
Predicate Logic
We want to able to state things like:

For all numbers x and y, (x+ y)2 = x2 + 2xy + y2.

For every natural number n, if n 6= 0, then there exists a natural

number m, s.t. n = m+ 1.

Every pair of natural numbers has a greatest common divisor: For

all numbers n1 and n2, there exists a natural number y, s.t. y|n1

and y|n2, and for all y′, if y′|n1 and y′|n2, then y′ ≤ y.

1

Predicate Logic

In order to say such things, we need to be extend the language of

propositional logic with the following:

• Object variables, object names and function symbols.

• Relations.

• Equality.

• Quantifiers.

2

Language of Predicate Logic: Terms

We assume a set of function symbols F . Each function symbol f

has an arity ≥ 0 associated to it.

The arity of a function symbol is the number of arguments that it

can be applied on.

We call the functions with arity 0 either constants or variables

dependent on how we use them now or intend to use them later.

For the rest, they are the same symbols. When bound by a

quantifier ∃x or ∀x, we call them variables. Otherwise, we call

them constants.

Terms are recursively defined as follows:

• If f is a function with arity n, t1, . . . , tn are terms, then

f(t1, . . . , tn) is a term.

Terms are used to denote objects.

3

Language of Predicate Logic: Atoms

We assume a set of predicate symbols P . Like the functions, each

predicate symbol has an associated arity ≥ 0.

Atoms are defined as follows:

• If p is a function symbol with arity n, t1, . . . , tn are terms,

then p(t1, . . . , tn) is an atom.

• If t1 and t2 are terms, then t1 ≈ t2 is an atom.

4

Language of Predicate Logic: Formulas

Formulas are recursively defined as follows:

• If A is an atom, then A is a formula.

• ⊥ and ⊤ are formulas.

• If F is a formula, then ¬F is a formula.

• If F1 and F2 are formulas, then

F1 ∧ F2, F1 ∨ F2, F1 → F2, F1 ↔ F2 are formulas.

• If x is a variable, F is a formula, then ∀x:X F and ∃x:X F are

formulas.

5

Quantifiers

The operators ∃ and ∀ are called quantifiers:

Examples:

Some birds can fly:

∃x [B(x) ∧ CF (x)].

Some birds can swim:

∃x [B(x) ∧ CS(x)].

Some birds can swim and fly:

∃x [B(x) ∧ CF (x) ∧ CS(x)].

6

No bird can count:

¬∃x [B(x) ∧ CC(x)].

All birds cannot count:

∀x [B(x)→ ¬CC(x)].

If something can count, then it is not a bird:

∀x [CC(x)→ ¬B(x)].

There exists a bird:

∃x B(x).

There exist at least two birds:

∃x1x2 [x1 6= x2 ∧B(x1) ∧B(x2)].

There exist at most one bird:

∀x1x2[B(x1) ∧B(x2)→ x1 ≈ x2].

7

Examples from Mathematics

The atoms p(t1, . . . , tn) can have form

3 < 4, 1 < 1 + 1, even(4), odd(5),

substring(”cde”, ”abcdefgh”).

Examples of formulas are

∀n1, n2 Nat(n1) ∧Nat(n2)→

(n1|n2 ↔ ∃m Nat(m) ∧ n1.m ≈ n2).

This way of using → and ∧ for encoding type information is called

relativization. Relativization in formulas always occurs with

quantifiers. With ∀, it is always → . With ∃, it is always ∧.

∀n1, n2,m Nat(n1) ∧ Nat(n2) ∧Nat(m)→

Gcd(n1, n2,m)↔ (m|n1 ∧m|n2 ∧

∀m′ Nat(m′)→ (m′|n1 ∧m′|n2 → m ≤ m′).

8

Families of Deduction Systems

The most important types of deduction systems are:

• Natural Deduction: Natural Deduction follows the natural style

of reasoning, as it can be found in mathematical textbooks or

in spoken arguments. Most of the proof consists of forward

reasoning, that is deriving conclusions, deriving new

conclusions from these conclusions, etc. Occassionally

assumptions are introduced or dropped.

