
Non-Ground Superposition
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Lifting (for Resolution)

Let c1 = [ A ] ∪R1, let c2 = [ ¬A ] ∪R2 be two ground clauses.

The clauses can resolve into R1 ∪R2.

Let c′
1
and c′

2
be two non-ground clauses, s.t. c1 is an instance of

c′
1
, and c2 is an instance of c′

2
.

First make sure that c′
1
and c′

2
have no variables in common. After

this, there exists a single substitution Θ, s.t. c′
1
Θ = c1 and

c′
2
Θ = c2.

c′
1
and c′

2
can be written in the form







c′
1

= [ A′

1
] ∪R′

1

c′
2

= [ ¬A′

2
] ∪R′

2

with A′

1
Θ = A, A′

2
Θ = A, R′

1
Θ = R1, R′

2
Θ = R2.
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We obviously have A′

1
Θ = A′

2
Θ, so that A1 and A2 are unifiable.

Let Σ be a most general unifier. Using Σ, we can construct the

resolvent

R′

1
Σ ∪R′

2
Σ.

We want to show that R1 ∪R2 is an instance of R′

1
Σ ∪R′

2
Σ.

By definition of mgu, there exists a Σ′, s.t. Θ = Σ · Σ′. It follows

that

(R′

1
Σ ∪R′

2
Σ)Σ′ = R′

1
(Σ · Σ′) ∪R′

2
(Σ · Σ′) = R′

1
Θ ∪R′

2
Θ = R1 ∪R2.
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Lifting of Paramodulation

If we are lucky, then everything is easy:

Ground:






[ f(a, b) ≈ f−1(b, a), R(a, b) ]

[ p(f(a, b)), q(f(a, b))]

⇒ [ p(f−1(b, a)), R(a, b), q(f(a, b)) ]

Non-ground:






[ f(X, Y ) ≈ f−1(Y,X), R(X, Y ) ]

[ p(f(a, Z)), q(f(a, Z))]

⇒ [ p(f−1(Z, a)), R(a, Z), q(f(a, Z)) ]
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Paramodulation into Variables

Now suppose that we have

Non-ground:

[ f(X, Y ) ≈ f−1(Y,X), R(X, Y ) ]

[ p(Z), q(Z) ]

Solution: Change the substitution in the second clause to

{Θ := f1(b, a)}.

The resulting clause [ p(f1(b, a)), q(f−1(b, a)) ], together with

[ f(a, b) ≈ f−1(b, a), R(a, b) ], make the

[ p(f−1(b, a)), R(a, b), q(f(a, b)) ] redundant.
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Lifting Ordering Conditions

In the ground case, the four rules (positive superposition, negative

superposition, equality factoring, equality resolution) have ordering

conditions attached to them.

Lifting ordering conditions is very difficult. Unfortunately, we have

to let slip through a lot.

I show the problems with usual resolution:
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Lifting Ordering Conditions (2)

Consider the clause set

[ R(0, s(0)) ]

[ R(s(0), s(s(0))) ]

[ ¬R(0, s(s(0)))) ]

[ ¬R(X, Y ), ¬R(Y, Z), R(X,Z) ]

Assume that we are using KBO, and no selection function. In order

to refute this clause set, we need a refutation in which

[ ¬R(X, Y ), ¬R(Y, Z), R(Y, Z) ] represents

[ ¬R(0, s(0)), ¬R(s(0), s(s(0))), R(0, s(s(0))) ].
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Lifting Ordering Conditions (3)

If we use the ground instance as guide, first R(X,Z) will resolve

away.

The result will be [ ¬R(0, Y ), ¬R(Y, s(s(0))) ]. Using the ground

instance as guide, we resolve on ¬R(Y, s(s(0))) and obtain

[ ¬R(0, s(0)) ].

In general, the theorem prover does not know what the instances

are. In the example above, one could have additional clauses

[ R(s(s(0)), s(0)) ], [ R(s(0), 0) ], [ R(s(s(0)), 0) ].
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Three Ways of Using Ordering Conditions

1. Check order before unification. This is called applying the

order a priori.

2. Check order after unification. This is called applying the order

a posteriori.

3. Copy ordering assumptions into result. This results in

constrained clauses.
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A Priori Order Application

We have to resolve [ A1 ] ∪R1 with [ ¬A2 ] ∪ R2 when A1 and A2

are unifiable, and there exists a substitution Θ, s.t. A1Θ ≻≻ R1Θ

and ¬A2Θ �� R2Θ.

In the transitivity clause, this condition wouldn’t be helpful at all,

because none of the literals can be a priori blocked.
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A Priori Order Application (2)

A priori ordering would be helpful in the following example:

[ p(0) ]

[ ¬p(s(s(s(0)))) ]

[¬ p(X), p(s(X)) ]

In the clause [ ¬p(X), p(s(X)) ], one can easily see that for every

substitution Θ, one has #p(X)Θ < #p(s(X))Θ. It follows that

p(X)Θ ≺≺ p(s(X))Θ.

