. Algorithm 2.5 computes Smn(s, t) for (s, t) ∈

(0, 1)2 (cf. Remark 2.10) and presents a more concrete implementation of the general method.
It uses the same approach as Algorithm 2.1 when computing the values hij .

Let us take a look at the computational complexity of Algorithm 2.5. In total, one has
to perform 2 + (m · (n + 1) + n) · (3d + 8) flops, which is lower by 2 + T (tn) + T ((1 − t)n)
than when using Algorithm 2.4. They do, however, have the same asymptotic complexity of
O(mn · d).

One can use a similar strategy to the one used in Algorithm 2.2 to further reduce the
number of necessary arithmetic operations. The idea is to precompute two ratios and use
them throughout the algorithm. The exact forms of the ratios depend on whether s < 0.5

and t < 0.5. If t < 0.5 then the first ratio is
t

1− t
; otherwise, it is

1− t
t

. Similarly, the second

ratio is
s

1− s
if s < 0.5, and

1− s
s

otherwise.

In the folding approach no ratio of basis functions is dependent both on s and t. This
means that the precomputed ratios avoid the numerical difficulties which were present in the
row-by-row approach. This allows to reduce the number of flops by (m+ 1)(n+ 1)− 3.
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Algorithm 2.5 Implementation of Alg. 2.3 for rational rectangular Bézier surfaces, folding
approach

1: procedure RectBEvalF(m,n, s, t, ω,W)
2: u← 1− t
3: r ← 1− s
4: n1 ← n+ 1
5: m1 ← m+ 1
6: h← 1
7: Q←W00

8: for j ← 1, n do
9: h← (n1 − j) · ω0j · h · t
10: h← h/(h+ j · ω0,j−1 · u)
11: Q← (1− h) · Q + h ·W0j

12: end for
13: for i← 1,m do
14: if 2 | i then
15: h← (m1 − i) · ωi0 · h · s
16: h← h/(h+ i · ωi−1,0 · r)
17: Q← (1− h) · Q + h ·Wi0

18: for j ← 1, n do
19: h← (n1 − j) · ωij · h · t
20: h← h/(h+ j · ωi,j−1 · u)
21: Q← (1− h) · Q + h ·Wij

22: end for
23: else
24: h← (m1 − i) · ωin · h · s
25: h← h/(h+ i · ωi−1,n · r)
26: Q← (1− h) · Q + h ·Win

27: for j ← n− 1, 0 do
28: h← (j + 1) · ωij · h · u
29: h← h/(h+ (n− j) · ωi,j+1 · t)
30: Q← (1− h) · Q + h ·Wij

31: end for
32: end if
33: end for
34: return Q
35: end procedure
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2.4.2 Computations for rational triangular Bézier surfaces

Recall that a d-dimensional rational triangular Bézier surface of degree n ∈ N with weights
vij > 0 and control points Vij ∈ Ed (0 ≤ i ≤ n, 0 ≤ j ≤ n− i) is given by the formula

Tn(s, t) :=

n∑
i=0

n−i∑
j=0

vijVijBn
ij(s, t)

n∑
i=0

n−i∑
j=0

vijB
n
ij(s, t)

(cf. Definition 1.88). The basis functions in this case are triangular Bernstein polynomials
(cf. Definition 1.84):

Bn
ij(s, t) :=

n!

i!j!(n− i− j)!
sitj(1− s− t)n−i−j (0 ≤ i+ j ≤ n; i, j ∈ N).

For rational triangular Bézier surfaces of degree n, the desired computational complexity
of Algorithm 2.3 is O(n2·d), proportionally to the number of control points. In contrast, the de
Casteljau algorithm for rational triangular Bézier surfaces has the computational complexity
of O(n3 · d) (see §1.8.2).

Remark 2.11. If s = 0 ∨ t = 1 ∨ s + t = 1, then (s, t) lies on the boundary rational Bézier
curve with boundary control points and weights. The method described in Section 2.1 can be
used in this case.

It is thus sufficient to consider the problem of computing a point on a rational triangular
Bézier surface only for (s, t) ∈ {(s, t) : s, t > 0, s + t < 1}. The basis functions for such s, t
are strictly positive, which eliminates the risk of divisions by zero when computing their ratios
in Algorithm 2.3.

The ratios of basis functions are of the form

Bn
ij(s, t)

Bn
k`(s, t)

=
k!`!(n− k − `)!
i!j!(n− i− j)!

si−ktj−`(1− s− t)k+`−i−j .

It is reasonable to arrange the basis functions (with their corresponding control points and
weights) in an order which is simple to compute.

Remark 2.12. Computing said ratios may pose numerical difficulties, depending on the val-
ues of s, t. They can sometimes be reduced by re-formulating the problem using a simple
transposition. Certainly,

Tn(s, t) = Gn(t, s),

where Gn is a rational triangular Bézier surface with transposed weights τji := vij and control
points Kji := Vij (0 ≤ i+ j ≤ n; i, j ∈ N).

Similarly to the case of rational rectangular Bézier surfaces, the control points Vij of a
rational triangular Bézier surface Tn(s, t) of degree n can be arranged into a triangular grid
with n+1 rows, where the ith row has n−i elements (0 ≤ i ≤ n). In the sequel, the analogues
of quantities hk and points Qk from Algorithm 2.3 have two indices instead, to correspond
with the structure of the surfaces.
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Row-by-row approach

In this case, two basis function ratio types will be used. The first one is

Bn
i,j+1(s, t)

Bn
ij(s, t)

=
n− i− j
j + 1

· t

1− s− t
.

The second allows to progress from one row to another:

Bn
i0(s, t)

Bn
i−1,n−i+1(s, t)

=
n− i+ 1

i
· s(1− s− t)

n−i

tn−i+1
.

In the case of rational rectangular Bézier surfaces, an analogous operation required the
precomputation of tn and (1− t)n. For triangular Bézier surfaces, that is no longer the case.
It is sufficient to perform the computations for decreasing i — that way, one can store the

intermediate values of
s(1− s− t)n−i

tn−i+1
and increment the exponents in O(1) time for each

transition between rows.
In this approach, the sequence of control points is as follows:

� the sequence begins with Vn0,

� Vi,j+1 is followed by Vij (0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− i− 1),

� Vi+1,0 is followed by Vi,n−i (0 ≤ i ≤ n− 1),

with the sequences of weights vij and basis functions Bn
ij(s, t) (i, j ≥ 0, i+ j ≤ n) set accord-

ingly. Figure 2.4 illustrates this approach.

Figure 2.4: The sequence of control points used in the row-by-row approach for rational
triangular Bézier surfaces.

Let us fix a point (s, t) inside the triangle {(s, t) : s, t > 0, s + t < 1} (cf. Remark 2.11).
Based on Algorithm 2.3, the sequences of quantities gij and points Uij ∈ Ed (0 ≤ i + j ≤ n)
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are defined in the following recursive way using the order described above:

gn0 := 1,

Un0 := Vn0,

gi,n−i :=

(
1 +

vi+1,0ni+1sr
n−i−1

vi,n−igi+1,0(i+ 1)tn−i

)−1
(i = 0, 1, . . . , n− 1),

Ui,n−i := (1− gi,n−i)Ui,n−i + gi,n−iVi,n−i (i = 0, 1, . . . , n− 1),

gij :=

(
1 +

vi,j+1ni+j+1t

gi,j+1vij(j + 1)r

)−1
(i = 0, 1, . . . , n, j = n− i− 1, n− i− 2, . . . , 1, 0),

Uij := (1− gij)Ui,j+1 + gijVij (i = 0, 1, . . . , n, j = n− i− 1, n− i− 2, . . . , 1, 0),

where r := 1− s− t, nj := n− j + 1. It follows from Theorem 2.7 that Tn(s, t) = U00.
Algorithm 2.6 computes Tn(s, t) for s, t > 0, s + t < 1 presents a more concrete imple-

mentation of the general method. It uses the same approach to computing the values of hij
as Algorithm 2.1.

Let us take a look at the computational complexity of Algorithm 2.6. In total, one has to

perform 2n− 1 +

(
n+

(n+ 1)n

2

)
· (3d+ 8) flops. The asymptotic computational complexity

of Algorithm 2.6 is O(n2 · d).
One can use a similar approach to the one used in Algorithm 2.2 to further reduce the

number of necessary flops. The idea is to precompute some elements of the basis function
ratios. The ratio of two consecutive basis functions in the same row contains the expression

t

1− s− t
. One can store this expression (if s + t ≤ 0.5) or its inverse (if t ≥ 0.5) to use it

throughout the execution of the algorithm. Additionally, if s ≥ 0.5, one can transpose the
control points (cf. Remark 2.12) before the computation. If one of the conditions is met, this

saves
(n+ 1)n

2
−1 flops. In the remaining case, i.e., s, t < 0.5 and s+ t > 0.5, the unmodified

Algorithm 2.6 should be used.
The recommended approach in each case is illustrated in Figure 2.5.

Folding approach

The folding approach is an alternative to the row-by-row approach which eliminates the need
for storing the intermediate values t1, s1 (see Algorithm 2.6). Each step of the algorithm is
computed exactly in O(d) time.

This approach shifts between rows using the simpler ratios

Bn
i+1,0(s, t)

Bn
i0(s, t)

=
(n− i)s

(i+ 1)(1− s− t)
,

Bn
i+1,n−i+1(s, t)

Bn
i,n−i(s, t)

=
(n− i)s
(i+ 1)t

.

In the folding approach, the sequence of control points is set as follows:

� the sequence begins with V00,

� Vi,j−1 is followed by Vij (0 ≤ i ≤ n, 2 | i, 1 ≤ j ≤ n− i),
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Algorithm 2.6 Implementation of Alg. 2.3 for rational triangular Bézier surface, row-by-
row-approach

1: procedure TriBEvalRR(m,n, s, t, v,V)
2: r ← 1− s− t
3: t1← t
4: s1← s
5: g ← 1
6: U← Vn0
7: for i← n− 1, 1 do
8: ni← n− i
9: g ← vi,n−i · g · (i+ 1) · t1
10: g ← g/(g + vi+1,0 · ni · s1
11: U← (1− g) · U + g · Vi,n−i
12: for j ← n− i− 1, 0 do
13: g ← gi,j+1 · vij · (j + 1) · r
14: g ← g/(g + vi,j+1 · (ni− j) · t)
15: U← (1− g) · U + g · Vij
16: end for
17: t1← t1 · t
18: s1← s1 · r
19: end for
20: g ← v0n · g · t1
21: g ← g/(g + v10 · n · s1)
22: U← (1− g) · U + g · V0n

23: for j ← n− 1, 0 do
24: g ← g0,j+1 · v0j · (j + 1) · r
25: g ← g/(g + v0,j+1 · (n− j) · t)
26: U← (1− g) · U + g · V0j

27: end for
28: return U
29: end procedure

� Vi,j+1 is followed by Vij (0 ≤ i ≤ n, 2 - i, 0 ≤ j ≤ n− i− 1),

� Vi−1,n−i+1 is followed by Vi,n−i (1 ≤ i ≤ n, 2 - i),

� Vi−1,0 is followed by Vi0 (1 ≤ i ≤ n, 2 | i),

with the sequences of weights vij and basis functions Bn
ij(s, t) (0 ≤ i ≤ n, 0 ≤ j ≤ n− i) set

accordingly. Figure 2.6 illustrates this approach.
Let us fix (s, t) ∈ (0, 1)2 (cf. Remark 2.11). Now, based on Algorithm 2.3, the sequences

of quantities gij and points Uij ∈ Ed (0 ≤ i ≤ n, 0 ≤ j ≤ n − i) are defined in the following
recursive way using the order described above:
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s = 0
t = 0

t = 1

s = 1

SAFE

Alg. 2.6

Rem. 2.12

SAFE

Figure 2.5: Numerical safety of the approach similar to Algorithm 2.2 for the row-by-row
approach for rational triangular Bézier surfaces. The unsafe area could instead be computed
using Algorithm 2.6.

Figure 2.6: The sequence of control points used in the folding approach for rational triangular
Bézier surfaces.
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g00 := 1,

U00 := V00,

gij :=

(
1 +

vi,j−1jr

gi,j−1vijni+jt

)−1
(i = 0, 1, . . . , n; 2 | i; j = 1, 2, . . . , n− i),

Uij := (1− gij)Ui,j−1 + gijVij (i = 0, 1, . . . ,m; 2 | i; j = 1, 2, . . . , n),

gi,n−i :=

(
1 +

vi−1,n−i+1it

gi−1,n−i+1vi,n−inis

)−1
(i = 1, 2, . . . , n; 2 - i),

Ui,n−i := (1− gi,n−i)Ui−1,n−i+1 + hi,n−iVi,n−i (i = 1, 2, . . . , n; 2 - i),

gij :=

(
1 +

vi,j+1ni+j+1t

gi,j+1vij(j + 1)r

)−1
(i = 1, 2, . . . , n; 2 - i; j = 0, 1, . . . , n− i− 1),

Uij := (1− gij)Ui,j+1 + gijVij (i = 1, 2, . . . , n; 2 - i; j = 0, 1, . . . , n− i− 1),

gi0 :=

(
1 +

vi−1,0ir

gi−1,0vi0nis

)−1
(i = 1, 2, . . . ,m; 2 | i),

Ui0 := (1− gi0)Ui−1,0 + gi0Vi0 (i = 1, 2, . . . ,m; 2 | i),

where r := 1− s− t, ni := n− i+ 1.
Theorem 2.7 implies that Tn(s, t) = Un0. Algorithm 2.7 presents a more concrete imple-

mentation of the general method, adjusted for numerical difficulties. The approach is similar
to the one presented in Algorithm 2.1.

Let us take a look at the computational complexity of Algorithm 2.7. In total, one has

to perform 2 +

(
n(n+ 1)

2
+ n

)
· (3d + 8) flops, which is lower by 2n − 3 than when using

Algorithm 2.6. They do, however, have the same asymptotic complexity of O(n2 · d).
Additional flops can be eliminated when using an approach similar to the one presented

in Algorithm 2.2. Just as in the row-by-row approach, this can be achieved by precomputing
t

1− s− t
(if s + t ≤ 0.5) or

1− s− t
t

(if t ≥ 0.5). If s ≥ 0.5, one can transpose the control

points (cf. Remark 2.12) before the computation. If either of the conditions is satisfied, this

saves
(n+ 1)n

2
−1 flops. In the remaining case, i.e., s, t < 0.5 and s+t > 0.5, the non-modified

Algorithm 2.6 should be used. These approaches are illustrated in Figure 2.7.
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Algorithm 2.7 Implementation of Alg. 2.3 for rational triangular Bézier surfaces, folding
approach

1: procedure TriBEvalF(m,n, s, t, v,V)
2: r ← 1− s− t
3: n1 ← n+ 1
4: g ← 1
5: U← V00

6: for j ← 1, n do
7: g ← g · v0j · (n1 − j) · t
8: g ← g/(g + v0,j−1 · j · r)
9: U← (1− g) · U + g · V0j
10: end for
11: for i← 1, n do
12: n1i← n1 − i
13: if 2 | i then
14: g ← g · vi0 · n1i · s
15: g ← g/(g + vi−1,0 · i · r)
16: U← (1− g) · U + g · Vi0
17: for j ← 1, n− i do
18: g ← g · vij · (n1i− j) · t
19: g ← g/(g + vi,j−1 · j · r)
20: U← (1− g) · U + g · Vij
21: end for
22: else
23: g ← g · vi,n−i · n1i · s
24: g ← g/(g + vi−1,n−i+1 · i · t)
25: U← (1− g) · U + g · Vin
26: for j ← n− i− 1, 0 do
27: j1 ← j + 1
28: g ← g · vij · j1 · r
29: g ← g/(g + vi,j+1 · (nA − j1) · t)
30: U← (1− g) · U + g · Vij
31: end for
32: end if
33: end for
34: return U
35: end procedure
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s = 0
t = 0

t = 1

s = 1

SAFE

Alg. 2.7

Rem. 2.12

SAFE

Figure 2.7: Numerical safety of the approach similar to Algorithm 2.2 for the folding approach
for rational triangular Bézier surfaces. The unsafe area could instead be computed using
Algorithm 2.7.



Chapter 3

New methods for B-spline functions

Let m,n ∈ N. The knots

t−m ≤ . . . ≤ t−1 ≤ t0︸ ︷︷ ︸
boundary knots

≤ t1 ≤ . . . ≤ tn−1︸ ︷︷ ︸
inner knots

≤ tn ≤ tn+1 ≤ . . . ≤ tn+m︸ ︷︷ ︸
boundary knots

,

where t0 < tn (i.e., the knots Ωn := {t0, t1, . . . , tn} provide a partition of the interval [t0, tn])
serve as a support for a B-spline basis of degree m over [t0, tn]. The B-spline functions
Nm,−m, Nm,−m+1, . . . , Nm,n−1 form a basis for the set Sm(Ωn) of all splines of degree m over
[t0, tn]. See Section 1.9.

The B-spline function Nmi with knots

ti ≤ ti+1 ≤ · · · ≤ tm+i+1

(cf. Definition 1.95), has support [ti, tm+i+1], i.e., Nmi(u) can be non-zero only for u ∈
[ti, tm+i+1].

In the sequel, the convention given in Remark 1.101 is extended so that for any quantity

Q, if tm+i+1 = ti then
Q

tm+i+1 − ti
:= 0.

Recall Theorem 1.102, which provides the recurrence relation

Nmi(u) = (u− ti)
Nm−1,i(u)

tm+i − ti
+ (tm+i+1 − u)

Nm−1,i+1(u)

tm+i+1 − ti+1
.

Together with the initial value

N0i(u) :=

{
1 (u ∈ [ti, ti+1)),
0 otherwise,

it is the theoretical basis for the de Boor-Cox algorithm (see §1.9.5 and Algorithm 1.6). From
Definition 1.95, a differential-recurrence relation

N ′mi(u) = m ·
(
Nm−1,i(u)

tm+i − ti
− Nm−1,i+1(u)

tm+i+1 − ti+1

)
given in Theorem 1.103 can be derived as well.

Both Theorems 1.102 and 1.103 connect the B-spline functions of different degrees. Their
application thus requires using the triangular recurrence scheme.

81
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A point on a B-spline curve of degree m with control points from a d-dimensional space
Ed can be computed using the de Boor-Cox algorithm (see §1.9.5 and, in particular, Algo-
rithm 1.6) which is based on the triangular recurrence scheme and has a geometric inter-
pretation and good numerical properties. Similarly to the de Casteljau algorithms in the
case of Bézier-type objects in Ed, the de Boor-Cox algorithm has computational complexity
of O(m2d). However, if the coefficients of the (piecewise polynomial) B-spline functions are
known, one can use a different approach to evaluate a B-spline curve

Let the adjusted Bernstein-Bézier basis form of the B-spline function Nmi over a single
non-empty knot span [tj , tj+1) ⊂ [t0, tn] (j = i, i+ 1, . . . , i+m) be

Nmi(u) =
m∑
k=0

b
(i,j)
k Bm

k

( u− tj
tj+1 − tj

)
(u ∈ [tj , tj+1)), (3.1)

with b
(i,j)
k ≡ b

(i,j)
k,m . The coefficients b(i,j)k for j = 0, 1, . . . , n − 1, i = j −m, j −m + 1, . . . , j,

k = 0, 1, . . . ,m need to be found.
Let the adjusted power basis form of the B-spline function Nmi over a single non-empty

knot span [tj , tj+1) ⊂ [t0, tn] (j = i, i+ 1, . . . , i+m) be

Nmi(u) =
m∑
k=0

a
(i,j)
k (u− tj)k (u ∈ [tj , tj+1)), (3.2)

with a
(i,j)
k ≡ a

(i,j)
k,m . In this case, the problem is to find all the coefficients a(i,j)k for j =

0, 1, . . . , n− 1, i = j −m, j −m+ 1, . . . , j, k = 0, 1, . . . ,m.
Note that a B-spline function is piecewise polynomial, i.e., in each non-empty knot span,

the coefficients have to be computed separately. The exact approach to the problem heavily
depends on the polynomial basis used in the computations. When the coefficients are already
known, it is possible to compute a B-spline function in linear time with respect to its degree.
One can also simplify, e.g., the evaluation of a point on a B-spline curve or perform some
operations analytically.