• Sequent Calculus: In sequent calculus, conclusions and

premisses are treated in the same way. The reasoning proceeds

by deriving relations between formulas, instead of deriving only

conclusions. This is different from the style found in textbooks,

but the resulting calculus is easier to use interactively.

9

• Axiomatic Method: Axiomatic Methods are historically the

oldest proof systems, but they are not important anymore.

Their distinguishing feature is that logical operators are

defined by axioms. There are usually three deduction rules,

modus ponens:

If A and A→ B are provable, then so is B,

generalization

If A is provable, then so is ∀x A

and formula instantiation:

If A is provable, then so is A[X := F].

10

Sequent Calculus

A sequent is an object of form Γ ⊢ ∆, in which Γ and ∆ are sets of

formulas.

The meaning is: Whenever all of the Γ are true, then at least one

of the ∆ is true.

First-order logic is very symmetric. Because of this, it makes no

sense to distinguish between Γ and ∆.

A one-sided sequent is an object of form Γ ⊢ ⊥.

Intuitive meaning: Not all of Γ can be simultaneously true (or Γ is

unsatisfiable).

A two-sided sequent A1, . . . , Ap ⊢ B1, . . . , Bq can be replaced by

one-sided sequent A1, . . . , Ap,¬B1, . . . ,¬Bq ⊢ .

11

Negation Rules

We want a small calculus. We define rewrite rules for negation, so

that we do not need special rules for it:

¬⊤ ⇒ ⊥

¬⊥ ⇒ ⊤

¬¬A ⇒ A

¬(A ∧B) ⇒ ¬A ∨ ¬B

¬(A ∨B) ⇒ ¬A ∧ ¬B

¬(A→ B) ⇒ A ∧ ¬B

¬(A↔ B) ⇒ (A ∨B) ∧ (¬A ∨ ¬B)

¬(∀x:X F) ⇒ ∃x:X ¬F

¬(∃x:X F) ⇒ ∀x:X ¬F

12

Implication Rules

We also define rewrite rules for → and ↔, so that we won’t need

rules for those:

A→ B ⇒ ¬A ∨B

A↔ B ⇒ (¬A ∨B) ∧ (A ∨ ¬B)

The rewrite rules can be as preprocessing before the proof is

constructed, or only on top-level just before a rule is applied.

If they are used a preprocessing, the resulting formulas are called in

negation normal form.

13

One-Sided Sequent Calculus

(cut)
Γ, A ⊢ Γ,¬A ⊢

Γ ⊢

(∧)
Γ, A,B ⊢

Γ, A ∧B ⊢
(∨)

Γ, A ⊢ Γ, B ⊢

Γ, A ∨B ⊢

(∀)
Γ, P [x := t] ⊢

Γ, ∀x:X P ⊢
(∃)

Γ, P ⊢

Γ, ∃x:X P ⊢

t must be an arbitrary term (of the right type, when we consider

types). It must be the case that x is not free in Γ or ∆.

14

Axioms

How to define axioms?

• There must be enough axioms.

• Being an axiom must be robust against small changes.

• Needs to support equality.

• Must be decidable.

• Closed under cut.

15

Axioms (2)

• Every sequent of form Γ,⊥ ⊢, Γ,¬(t ≈ t) ⊢, or Γ, A,¬A ⊢ is

an axiom.

• Γ, t ≈ t ⊢ and Γ,⊤ ⊢ are axioms if Γ ⊢ is an axiom.

• Γ, A ∧B ⊢ is an axiom if Γ, A,B ⊢ is an axiom. (I assume that

equalities can swapped freely.)

• Γ, t ≈ u, A[t] ⊢ is an axiom if t > u and Γ, t ≈ u, A[u] ⊢ is an

axiom.

• Γ, A ∨B ⊢ is an axiom if Γ, A ⊢ and Γ, B ⊢ are axioms.

• Γ, ∀x:X P1[x], . . . , ∀x:X Pn[x], ∃x:X Q[x] ⊢ is an axiom if

Γ, P1[x], . . . , Pn[x], Q[x] ⊢ is an axiom.