Hence we know a priori that it is impossible to resolve on p(X).
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A Posteriori Order Application

We have to resolve [A1]∪R1 with [ ¬A2 ]∪R2 when A1 and A2 are

unifiable with mgu Σ, and there exists a substitution Θ, s.t.

A1ΣΘ ≻≻ R1ΣΘ, and ¬A2ΣΘ �� R2ΣΘ.

In the following example, a posteriori ordering differs from a priori

ordering.

[ ¬p(X,X, Y ), q(X, Y, Y ) ]

can (using KBO a posteriori) resolve with [ q(0, s(0), s(0)) ], but

not with [ q(s(0), 0, 0) ].

Using a priori orderings, it can resolve with both.
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A Posteriori Order Application (2)

Another example, where a posteriori order is more restrictive than

a priori order, is:

[ X + Y ≈ Y +X ]

[ 0 + s(0) < s(s(0)) + 0 ]

A posterori use of KBO will replace s(s(0)) + 0 by 0 + s(s(0)), but

it will not replace 0 + s(0) by s(0) + 0.

A priori application would make both replacements.

13



Constraint Order Application

Suppose that we want to resolve [ ¬R(X, Y ), ¬R(Y, Z), R(X,Z) ]

with itself:

[ ¬R(X, Y ), ¬R(Y, Z), R(X,Z) ]

[ ¬R(X,Z) , ¬R(Z, T ), R(X,T ) ]

When doing this, we are assuming that

R(X,Z)Θ ≻≻ ¬R(X, Y )Θ, ¬R(Y, Z)Θ

¬R(X,Z)Θ �� ¬R(Z, T )Θ, R(X,T )Θ

One can add these assumptions to the resolvent. The result is:

R(X,Z) ≻≻ ¬R(X, Y ), R(X,Z) ≻≻ ¬R(Y, Z),

¬R(X,Z) �� ¬R(Z, T ), ¬R(X,Z) �� R(X,T ) ⇒

[ ¬R(X, Y ), ¬R(Y, Z), ¬R(Z, T ), R(X,T ) ]
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Constrained Clauses

The first part of the clause is called the constraint. The complete

clause is called a constrained clause.

The constraint stores the history of the ordering assumptions that

were made in the process of deriving the clause.

The represents the set of instances for which the constraint is true.

Using standard properties of KBO, the clause can be simplified into

#Z ≥ #Y, #X ≥ #Y, #X ≥ #T, #Z ≥ #T ⇒

[ ¬R(X, Y ), ¬R(Y, Z), ¬R(Z, T ), R(X,T ) ]

During simplification, we weakened the constraint. This is logically

correct, because we could have derived the clause without any

constraint at all.
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Constrained Clauses (2)

Constraint ordered resolution is complicated. I know of only one

implementation.

The constraints get bigger than the clauses themselves.

Nobody really knows how to solve the constraints.

It is not understood how constraints interact with redundancy.

Maybe there exists a simplification order that is more simple to use

with contraints.

The general feeling seems to be that it is not worth the effort.

There is another restriction, called basic superposition, which I

didn’t write off yet.
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Selection Functions

A selection function can ’overrule’ the order, and require that a

negative literal will be used.

Since there are no restrictions on selection on the ground level,

there are no restrictions on the predicate level. (Except that

selected literals must always be negative.)
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Implementing Redundancy

A ground clause c is redundant in a set of ground clauses S if there

exist c1, . . . , cn ∈ S, s.t. each ci �� c, and c1, . . . , cn logically imply

c.

A non-ground clause c is redundant in S if each of its instances if

redundant in S.

Redundancy is undecidable, and not even enumerable, so we will

need to find approximations.
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Deletion Rules

• Clause c1 subsumes c2 if there exists a substitution Θ, s.t.

c1Θ ⊆ c2.

• A clause c is a tautology if its grounding cΘ is a tautology.

This is decidable by ground Knuth-Bendix closure procedure.
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Simplification Rules

• Let c = A[t1] ∪R and [ t2 ≈ u ] ∪ S be clauses. Assume that

there exists a substitution Θ, s.t t2Θ = t1, SΘ ⊆ c, and

t2Θ ≻ uΘ.

Then replace c by A[uΘ] ∪R. This is called demodulation.

• Let c = [ A1 ] ∪R and [ ¬A2 ] ∪ S be clauses. Assume that

there exists a substitution Θ, s.t. A2Θ = A1 and SΘ ⊆ c. Then

replace c by R. This is called resolution simplification.

Simplification rules can be repeated as long as possible. If we are

lucky, the final result is subsumed or a tautology.

There exist more, more sophisticated redundancy rules, but these

are the main ones.
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Conclusions

First-Order Theorem proving, its theory, its heuristics, its

implementation is very interesting fields.

Some people are dedicating their lives to it. Unfortunatly, it

doesn’t have the same impact and applicability as e.g.

propositional logic, higher-order logic, or SMT.

1. Theorem provers are still too weak.

2. There is an interface problem. There is only one propositional

logic, but many first-order logics. (Problem is with type

system. Untyped first-order logic is too weak for most

applications.)

3. Still, the techniques are fundamental, and one nevers knows

what will happen in the future.
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