Explicit expressions for the adjusted power basis coefficients of Nmi have been given in [65],
and the result can be adapted for the adjusted Bernstein-Bézier form. The serious drawback
of this approach, however, is high complexity, which greatly limits the use of this result in
computational practice.

Let

s(t) :=

n−1∑
i=−m

ciNmi(t). (3.3)

An algorithm for finding the adjusted power basis coefficients of a spline s over a knot span
[tj , tj+1) can be found in [33]. It uses Taylor series expansion to express the spline as

s(t) :=

m∑
r=0

s(r)(tj)

r!
(t− tj)r (t ∈ [tj , tj+1))

(cf. [33, Eq. (1.41)]). For r = 0, 1, . . . ,m, the derivatives

s(r)(tj) =
m!

(m− r)!
·

j∑
i=j−m+r

criNm−r,i(tj) (t ∈ [tj , tj+1))
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can be computed recursively as follows. Set

c0i := ci (i = j −m, . . . , j)

(cf. (3.3)). Then

cri :=


cr−1i − cr−1i−1
tm+i+1−r − ti

(ti < tm+i+1−r),

0 otherwise.

for r ≥ 1 and j − m + r ≤ i ≤ j (cf. [33, Eq. (1.39) and (1.40)]). This allows to compute
all the coefficients cri in O(m2) time. All necessary values Nm−r,i(tj) can be computed using
Theorem 1.102 in O(m2) time. The adjusted power basis coefficients of a B-spline over one
knot span can thus be found in O(m2) time.

This approach can be used to find the adjusted power basis coefficients of one B-spline
function. To find the coefficients of Nmi over [tj , tj+1), it is enough to set

ck =

{
1 (k = i),
0 otherwise

(see (3.3)). The cost of finding the coefficients a(i,j)k of Nmi is O(m2). In total, to find
the adjusted power basis coefficients over [tj , tj+1) for all B-spline functions Nmi such that
j −m ≤ i ≤ j, one has to do O(m3) operations. Let us assume that there are ne non-empty
knot spans [tj , tj+1) such that j = 0, 1, . . . , n − 1. To find the coefficients of all B-spline
functions over all non-empty knot spans [tj , tj+1) for j = 0, 1, . . . , n − 1, one would need to
perform O(nem

3) operations.
With a similar approach, one can find the Bernstein-Bézier coefficients of Nmi over the

knot span [tj , tj+1). One can check that

b
(i,j)
k =

(m− k)!

m!
N

(k)
mi (tj)−

k−1∑
`=0

(−1)k−`
(
k

`

)
b
(i,j)
` (k = 0, 1, . . . ,m)

(cf. [36, Eq. (5.25)] and [61, Theorem 4.1]). Just as in the case of the power basis, the
Bernstein-Bézier coefficients of Nmi over [tj , tj+1) can be found in O(m2) time. In total, to
find these coefficients of all B-spline functions over all non-empty knot spans [tj , tj+1) for
j = 0, 1, . . . , n− 1, it is required to perform O(nem

3) operations.
The approach given in [88] and [15] serves to convert a B-spline curve segment into a

Bézier curve. It can be adapted to give an algorithm with O(m3) complexity for finding the
adjusted Bernstein-Bézier coefficients b(i,j)k of a single basis function Nmi. Doing so for each
B-spline function in each non-empty knot span takes O(nem

4) operations.
If there are recurrence relations for the coefficients of the B-spline functions over multiple

knot spans, one can instead use them to efficiently find each of the coefficients. Over the course
of this chapter, such computationally simple recurrence relations for the coefficients of the
adjusted Bernstein-Bézier and power forms will be derived from a new differential-recurrence
relation for the B-spline functions.

Remark 3.1. In the sequel, an assumption will be used that no inner knot t1, t2, . . . , tn−1 has
multiplicity greater than m. This guarantees the B-spline functions’ continuity in (t1, tn).
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The assumption regarding the multiplicity of the inner knots is very common and intuitive,
as it guarantees the continuity of a B-spline curve. It was used, e.g., in [33, 65] and [95, §3].

Let us suppose that there are ne non-empty knot spans [tj , tj+1) such that j = 0, 1, . . . , n−
1. The main goal of this chapter is to give a recursive way of computing all O(nem

2) coeffi-
cients b(i,j)k (cf. (3.1)) or a(i,j)k (cf. (3.2)) of the B-spline functions in O(nem

2) time is given,
assuming that all boundary knots are coincident.

Possible applications of this result can be as follows. Once the Bernstein-Bézier coefficients
b
(i,j)
k are known, each point on a B-spline curve S,

S(u) :=
n−1∑
i=−m

Nmi(u)Wi (t0 ≤ u ≤ tn; Wi ∈ Ed),

can be computed in O(m2 + md) time using the algorithm proposed in Chapter 2. If there
are N such points on M curves (each with the same knots), the total complexity is O(nem

2 +
M(m2+Nmd)), compared to O(MNm2d) when using the de Boor-Cox algorithm. Performed
experiments confirm that the new method is faster than the de Boor-Cox algorihms even for
low M ≈ 2, 3. Using a similar approach, it is also possible to compute the value of Nmi(u) in
O(m) time.

This chapter is organized as follows. Section 3.1 contains the differential-recurrence re-
lation between the B-spline functions of the same degree. It will be the foundation for new
recurrence relations which can be used to formulate an algorithm which computes the coeffi-
cients a(i,j)k or b(i,j)k of B-spline functions over each knot span. In Section 3.2, the algorithm
for finding the coefficients in the adjusted Bernstein-Bézier form if t−m = t0, tn = tn+m and
all inner knots t1, t2, . . . , tn−1 have multiplicity 1 is given. The computational complexity of
the method is O(nm2) which means that, asymptotically, it is optimal. Section 3.3 expands
upon using the new algorithm to compute multiple points on multiple B-spline curves. The
results of performed experiments are given there, showing that the new algorithm performs
favorably compared to the de Boor-Cox algorithm and the method based on [27, p. 57–59].
The assumptions about knot multiplicity which were made in Section 3.2 are then relaxed in
Section 3.4 to cover all cases (cf. Remark 3.1). In Section 3.5, the results given in Section 3.2
are adapted to the adjusted power basis.

3.1 New differential-recurrence relation for B-spline functions

Using the known recurrence relation (cf. Theorem 1.102) which connects B-spline functions of
consecutive degrees, one can find a recurrence relation which is satisfied by their coefficients
in the chosen basis.

Lemma 3.2. For u ∈ [tj , tj+1) (j = 0, 1, . . . , n − 1), let the representation of Nmi(u) in the
adjusted Bernstein-Bézier basis be

Nmi(u) =
m∑
k=0

b
(i,j)
k,mB

m
k (t),
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where t :=
u− tj
tj+1 − tj

. The coefficients b(i,j)k,m satisfy the following recurrence relation:

b
(i,j)
k,m =

k

m

( tj+1 − ti
tm+i − ti

b
(i,j)
k−1,m−1 +

tm+i+1 − tj+1

tm+i+1 − ti+1
b
(i+1,j)
k−1,m−1

)
+
m− k
m

( tj − ti
tm+i − ti

b
(i,j)
k,m−1 +

tm+i+1 − tj
tm+i+1 − ti+1

b
(i+1,j)
k,m−1 ,

)
. (3.4)

where k = 0, 1, . . . ,m and b(i,j)−1,m−1 = b
(i+1,j)
−1,m−1 = b

(i,j)
m,m−1 = b

(i+1,j)
m,m−1 := 0.

Proof. Theorem 1.102 states that

Nmi(u) = (u− ti)
Nm−1,i(u)

tm+i − ti
+ (tm+i+1 − u)

Nm−1,i+1(u)

tm+i+1 − ti+1
.

After applying the adjusted Bernstein-Bézier representations of Nm−1,i(u) and Nm−1,i+1(u),
one gets

Nmi(u) =

∑m−1
k=0 b

(i,j)
k,m−1(u− ti)B

m−1
k (t)

tm+i − ti
+

∑m−1
k=0 b

(i+1,j)
k,m−1 (tm+i+1 − u)Bm−1

k (t)

tm+i+1 − ti+1
.

Now, note that

(u− ti) = (u− tj) + (tj − ti) = (tj+1 − tj) · t+ (tj − ti)

and

(tm+i+1 − u) = (tm+i+1 − tj+1) + (tj+1 − u) = (tm+i+1 − tj+1) + (tj+1 − tj) · (1− t),

which gives

Nmi(u) =

m−1∑
k=0

(tj+1 − tj)
tm+i − ti

b
(i,j)
k,m−1 · tB

m−1
k (t)

+
m−1∑
k=0

( tj − ti
tm+i − ti

b
(i,j)
k,m−1 +

tm+i+1 − tj+1

tm+i+1 − ti+1
b
(i+1,j)
k,m−1

)
Bm−1
k (t)

+
m−1∑
k=0

tj+1 − tj
tm+i+1 − ti+1

b
(i+1,j)
k,m−1 · (1− t)B

m−1
k (t).

Now, from Eq. (1.29) and Definition 1.43, one can raise the degree of Bernstein polynomials
to get

Nmi(u) =
m−1∑
k=0

m− k
m

( tj − ti
tm+i − ti

b
(i,j)
k,m−1 +

tm+i+1 − tj
tm+i+1 − ti+1

b
(i+1,j)
k,m−1

)
Bm
k (t)

+

m−1∑
k=0

k + 1

m

((tj+1 − ti)
tm+i − ti

b
(i,j)
k,m−1 +

tm+i+1 − tj+1

tm+i+1 − ti+1
b
(i+1,j)
k,m−1

)
Bm
k+1(t),
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which, after some additional algebra, gives

Nmi(u) =
m∑
k=0

[ k
m

((tj+1 − ti)
tm+i − ti

b
(i,j)
k−1,m−1 +

tm+i+1 − tj+1

tm+i+1 − ti+1
b
(i+1,j)
k−1,m−1

)
+
m− k
m

( tj − ti
tm+i − ti

b
(i,j)
k,m−1 +

tm+i+1 − tj
tm+i+1 − ti+1

b
(i+1,j)
k,m−1

)]
Bm
k (t).

Lemma 3.2 gives a recurrence relation for the adjusted Bernstein-Bézier coefficients of
B-spline basis functions of different degrees, defined using the same knot sequence. While
this relation can be used to find the values of the coefficients, it is not optimal in terms of
computational complexity as the recurrence scheme is analogous to the one used in the de
Boor-Cox algorithm.

At the end of this section, a new differential-recurrence relation for the B-spline functions
of the same degree m will be derived. It is shown that, by using this result, it is possible to
efficiently find all the Bernstein-Bézier coefficients of the B-spline functions (see §3.2). When
the coefficients are known, one can use the new algorithm given in Chapter 2 to evaluate a
B-spline function of degree m in O(m) time or a B-spline curve, which, when evaluating many
curves at multiple points, has lower computational complexity than using the de Boor-Cox
algorithm.

However, Lemma 3.2 can be used to prove some properties which indicate that the adjusted
Bernstein-Bézier basis is numerically sound for B-spline functions.

Theorem 3.3. For u ∈ [tj , tj+1) (j = 0, 1, . . . , n− 1), the coefficients b(i,j)k,m (k = 0, 1, . . . ,m)
of the adjusted Bernstein-Bézier representation of the B-spline function Nmi (cf. Eq. (3.1))
are non-negative.

Proof. If j < i or j > i+m, then all coefficients of Nmi(u) are zero and thus are non-negative.
The case i ≤ j ≤ i+m can be proved using induction on m.

Base case (m = 0): the non-negativity of the coefficients follows directly from Eq. (1.75).
Induction step (m − 1 → m): let us assume that the theorem is true for all B-spline

functions of degree m− 1. Let us then take a look at (3.4):

b
(i,j)
k,m =

k

m

( tj+1 − ti
tm+i − ti

b
(i,j)
k−1,m−1 +

tm+i+1 − tj+1

tm+i+1 − ti+1
b
(i+1,j)
k−1,m−1

)
+
m− k
m

( tj − ti
tm+i − ti

b
(i,j)
k,m−1 +

tm+i+1 − tj
tm+i+1 − ti+1

b
(i+1,j)
k,m−1

)
.

It is clear that the fractions

tj+1 − ti
tm+i − ti

,
tm+i+1 − tj+1

tm+i+1 − ti+1
,
tj − ti
tm+i − ti

,
tm+i+1 − tj
tm+i+1 − ti+1

,
m− k
m

are non-negative, as tk ≤ t` if k < `. The remaining arithmetic operations are additions and
multiplications of non-negative elements, which clearly gives a non-negative result.

Theorem 3.4. For u ∈ [tj , tj+1) (j = 0, 1, . . . , n− 1), the following relation holds:

j∑
i=j−m

b
(i,j)
k,m = 1 (k = 0, 1, . . . ,m),
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where b(i,j)k,m are the adjusted Bernstein-Bézier coefficients of the B-spline function (cf. Eq. (3.1)).

Proof. Base case (m = 0): from Eq. (1.75), it follows that b(j,j)0,0 = 1.
Induction step (m− 1→ m): let us assume that

j∑
i=j−m+1

b
(i,j)
k,m−1 = 1 (k = 0, 1, . . . ,m− 1)

for any B-spline basis function of degree m− 1.
Now, expressing b(i,j)k,m using Lemma 3.2 gives

j∑
i=j−m

b
(i,j)
k,m =

k

m

( j∑
i=j−m

tj+1 − ti
tm+i − ti

b
(i,j)
k−1,m−1 +

j∑
i=j−m

tm+i+1 − tj+1

tm+i+1 − ti+1
b
(i+1,j)
k−1,m−1

)

+
m− k
m

( j∑
i=j−m

tj − ti
tm+i − ti

b
(i,j)
k,m−1 +

j∑
i=j−m

tm+i+1 − tj
tm+i+1 − ti+1

b
(i+1,j)
k,m−1

)
.

After eliminating the vanishing summands and some algebra, one gets

j∑
i=j−m

b
(i,j)
k,m =

k

m

j∑
i=j−m+1

tm+i − ti
tm+i − ti

b
(i,j)
k−1,m−1 +

m− k
m

j∑
i=j−m+1

tm+i − ti
tm+i − ti

b
(i,j)
k,m−1

=
k

m

j∑
i=j−m+1

b
(i,j)
k−1,m−1 +

m− k
m

j∑
i=j−m+1

b
(i,j)
k,m−1.

Applying the induction assumption gives

j∑
i=j−m

b
(i,j)
k,m =

k

m
· 1 +

m− k
m

· 1 = 1.

Using equations (1.74) and (1.76), one can derive new differential-recurrence relations for
the B-spline functions of the same degree. For example, this result can be used to efficiently
compute the coefficients of the Nmi functions (which are polynomial in each of the knot spans)
in an adjusted Bernstein-Bézier or power basis.

Theorem 3.5. Let

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn−1 < tn = tn+1 = . . . = tn+m

(cf. (1.73)). The following relations hold:

mNm,−m(u)− (u− t1) ·N ′m,−m(u) = 0, (3.5)

Nmi(u) +
ti − u
m

N ′mi(u) =
tm+i+1 − ti
tm+i+2 − ti+1

(
Nm,i+1(u) +

tm+i+2 − u
m

N ′m,i+1(u)

)
(3.6)

(i = −m,−m+ 1, . . . , n− 2),

mNm,n−1(u)− (u− tn−1) ·N ′m,n−1(u) = 0. (3.7)
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Proof. Equations (3.5) and (3.7) follow easily from equations (1.74) and (1.76). The re-
lation (3.6) follows directly from taking the expression for Nm+1,i(u) from Eq. (1.74) and
differentiating it, then equating it with the expression for N ′m+1,i(u) given in Eq. (1.76).

Theorem 3.5 can be used to find a recurrence relation satisfied by the adjusted Bernstein-
Bézier coefficients of B-spline functions of the same degree, as will be shown in §3.2.

3.2 Recurrence relations for B-spline functions’ coefficients in
adjusted Bernstein-Bézier basis

Assume that

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn−1 < tn = tn+1 = . . . = tn+m.

For each knot span [tj , tj+1) (j = 0, 1, . . . , n − 1), one needs to find the coefficients of Nmi

(i = j −m, j −m+ 1, . . . , j) in the following adjusted Bernstein-Bézier basis form:

Nmi(u) =

m∑
k=0

b
(i,j)
k Bm

k (t) (tj ≤ u < tj+1),

where b(i,j)k ≡ b(i,j)k,m and

t ≡ t(j)(u) :=
u− tj
tj+1 − tj

, (3.8)

(cf. (3.1)). Additionally, then, u = (tj+1 − tj) · t+ tj .
Certainly, Nmi(u) ≡ 0 if u < ti or u > tm+i+1, which means that for a given knot

span [tj , tj+1), one only needs to find the coefficients of Nm,j−m, Nm,j−m+1, . . . , Nmj , as all
coefficients of other B-spline functions over this knot span are identical to zero. Thus, in each
of n knot spans, there are m+1 non-vanishing B-spline functions, each with m+1 coefficients.

The following problem is considered.

Problem 3.6. Let

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn = tn+1 = . . . = tn+m

(cf. (1.73)). Find the adjusted Bernstein-Bézier basis coefficients b(i,j)k (cf. (3.1)) of all func-
tions Nmi over all non-trivial knot spans [tj , tj+1) ⊂ [t0, tn], i.e., for j = 0, 1, . . . , n − 1 and
i = j −m, j −m+ 1, . . . , j.

Solving Problem 3.6 requires computing n(m + 1)2 coefficients b(i,j)k . In this section, it
will be shown how to do it in O(nm2) time — proportionally to the number of coefficients.
Theorem 3.5 serves as a foundation of the presented approach. More precisely, the theorem
will be used to construct recurrence relations for the coefficients b(i,j)k which allow solving
Problem 3.6 efficiently.

The results for particular cases will be presented in stages. In §3.2.1, an explicit expression
for the coefficients of Nmj and Nm,j−m over [tj , tj+1) (j = 0, 1, . . . , n− 1) will be found. This
will, in particular, cover the only non-trivial knot span for Nm,n−1. In §3.2.2, Eq. (3.6) will be
applied to find the coefficients of Nmi for j = n−1, n−2, . . . , 0 and i = j−1, j−2, . . . , j−m+1.
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3.2.1 Stage 1

For j = 0, 1, . . . , n − 1, one can use Eq. (1.74) for i = j, along with the fact that N`,j+1 ≡ 0
over [tj , tj+1) (` = m− 1,m− 2, . . . , 0), to find that

Nmj(u) =
(u− tj)m∏m
k=1(tj+k − tj)

N0j(u) =
(tj+1 − tj)m−1∏m
k=2(tj+k − tj)

Bm
m(t).

It means that  b
(j,j)
k = 0 (k = 0, 1, . . . ,m− 1),

b
(j,j)
m =

(tj+1 − tj)m−1∏m
k=2(tj+k − tj)

,
(3.9)

where 0 ≤ j ≤ n− 1.
Using the same approach for Nm,j−m over [tj , tj+1) gives

Nm,j−m(u) =
(tj+1 − tj)m−1∏m
k=2(tj+1 − tj+1−k)

Bm
0 (t).

The coefficients b(j−m,j)k (k = 0, 1, . . . ,m) are thus given by the following formula: b
(j−m,j)
0 =

(tj+1 − tj)m−1∏m
k=2(tj+1 − tj+1−k)

,

b
(j−m,j)
k = 0 (k = 1, 2, . . . ,m),

(3.10)

where 0 ≤ j ≤ n−1. The adjusted Bernstein-Bézier (cf. (3.1)) coefficients of Nmj and Nm,j−m
over the knot span [tj , tj+1) have been found for j = 0, 1, . . . , n− 1.