16

Axioms (3)

Deciding whether a sequent is an axiom is PSPACE complete.

That is a bit costly, but it works well.

The order > must be a simplification order:

• If t > u, then A[t] > A[u].

• > is well-founded, i.e. there exists no infinite descending chain

t1 > t2 > t3 > · · ·

17

Axioms (4)

When defining equality for formulas, one has to take into account

that the bound variables may differ?

Equal or Not?

∀x P (x) and ∀x P (x)?

∀x P (x) and ∀y P (x)?

∀xy P (x, y) and ∀yx P (y, x)?

∀z P (x, z) and ∀z P (y, z)?

∀xx P (x, y) and ∀xz P (x, y)?

The answer is α-equivalence.

18

Renaming, α-Equivalence

Two formulas F1 and F2 are α-equivalent if they have the same

skeleton, and for every variable x1 in F1 and x2 occurring at the

same position in F2, either

• x1 is free in F1, x2 is free in F2, and x1 = x2, or

• x1 is bound at the same place in F1 as on which x2 is bound in

F2.

19

Substitution

We write u[x := t] for the substitution that replaces variable x by

term t in term u.

• If u is a variable or constant, and u 6= x, then u[x := t] = u.

• If u = x, then u[x := t] is t.

• If n > 0, then f(t1, . . . , tn)[x := t] equals

f(t1[x := t], . . . , tn[x := t]).

For an atom, we define:

• p(t1, . . . , tn)[x := t] = p(t1[x := t], . . . , tn[x := t]).

• (t1 = t2)[x := t] = t1[x := t] = t2[x := t].

20

Substitution in a Formula

• ⊥[x := t] = ⊥, ⊤[x := t] = ⊤.

• (¬F)[x := t] = ¬(F [x := t]).

• (F1 ∨ F2)[x := t] = F1[x := t] ∨ F2[x := t]. The cases for ∧,→,

and ← are analogous.

• If x is not free in ∀y F, or y is not free in t, then

(∀y F)[x := t] = ∀y (F [x := t]).

• If x is free in ∀y F and y is free in t, then let ∀y′ F ′ be an

α-variant of ∀y F, s.t. y′ is not free in t. Proceed as in the

previous case.

• Cases for ∃y F are defined analogeously.

21

Rules for Equality

The replacement rule (in the definition of axiom) can be made

precise by means of substitution:

Γ, t ≈ u, A[t] ⊢ is an axiom if t > u and Γ, t ≈ u, A[u] ⊢ is an

axiom.

There must exist a formula A, and a variable α that is not free in

α, s.t. A[t] = A[α := t], A[u] = A[α := u].

22

Preconditions in the Quantifier Rules

1. Can you give an example of a wrong derivation, in case that

the condition ’y is not free in Γ,∆’ is dropped from ∀-right?

2. Suppose that substitution would not take into account the

possible capture of variables. Can you give an example of a

wrong derivation using rule ∃-right?

23

1. For example:
P (x) ⊢ P (x)
∃x P (x) ⊢ P (x)

∃x P (x) ⊢ ∀x P (x)

2. For example:
⊢ ∀y (y ≈ y)

⊢ ∃x∀y (y ≈ x)

If we ignore capture, we can substitute

(∀y (y ≈ x))[x := y] = ∀y (y ≈ y).

24

Drinker Paradox

A good example of a formula whose proof with cut is more clear

than its proof without cut, is the drinker paradox

∃x (D(x)→ ∀x D(x)). Either everyone drinks, then x can be an

arbitrary person, or somebody does not drink, then x can be one of

the non-drinkers. It is easy to prove:

⊢ ∃x ¬D(x), ∀x D(x)

∃x ¬D(x) ⊢ ∃x (D(x)→ ∀x D(x))

∀x D(x) ⊢ ∃x (D(x)→ ∀x D(x))

Using two applications of cut, one can obtain

⊢ ∃x (D(x)→ ∀x D(x)).

As far as I know, there is no intuitive proof without cut.

25