In the sequel, the following observation will be of use.

Remark 3.7. Note that

Nm,n−1(tn) =
(tn − tn−1)m−1∏m−1
k=1 (tn+k − tn−1)

Bm
m(1) = 1,

since tn = tn+1 = . . . = tn+m. The B-spline functions have the partition of unity property
and are non-negative (cf. Theorem 1.99), it is thus clear that

Nmi(tn) = 0 (i = −m,−m+ 1, . . . , n− 2).

Similarly,

Nm,−m(t0) =
(t1 − t0)m∏m
k=1(t1 − t1−k)

Bm
0 (0) = 1,

since t−m = t−m+1 = . . . = t0. It follows that

Nmi(t0) = 0 (i = −m+ 1,−m+ 2, . . . , 0).
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3.2.2 Stage 2

To compute the coefficients of all functions Nmi over knot spans [tj , tj+1) such that j =
n − 1, n − 2, . . . , 0 and i = j − 1, j − 2, . . . , j −m + 1, Eq. (3.6) will be used. The following
identity will be useful when operating on Eq. (3.6):

(
Nmi(u)

)′
=
dNmi(u)

du
=

m∑
k=0

b
(i,j)
k

dBm
k (t)

dt
· dt
du

= (tj+1 − tj)−1
m∑
k=0

b
(i,j)
k

(
Bm
k (t)

)′
(3.11)

(cf. (3.8)).
Let

vi ≡ vmi :=
tm+i+1 − ti
tm+i+2 − ti+1

. (3.12)

Substituting the adjusted Bernstein-Bézier forms of Nmi and Nm,i+1 in the knot span [tj , tj+1)
and applying Eq. (3.11) into Eq. (3.6) gives

m∑
k=0

b
(i,j)
k Bm

k (t) +
( ti − tj
m(tj+1 − tj)

− t

m

)( m∑
k=0

b
(i,j)
k Bm

k (t)

)′
=

= vi

(
m∑
k=0

b
(i+1,j)
k Bm

k (t) +
( tm+i+2 − tj
m(tj+1 − tj)

− t

m

)( m∑
k=0

b
(i+1,j)
k Bm

k (t)

)′)
.

After using identities (1.32) and (1.33) and doing some algebra, one gets

m∑
k=0

(
lkib

(i,j)
k−1 + dkib

(i,j)
k + ukib

(i,j)
k+1

)
Bm
k (t) =

= vi

m∑
k=0

(
lk,m+i+2b

(i+1,j)
k−1 + dk,m+i+2b

(i+1,j)
k + uk,m+i+2b

(i+1,j)
k+1

)
Bm
k (t),

where

lkr := k(tj+1 − tr), dkr := (m− k)(tj+1 − tr) + k(tr − tj), ukr := (m− k)(tr − tj).

Matching the coefficients of Bernstein polynomials on both sides gives a set of m+1 equations
of the form:

(tj+1 − ti)b(i,j)0 + (ti − tj)b(i,j)1 = vi

(
(tj+1 − tm+i+2)b

(i+1,j)
0 + (tm+i+2 − tj)b(i+1,j)

1

)
,

lkib
(i,j)
k−1 + dkib

(i,j)
k + ukib

(i,j)
k+1 = vi

(
lk,m+i+2b

(i+1,j)
k−1 + dk,m+i+2b

(i+1,j)
k + uk,m+i+2b

(i+1,j)
k+1

)
(k = 1, 2, . . . ,m− 1),

(tj+1 − ti)b(i,j)m−1 + (ti − tj)b(i,j)m = vi

(
(tj+1 − tm+i+2)b

(i+1,j)
m−1 + (tm+i+2 − tj)b(i+1,j)

m

)
.

(3.13)
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Theorem 3.8. For j = 0, 1, . . . , n − 1 and i = j − 1, j − 2, . . . , j − m + 1, assuming that
the coefficients b(i+1,j)

k (k = 0, 1, . . . ,m) are known, the values b(i,j)0 , b
(i,j)
1 , . . . , b

(i,j)
m satisfy a

first-order non-homogeneous recurrence relation

(tj+1 − ti)b(i,j)k + (ti − tj)b(i,j)k+1 = A(m, i, j, k) (k = 0, 1, . . . ,m− 1), (3.14)

where
A(m, i, j, k) := vi

(
(tj+1 − tm+i+2)b

(i+1,j)
k + (tm+i+2 − tj)b(i+1,j)

k+1

)
.

Proof. Base case (k = 0 and k = m): the relation holds and is presented in the first and the
last equations of the system (3.13).

Induction step (k → k + 1): the (k + 2)th equation in the system (3.13) is

lk+1,ib
(i,j)
k + dk+1,ib

(i,j)
k+1 + uk+1,ib

(i,j)
k+2 =

= vi

(
lk+1,m+i+2b

(i+1,j)
k + dk+1,m+i+2b

(i+1,j)
k+1 + uk+1,m+i+2b

(i+1,j)
k+2

)
.

Subtracting sidewise the induction assumption scaled by
lk+1,i

(tj+1 − ti)
= k+ 1 gives, after some

algebra,

(tj+1 − ti)b
(i,j)
k+1 + (ti − tj)b

(i,j)
k+2 = vi

(
(tj+1 − tm+i+2)b

(i+1,j)
k+1 + (tm+i+2 − tj)b

(i+1,j)
k+2

)
,

which concludes the proof.

From Theorem 3.8, it follows that there are m independent equations in the system (3.13),
as one of them is redundant. One thus needs an initial value to find the values of all
b
(i,j)
0 , b

(i,j)
1 , . . . , b

(i,j)
m using the recurrence relation (3.14).

If j = n− 1, Remark 3.7 can be used to find that

Nmi(tn) = b(i,n−1)m = 0 (i = n− 2, n− 3, . . . , n−m).

In this case, the recurrence relation given in Theorem 3.8 simplifies to

(tn − ti)b(i,n−1)k = (tn−1 − ti)b(i,n−1)k+1 + vi(tn − tn−1)b(i+1,n−1)
k+1 .

It means that, for i = n− 2, n− 3, . . . , n−m, the following recurrence relation holds: b
(i,n−1)
m = 0,

b
(i,n−1)
k =

tn−1 − ti
tn − ti

b
(i,n−1)
k+1 +

tn − tn−1
tn − ti+1

b
(i+1,n−1)
k+1 (k = m− 1,m− 2, . . . , 0).

(3.15)

For i = n − 2, n − 3, . . . , n − m, assuming that the coefficients b(i+1,n−1)
k are known (k =

1, 2, . . . ,m), the recurrence relation (3.15) has an explicit solution
b
(i,n−1)
m = 0,

b
(i,n−1)
k =

tn − tn−1
tn − ti+1

m−k−1∑
`=0

( tn−1 − ti
tn − ti

)`
b
(i+1,n−1)
k+1+` (k = 0, 1, . . . ,m− 1).

(3.16)
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To find the initial value, if j < n−1 and i = j−1, j−2, . . . , j−m+1, the right continuity
condition will be used, i.e.,

Nmi(t
−
j+1) = Nmi(t

+
j+1).

More precisely,

Nmi(t
−
j+1) =

m∑
k=0

b
(i,j)
k Bm

k (1) = b(i,j)m

and

Nmi(t
+
j+1) =

m∑
k=0

b
(i,j+1)
k Bm

k (0) = b
(i,j+1)
0 ,

which gives the relation
b(i,j)m = b

(i,j+1)
0 .

This completes the recurrence scheme for j = n−2, n−3, . . . , 0 and i = j−1, j−2, . . . , j−m+1:
b
(i,j)
m = b

(i,j+1)
0 ,

b
(i,j)
k =

tj − ti
tj+1 − ti

b
(i,j)
k+1 +

vi
tj+1 − ti

(
(tj+1 − tm+i+2)b

(i+1,j)
k + (tm+i+2 − tj)b(i+1,j)

k+1

)
(k = m− 1,m− 2, . . . , 0).

(3.17)
From Eq. (3.17) follows an explicit formula for the coefficients b(i,j)k (k = 0, 1, . . . ,m), assuming

that the coefficients b(i,j+1)
0 and b

(i+1,j)
k (k = 0, 1, . . . ,m) are known:

b
(i,j)
k =

( tj − ti
tj+1 − ti

)m−k
b
(i,j+1)
0 +

m−k−1∑
`=0

( tj − ti
tj+1 − ti

)` vi
tj+1 − ti

qk+`, (3.18)

where
q` := (tj+1 − tm+i+2)b

(i+1,j)
` + (tm+i+2 − tj)b(i+1,j)

`+1 ,

and 0 ≤ j ≤ n− 2, j −m+ 1 ≤ i ≤ j − 1.
The coefficients of Nmi have been found for j = 0, 1, . . . , n− 1 and i = j− 1, j− 2, . . . , j−

m+ 1.

3.2.3 The theorem and the algorithm

The results presented in §3.2.1 and §3.2.2 can be combined to prove the following theorem.

Theorem 3.9. Let

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn−1 < tn = tn+1 = . . . = tn+m.

The n(m+ 1)2 adjusted Bernstein-Bézier coefficients b(i,j)k of the B-spline functions Nmi over
each knot span [tj , tj+1) (cf. (3.1)), for j = 0, 1, . . . , n − 1, i = j −m, j −m + 1, . . . , j and
k = 0, 1, . . . ,m, can be computed in the computational complexity O(nm2) in the following
way:

1. For j = 0, 1, . . . , n− 1 and k = 0, 1, . . . ,m, the coefficients b(j,j)k and b
(j−m,j)
k are given

explicitly in equations (3.9) and (3.10), respectively.
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2. For j = n−1, i = n−2, n−3, . . . , n−m and k = m,m−1, . . . , 0, the coefficients b(i,n−1)k

(k = 0, 1, . . . ,m) are computed by the recurrence relation (3.15) (for their explicit forms,
see (3.16)).

3. For j = n− 2, n− 3, . . . , 0, i = j − 1, j − 2, . . . , j −m+ 1 and k = m,m− 1, . . . , 0, the
coefficients b(i,j)k are computed by the recurrence relation (3.17) (for their explicit forms,
see (3.18)).

Example 3.10. Let us set m := 3, n := 5. Let the knots be

t−3 t−2 t−1 t0 t1 t2 t3 t4 t5 t6 t7 t8
0 0 0 0 3 5 6 9 10 10 10 10

.

Figure 3.1 illustrates the approach to computing all necessary adjusted Bernstein-Bézier co-
efficients of B-spline functions, given in Theorem 3.9. Arrows denote recurrent dependence.
Diagonally striped squares are computed using Eq. (3.9). Horizontally striped squares are com-
puted using Eq. (3.10). White squares are computed using either Eq. (3.15) (for u ∈ [t4, t5))
or (3.17) (for u < t4).

N3,−3(u)

N3,−2(u)

N3,−1(u)

N3,0(u)

N3,1(u)

N3,2(u)

N3,3(u)

N3,4(u)

0 0 0 0 3 5 6 9 10 10 10 10

t−3 t−2 t−1 t1 t2 t3 t4 t6 t7 t8t0 t5

N3,2(10) = 0

N3,3(10) = 0

Figure 3.1: An illustration of Example 3.10.

Implementation

Algorithm 3.1 implements the approach proposed in Theorem 3.9. It returns a sparse array
B ≡ B[0..n− 1,−m..n− 1, 0..m], where

B[j, i, k] = b
(i,j)
k (0 ≤ j < n, −m ≤ i < n, 0 ≤ k ≤ m)
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(cf. (3.1)).
For each of the n knot spans, one has to compute the coefficients of m + 1 functions

(n(m + 1)2 coefficients in total). Computing all coefficients of one B-spline function in a
given knot span requires O(m) operations. In total, then, the complexity of Algorithm 3.1 is
O(nm2) — giving the optimal O(1) time per coefficient.

Algorithm 3.1 Computing the coefficients of the adjusted Bernstein-Bézier form of the
B-spline functions

1: procedure BSplineBBF(n,m, [t−m, t−m+1, . . . , tn+m])
2: B ← SparseArray[0..n-1, -m..n-1, 0..m](fill=0)
3: for j ← 0, n− 1 do

4: B[j, j,m]← (tj+1 − tj)m−1∏m
k=2(tj+k − tj)

5: B[j, j −m, 0]← (tj+1 − tj)m−1∏m
k=2(tj+1 − tj+1−k)

6: end for
7: for i← n− 2, n−m do
8: for k ← m− 1, 0 do

9: B[n− 1, i, k]← tn−1 − ti
tn − ti

·B[n− 1, i, k + 1] +
tn − tn−1
tn − ti+1

·B[n− 1, i+ 1, k + 1]

10: end for
11: end for
12: for j ← n− 2, 0 do
13: for i← j − 1, j −m+ 1 do

14: v ← tm+i+1 − ti
tm+i+2 − ti+1

15: B[j, i,m]← B[j + 1, i, 0]
16: for k = m− 1, 0 do

17: B[j, i, k] ← tj − ti
tj+1 − ti

· B[j, i, k + 1] +
v

tj+1 − ti
·
(

(tj+1 − tm+i+2) · B[j, i +

1, k] + (tm+i+2 − tj) ·B[j, i+ 1, k + 1]
)

18: end for
19: end for
20: end for
21: return B
22: end procedure

3.3 Fast computation of multiple points on multiple B-spline
curves

Let u ∈ [tj , tj+1) and t :=
u− tj
tj+1 − tj

. By solving Problem 3.6, the Bernstein-Bézier coefficients

of the B-spline functions are found. A point on a B-spline curve can thus be expressed as

S(u) =

j∑
i=j−m

( m∑
k=0

b
(i,j)
k Bm

k (t)
)

Wi.
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The inner sums

pi(u) :=

m∑
k=0

b
(i,j)
k Bm

k (t) ≡ Nmi(u) (i = j −m, j −m+ 1, . . . , j) (3.19)

can be treated as polynomial Bézier curves with control points

b
(i,j)
k ∈ E1

and thus can be computed using the geometric Algorithm 2.2 in total time O(m2) — more
precisely, O(m) per each of m + 1 sums. It also means that — when the Bernstein-Bézier
coefficients b(i,j)k are already known — any B-spline function can be computed in O(m) time.

Example 3.11. A comparison of the new method of evaluating B-spline functions and using
Theorem 1.102 has been done. The results have been obtained on a computer with Intel Core
i5-6300U CPU at 2.40GHz processor and 4GB RAM, using GNU C Compiler 11.2.0 (single
precision).

For each n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50} and m = 3, 4, . . . , 15, a sequence of knots
has been generated 100 times. The knot span lengths tj+1 − tj ∈ [1/50, 1] (j = 0, 1, . . . , n −
1; t0 = 0) have been generated using the rand() C function. Then, 50 ·n+ 1 points such that
tj` := tj + `/50 × (tj+1 − tj) for j = 0, 1, . . . , n − 1 and ` = 0, 1, . . . , 49, with the remaining
point being tn0 ≡ tn, are generated. The boundary knots are coincident.

At each point tj` ∈ [tj , tj+1), all m+1 B-spline functions Nmi (i = j−m, j−m+1, . . . , j)
which do not vanish at tj` are evaluated using both algorithms. Due to the size of the table,
the resulting running times are available at https://bit.ly/fch-phd-phd-ch3-table-fun.

The new method consistently performs faster than evaluating B-spline functions using
Theorem 1.102. The new method reduced the running time for any dataset by 33-47%, while
the total running time was reduced by 45%. The source code in C which was used to perform
the tests is available at https://bit.ly/fch-phd-ch3.

Note that the sums pi do not depend on the control points. Afterwards, computing a
convex combination of m+ 1 points from Ed, i.e.,

S(u) =

j∑
i=j−m

pi(u)Wi,

requires O(md) arithmetic operations. Observe that these values may also be computed using
the geometric algorithm proposed in §2.3 (cf. Theorem 1.99). In total, then, assuming that
the Bernstein-Bézier coefficients of the B-spline functions over each knot span [tj , tj+1) (j =
0, 1, . . . , n−1) are known, O(m ·(m+d)) arithmetic operations are required, for u ∈ [tj , tj+1),
to compute a point S(u) on a B-spline curve.

When it is required to compute the values of S for many parameters u0, u1, . . . , uN , one
would have to perform O(nm2) arithmetic operations to find the coefficients of the B-spline
functions over each knot span and then do O(m · (m + d)) operations for each of N + 1
points that are to be computed. In total, the computational complexity of this approach is
O(nm2 +Nm · (m+ d)).

Due to the fact that the sums pi (cf. (3.19)) do not depend on the control points, they
can be used for computing a point on multiple B-spline curves, all of degree m, with the same
knots.
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Problem 3.12. For M B-spline curves S0, S1, . . . ,SM−1 with the knots

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn = tn+1 = . . . = tn+m.

and the control points of Sk being

Wk,−m,Wk,−m+1, . . . ,Wk,n−1 ∈ Ed (k = 0, 1, . . . ,M − 1),

compute the value of each of the B-spline curve Sk at points

u0, u1, . . . , uN−1

such that t0 ≤ uk ≤ tn for all k = 0, 1, . . . , N − 1. More precisely, for k = 0, 1, . . . ,M − 1 and
` = 0, 1, . . . , N − 1, compute the points

Sk(u`).

One can efficiently solve Problem 3.12 in the following way. Using Algorithm 3.1 allows to
compute all the adjusted Bernstein-Bézier coefficients of B-spline functions (cf. Problem 3.6)
in O(nm2) time. Now, one needs to compute the values

pi(u`) (` = 0, 1, . . . , N − 1, u` ∈ [tj , tj+1), i = j −m, j −m+ 1, . . . , j)

(cf. (3.19)), which takes O(Nm2) time. Using these values, computing

Sk(u`) =

j∑
i=j−m

pi(u`)Wki (` = 0, 1, . . . , N − 1, k = 0, 1, . . . ,M − 1, u` ∈ [tj , tj+1))

takes O(MNmd) time. In total, then, the complexity of this approach is O(nm2 + Nm2 +
NMmd), compared to the complexity of using the de Boor-Cox algorithm to solve Prob-
lem 3.12, i.e., O(NMm2d).

A comparison of running times is given in Example 3.13. The new algorithm is compared
to executing the de Boor-Cox algorithm (cf. §1.9.5) and to an alternative way of computing
the B-spline functions based on Theorem 1.102 (see [27, p. 55–57]) and then evaluating the
point in the same way as in the new method.

Example 3.13. Table 3.1 shows the comparison between the running times of the de Boor-Cox
algorithm, an algorithm which computes the values of B-spline functions using Theorem 1.102
and then computes the points, and the new method described above and using Algorithm 3.1.

The results have been obtained on a computer with Intel Core i5-6300U CPU at 2.40GHz
processor and 4GB RAM, using GNU C Compiler 11.2.0 (single precision).

The following numerical experiments have been conducted. For fixed n = 20 and d = 2, for
each M ∈ {1, 5, 10, 20, 50, 100} and m ∈ {3, 5, 7, 9, 11}, a sequence of knots and control points
has been generated 100 times. The control points Wki ∈ [−1, 1]d (i = −m,−m+ 1, . . . , n− 1,
k = 0, 1, . . . ,M−1) and the knot span lengths tj+1− tj ∈ [1/50, 1] (j = 0, 1, . . . , n−1; t0 = 0)
have been generated using the rand() C function. Each algorithm is then tested using the same
knots and control points. Each curve is evaluated at 1001 points which are tj+`/50×(tj+1−tj)
for j = 0, 1, . . . , n − 1 and ` = 0, 1, . . . , 49, with the remaining point being tn. The boundary
knots are coincident. Table 3.1 shows the total running time of all 100 × 1001 ×M curve
evaluations for each method.
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M m de Boor-Cox eval splines new method

1 3 0.032 0.046 0.035

1 5 0.036 0.050 0.033

1 7 0.062 0.079 0.050

1 9 0.100 0.122 0.075

1 11 0.154 0.178 0.103

5 3 0.085 0.049 0.041

5 5 0.195 0.094 0.073

5 7 0.340 0.126 0.096

5 9 0.533 0.188 0.132

5 11 0.732 0.240 0.167

10 3 0.170 0.081 0.072

10 5 0.372 0.129 0.109

10 7 0.651 0.190 0.152

10 9 1.028 0.255 0.199

10 11 1.453 0.319 0.244

20 3 0.339 0.139 0.127

20 5 0.721 0.210 0.185

20 7 1.269 0.295 0.250

20 9 2.022 0.388 0.323

20 11 2.889 0.493 0.401

50 3 0.845 0.314 0.301

50 5 1.786 0.469 0.427

50 7 3.305 0.671 0.610

50 9 5.267 0.864 0.756

50 11 9.436 1.328 1.196

100 3 1.734 0.631 0.618

100 5 3.776 0.954 0.901

100 7 7.000 1.323 1.225

100 9 10.458 1.590 1.470

100 11 14.722 1.882 1.712

Table 3.1: Running times comparison (in seconds) for Example 3.13. The source code in C
which was used to perform the tests is available at https://bit.ly/fch-phd-ch3.

Example 3.14. Experiments similar to Example 3.13, with a wider choice of parameters,
has been performed. The results have been obtained on the same computer, software, and
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precision.
For each d ∈ {1, 2, 3}, n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}, m = 3, 4, . . . , 15, and M ∈

{1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 50, 100} a sequence of knots and control points has been generated
100 times. The control points Wki ∈ [−1, 1]d (i = −m,−m+1, . . . , n−1, k = 0, 1, . . . ,M −1)
and the knot span lengths tj+1− tj ∈ [1/50, 1] (j = 0, 1, . . . , n−1; t0 = 0) have been generated
using the rand() C function. Each algorithm is then tested using the same knots and control
points. Each curve is evaluated at 50 · n + 1 points which are tj + `/50 × (tj+1 − tj) for
j = 0, 1, . . . , n − 1 and ` = 0, 1, . . . , 49, with the remaining point being tn. The boundary
knots are coincident. Due to the size of the table, the resulting running times are available at
https://bit.ly/fch-phd-phd-ch3-table.

The results show that the new method is significantly faster than the de Boor-Cox algorithm
except for the case M = 1. While the acceleration with respect to the approach which utilizes
Theorem 1.102 is smaller, it is also consistent, getting lower running time in 99.95% test
cases.

Some statistics regarding the experiments are given in Table 3.2.

Algorithm Total running time [s] Relative to new method

de Boor-Cox 14769.25 6.81

eval splines 2600.92 1.20

new method 2167.92 —

Algorithm New method win % Max time rel. to new method Min time rel. to new method

de Boor-Cox 97.01% 11.664 0.688

eval splines 99.95% 1.808 0.998

Table 3.2: Statistics for Example 3.14. The source code in C which was used to perform the
tests is available at https://bit.ly/fch-phd-ch3.

3.4 Generalizations

The approach presented in Sections 3.2 and 3.5 can be generalized so that the inner knots
may have their multiplicity higher than 1 (cf. Remark 3.1) or the boundary knots are of
multiplicity lower than m+ 1.

3.4.1 Inner knots of any multiplicity

When an inner knot has multiplicity over 1, some knot spans [tj , tj+1) (j = 0, 1, . . . , n − 1)
are empty. It is only necessary to find the B-spline functions’ coefficients over the non-empty
knot spans. If there are ne such knot spans, one only needs to find ne(m+1)2 coefficients, and
the algorithm will have O(nem

2) complexity. To use the continuity condition, the following
definition will be useful.

Definition 3.15. The left neighbor of a given knot tk is the knot t` if ` is the largest natural
number such that t` < tk, i.e., [t`, t`+1) is non-empty and t`+1 = tk. The right neighbor of a
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given knot tk is the knot tr if r is the smallest natural number such that tk < tr, i.e., [tr−1, tr)
is non-empty and tk = tr−1.

Note that in the case considered in Section 3.2, the right neighbor of tj (j = 0, 1, . . . , n−1)
is always tj+1.

From Remark 3.1, it follows that each B-spline function is continuous in (t0, tn). The only
modification then is in the continuity condition in Eq. (3.17). Let us consider a non-empty
knot span [tj , tj+1) (j = 0, 1, . . . , n− 2). Let tr be the right neighbor of tj+1, i.e., tr−1 = tj+1.
In this case, the continuity property at tj+1 is

m∑
k=0

b
(i,j)
k Bm

k

( tj+1 − tj
tj+1 − tj

)
=

m∑
k=0

b
(i,r−1)
k Bm

k

( tj+1 − tr−1
tr − tr−1

)
,

which simplifies to
b(i,j)m = b

(i,r−1)
0 .

In such case, the recurrence relation (3.17) takes the form
b
(i,j)
m = b

(i,r−1)
0 ,

b
(i,j)
k =

tj − ti
tj+1 − ti

b
(i,j)
k+1 +

vi
tj+1 − ti

(
(tj+1 − tm+i+2)b

(i+1,j)
k + (tm+i+2 − tj)b(i+1,j)

k+1

)
(k = m− 1,m− 2, . . . , 0)

(cf. Eq. (3.12)), where tr is the right neighbor of tj+1, and j = n − 2, n − 3, . . . , 0, i =
j − 1, j − 2, . . . , j −m+ 1. Example 3.16 presents this approach.

Example 3.16. Let us set m := 3, n := 5. Let the knots be

t−3 t−2 t−1 t0 t1 t2 t3 t4 t5 t6 t7 t8
0 0 0 0 3 3 5 9 10 10 10 10

.

The knot t1 is of multiplicity 2. To compute the adjusted Bernstein-Bézier coefficients of the
B-spline functions over [t0, t1) a continuity condition with the knot span [t2, t3) is used, as
t1 = t2. Figure 3.2 illustrates this approach to computing all necessary coefficients, analogous
to Example 3.10.

3.4.2 Boundary knots of multiplicity lower than m + 1

First, note that in Section 3.2, only the assumption that tn = tn+m is used, therefore if that
condition holds, Theorem 3.9 and Algorithm 3.1 still apply, regardless of the multiplicity of
boundary knots t−m, t−m+1, . . . , t0.

If the boundary knot tn has multiplicity lower than m + 1, the problem can be reduced
so that it can be solved using Theorem 3.9. Its drawback, however, is higher complexity.

The idea is to inflate the multiplicity of tn+m up to m+1. More precisely, let tn+m−`−1 <
tn+m−` = tn+m, i.e., tn+m−` has multiplicity ` + 1. Let the m − ` new knots tn+m+1 =
tn+m+2 = . . . = tn+2m−` be defined so that

tn+m = tn+m+1.
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N3,−3(u)

N3,−2(u)

N3,−1(u)

N3,0(u)

N3,1(u)

N3,2(u)

N3,3(u)

N3,4(u)

0 0 0 0 3 3 5 9 10 10 10 10

t−3 t−2 t−1 t1 t2 t3 t4 t6 t7 t8t0 t5

N3,2(10) = 0

N3,3(10) = 0

Figure 3.2: An illustration of Example 3.16.

This allows to execute Algorithm 3.1 with

n1 := n+m− `, m1 := m

and

t−m ≤ . . . ≤ t−1 ≤ t0︸ ︷︷ ︸
boundary knots

≤ t1 < . . . < tn+m−1︸ ︷︷ ︸
inner knots

≤ tn+m = tn+m+1 = . . . = tn+2m−`︸ ︷︷ ︸
boundary knots

.

It remains then to return the coefficients of Nmi over [tj , tj+1) for j = 0, 1, . . . , n − 1 and
i = j −m, j −m + 1, . . . , j. This approach requires the computation of O((n + m − `)m2)
coefficients and is presented in Example 3.17.

Example 3.17. Let us set m := 3, n := 2. Let the knots be

t−3 t−2 t−1 t0 t1 t2 t3 t4 t5
−3 −2 −1 0 1 2 3 4 5

.

After adding the knots t6 = t7 = t8 such that t5 = t8 (thus increasing n by 3), the problem
takes the form

t−3 t−2 t−1 t0 t1 t2 t3 t4 t5 t6 t7 t8
−3 −2 −1 0 1 2 3 4 5 5 5 5

.

Figure 3.3 illustrates the application of Algorithm 3.1 (cf. Example 3.10) computing all the
adjusted Bernstein-Bézier coefficients of the inflated problem. The coefficients which are rel-
evant to the solution of the primary problem are in the red frame.
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N3,−3(u)

N3,−2(u)

N3,−1(u)

N3,0(u)

N3,1(u)

N3,2(u)

N3,3(u)

N3,4(u)

−3 −2 −1 0 1 2 3 4 5 5 5 5

t−3 t−2 t−1 t1 t3 t4 t5 t6 t7 t8t0 t2

N3,2(5) = 0

N3,3(5) = 0

Figure 3.3: An illustration of Example 3.17.

3.5 B-spline functions’ coefficients in adjusted power basis

The coefficients of the B-spline functions in the adjusted power basis can be computed using
a very similar approach to the one presented in Section 3.2 for the Bernstein-Bézier basis. In
this section, the approach will be outlined, with some details omitted when they are analogous
to the Bernstein-Bézier case.

Just as in Section 3.2, let us assume that the boundary knots are coincident and all inner
knots are of multiplicity 1, i.e.,

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn = tn+1 = . . . = tn+m

(cf. (1.73)). Recall that Nmi over [tj , tj+1) in the adjusted power basis has the form (3.1).

Remark 3.18. In the sequel, it will be assumed that u ∈ [tj , tj+1).

For j = 0, 1, . . . , n − 1 and i = j, using Eq. (1.74) gives an explicit representation in the
adjusted power basis:

Nmi(u) =
u− ti

tm+i − ti
Nm−1,i(u) = . . . =

m∏
j=1

u− ti
tj+i − ti

N0i(u) =
(u− ti)m∏m
j=1(tj+i − ti)

.

In the same way, an expression for Nmi over [tm+i, tm+i+1) could be found. However, the
recurrence relation (1.74) would give it in the (u− tm+i+1)

k basis and one would need O(m2)
operations to convert it to the (u− tm+i)

k basis. Due to that, Eq. (3.6) will be used to find
the coefficients of Nm,j−m over the knot span [tj , tj+1) (j = 0, 1, . . . , n− 1).
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For j = n − 1, n − 2, . . . , 0 and i = j − 1, j − 2, . . . , j −m, Eq. (3.6) is be used to get m
equations:

(m− k)a
(i,j)
k + (k + 1)(ti − tj)a(i,j)k+1 = vi

(
(m− k)a

(i+1,j)
k + (k + 1)(tm+i+2 − tj)a(i+1,j)

k+1

)
(k = 0, 1, . . . ,m− 1),

where
vi ≡ vmi :=

tm+i+1 − ti
tm+i+2 − ti+1

(cf. Eq. (3.12)). In a particular case of j = 0, the relation simplifies to

a
(i,0)
k = vi

(
a
(i+1,0)
k +

(k + 1)(tm+i+2 − t0)
m− k

a
(i+1,0)
k+1

)
(k = 0, 1, . . . ,m− 1),

giving the expressions for all coefficients except a(i,0)m .
If j = n− 1, one can use Remark 3.7 to complete the system of equations:

s0 s1 s2 · · · sm
l0 d0 0 · · · 0

0
. . . . . .

...
lk dk

...
. . . . . . 0

0 · · · 0 lm−1 dm−1


·



a
(i,n−1)
0

a
(i,n−1)
1

...
a
(i,n−1)
k

...
a
(i,n−1)
m


= vi



0

l0a
(i+1)
0 + r0a

(i+1)
1

...
lka

(i+1)
k + rka

(i+1)
k+1

...
lm−1a

(i+1)
m−1 + rm−1a

(i+1)
m


,

where a(j)` ≡ a
(j,n−1)
` and

lk := m− k, dk := (k + 1)(ti − tn−1), rk := (k + 1)(tn − tn−1), sk := (tn − tn−1)k.

One can use Gaussian elimination so that only the last element in the first row of the matrix
is non-zero. For k = 0, 1, . . . ,m − 1, let gk be the factor by which the (k + 2)th row (i.e.,
the row containing lk and dk) is multiplied before being subtracted from the first row. More
precisely, the following recurrence relation with an initial value needs to be satisfied: g0 = m−1,

gk =
(tn − tn−1)k

m− k
− gk−1

k(ti − tn−1)
m− k

(k = 1, 2, . . . ,m− 1).
(3.20)

It is clear that one can compute all g0, g1, . . . , gm−1 in O(m) time. One can check that

gk =
(tn−1 − ti)k

m
(
m−1
k

) k∑
h=0

(
m

h

)(
− tn − tn−1
ti − tn−1

)h
(k = 0, 1, . . . ,m− 1),

however, it will simplify the expressions and computation if the recursive form is used instead.
After performing the elimination, the first row of the matrix gives an expression for a(i,n−1)m :

a(i,n−1)m =
−vi

sm − gm−1dm−1

m−1∑
k=0

gk(lka
(i+1,n−1)
k + rka

(i+1,n−1)
k+1 ).
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This can be computed in O(m) time. The remaining coefficients can be then found using the
recurrence relations given in other rows of the matrix:

a
(i)
m =

−vi
sm − gm−1dm−1

m−1∑
k=0

gk(lka
(i+1)
k + rka

(i+1)
k+1 ),

a
(i)
k = l−1k

(
− dka

(i)
k+1 + vi(lka

(i+1)
k + rka

(i+1)
k+1 )

)
(k = m− 1,m− 2, . . . , 0),

where a(j)` ≡ a
(j,n−1)
` and

lk := m− k, dk := (k + 1)(ti − tn−1), rk := (k + 1)(tn − tn−1), sk := (tn − tn−1)k,

and the values gk are given by (3.20).
For j = 0, 1, . . . , n − 2, finding the initial value for the recurrence scheme can be done

by using the continuity condition at tj+1. The knot tj+1 has multiplicity 1, therefore, from
Theorem 1.98, it follows that the (m− 1)th derivative of Nmi is continuous at tj+1:

N
(m−1)
mi (t−j+1) = N

(m−1)
mi (t+j+1).

It is easy to check that

N
(m−1)
mi (t−j+1) = a

(i,j)
m−1(m− 1)! + a(i,j)m m!(tj+1 − tj)

and
N

(m−1)
mi (t+j+1) = a

(i,j+1)
m−1 (m− 1)!,

thus
a
(i,j)
m−1 + a(i,j)m m(tj+1 − tj) = a

(i,j+1)
m−1 .

This, together with the previously found equation, i.e.,

a
(i,j)
m−1 +m(ti − tj)a(i,j)m = vi

(
a
(i+1,j)
m−1 +m(tm+i+2 − tj)a(i+1,j)

m

)
,

allows to find an expression for a(i,j)m (assuming that a(i+1,j)
m−1 and a

(i+1,j)
m are known):

m(tj+1 − ti)a(i,j)m = a
(i,j+1)
m−1 − vi

(
a
(i+1,j)
m−1 +m(tm+i+2 − tj)a(i+1,j)

m

)
,

which completes the recurrence scheme. This proves the following theorem.

Theorem 3.19. Let

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn−1 < tn = tn+1 = . . . = tn+m

(cf. (1.73)). The n(m + 1)2 coefficients a(i,j)k of the B-spline functions Nmi (i = −m,−m +
1, . . . , n − 1) over each knot span [tj , tj+1) (0 ≤ j ≤ n − 1, i = j − m, j − m + 1, . . . , j,
0 ≤ k ≤ m) in the adjusted power basis (cf. Eq. (3.2)) can be computed in O(nm2) time in
the following way.

1. For j = 0, 1, . . . , n− 1 and i = j, we have a
(j,j)
k = 0 (k = 0, 1, . . . ,m− 1),

a
(j,j)
m =

(∏m
`=1(tj+` − tj)

)−1
.
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2. For j = n− 1 and i = n− 2, n− 3, . . . , n− 1−m, the coefficients of Nmi are given by
the recurrence relation

a
(i,n−1)
m =

−vi
sm − gm−1dm−1

m−1∑
k=0

gk(lka
(i+1,n−1)
k + rka

(i+1,n−1)
k+1 ),

a
(i,n−1)
k = l−1k

(
− dka

(i,n−1)
k+1 + vi(lka

(i+1,n−1)
k + rka

(i+1,n−1)
k+1 )

)
(k = m− 1,m− 2, . . . , 0),

(3.21)
where

lk := m− k, dk := (k + 1)(ti − tn−1), rk := (k + 1)(tn − tn−1), sk := (tn − tn−1)k,

and the values gk are given by (3.20).

3. For j = n− 2, n− 3, . . . , 0 and i = j − 1, j − 2, . . . , j −m, the coefficients of Nmi over
[tj , tj+1) are given by the recurrence relation

a
(i,j)
m =

a
(i,j+1)
m−1 − vi

(
a
(i+1,j)
m−1 +m(tm+i+2 − tj)a(i+1,j)

m

)
m(tj+1 − ti)

,

a
(i,j)
k =

(k + 1)(tj − ti)
m− k

a
(i,j)
k+1 + vi

(
a
(i+1,j)
k +

(k + 1)(tm+i+2 − tj)
m− k

a
(i+1,j)
k+1

)
(k = 0, 1, . . . ,m− 1).

Algorithm 3.2 implements the approach given in Theorem 3.19. It returns a sparse array
A ≡ A[0..n− 1,−m..n− 1, 0..m], where

A[j, i, k] = a
(i,j)
k (0 ≤ j < n, −m ≤ i < n, 0 ≤ k ≤ m)

(cf. (3.2)).
Similarly to the case of Bernstein-Bézier basis, the complexity of Algorithm 3.2 is O(nm2)

— giving the optimal O(1) time per coefficient.
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Algorithm 3.2 Computing the coefficients of the adjusted power form of the B-spline func-
tions
1: procedure BSplineP(n,m, [t−m, t−m+1, . . . , tn+m])
2: A← SparseArray[0..n-1, -m..n-1, 0..m](fill=0)
3: for i← 0, n− 1 do

4: A[i, i,m]←
(∏m

`=1(ti+` − ti)
)−1

5: end for
6: for i← n− 2, n− 1−m do
7: A[n− 1, i, 0..m]← Eq. (3.21)
8: end for
9: for j ← n− 2, 0 do
10: for i← j − 1, j −m do

11: v ← tm+i+1 − ti
tm+i+2 − ti+1

12: w ← A[j, i+ 1,m− 1] +m · (tm+i+2 − tj) ·A[j, i+ 1,m]

13: A[j, i,m]← A[j + 1, i,m− 1]− v · w
m · (tj+1 − ti)

14: for k = m− 1, 0 do

15: q ← k + 1

m− k
16: w ← A[j, i+ 1, k] + (tm+i+2 − tj) · q ·A[j, i+ 1, k + 1]
17: A[j, i, k]← (tj − ti) · q ·A[j, i, k + 1] + v · w
18: end for
19: end for
20: end for
21: return A
22: end procedure



Chapter 4

New differential relations for dual
Bernstein polynomials

Let D be the differentiation operator with respect to the variable x (D :=
d

dx
) and I

be the identity operator (∀z, Iz = z) (cf. §1.32). In the sequel, let σ := α + β + 1 and

K :=
Γ(σ + 1)

Γ(α+ 1)Γ(β + 1)
(cf. (1.9) and (1.8)).

Recall that the ith dual Bernstein polynomial (see §1.5.2) of degree n with parameters
α, β is given by

Dn
i (x;α, β) = A

(α,β)
ni

(α+ 1)n
(n+ 1)!

n∑
j=0

B
(α,β)
nj F (i, j) · (1− x)j ,

where

A
(α,β)
ni :=

(−1)n−i(n+ 1)(σ + 1)n
K (α+ 1)n−i(β + 1)i

, B
(α,β)
nj :=

(−n)j(n+ σ + 1)j
j!(α+ 1)j

and F (i, j) is a hypergeometric function defined as

F (i, j) := 3F2

(
j − n, −i, 1

−n, −n− α

∣∣∣∣ 1) (i, j = 0, 1, . . . , n),

and 0 otherwise (cf. (1.43)). There are other representations of dual Bernstein polynomials,
given, e.g., in equations (1.36) and (1.38). They will not, however, be used in this chapter.

In the chapter, results published in [18] are presented. The differential-recurrence rela-
tions given in Section 4.1 will be useful in deriving differential equations for dual Bernstein
polynomials in Section 4.2. The differential-recurrence relations given in Section 4.1 will find
further use in Chapter 5.

4.1 Differential-recurrence relations

Theorem 4.1. For i = 0, 1, . . . , n, the following formula holds:(
(1− x)D − (n− i+ α+ 1)I

)
Dn
i (x;α, β)

=
(i− n)(i+ β + 1)

i+ 1
Dn
i+1(x;α, β)−A(α,β)

ni

n+ α+ 1

i+ 1
R(α,β+1)
n (x) (4.1)

106
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(cf. (1.43)).

Proof. Using the representation of Dn
i (x;α, β) and Dn

i+1(x;α, β) in the (1−x)j basis, the fact
that

A
(α,β)
n,i+1 =

i− n− α
β + 1 + i

·A(α,β)
ni ,

and the representation of shifted Jacobi polynomials in the (1− x)j basis, i.e.,

R(α,β+1)
n (x) =

(α+ 1)n
n!

n∑
j=0

B
(α,β)
nj (1− x)j

(cf. (1.14)), it is possible to express the hypothesis in its equivalent form:
n∑
j=0

G(n, i, j, α) ·B(α,β)
nj (1− x)j ≡ 0,

where

G(n, i, j, α) := −F (i, j)·(n−i+α+1+j)(i+1)+(i−n)(n−i+α)F (i+1, j)+(n+α+1)(n+1).

To prove the theorem, it is sufficient to prove that, for given n, i, α and all j = 0, 1, . . . , n,
G(n, i, j, α) = 0. Indeed, using the Zeilberger’s algorithm (see §1.3.1), this relation holds true.
The proof is quite technical and is therefore omitted.

From Theorem 4.1, a second differential-recurrence relation can be derived.

Theorem 4.2. For i = 0, 1, . . . , n, we have(
xD + (i+ β + 1)I

)
Dn
i (x;α, β)

=
i(n− i+ α+ 1)

n− i+ 1
Dn
i−1(x;α, β) +A

(α,β)
ni

n+ β + 1

n− i+ 1
R(α+1,β)
n (x). (4.2)

Proof. The theorem can be proven by applying symmetry relations (1.15) and (1.37) in
Eq. (4.1):(

(1− x)D − (n− i+ α+ 1)I
)
Dn
n−i(1− x;β, α)

=
(i− n)(i+ β + 1)

i+ 1
Dn
n−i−1(1− x;β, α)−A(α,β)

ni

n+ α+ 1

i+ 1
(−1)nR(β+1,α)

n (1− x).

The reassignment of variables

x := 1− x, i := n− i, α := β, β := α

results in a new identity having the following form:(
− xD − (i+ β + 1)I

)
Dn
i (x;α, β)

=
−i(n− i+ α+ 1)

n− i+ 1
Dn
i−1(x;α, β)−A(β,α)

n,n−i
n+ β + 1

n− i+ 1
(−1)nR(α+1,β)

n (x).

After checking that

(−1)nA
(β,α)
n,n−i =

(−1)n+i(n+ 1)(σ + 1)n
K (β + 1)i(α+ 1)n−i

= (−1)2i ·A(α,β)
ni = A

(α,β)
ni ,

the proof is concluded.
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The third differential-recurrence relation is of a different kind. It relates the first and
second derivatives with three consecutive dual Bernstein polynomials.

Theorem 4.3. The following relation holds:(
x(x− 1)D2 + 1

2(α− β + (σ + 1)(2x− 1))D
)
Dn
i (x;α, β) (4.3)

= (i− n)(i+ β + 1)Dn
i+1(x;α, β) + i(i− α− n− 1)Dn

i−1(x;α, β)

−(i(i− α− n− 1) + (i− n)(i+ β + 1))Dn
i (x;α, β),

where i = 0, 1, . . . , n.

Proof. Note that the operator on the left-hand-side of the equation is identical to the operator
used in Eq. (1.19), namely

L(α,β) := x(x− 1)D2 + 1
2 (α− β + (σ + 1)(2x− 1))D.

Using this observation and the representation (1.36) of dual Bernstein polynomials,

Dn
i (x;α, β) = K−1

n∑
k=0

(−1)k
(2k/σ + 1)(σ)k

(α+ 1)k
Qk(i;β, α;n)R

(α,β)
k (x),

one can express the left-hand side of the hypothesis as

L(α,β)Dn
i (x;α, β) = K−1

n∑
k=0

(−1)k
(2k/σ + 1)(σ)k

(α+ 1)k
Qk(i;β, α;n)L(α,β)R

(α,β)
k (x).

Now, one can apply Eq. (1.19) to each element of the sum, giving

L(α,β)Dn
i (x;α, β) = K−1

n∑
k=0

(−1)k
(2k/σ + 1)(σ)k

(α+ 1)k
R

(α,β)
k (x)k(k + σ)Qk(i;β, α;n).

Recall (cf. Eq. (1.22)) that

k(k + σ)Qk(i;β, α;n) = L(β,α,n)i Qk(i;β, α;n),

where the operator L(β,α,n)i is given by (1.23). Applying this relation to the left-hand side, in
connection with Eq. (1.36), gives

L(α,β)Dn
i (x;α, β) = L(β,α,n)i Dn

i (x;α, β)

≡ (i− n)(i+ β + 1)Dn
i+1(x;α, β) + i(i− α− n− 1)Dn

i−1(x;α, β)

−(i(i− α− n− 1) + (i− n)(i+ β + 1))Dn
i (x;α, β).
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4.2 Differential equations for dual Bernstein polynomials

The new differential-recurrence relations given in Section 4.1 can be used to derive differential
equations for Dn

i (x;α, β).

Theorem 4.4. Dual Bernstein polynomials satisfy the second-order non-homogeneous differ-
ential equation with polynomial coefficients of the form

M
(α,β)
ni Dn

i (x;α, β) = (n+ σ + 1)A
(α,β)
ni R(α+1,β+1)

n (x), (4.4)

(cf. (1.43)), where

M
(α,β)
ni := x(x− 1)D2 +

(
(n+ σ + 3)x− i− β − 2

)
D + (n+ σ + 1)I.

Proof. Using Theorem 4.1, one can find an expression for Dn
i+1(x;α, β) for i = 0, 1, . . . , n− 1:

Dn
i+1(x;α, β) =

i+ 1

(i− n)(i+ β + 1)

((
(1− x)D − (n− i+ α+ 1)I

)
Dn
i (x;α, β)

+A
(α,β)
ni

n+ α+ 1

i+ 1
R(α,β+1)
n (x)

)
. (4.5)

Similarly, from Theorem 4.2 follows an expression for Dn
i−1(x;α, β) for i = 1, 2, . . . , n:

Dn
i−1(x;α, β) =

(n− i+ 1)

i(n− i+ α+ 1)

((
xD + (i+ β + 1)I

)
Dn
i (x;α, β)

−A(α,β)
ni

n+ β + 1

n− i+ 1
R(α+1,β)
n (x)

)
. (4.6)

Now, substituting equations (4.5) and (4.6) into the right-hand side of Eq. (4.3) and applying
simple algebra gives(

x(x− 1)D2 + ((n+ σ + 3)x− (i+ β + 2))D + (n+ σ + 1)I
)
Dn
i (x;α, β)

= A
(α,β)
ni

(
(n+ α+ 1)R(α,β+1)

n (x) + (n+ β + 1)R(α+1,β)
n (x)

)
.

Note that the left-hand side is exactly M
(α,β)
ni Dn

i (x;α, β).
What remains is to check that

(n+ α+ 1)R(α,β+1)
n (x) + (n+ β + 1)R(α+1,β)

n (x) = (n+ σ + 1)R(α+1,β+1)
n (x).

This follows from the representation of shifted Jacobi polynomials (cf. Eq. (1.14)), which,
when applied to the left-hand side, gives

(n+ α+ 1)R(α,β+1)
n (x) + (n+ β + 1)R(α+1,β)

n (x)

=
(α+ 2)n

n!

n∑
k=0

((α+ 1)(α+ 2)k
(α+ 1)k

+ n+ β + 1
)(−n)k(n+ α+ β + 2)k

(α+ 2)kk!
(1− x)k

= (n+ σ + 1)
(α+ 2)n

n!

(
1 +

n∑
k=1

n+ α+ β + 2 + k

n+ α+ β + 2
· (−n)k(n+ α+ β + 2)k

(α+ 2)kk!
(1− x)k

)
=
(
n+ σ + 1

)(α+ 2)n
n!

n∑
k=0

(−n)k(n+ α+ β + 3)k
(α+ 2)kk!

(1− x)k =
(
n+ σ + 1

)
R(α+1,β+1)
n (x).
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The existence of a second-order non-homogeneous differential equation means that there
exists a homogeneous third-order differential equation. Indeed, one can apply the first-order
differential operator(

R(α+1,β+1)
n (x)D − (DR(α+1,β+1)

n (x))I
)

≡
(
R(α+1,β+1)
n (x)D − (n+ α+ β + 3)R

(α+2,β+2)
n−1 (x)I

)
(cf. (1.16)) to eliminate the right-hand side.

Corollary 4.5. Dual Bernstein polynomials Dn
i (x;α, β) (i = 0, 1, . . . , n) satisfy the third-

order differential equation with polynomial coefficients of the form(
R(α+1,β+1)
n (x)D − (n+ α+ β + 3)R

(α+2,β+2)
n−1 (x)I

)
M

(α,β)
ni Dn

i (x;α, β) = 0

(cf. Theorem 4.4).

The polynomials R(α+1,β+1)
n (x), R

(α+2,β+2)
n−1 (x) are not computationally simple. For prac-

tical reasons, it may be useful to find a differential equation with simple coefficients – even
at the cost of higher order.

Recall (cf. (1.19)) that (
L(α,β) − n(n+ σ)I

)
R(α,β)
n (x) = 0.

Let N
(α,β)
n be the second-order differential operator of the form

N (α,β)
n := L(α,β) − n(n+ σ)I.

Applying the operator N
(α+1,β+1)
n to both sides of Eq. (4.4) allows to eliminate the non-

homogeneity, which results in the following homogeneous differential equation for Dn
i (x;α, β).

Corollary 4.6. Dual Bernstein polynomials Dn
i (x;α, β) (i = 0, 1, . . . , n) satisfy the fourth-

order differential equation with polynomial coefficients of the form

Q4D
n
i (x;α, β) ≡N (α+1,β+1)

n M
(α,β)
ni Dn

i (x;α, β) = 0. (4.7)

After evaluating the composition of two second-order differential operators, one can ex-
press the differential equation (4.7) in an equivalent form:

4∑
j=0

wj(x)DjDn
i (x;α, β) = 0,

where

w4(x) := x2(x− 1)2, w3(x) := x(x− 1)[(n+ 2σ + 10)x− i− 2β − 6],

w2(x) := [(n+ σ + 3)(σ − n+ 7) + σ + 3]x2

+[(n− 1)2 + αn− 2β − (σ + 3)(i+ 2β + 8)− 5]x+ (β + 2)(i+ β + 3),

w1(x) := −(n+ σ + 2)[(n2 + (n− 2)(σ + 3))x+ (2− n)(i+ β + 2)− 2i],

w0(x) := −n(n+ σ + 1)2.
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Note that
deg wj = j.

The relations given in this chapter have been used in [18] to find a recurrence relation of order
4 for dual Bernstein polynomials of the same degree. This result, along with new recurrence
relations of lower order, will be presented in the next chapter.



Chapter 5

New recurrence relations for dual
Bernstein polynomials

In the sequel, let σ := α+ β + 1 and K :=
Γ(σ + 1)

Γ(α+ 1)Γ(β + 1)
(cf. (1.9) and (1.8)).

5.1 Homogeneous fourth-order recurrence relation

Using the results given in Chapter 4, it is possible to construct a homogeneous recurrence
relation connecting five consecutive (with respect to i) dual Bernstein polynomials of the same
degree n.

Let Em be the mth shift operator acting on the variable i in the following way:

Emzi := zi+m (m ∈ Z). (5.1)

To simplify the notation, let I ≡ E0 and E ≡ E1. The following theorem holds.

Theorem 5.1. Dual Bernstein polynomials satisfy the second-order non-homogeneous recur-
rence relation of the form

M(α,β,n)
i Dn

i (x;α, β) = G
(α,β)
ni (x), (5.2)

where i = 0, 1, . . . , n, and

M(α,β,n)
i := (i)2(n− i+ α+ 1)(x− 1)E−1 − (n− i)2(i+ β + 1)xE

+(i+ 1)(n− i+ 1)
(

(i+ β + 1)(1− x) + (n− i+ α+ 1)x
)
I,

G
(α,β)
ni (x) := A

(α,β)
ni

(
(i+ 1)(n+ β + 1)(1− x)R(α+1,β)

n (x)

+(n− i+ 1)(n+ α+ 1)xR(α,β+1)
n (x)

)
(cf. (1.43)).

Proof. The result follows directly from subtracting the relation (4.1), multiplied by x, from
the relation (4.2), multiplied by 1− x.
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Notice that the quantity
(
A

(α,β)
ni

)−1
G

(α,β)
ni (x) is a polynomial of the first degree in vari-

able i. One can thus eliminate it using the identity (E − I)2
(
A

(α,β)
ni

)−1
G

(α,β)
ni (x) = 0. By

applying the operator

N (α,β,n)
i := E−1(E − I)2

(
A

(α,β)
ni

)−1
I

to both sides of Eq. (5.2), a fourth-order homogeneous recurrence relation for the dual Bern-
stein polynomials is obtained. Note that E−1 in the operator N (α,β,n)

i applies to all the terms
and by itself does not change its order.

Corollary 5.2. Dual Bernstein polynomials satisfy the fourth-order recurrence relation of
the form

N (α,β,n)
i M(α,β,n)

i Dn
i (x;α, β) = 0 (0 ≤ i ≤ n). (5.3)

The operator N (α,β,n)
i M(α,β,n)

i is a composition of two second-order difference operators.
The explicit form of the simplified recurrence relation (5.3) is as follows:

2∑
j=−2

vj(i)D
n
i+j(x;α, β) = 0, (5.4)

where

v−2(i) := (1− x)(i− 1)2(n− i+ α)3,

v−1(i) := −i(n− i+ α)2{(i+ β)(n− 3i)

+[n(n− 3i+ α− β + 4) + i(4i− α+ 3β − 4) + 2(α+ 2)]x},
v0(i) := (i+ β)(n− i+ α)[z(i)x+ (i+ 1)(i+ β + 1)(3i− 2n)],

v1(i) := (i− n)(i+ β)2{(i+ 2)(i+ β + 2)

−[n(2n− 5i+ 2α) + i(4i− 3α+ β + 4) + 2(β + 2)]x},
v2(i) := x(i+ β)(i+ β + 1)2(n− i− 1)2,

and z(i) := −6i3+3(3n+α−β)i2− [n(5n−6β)+(4n+3)σ+3]i+n[(n+1)(n+α+1)+2β+2].
Each of the coefficients vk can be computed in O(1) time. Numerical experiments con-

cerning the stability and efficiency of the fourth-order recurrence relation can be found in [18].
Note that the method of evaluating dual Bernstein polynomials based on the recurrence re-
lation (5.4) gives good results for low n (n ≈ 20, 30). Since then, however, a new recurrence
relations of lower order has been found and are presented in Section 5.2 and [96]. The rela-
tion has been thoroughly tested in [96] and in Section 5.4 with improved performance and
good numerical stability compared to the results for the fourth-order recurrence relation.
Additionally, the method of evaluating Dn

i (x;α, β) based on the recurrence relation given in
Section 5.2 gives very good results even for high n (n ≈ 3000, 5000).

5.2 Non-homogeneous first-order relation

Using the properties of dual Bernstein polynomials and the relation (1.10), one can find a
simple first-order non-homogeneous recurrence relation for dual Bernstein polynomials.
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Theorem 5.3. For i = 0, 1, . . . , n, the following relation holds:

(x− 1)(i+ 1)Dn
i (x;α, β) + x(n− i)Dn

i+1(x;α, β) =
−C(α,β)

n,i+1

2n+ σ + 2
T
(α,β)
ni (x), (5.5)

where the notation used is that of (1.45), and

T
(α,β)
ni (x) := (n− i)(n+ α+ 1)xR(α,β+1)

n (x) + (i+ 1)(n+ β + 1)(1− x)R(α+1,β)
n (x). (5.6)

Proof. In the sequel, the following identity will be useful:

2n+ σ + 1

n+ 1
T
(α,β)
ni (x) = (n+ α+ 1)(n+ β + 1)R(α,β)

n (x)

+
(

(n− i)(n+ α+ 1)− (i+ 1)(n+ β + 1)
)
R

(α,β)
n+1 (x). (5.7)

It can be verified using (1.17) and (1.18).
Let us use induction on n. First, observe that for any i = n, the relation (5.5) immediately

follows from (1.40). So, in particular, it also holds for n = 0.
Now, suppose that (5.5) is true for some natural number n and all 0 ≤ i ≤ n. One has to

prove that

(x− 1)(i+ 1)Dn+1
i (x;α, β) + x(n− i+ 1)Dn+1

i+1 (x;α, β) +
C

(α,β)
n+1,i+1

2n+ σ + 4
T
(α,β)
n+1,i(x) ≡ 0,

where 0 ≤ i ≤ n+ 1. It is already known that it holds for i = n+ 1. Assume that 0 ≤ i ≤ n.
Applying twice Eq. (1.44) to the left-hand side, using Eq. (5.7) and doing simple algebra, one
can obtain its equivalent form

n− i+ 1

n+ 1

[
(x− 1)(i+ 1)Dn

i (x;α, β) + x(n− i)Dn
i+1(x;α, β)

]
+
i+ 1

n+ 1

[
(x− 1)iDn

i−1(x;α, β) + x(n− i+ 1)Dn
i (x;α, β)

]
+

(
(x− 1)(i+ 1)C

(α,β)
ni + x(n− i+ 1)C

(α,β)
n,i+1 + C

(α,β)
n+1,i+1

(n+ α+ 2)(n+ β + 2)

(n+ 2)−1(2n+ σ + 3)2

)
R

(α,β)
n+1 (x)

+
C

(α,β)
n+1,i+1(n+ 2)

(2n+ σ + 3)2

(
(n− i+ 1)(n+ α+ 2)− (i+ 1)(n+ β + 2)

)
R

(α,β)
n+2 (x).

Applying twice the induction assumption to terms in square brackets and after some
algebra, gives

G
(α,β)
ni

(
ξ0(n)R(α,β)

n (x) + ξ1(n)R
(α,β)
n+1 (x) + ξ2(n)R

(α,β)
n+2 (x)

)
, (5.8)

where the notation used is that of (1.11)–(1.13), and

G
(α,β)
ni := −C(α,β)

ni

(n− i+ 1)(n− i+ α+ 1)− (i+ 1)(i+ β + 1)

2(n+ 1)(2n+ σ + 2)2(n− i+ α+ 1)
.

Indeed, it follows from (1.10) that (5.8) is equal to zero. At the end, note the special
case: in (5.8), if i = n− i and α = β, both the expression in brackets and G(α,β)

ni are equal to
zero.
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Note that shifted Jacobi polynomials appearing in Theorem 5.3 (cf. (5.6)) do not depend
on i. Now, solving this first-order non-homogeneous recurrence relation and using (1.39)
results — after some algebra — in a more explicit formula for dual Bernstein polynomials.

Corollary 5.4. For i = 0, 1, . . . , n, we have

Dn
i (x;α, β) =

(
n

i

)−1 (−1)n−i(σ + 1)n
K(α+ 1)n(β + 1)n

(
x− 1

x

)i
×
[
R(α,β+1)
n (x)S

(α+1,β)
ni

(
x

x− 1

)
−R(α+1,β)

n (x)S
(α,β+1)
n,i−1

(
x

x− 1

)]
,

where

S
(a,b)
mk (z) := (b+ 1)m

k∑
j=0

(−m)j(−m− a)j
j!(b+ 1)j

zj (0 ≤ k ≤ m)

(cf. (1.14)).

5.3 Applications of relations for dual Bernstein polynomials

Let us consider the following problem.

Problem 5.5. Let us fix numbers: n ∈ N, x ∈ [0, 1] and α, β > −1. Consider the problem of
computing the values

Dn
i (x;α, β)

for all i = 0, 1, . . . , n.

An efficient solution of this problem gives us, e.g., the fast method of evaluating the
polynomial

d(x) :=
n∑
i=0

diD
n
i (x;α, β), (5.9)

where the coefficients d0, d1, . . . , dn are given. Notice that such representation plays a crucial
role in, for example, the algorithm for merging of Bézier curves which has been recently
proposed in [99].

On the other hand, in many applications, such as least-square approximation in Bézier
form (cf. [61, 63]) or numerical solving of boundary value problems (cf., e.g., report [45]) or
fractional partial differential equations (see [50, 51] and papers cited therein), it is necessary
to compute the collection of integrals of the form

Ik :=

∫ 1

0
(1− x)αxβf(x)Dn

k (x;α, β) dx

for all k = 0, 1, . . . , n and a given function f . The motivation for computing Ik is that the
polynomial

p∗n(x) :=
n∑
k=0

IkB
n
k (x)
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minimizes the value of the least-square error∫ 1

0
(1− x)αxβ(f(x)− pn(x))2dx (pn ∈ Πn)

(cf. §1.7.5). The numerical approximations of the integrals I0, I1, . . . , In involving the dual
Bernstein polynomials can be computed, for example, by quadrature rules (see, e.g., [22, §5]).
It also requires the fast evaluation of polynomials Dn

0 (x;α, β), Dn
1 (x;α, β), . . . , Dn

n(x;α, β) in
many nodes.

The solutions of Problem 5.5 which use the representations (1.36), (1.38) or (1.43) of
dual Bernstein polynomials, or the recurrence relation (1.44) satisfied by these polynomials,
have too high computational complexity (notice that one additionally has to compute shifted
Jacobi and/or Hahn polynomials, cf. (1.14) and (1.20)).

It is more efficient to use the recurrence relation (5.4) which is not explicitly related to
shifted Jacobi and Hahn polynomials. This relation allows to solve the problem with the
computational complexity O(n). For details, see [93, §7 and §10.2]. Experiments have shown
that the new method is much faster and gives good numerical results for low n (n ≈ 20, 30).
See [18, §6]. Moreover, one can use the relation (5.5) to achieve the same O(n) computational
complexity but with a relation of lower order, which can lead to greater numerical stability.
As it will be shown in Section 5.4, that is indeed the case. Notice that previously known
methods have O(n2) or even O(n3) computational complexity.

The Horner’s rule (see, e.g., [22, Eq. (1.2.2)]) for evaluating the nth degree polynomial
given in the power basis also has the computational complexity O(n). Taking into account
that the dual Bernstein basis is much more complicated than the power basis, the algorithms
based on the recurrence relation for evaluating Dn

i (x;α, β) or a polynomial given in the
form (5.9) are interesting.

5.4 Algorithms for evaluating dual Bernstein polynomials

Let us come back to Problem 5.5 of computing all n+1 dual Bernstein polynomials of degree n
for fixed n ∈ N, α, β > −1 and x ∈ [0, 1]. Recall that these polynomials are dual to Bernstein
basis polynomials in the interval [0, 1] (see (1.6) and Definition 1.54). So, in the context of
applications of polynomials Dn

i (x;α, β) presented in Section 5.3, the issue of their evaluation
for 0 ≤ x ≤ 1 is the most important.

If x ∈ {0, 1} then the value of the dual Bernstein polynomial can be easily obtained
(cf. (1.41) or (1.42)). Now, suppose that x ∈ (0, 1). In this section algorithms for evaluating
polynomialsDn

i (x;α, β) (0 ≤ i ≤ n) using the first-order non-homogeneous recurrence relation
(cf. Theorem 5.3) are proposed.

To obtain accurate methods, it is necessary to be mindful of numerical difficulties arising
when recursive computations are performed. See [93]. This is the reason that, in the sequel,
two ways of using relation (5.5), i.e., with a forward and a backward direction of computations,
are considered.

For a fixed 0 ≤ i ≤ n, let us define a forward computation of Dn
i (x;α, β) as a computa-

tion that, starting from Dn
0 (x;α, β), computes Dn

i (x;α, β) using Theorem 5.3. Analogously,
a backward computation of Dn

i (x;α, β) starts with Dn
n(x;α, β) and uses Theorem 5.3 as well.

As mentioned before, some numerical difficulties may arise when performing these compu-
tations — especially for sufficiently large n and i. One can mitigate this issue by perform-
ing, for certain parameter J ∈ N (0 ≤ J ≤ n), a forward computation of Dn

i (x;α, β) for
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i = 0, 1, . . . , J and a backward computation of Dn
i (x;α, β) for i = J + 1, J + 2, . . . , n. Note

that, using Eq. (1.37), a backward computation can be expressed as a forward computation
with changed parameters.

In order to determine the value of J , one can use the function

J ≡ J(n, x) = round (n · p(x)) , (5.10)

where p is a cubic polynomial in x which satisfies the following interpolation conditions:

x 0.01 0.3 0.7 0.99
p(x) 0.1 0.4 0.6 0.9

,

and round(z) denotes the nearest integer to the real number z. It can be checked that

p(x) = 1.58084223194525186 . . . · x3 − 2.37126334791787779 . . . · x2

+1.62239798468112882 . . . · x+ 0.08401156564574855 . . . .

Such choice of J has been established experimentally and is used in all algorithms, as well
as numerical tests (see §5.4.2).

5.4.1 Algorithms

For n ∈ N and α, β > −1, an implementation of a forward computation of Dn
i (x;α, β) for

i = 0, 1, . . . , j and a fixed 0 ≤ j ≤ n at one point x ∈ (0, 1) is presented in Algorithm 5.1.

Algorithm 5.1 Computation of j + 1 first dual Bernstein polynomials of degree n at point
x ∈ (0, 1)

1: procedure DualBer(n, α, β, x, j,K)
2: α1← α+ 1, β1← β + 1
3: n1← n+ α1, x1x← (x− 1)/x
4: C ← (−1)n+1 ·K/n1 ·

∏n−1
j=0 (1 + β1/(j + α1))

5: R1← n1 ·R(α,β1)
n (x)

6: R2← x1x · (n+ β1) ·R(α1,β)
n (x)

7: D[0]← −C ·R1
8: for i← 1, j do
9: p← i− n− 1
10: q ← i/p
11: C ← C · (p− α1)/(i+ β)
12: D[i]← q · x1x ·D[i− 1]− C · (R1 + q ·R2)
13: end for
14: return D
15: end procedure

For fixed n ∈ N and α, β > −1, Algorithm 5.2 computes the values of all n + 1 dual
Bernstein polynomials of degree n at one point x ∈ (0, 1). It computes the value J (cf. (5.10))
and then performs two forward computations, utilizing Algorithm 5.1. This algorithm returns
an array D ≡ D[0..n], where

D[i] = Dn
i (x;α, β) (0 ≤ i ≤ n).
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Remark 5.6. Shifted Jacobi polynomials R
(α,β+1)
n and R

(α+1,β)
n (cf. lines 5, 6 in Algo-

rithm 5.1) can be evaluated using the recurrence relation (1.10) (cf. Remark 1.28) or even the
explicit formula (1.14). Thus, the computational complexity of Algorithm 5.2 is O(n).

Algorithm 5.2 Computation of all n + 1 dual Bernstein polynomials of degree n at point
x ∈ (0, 1)

1: procedure AllDualBer(n, α, β, x)
2: α1← α+ 1, β1← β + 1
3: K ← Γ(α1 + β1)/ (Γ(α1) · Γ(β1))
4: J ← J(n, x)
5: D[0..J ]← DualBer(n, α, β, x, J,K)
6: D[J + 1..n]← ReverseArray(DualBer(n, β, α, 1− x, n− J − 1,K))
7: return D
8: end procedure

Note that the quantities q and C in Algorithm 5.1, as well as the quantity K in Algo-
rithm 5.2, are independent of x. They can be, therefore, computed once for given n ∈ N,
α, β > −1 and used across multiple instances of Problem 5.5 for different values of x ∈ (0, 1).
This approach is realized in Algorithms 5.3 and 5.4. Note that they require O(n) additional
memory to store C and q. The execution of Algorithm 5.4 returns a two-dimensional array

Algorithm 5.3 Computation of j + 1 first dual Bernstein polynomials of degree n at point
x ∈ (0, 1) — with preprocessing

1: procedure DualBer-2(n, α, β, x, j, q, C)
2: α1← α+ 1, β1← β + 1
3: n1← n+ α1, x1x← (x− 1)/x

4: R1← n1 ·R(α,β1)
n (x)

5: R2← x1x · (n+ β1) ·R(α1,β)
n (x)

6: D[0]← C[0] ·R1/n1
7: for i← 1, j do
8: D[i]← q[i− 1] · x1x ·D[i− 1]− C[i] · (R1 + q[i− 1] ·R2)
9: end for
10: return D
11: end procedure

D ≡ D[0..M, 0..n], where

D[m, i] = Dn
i (xm;α, β) (0 ≤ m ≤M ; 0 ≤ i ≤ n).

The computational complexity of this algorithm is O(nM) (cf. Remark 5.6).

5.4.2 Numerical experiments

The presented algorithms have been tested for numerical stability. The computations have
been performed in the computer algebra system Maple�14—using single (Digits:=8), dou-
ble (Digits:=18) and quadruple (Digits:=32) precision — on a computer with Intel(R)
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Algorithm 5.4 Computation of all n+ 1 dual Bernstein polynomials of degree n at multiple
points x0, x1, . . . , xM ∈ (0, 1)

1: procedure AllDualBer-2(n, α, β, [x0, x1, . . . , xM ])
2: α1← α+ 1, β1← β + 1
3: K ← Γ(α1 + β1)/ (Γ(α1) · Γ(β1))
4: q[0]← −1/n
5: C[0]← (−1)n ·K ·

∏n−1
j=0 (1 + β1/(j + α1))

6: C[1]← C[0]/β1
7: for i← 1, n− 1 do
8: p← i− n
9: q[i]← (i+ 1)/p
10: C[i+ 1]← C[i] · (p− α1)/(i+ β1)
11: end for
12: for m← 0,M do
13: J ← J(n, xm)
14: D[m, 0..J ]← DualBer-2(n, α, β, xm, J, q, C)
15: D[m,J + 1..n]← ReverseArray(DualBer-2(n, β, α, 1− xm, n− J − 1, q, C))
16: end for
17: return D
18: end procedure

Core(TM) i5-2540M CPU @ 2.60GHz processor and 4 GB of RAM. The code is available at
https://bit.ly/fch-phd-ch5.

The accuracy of approximation ṽ of a nonzero number v is measured by computing the
quantity

acc(ṽ, v) := − log10

∣∣∣∣1− ṽ

v

∣∣∣∣ . (5.11)

Hence, acc(ṽ, v) is the number of exact significant decimal digits (acc in short) in the ap-
proximation ṽ of the number v.

For fixed n ∈ N and α, β > −1, the experiments involved computing values of all n+1 dual
Bernstein polynomials of degree n for x ∈ {0.01, 0.02, . . . , 0.99} using Algorithm 5.4, where
Maple�14 GAMMA and JacobiP procedures have been used to compute values of Γ function and
shifted Jacobi polynomials, respectively. For each of (n+ 1) · 99 obtained values, the number
of exact significant decimal digits has been computed (cf. (5.11)), where results computed by
the same algorithm but in a 512-digit arithmetic (Digits:=512) have been assumed to be
accurate while comparing to these done for Digits:=8,18,32.

The experiments have been performed for dual Bernstein polynomials of degrees

n ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000}

and three α, β choices — Legendre’s (α = β = 0), Chebyshev’s (α = β = −0.5), and a non-
standard choice (α = −0.33, β = 5.6). A mean (Table 5.1), first percentile (Table 5.2) and
minimal (Table 5.3) number of exact significant decimal digits have been computed.

The numerical results show that the proposed method for evaluating dual Bernstein poly-
nomials works very well even for large degrees. Note that results given in Tables 5.1 and 5.2
are almost the same. It indicates that at least 99% of obtained values have greater or similar
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Digits:=8 Digits:=18 Digits:=32

α = β = 0 7.64 17.67 31.80

n = 10 α = β = −0.5 6.97 17.03 31.04

α = −0.33, β = 5.6 7.14 17.39 31.27

α = β = 0 7.24 17.15 31.14

n = 20 α = β = −0.5 6.72 16.82 30.95

α = −0.33, β = 5.6 6.65 17.47 31.17

α = β = 0 6.77 17.58 30.46

n = 50 α = β = −0.5 6.58 17.47 30.55

α = −0.33, β = 5.6 7.00 17.43 30.94

α = β = 0 6.98 16.80 30.32

n = 100 α = β = −0.5 6.46 17.06 31.00

α = −0.33, β = 5.6 6.79 17.30 31.16

α = β = 0 7.28 16.56 31.18

n = 200 α = β = −0.5 6.41 16.12 30.65

α = −0.33, β = 5.6 6.21 17.02 31.00

α = β = 0 6.65 17.01 30.95

n = 500 α = β = −0.5 6.08 16.36 30.70

α = −0.33, β = 5.6 6.13 16.80 30.91

α = β = 0 6.51 16.31 30.23

n = 1000 α = β = −0.5 6.23 16.56 29.99

α = −0.33, β = 5.6 5.85 15.73 29.73

α = β = 0 6.09 16.88 29.64

n = 2000 α = β = −0.5 6.87 16.43 29.56

α = −0.33, β = 5.6 6.21 15.81 30.43

α = β = 0 5.57 15.36 30.12

n = 5000 α = β = −0.5 5.62 15.45 29.57

α = −0.33, β = 5.6 5.29 15.42 30.51

Table 5.1: Mean number of acc (cf. (5.11)) obtained by using Algorithm 5.4 for x ∈
{0.01, 0.02, . . . , 0.99}.

number of exact significant decimal digits than these given in Table 5.1, thus making the
presented algorithms useful (for example, in numerical evaluation of integrals (1.70), even for
large n). Even though in pessimistic cases the algorithms lose a significant amount of preci-
sion (especially for Digits:=8; see Table 5.3), they happen rarely (compare with Table 5.2)
and do not significantly affect the average number of correct decimal digits (cf. Table 5.1).
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Digits:=8 Digits:=18 Digits:=32

α = β = 0 6.34 16.36 30.47

n = 10 α = β = −0.5 6.01 16.18 30.41

α = −0.33, β = 5.6 6.31 16.26 30.35

α = β = 0 6.12 16.23 30.25

n = 20 α = β = −0.5 5.99 16.16 30.32

α = −0.33, β = 5.6 6.13 16.30 30.18

α = β = 0 6.31 16.44 30.16

n = 50 α = β = −0.5 6.22 16.28 30.26

α = −0.33, β = 5.6 6.31 16.31 30.34

α = β = 0 6.32 16.38 30.15

n = 100 α = β = −0.5 6.17 16.36 30.36

α = −0.33, β = 5.6 6.28 16.27 30.23

α = β = 0 6.11 16.13 30.21

n = 200 α = β = −0.5 6.05 15.89 30.11

α = −0.33, β = 5.6 5.96 16.17 30.15

α = β = 0 6.17 16.18 30.15

n = 500 α = β = −0.5 5.90 16.02 30.17

α = −0.33, β = 5.6 5.94 16.03 30.16

α = β = 0 6.05 16.02 29.93

n = 1000 α = β = −0.5 5.87 16.11 29.82

α = −0.33, β = 5.6 5.74 15.61 29.63

α = β = 0 5.84 16.05 29.54

n = 2000 α = β = −0.5 6.02 16.01 29.42

α = −0.33, β = 5.6 5.86 15.61 29.96

α = β = 0 5.46 15.30 29.65

n = 5000 α = β = −0.5 5.49 15.36 29.46

α = −0.33, β = 5.6 5.24 15.35 29.82

Table 5.2: First percentile number of acc (cf. (5.11)) obtained by using Algorithm 5.4 for
x ∈ {0.01, 0.02, . . . , 0.99}.
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Digits:=8 Digits:=18 Digits:=32

α = β = 0 4.09 14.69 28.96

n = 10 α = β = −0.5 4.97 15.36 29.06

α = −0.33, β = 5.6 4.93 14.96 29.09

α = β = 0 5.33 15.35 29.41

n = 20 α = β = −0.5 4.86 14.87 29.56

α = −0.33, β = 5.6 5.39 15.12 28.91

α = β = 0 4.83 14.65 28.75

n = 50 α = β = −0.5 4.47 14.32 28.48

α = −0.33, β = 5.6 4.65 14.13 29.16

α = β = 0 4.47 14.84 28.73

n = 100 α = β = −0.5 4.36 14.37 28.48

α = −0.33, β = 5.6 2.98 12.84 27.35

α = β = 0 3.41 13.54 27.19

n = 200 α = β = −0.5 3.62 13.42 27.73

α = −0.33, β = 5.6 4.17 14.31 28.04

α = β = 0 3.15 13.65 27.06

n = 500 α = β = −0.5 2.01 12.28 26.47

α = −0.33, β = 5.6 3.37 13.37 27.26

α = β = 0 2.92 12.97 27.30

n = 1000 α = β = −0.5 3.21 13.41 27.56

α = −0.33, β = 5.6 3.18 12.99 27.44

α = β = 0 2.16 12.24 26.03

n = 2000 α = β = −0.5 1.46 11.85 25.40

α = −0.33, β = 5.6 2.11 11.93 25.97

α = β = 0 0 5.38 18.85

n = 5000 α = β = −0.5 0 4.25 18.41

α = −0.33, β = 5.6 0 5.64 19.33

Table 5.3: Minimal number of acc (cf. (5.11)) obtained by using Algorithm 5.4 for x ∈
{0.01, 0.02, . . . , 0.99}.
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5.5 Homogeneous relations of degree two and three

Using Theorem 5.3, one can obtain homogeneous recurrence relations of order 2 and 3 for
dual Bernstein polynomials by eliminating the non-homogeneity.

Corollary 5.7. Dual Bernstein polynomials satisfy the second-order recurrence relation of
the form

u0(i)D
n
i (x;α, β) + u1(i)D

n
i+1(x;α, β) + u2(i)D

n
i+2(x;α, β) = 0 (0 ≤ i ≤ n− 2),

where

u0(i) := (x− 1)(i+ 1)(n− i+ α)T
(α,β)
n,i+1(x),

u1(i) := x(n− i)(n− i+ α)T
(α,β)
n,i+1(x) + (x− 1)(i+ 2)(i+ β + 2)T

(α,β)
ni (x),

u2(i) := x(n− i− 1)(i+ β + 2)T
(α,β)
ni (x),

and the notation used is that of (5.6).

Proof. First, observe that from Eq. (1.45) it follows that

(n− i+ α)C
(α,β)
n,i+1 + (i+ β + 2)C

(α,β)
n,i+2 = 0.

Now, let us add the relation (5.5) multiplied by (n− i+ α)T
(α,β)
n,i+1(x) to the same relation for

i := i+ 1 and multiplied by (i+ β + 2)T
(α,β)
ni (x). As a result, one gets

u0(i)D
n
i (x;α, β) + u1(i)D

n
i+1(x;α, β) + u2(i)D

n
i+2(x;α, β) =

=
−T (α,β)

ni (x)T
(α,β)
n,i+1(x)

(2n+ σ + 2)

(
(n− i+ α)C

(α,β)
n,i+1 + (i+ β + 2)C

(α,β)
n,i+2

)
= 0.

The coefficients uj (j = 0, 1, 2) are not simple because they depend on two shifted Jacobi
polynomials of degree n in x. However, these polynomials are independent of i and can be
efficiently computed with the recurrence relation (1.10) (cf. Remark 1.28) and re-used for all
remaining i. Thus, Corollary 5.7 may be useful in numerical practice.

One can get a recurrence relation with simple coefficients by using the same method which
was used in the proof of Theorem 5.2.

Corollary 5.8. For 0 ≤ i ≤ n−3, the polynomials Dn
i (x;α, β) satisfy the following third-order

recurrence relation:

w0(i)D
n
i (x;α, β) + w1(i)D

n
i+1(x;α, β) + w2(i)D

n
i+2(x;α, β) + w3(i)D

n
i+3(x;α, β) = 0. (5.12)

Here

w0(i) := (x− 1)(i+ 1)(n− i+ α− 1)2,

w1(i) := (n− i+ α− 1)[x(n− i)(n− i+ α) + 2(x− 1)(i+ 2)(i+ β + 2)],

w2(i) := (i+ β + 2)[(x− 1)(i+ 3)(i+ β + 3) + 2x(n− i− 1)(n− i+ α− 1)],

w3(i) := x(n− i− 2)(i+ β + 2)2.



CHAPTER 5. NEW RECURRENCE RELATIONS FOR DB POLYNOMIALS 124

Proof. From Theorem 5.3, it follows that

2n+ σ + 2

−C(α,β)
n,i+1

(
(x− 1)(i+ 1)Dn

i (x;α, β) + x(n− i)Dn
i+1(x;α, β)

)
= T

(α,β)
ni (x). (5.13)

Now, T (α,β)
ni (x) is a polynomial of degree 1 in i. Therefore,

(E − I)2T
(α,β)
ni (x) = 0,

where E acts on the variable i (cf. (5.1)). Applying the operator (E − I)2 to both sides
of (5.13) gives

(E − I)2
2n+ σ + 2

−C(α,β)
n,i+1

(
(x− 1)(i+ 1)I + x(n− i)E

)
Dn
i (x;α, β) = 0.

The left-hand side can be expanded as follows:

(x− 1)
i+ 1

−C(α,β)
n,i+1

Dn
i (x;α, β) +

(
x

n− i
−C(α,β)

n,i+1

− 2(x− 1)
i+ 2

−C(α,β)
n,i+2

)
Dn
i+1(x;α, β)

+

(
(x− 1)

i+ 3

−C(α,β)
n,i+3

− 2x
n− i− 1

−C(α,β)
n,i+2

)
Dn
i+2(x;α, β) + x

n− i− 2

−C(α,β)
n,i+3

Dn
i+3(x;α, β) = 0.

Observe that from Eq. (1.45), it follows that

C
(α,β)
n,i+3

C
(α,β)
n,i+2

=
−(n− i+ α− 1)

i+ β + 3

and, in turn,
C

(α,β)
n,i+3

C
(α,β)
n,i+1

=
(n− i+ α− 1)2

(i+ β + 2)2
.

After multiplying each side by −C(α,β)
n,i+3(i+ β + 2)2, one gets

w0(i)D
n
i (x;α, β) + w1(i)D

n
i+1(x;α, β) + w2(i)D

n
i+2(x;α, β) + w3(i)D

n
i+3(x;α, β) = 0.

Compared to relation (5.4), Eq. (5.12) is simpler: i) it has lower order (third instead of
fourth); ii) its coefficients wj (0 ≤ j ≤ 3) are cubic (instead of quintic) polynomials in i.

Remark 5.9. Using the new recurrence relations given in this Section, one can solve Prob-
lem 5.5 with O(n) computational complexity (cf. Remark 1.28) — the same as in the case of
the first-order non-homogeneous relation, presented in more detail in Section 5.4.



Chapter 6

Fast parallel k, l-constrained Bézier
curve degree reduction

The new recurrence relations given in Chapter 5 can find an application, e.g., in reducing the
degree of a Bézier curve (cf. §1.7.4). In this chapter, a k, l-constrained version of this problem
will be considered, i.e., for a Bézier curve Pn of degree n, one seeks a curve Pm of degree m
(m < n) which, for k, l ∈ N such that k + l < m, satisfies the conditions

P(z)
n (0) = P(z)

m (0) (z = 0, 1, . . . , k − 1),

P(z)
n (1) = P(z)

m (1) (z = 0, 1, . . . , l − 1),

and the curve Pm is optimal in the sense of the least-square approximation related to the
shifted Jacobi scalar product 〈·, ·〉α,β (cf. (1.6)). It means that the value of the integral∫ 1

0
(1− x)αxβ‖Pn(t)− Pm(t)‖22dt (α, β > −1)

(cf. (1.59)) is minimized. In the sequel, when no parameters of a scalar product are given, it
is assumed that the parameters are α, β, i.e.,

〈·, ·〉 ≡ 〈·, ·〉α,β.

As shown in [97], finding the curve Pm can be done using the dual projection (cf. Theo-
rem 1.38), which involves computing O(nm) scalar products of Bernstein polynomials and
their dual counterparts of different degrees. In §1.7.4, these products are scaled by a certain
factor and arranged into the Ψ table (see Theorem 1.77 and Figure 1.10), where

Ψ = [Ψij ]

with
Ψij := dm−k−li−k (j − k;β + 2k, α+ 2l, n− k − l)

(cf. (1.61)) is defined in terms of dual discrete Bernstein polynomials (see §1.5.4). The pro-
posed method of evaluating the elements of the Ψ table is using the recurrence relation given
in Theorem 1.81. Due to the shape of the recurrence relation, the options to perform the
computations in parallel are limited.

125
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In Section 6.1, new recurrence relations are given, based on Theorems 1.81 and 5.3.
More precisely, a first-order non-homogeneous relation connecting Ψij with Ψi+1,j+1 is found.
This, along with the relation given in Theorem 1.81, allows to derive two additional non-
homogeneous second-order recurrence relations, connecting the quantities Ψi,j−1, Ψij , Ψi,j+1

and Ψi−1,j , Ψij , Ψi+1,j , respectively.
New recurrence schemes which use the new relations are given in Section 6.2. Aside from

computing the necessary initial values, the new recurrence relations allow to compute each
row, column or diagonal (depending on the relation used) of the Ψ table independently. Even
though the asymptotical number of arithmetic operations required to compute the Ψ table is
unchanged, the new schemes are more convenient when it comes to parallel computations.

6.1 New recurrence relations for Ψij

6.1.1 Diagonal recurrence relation for Ψij

Theorem 6.1. Let m,n, k, l ∈ N be such that m < n and k + l ≤ m. The quantities Ψij,
defined by Eq. (1.61), (i = k, k + 1, . . . ,m − l − 1, j = k, k + 1, . . . , n − l − 1) satisfy the
following first-order non-homogeneous recurrence relation:

(m− l − i)(β + k + 1 + j)Ψi+1,j+1 − (i− k + 1)(α+ l + n− j)Ψij

= Lρi ·
(
U ·Qm−k−l + V · ηi ·Qm−k−l+1

)
, (6.1)

where
Qh := Qh(j − k;β + 2k, α+ 2l, n− k − l − 1) (6.2)

are the Hahn polynomials (see Definition 1.33),

L ≡ L(α,β)
mnkl :=

(n− k − l)!(k + l + 1− n)m−k−l(β + 2k + 1)m−k−l+1

(m− k − l)!(2m+ σ + 1)(m+ k + l + σ + 1)n−k−l−1
,

U ≡ Uαmkl := (m− k − l + 1)(m+ α+ l − k + 1),

V ≡ V (α,β)
mn :=

m+ 1− n
m+ n+ σ

,

ρi ≡ ρ(m,n,k,l,α,β)i :=
(−1)m−l−i+1

(α+ 2l + 1)m−l−i(β + 2k + 1)i−k+1
,

ηi ≡ η(m,n,k,l,α,β)i := (m− l − i)(m− k + α+ l + 1)− (i− k + 1)(m− l + β + k + 1),
(6.3)

and σ := α+ β + 1 (cf. (1.8)).

Proof. Theorem 1.62 shows the following relation between constrained dual Bernstein poly-
nomials and non-constrained dual Bernstein polynomials of a lower degree:

D
(m,k,l)
i (x;α, β) =

(
m−k−l
i−k

)
xk(1− x)l(
m
i

) Dm−k−l
i−k (x;α+ 2l, β + 2k).

Now, let us take Eq. (5.5) for n := m− k − l, i := i− k, α := α+ 2l, β := β + 2k, i.e.,

(x− 1)(i− k + 1)Dm−k−l
i−k (x;α+ 2l, β + 2k) + x(m− l − i)Dm−k−l

i−k+1 (x;α+ 2l, β + 2k)

=
−C(α+2l,β+2k)

m−k−l,i−k+1

2m+ σ + 2
T
(α+2l,β+2k)
m−k−l,i−k (x)
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(cf. (5.6) and (1.45)). Substituting dual Bernstein polynomials with constrained dual Bern-
stein polynomials of higher degree gives

−
(
m
i

)
(i− k + 1)(

m−k−l
i−k

)
xk(1− x)l−1

D
(m,k,l)
i (x;α, β) +

(
m
i+1

)
(m− l − i)(

m−k−l
i+1−k

)
xk−1(1− x)l

D
(m,k,l)
i+1 (x;α, β)

=
−C(α+2l,β+2k)

m−k−l,i−k+1

2m+ σ + 2
T
(α+2l,β+2k)
m−k−l,i−k (x).

Now, one can apply
〈
Bn+k+l−1
k+j , ·

〉
to both sides to get

−
(
m
i

)
(i− k + 1)(
m−k−l
i−k

) 〈
Bn+k+l−1
k+j ,

D
(m,k,l)
i (x;α, β)

xk(1− x)l−1

〉
+

(
m
i+1

)
(m− l − i)(
m−k−l
i+1−k

) 〈
Bn+k+l−1
k+j ,

D
(m,k,l)
i+1 (x;α, β)

xk−1(1− x)l

〉

=
−C(α+2l,β+2k)

m−k−l,i−k+1

2m+ σ + 2

〈
Bn+k+l−1
k+j , T

(α+2l,β+2k)
m−k−l,i−k

〉
.

Certainly,
Bn+k+l−1
k+j (x)

xk(1− x)l−1
=

(
n+ k + l − 1

k + j

)(
n

j

)−1
Bn
j (x),

Bn+k+l−1
k+j (x)

xk−1(1− x)l
=

(
n+ k + l − 1

k + j

)(
n

j + 1

)−1
Bn
j+1(x),

thus(
n+ k + l − 1

k + j

)(−(mi )(i− k + 1)(
m−k−l
i−k

)(
n
j

) Φij +

(
m
i+1

)
(m− l − i)(

m−k−l
i+1−k

)(
n
j+1

) Φi+1,j+1

)

=
−C(α+2l,β+2k)

m−k−l,i−k+1

2m+ σ + 2

〈
Bn+k+l−1
k+j , T

(α+2l,β+2k)
m−k−l,i−k

〉
,

where Φij :=
〈
Bn
j , D

(m,k,l)
i (·;α, β)

〉
(cf. (1.62)). Using Eq. (1.60), one can express Φij and

Φi+1,j+1 in terms of Ψij and Ψi+1,j+1 to get

(m− l − i)(β + 2k + 1 + j − k)Ψi+1,j+1 − (i− k + 1)(α+ l + n− j)Ψij

=
−(n− k − l)!C(α+2l,β+2k)

m−k−l,i−k+1

(2m+ σ + 2)(α+ 2l + 1)n−l−j−1(β + 2k + 1)j−k

·
(
n+ k + l − 1

k + j

)−1〈
Bn+k+l−1
k+j , T

(α+2l,β+2k)
m−k−l,i−k

〉
. (6.4)

The left-hand sides of (6.4) and (6.1) are identical. It remains to check that the right-hand
sides of these equations are identical as well.
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Recall (cf. (5.7)) that

T
(α+2l,β+2k)
m−k−l,i−k (x) =

m− l + β + k + 1

2m+ σ + 1
UR

(α+2l,β+2k)
m−k−l (x) +

m− k − l + 1

2m+ σ + 1
ηiR

(α+2l,β+2k)
m−k−l+1 (x)

(cf. (6.3)). Additionally, from (1.45), it follows that

C
(α+2l,β+2k)
m−k−l,i−k+1 =

−(2m+ σ + 2)(σ + 2k + 2l + 1)m−k−l
Kα+2l,β+2k

ρi

(cf. (6.3) and (1.9)). These observations allow to express the right-hand side of (6.4) as

(
n+ k + l − 1

k + j

)−1 (n− k − l)!(σ + 2k + 2l + 1)m−k−l
(2m+ σ + 1)(α+ 2l + 1)n−l−j−1(β + 2k + 1)j−kKα+2l,β+2k

ρi

×
(

(m− l + β + k + 1)U
〈
Bn+k+l−1
k+j , R

(α+2l,β+2k)
m−k−l

〉
+ (m− k − l + 1)ηi

〈
Bn+k+l−1
k+j , R

(α+2l,β+2k)
m−k−l+1

〉)
. (6.5)

Now, let us focus on the scalar products. Observe that〈
Bn+k+l−1
k+j , R

(α+2l,β+2k)
h

〉
=

(
n+ k + l − 1

k + j

)(
n− k − l − 1

j − k

)−1〈
Bn−k−l−1
j−k , R

(α+2l,β+2k)
h

〉
α+2l,β+2k

. (6.6)

Eq. (1.34) gives a shifted Jacobi form of a Bernstein polynomial:

Bn−k−l−1
j−k (x) =

(
n− k − l − 1

j − k

)
(α+ 2l + 1)n−l−1−j(β + 2k + 1)j−k

×
n−k−l−1∑

i=0

(2i+ σ + 2k + 2l)(−(n− k − l − 1))i
(α+ 2l + 1)i(i+ σ + 2k + 2l)n−k−l

·Qi ·R(α+2l,β+2k)
i (x)

(cf. (6.2)). The polynomials R(α+2l,β+2k)
h are orthogonal with respect to

〈
·, ·
〉
α+2l,β+k

, with

〈
R

(α+2l,β+2k)
h , R

(α+2l,β+2k)
h

〉
α+2l,β+2k

= Kα+2l,β+2k ·
(α+ 2l + 1)h(β + 2k + 1)h(σ + 2k + 2l)

h!(2h+ σ + 2k + 2l)(σ + 2k + 2l)h
(6.7)

(cf. (1.7)). Combining the relations (6.6), (1.34) and (6.7) gives〈
Bn+k+l−1
k+j , R

(α+2l,β+2k)
h

〉
=

(
n+ k + l − 1

k + j

)
(α+ 2l + 1)n−l−1−j(β + 2k + 1)j−k

×Kα+2l,β+2k
(−(n− k − l − 1))h(β + 2k + 1)h(σ + 2k + 2l)

(h+ σ + 2k + 2l)n−k−lh!(σ + 2k + 2l)h
Qh. (6.8)

After applying (6.8) twice to (6.5) and doing some algebra, one gets

Lρi

(
UQm−k−l + ηiV Qm−k−l+1

)
(cf. (6.3)). Thus the right-hand side of (6.4) is identical to the right-hand side of (6.1).
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From Eq. (6.1), one can get a recurrence relation for discrete dual Bernstein polynomials
(see §1.5.4). It is a discrete equivalent of Theorem 5.3.

Corollary 6.2. For m < n, i = 0, . . . ,m− 1, j = 0, 1, . . . , n− 1 and α, β > −1, the discrete
dual Bernstein polynomials satisfy a first-order non-homogeneous recurrence relation of the
form

(m− i)(β + 1 + j)dmi+1(j + 1;β, α, n)− (i+ 1)(α+ n− j)dmi (j;β, α, n)

=
(−1)m−i+1n!(1− n)m(β + i+ 2)m−i

m!(2m+ σ + 1)(m+ σ + 1)n−1(α+ 1)m−i
·
(

(m+ 1)(m+ α+ 1) ·Qm(j;β, α, n− 1)

+
m+ 1− n
m+ n+ σ

· [(m− i)(m+ α+ 1)− (i+ 1)(m+ β + 1)] ·Qm+1(j;β, α, n− 1)
)
.

Proof. The result immediately follows from applying Eq. (1.61) to (6.1).

6.1.2 Horizontal and vertical recurrence relations for Ψij

Let m,n, k, l ∈ N be such that m < n and k + l ≤ m. Let L, U , V , ρi, ηi be defined as
in (6.3). Let A(r, s), B(r, s), C(r, s) be defined by Eq. (1.69).

Theorem 6.3. For k + 1 ≤ i ≤ m − l − 1 and k + 1 ≤ j ≤ n − l − 1, the quantities Ψi,j−1,
Ψij, Ψi,j+1 satisfy a second-order non-homogeneous recurrence relation of the form:

A(n, i, j)Ψi,j−1 + [C(m, i)− C(n, j)]Ψij +B(n,m, i, j)Ψi,j+1

=
(m+ l − i+ α+ 1)Lρi−1

(α+ l + n− j)
·
(
U ·Qm−k−l(0) + V · ηi−1 ·Qm−k−l+1(0)

)
− (k + i+ β + 1)Lρi

(β + k + j)
·
(
U ·Qm−k−l(1) + V · ηi ·Qm−k−l+1(1)

)
,

where

A(n, i, j) := A(n, j) +
(k + i+ β + 1)(i− k + 1)(α+ l + n− j + 1)

(β + k + j)
,

B(n,m, i, j) := B(n, j) +
(m+ l − i+ α+ 1)(m− l − i+ 1)(β + k + 1 + j)

(α+ l + n− j)
,

Qh(δ) := Qh(j − k − δ;β + 2k, α+ 2l, n− k − l − 1) (δ ∈ {0, 1}).

Proof. From Eq. (6.1), it follows that

Ψi+1,j =
1

(m− l − i)(β + k + j)

(
(i− k + 1)(α+ l + n− j + 1)Ψi,j−1

+ Lρi ·
(
U ·Qm−k−l(1) + V · ηi ·Qm−k−l+1(1)

))
and

Ψi−1,j =
1

(i− k)(α+ l + n− j)

(
(m− l − i+ 1)(β + k + 1 + j)Ψi,j+1

− Lρi−1 ·
(
U ·Qm−k−l(0) + V · ηi−1 ·Qm−k−l+1(0)

))
.
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One can apply these equations to Eq. (1.68) to get

(
A(n, j) +

(k + i+ β + 1)(i− k + 1)(α+ l + n− j + 1)

(β + k + j)

)
Ψi,j−1 +

[
C(m, i)− C(n, j)

]
Ψij

+
(
B(n, j) +

(m+ l − i+ α+ 1)(m− l − i+ 1)(β + k + 1 + j)

(α+ l + n− j)

)
Ψi,j+1

=
(m+ l − i+ α+ 1)Lρi−1

(α+ l + n− j)
·
(
U ·Qm−k−l(0) + V · ηi−1 ·Qm−k−l+1(0)

)
− (k + i+ β + 1)Lρi

(β + k + j)
·
(
U ·Qm−k−l(1) + V · ηi ·Qm−k−l+1(1)

)
.

In the Ψ table, Ψk−1,j ≡ Ψm−l+1,j ≡ 0 (cf. Figure 1.10) for j = k, k + 1, . . . , n − l, thus
simpler relations exist for the first and the last row. The relation for the first row of the Ψ
table, i.e., for Ψk,j (j = l, l+ 1, . . . , n− l), is given by (1.67). A similar relation can be proved
for the last (i.e., i := m− l) row of the Ψ table.

Theorem 6.4. For k < m − l, the quantities Ψm−l,j (j = k, k + 1, . . . , n − l − 1) satisfy a
second-order homogeneous recurrence relation of the form

Ψm−l,j+1 = H(j)Ψm−l,j − S(j)Ψm−l,j−1 (j = k + 1, . . . , n− l − 2), (6.9)

where

Ψm−l,k =
(n− k − l)!(k + l + 1− n)m−k−l

(m− k − l)!(m+ σ + k + l + 1)n−k−l
,

Ψm−l,k+1 = H(k)Ψm−l,k.
(6.10)

Here 
H(j) ≡ H(j;m,n, k, l, α, β) :=

(
1 + S(j) +

(m− k − l)(m+ k + l + σ + 1)

(j + l + 1− n)(j + β + k + 1)

)
,

S(j) ≡ S(j;m,n, k, l, α, β) :=
(j − k)(j − α− l − 1− n)

(j + l + 1− n)(j + β + k + 1)
.

Proof. From Eq. (1.61), it follows that the elements in the last row can be expressed as a
particular case of dual discrete Bernstein polynomials:

Ψm−l,j = dm−k−lm−l−k(j − k;β + 2k, α+ 2l, n− k − l),

which, after applying the symmetry relation (1.46), gives

Ψm−l,j = dm−k−lm−l−k(j − k;β+ 2k, α+ 2l, n− k− l) = dm−k−l0 (n− l− j;α+ 2l, β+ 2k, n− k− l).

The dual discrete Bernstein polynomial on the right-hand side can be expressed as a linear
combination of Hahn polynomials with shifted parameters (cf. (1.47)), which results in the
following representation of Ψm−l,j :

Ψm−l,j =
(n− k − l)!(k + l + 1− n)m−k−l

(m− k − l)!(m+ σ + k + l + 1)n−k−l
Qm−k−l(j−k;β+2k, α+2l+1, n−k− l−1).

(6.11)
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Eq. (1.20) allows to substitute the Hahn polynomial with its hypergeometric form

3F2

(
k + l −m,m+ k + l + σ + 1, k − j

β + 2k + 1, k + l + 1− n

∣∣∣∣ 1) .
For j := k and j := k + 1, the upper parameter k − j of the hypergeometric function is 0
or −1, respectively. After applying Definition 1.18, the expressions for Ψm−l,k and Ψm−l,k+1

immediately follow.
To find the recurrence relation to compute the remaining elements of the last row, one

can use the difference equation for Hahn polynomials given in Theorem 1.36. Using the
substitution

k := m− k − l, x := j − k, α := β + 2k, β := α+ 2l + 1

results in

(j + l + 1− n)(j + β + k + 1)Qm−k−l(j − k + 1;β + 2k, α+ 2l + 1, n− k − l − 1)

−
[
(j+l+1−n)(j+β+k+1)+(j−k)(j−α−l−1−n)

]
Qm−k−l(j−k;β+2k, α+2l+1, n−k−l−1)

+ (j − k)(j − α− l − 1− n)Qm−k−l(j − k − 1;β + 2k, α+ 2l + 1, n− k − l − 1)

= (m− k − l)(m+ k + l + σ + 1)Qm−k−l(j − k;β + 2k, α+ 2l + 1, n− k − l − 1).

Using (6.11), one can represent the Hahn polynomials with the quantities Ψm−l,j−1, Ψm−l,j ,
Ψm−l,j+1, and, after some algebra, get the recurrence relation

Ψm−l,j+1 = H(j)Ψm−l,j − S(j)Ψm−l,j−1 (j = k + 1, . . . , n− l − 1).

Note that Ψm−l,n−l cannot be computed using Theorem 6.4 and it has to be computed
using a different relation (e.g., Theorem 6.1). If k = m− l then Ψm−l,j ≡ Ψkj and thus it can
be computed using Theorem 1.80.

Theorem 6.5. For k + 1 ≤ i ≤ m − l − 1 and k + 1 ≤ j ≤ n − l − 1, the quantities Ψi−1,j,
Ψij, Ψi+1,j satisfy the following second-order non-homogeneous recurrence relation:

A(n,m, i, j)Ψi−1,j + [C(m, i)− C(n, j)]Ψij +B(m, i, j)Ψi+1,j

=
(k − j)Lρi
(i− k + 1)

·
(
U ·Qm−k−l(1) + V · ηi ·Qm−k−l+1(1)

)
− (j + l − n)Lρi−1

(m− l − i+ 1)
·
(
U ·Qm−k−l(0) + V · ηi−1 ·Qm−k−l+1(0)

)
,

where

A(n,m, i, j) := −A(m, i) ·
(

1 +
(j + l − n)(α+ l + n− j)

(m− l − i+ 1)(m+ l − i+ α+ 1

)
,

B(m, i, j) := −B(m, i) ·
(

1 +
(k − j)(β + k + j)

(k + i+ β + 1)(i− k + 1)

)
,

Qh(δ) := Qh(j − k − δ;β + 2k, α+ 2l, n− k − l − 1) (δ ∈ {0, 1}).
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Proof. From Eq. (6.1), it follows that:

Ψi,j−1 =
1

(i− k + 1)(α+ l + n− j + 1)

(
(m− l − i)(β + k + j)Ψi+1,j

− Lρi ·
(
U ·Qm−k−l(1) + V · ηi ·Qm−k−l+1(1)

))
,

Ψi,j+1 =
1

(m− l − i+ 1)(β + k + 1 + j)

(
(i− k)(α+ l + n− j)Ψi−1,j

+ Lρi−1 ·
(
U ·Qm−k−l(0) + V · ηi−1 ·Qm−k−l+1(0)

))
.

Applying these relations to Eq. (1.68) and doing simple algebra concludes the proof.

The same approach, when taking into account that some elements in Eq. (1.68) are equal
to zero, gives the recurrence relations for the kth and (n− l)th columns of the Ψ table.

Theorem 6.6. The elements Ψik (i = k + 1, k + 2, . . . ,m − l − 1) satisfy the second-order
non-homogeneous recurrence relation of the form

B(m, i)Ψi+1,k−
[
C(m, i)−C(n, k)

]
Ψik+

(
A(m, i)+

(n− k − l)(i− k)(α+ l + n− k)

m− l − i+ 1

)
Ψi−1,k

=
k + l − n

m− l − i+ 1
Lρi−1 ·

(
U + V · ηi−1

)
. (6.12)

Proof. From Eq. (1.68) and the fact that Ψi,k−1 ≡ 0, one gets

[C(m, i)− C(n, k)]Ψik +B(n, k)Ψi,k+1 −A(m, i)Ψi−1,k −B(m, i)Ψi+1,k = 0. (6.13)

Adding (6.12) and (6.13) and using the fact that B(n, k) = (k+ l−n)(2k+β+ 1) (cf. (1.69))
gives, after some algebra,

− (i− k)(α+ l + n− k)Ψi−1,k

+ (m− l − i+ 1)(2k + β + 1)Ψi,k+1 = Lρi−1 ·
(
U + V · ηi−1

)
. (6.14)

It is sufficient to prove that (6.14) holds.
Now, let us take a look at Ψi,k+1. Eq. (6.1), combined with the fact that

Qh(0;α, β,N) ≡ 1

for any h ∈ N (cf. Definition 1.33), gives a recursive expression

(m− l − i+ 1)(β + 2k + 1)Ψi,k+1 = (i− k)(α+ l + n− k)Ψi−1,k

+ Lρi−1 ·
(
U + V · ηi−1

)
,

which concludes the proof.
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Remark 6.7. The initial value

Ψm−l,k =
(n− k − l)!(k + l + 1− n)m−k−l

(m− k − l)!(m+ σ + k + l + 1)n−k−l

is given by (6.10). By applying Theorem 6.1 to the initial values given in (6.10) and using
some algebra, one gets an expression for Ψm−l−1,k:

Ψm−l−1,k = −
Ψm−l,k

α+ 2l + 1
·
(
m+ k − l + β + 1 +

m+ k + l + σ + 1

n− k − l − 1

)
.

Theorem 6.8. The elements Ψi,n−l (i = k+ 1, k+ 2, . . . ,m− l− 1) satisfy the second-order
non-homogeneous recurrence relation of the form((k − n+ l)(m− l − i)(β + k + n− l)

i− k + 1
−B(m, i)

)
Ψi+1,n−l + [C(m, i)− C(n, n− l)]Ψi,n−l

−A(m, i)Ψi−1,n−l =
k − n+ l

i− k + 1
·Lρi ·

(
U ·Qm−k−l(n− k − l− 1;β + 2k, α+ 2l, n− k− l− 1)

+ V ηi ·Qm−k−l+1(n− k − l − 1;β + 2k, α+ 2l, n− k − l − 1)
)
.

Proof. The proof is analogous to the proof of Theorem 6.6 and is completed by applying
Theorem 6.1 to Eq. (1.68).

6.2 Computing the Ψ table

The recurrence relations presented in the previous section can be used to efficiently find the
values of Ψij for k ≤ i ≤ m − l, k ≤ j ≤ n − l (cf. §1.7.4). Although, when compared to the
method based on Eq. (1.68), these approaches do not improve the computational complexity
as a whole, they provide a much more potent ground for parallel computations.

6.2.1 Efficient computation of parameters in recurrence relations

Computing the coefficients

The coefficients L, U , V can be computed once and used throughout the computation of the
whole table. The complexity of computing L is O(n) (taking into account that n > m), while
U and V can be computed in O(1) time.

Now, one needs to compute ρi and ηi for i = k, k + 1, . . . ,m − l − 1. This can be done
efficiently in O(n) time using the following relations (they follow directly from Eq. (6.3)):

ρk =
(−1)m−k−l+1

(α+ 2l + 1)m−k−l(β + 2k + 1)
,

ρi+1 =
(−1)(β + k + i+ 2)

(m+ α+ l − i)
· ρi (i = k, k + 1, . . . ,m− l − 2),

ηk = (m− k − l)(m− k + α+ l)− (β + 2k + 1),

ηi+1 = ηi − (2m+ α+ β + 2) (i = k, k + 1, . . . ,m− l − 2).

While the recursive approach to computing ηi does not reduce the O(m − k − l) asymp-
totic computational complexity, this way of computation reduces the number of arithmetic
operations required.
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Computing the Hahn polynomials

Over the course of the computations, in Theorems 6.1, 6.3, and 6.5, it is necessary to compute
the values of Hahn polynomials. More precisely, one needs to find the values of

Qm−k−l(j;β + 2k, α+ 2l, n− k − l − 1) (j = 0, 1, . . . , n− k − l − 1)

and
Qm−k−l+1(j;β + 2k, α+ 2l, n− k − l − 1) (j = 0, 1, . . . , n− k − l − 1).

Let δ ∈ {0, 1}. Using Eq. (1.20), one gets simple expressions for j = 0 and j = 1:

Qm−k−l+δ(0;β + 2k, α+ 2l, n− k − l − 1) ≡ 1,

Qm−k−l+δ(1;β+2k, α+2l, n−k−l−1) = 1− (m− k − l + δ)(m+ δ + α+ β + k + l + 1)

(β + 2k + 1)(n− k − l − 1)
.

The values of Hahn polynomials for larger j can be found using the difference equa-
tion (1.22), i.e.,

Qm−k−l+δ(x+ 1;β + 2k, α+ 2l, n− k − l − 1)

=
(

1 +
x(x− α+ k − l − n) + (m− k − l + δ)(m+ δ + σ + k + l)

(x− n+ k + l + 1)(x+ β + 2k + 1)

)
×Qm−k−l+δ(x;β + 2k, α+ 2l, n− k − l − 1)

− x(x− α+ k − l − n)

(x− n+ k + l + 1)(x+ β + 2k + 1)
Qm−k−l+δ(x− 1;β + 2k, α+ 2l, n− k − l − 1).

6.2.2 Computations based on the diagonal recurrence relation

In §1.7.4, a simple way for computing the elements in the kth row is given, i.e., one can easily
compute all elements Ψkj for j = k, k+ 1, . . . , n− l using Theorem 1.80. This gives an initial
value which allows to use Theorem 6.1 to compute all Ψij such that j ≥ i. One still has to
find the initial values for the case when j < i. To do that, one can compute a part of the last
row. It is only necessary to compute the elements Ψm−l,j for j = k, k+ 1, . . . ,m− l− 1 using
Theorem 6.4. The remainder of the last row, i.e., Ψm−l,m−l and all subsequent elements, will
be computed using Theorem 6.1, starting from the kth row. Note that each of n+m− 2k −
2l + 1 diagonal recurrence sequences (one for each initial value) is independent and can be
computed in parallel. Figure 6.1 demonstrates this approach. Its implementation is given in
Algorithm 6.1.

6.2.3 Computations based on the vertical recurrence relation

Provided that at least two elements in each column are given, Theorems 6.5, 6.6 and 6.8 allow
to compute all the elements in the Ψ table.

The elements Ψkk,Ψk,k+1, . . . ,Ψk,n−l can be found using Theorem 1.80. These quantities
can then be used to compute Ψk+1,k+1,Ψk+1,k+2, . . . ,Ψk+1,n−l by applying Theorem 6.1. The
values Ψm−l,k and Ψm−l−1,k are given by Remark 6.7.
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Ψ·,k Ψ·,k+1 Ψ·,n−l

Ψk,·

Ψk+1,·

Ψm−l,·

Figure 6.1: A recurrence scheme for the computation of the Ψ table organized around The-
orem 6.1. Gray squares are computed using explicit formulas, while the arrows denote the
recurrence relations used.

Algorithm 6.1 Computation of the Ψ table organized using Theorem 6.1

1: procedure PsiDiag(m,n, k, l, α, β)
2: Ψ← Matrix(m,n)
3: for j ← k, n− l do
4: Ψkj ← Theorem 1.80
5: end for
6: parallel for z ← 0, n− k − l do
7: for i← k,m− l do
8: Ψi,i+z ← Theorem 6.1
9: end for
10: end parallel for
11: for j ← k,m− l − 1 do
12: Ψm−l,j ← Theorem 6.4
13: end for
14: parallel for j ← k + 1,m− l − 1 do
15: for z ← 1, j − k do
16: Ψm−l−z,j−z ← Theorem 6.1
17: end for
18: end parallel for
19: return Ψ
20: end procedure

Each column now has two consecutive elements known, and one can apply the vertical
recurrence relations given in Theorems 6.5, 6.6 and 6.8 to compute all the column. Note that
at this point there is no interdependence between the columns and each can be evaluated in
parallel. This approach is presented in Algorithm 6.2 and illustrated in Figure 6.2.

One can facilitate more parallel computations. Just as it is the case with computing the
first two rows with the exception of Ψk+1,k, one can use the recurrence relations (6.9) and (6.1)
to compute the last two rows except Ψm−l−1,n−l. By doing so, one can divide each column
in two and compute these two parts in parallel, which nearly doubles the number of possible
simultaneous computations of the elements of the Ψ table.
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Ψ·,k Ψ·,k+1 Ψ·,n−l

Ψk,·

Ψk+1,·

Ψm−l,·

Figure 6.2: A recurrence scheme for the computation of the Ψ table organized around The-
orem 6.5. Gray squares are computed using explicit formulas, while the arrows denote the
recurrence relations used.

Algorithm 6.2 Computation of the Ψ table organized using Theorem 6.5

1: procedure PsiVer(m,n, k, l, α, β)
2: Ψ← Matrix(m,n)
3: for j ← k, n− l − 1 do
4: Ψkj ← Theorem 1.80
5: Ψk+1,j+1 ← Theorem 6.1
6: end for
7: Ψk,n−l ← Theorem 1.80
8: Ψm−l,k ← Remark 6.7
9: Ψm−l−1,k ← Remark 6.7
10: for i← m− l − 2, k + 1 do
11: Ψik ← Theorem 6.6
12: end for
13: parallel for j ← 1, n− k − l − 1 do
14: for i← 1,m− k − l − 1 do
15: Ψi+1,j ← Theorem 6.5
16: end for
17: end parallel for
18: for i← 1, n− k − l − 1 do
19: Ψi+1,n−k−l ← Theorem 6.8
20: end for
21: return Ψ
22: end procedure
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[15] W. Böhm. Über die Konstruktion von B-Spline-Kurven (in German). Computing, 18:
161–166, 1977.

[16] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimen-
sions. Communications of the ACM, 16:361–368, 1996.

[17] G.-D. Chen and G.-J. Wang. Optimal degree reduction of Bézier curves with constraints
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δij , see Kronecker delta
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constrained, 25, 37
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discrete, 26
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curve intersections, 58
curve joining of the Cn class, 6, 7
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k, l-constrained, 37–40, 125
with box constraints, 19
with constraints, 25, 26

degree reduction of Bézier surfaces, 41
dual B-spline functionals, 18
dual B-spline functions, 18
dual bases, 16–19, 36
dual Bernstein basis, 2, 18, 23, 116

constrained, 25, 37
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fractional partial differential equations, 22, 115
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Horner’s rule, 1, 53, 116
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hypergeometric form, 9, 10, 13–16, 131
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hypergeometric representation, see hypergeo-
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Chebyshev, 14, 119
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Legendre, 13, 22, 119
shifted Jacobi, 22, 23, 25, 125

interpolation conditions, 117

Jacobi polynomials, 13–14

shifted, 14–15, 22–25, 107–110, 113, 115–
118, 123, 128–129

knot multiplicity, 47–49, 83, 84, 98–101, 103
knot span, 48, 49, 82–84, 86, 88–90, 92, 94,

98, 99, 101, 103
knots, 45–48

boundary, 48, 49, 81, 84, 98–101
inner, 81, 83, 84, 98, 100, 101

Kronecker delta, 14, 16–18, 23, 25, 26

least-square approximation, 12, 16, 36
in Bézier form, 115, 125

least-square error, 116, 125
Legendre polynomials, 13, 14

merging of Bézier curves, 22, 115

neighbor, 98–99
norm, 12, 17, 37
numerical solving of boundary value problems,
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operator
differentiation, 15, 106–110
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shift, 112, 113, 124

orthogonal bases, 12, 16, 17
orthogonal polynomials, 9, 12–16, 22
orthogonal projection, 12, 16, 17
orthonormal bases, 17
orthonormal basis, 12, 17

parametric curves, 4–6, 19, 40, 45, 66
partition of unity property, 21, 44, 49, 50, 89
Pochhammer symbol, 9
point space, 2

operations, 2, 3
polynomial approximation of rational Bézier
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power basis, 116
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quadrature rules, 116

rational parametric object, 1, 45, 54, 64–67

scalar product, see inner product
splines, 45, 47, 49



INDEX 146
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subdivision of Bézier surfaces, 41
symmetry properties

for Bernstein polynomials, 20
for discrete dual Bernstein polynomials,
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for dual Bernstein polynomials, 24, 107
for Hahn polynomials, 16
for shifted Jacobi polynomials, 15, 107
of a Ψ table, 40
of Bernstein polynomials, 29
of dual Bernstein polynomials, 23
of Hahn polynomials, 23
of shifted Jacobi polynomials, 23

Taylor series, 82
triangular Bernstein polynomials, 41, 43–44
truncated power functions, 47

Weierstrass approximation theorem, 19
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Zeilberger’s algorithm, 10–12, 107
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