
Resolution

We want to automatically establish validity of one-sided sequents.

The most currently succesful approach are resolution and

superposition.

The formulas in the sequents are first brought into clausal normal

form.

After that, the sequent is extended by applying resolution. If the

sequent is valid, this process eventually result in the formula ⊥.

If the sequent is not valid, resolution may last forever.
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Clause

A clause is a first-order formula of form

∀x1 · · ·xn ±A1 ∨ · · · ∨ ±Am,

where each each ±Ai is a literal, i.e. an atom or a negated atom

with form p(t1, . . . , tk), with each tj a term.

In general p can be equality as well, but for the moment not.
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Clauses are usually written with the following conventions:

The quantifier ∀ is omitted. In order to recognize variables, they

are written with capitals.

Since disjunction is conjunctive and idempotent, one can write

±A1 ∨ · · · ∨ ±Am either as set {±A1, . . . ,±Am} or as multiset

[±A1, . . . ,±Am].

Multisets are useful in the completeness proof. In implementations,

sets are better.

3



Examples

Consider the (provable) sequent

p(0), ∀x ¬p(x) ∨ p(s(x)), ¬p(s3(0)) ⊢

It can be written as

{p(0)}, {¬p(X) ∨ p(s(X))}, {¬p(s3(0))} ⊢

Sequent

∀x R(x, x), ∀xy ¬R(x, y)∨R(y, x), ∀xyz R(x, y)∧R(y, z) → R(x, z) ⊢

can be written as

{R(X,X)}, {¬R(X, Y ), R(Y,X)}, {¬R(X, Y ),¬R(Y, Z), R(X,Z)} ⊢
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Resolution (Robinson)

Pick two clauses from the sequent. Rename them so that they are

variable disjoint. If the resulting clauses can be written in the form

c1 = {A1, . . . , Ap} ∪R1 and c2 = {¬B1, . . . ,¬Bq} ∪R2, s.t.

A1, . . . , Ap, B1, . . . , Bq have a simultaneous most general unifier Θ,

then R1Θ ∪R2Θ is a resolvent of c1 and c2.

The resolvent can be added to the sequent.
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Resolution and Factoring (Modern)

Pick two clauses from the sequent. Rename them so that they are

variable disjoint. If the resulting clauses can be written in the form

c1 = {A} ∪R1 and c2 = {¬B} ∪R2, s.t. that A and B have a

unifier Θ, then R1Θ ∪R2Θ is a resolvent of c1 and c2.

Let c = {A,B} ∪R be a clause that is present in the sequent. If A

and B have a most general unifier Θ, then {AΘ} ∪RΘ is a factor of

c.

Resolvents and factors can be added to the sequent.
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Correctness and Completeness

Theorem: Adding a resolvent or factor to a sequent does not make

a non-provable sequent provable.

Theorem: If the sequent is provable, then resolution will eventually

derive the empty clause ⊥.
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Correctness of Resolution

Proving correctness is more subtle than it seems at first, because of

disappearing variables. Let z1, . . . , zk be the variables that occur in

AΘ, R1Θ, BΘ, R2Θ.

In order to prove correctness, one first proves the sequent

∀x1 · · ·xn A ∨R, ∀y1 · · · ym B ∨ S ⊢ ∀z1 · · · zk RΘ ∨ SΘ.

If some of the zi does not occur in RΘ ∨ SΘ they must be

substituted away. This results in the sequent

∀z1 · · · zk RΘ ∨ SΘ ⊢ ∀z′
1
· · · z′k′ RΘ ∨ SΘ.

Finding proper instantiations may be tricky when the terms are

typed. After that, cut can be used.
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Normal Form Transformation
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Skolemization

Skolemization is called after Thoralf Skolem (1887-1963).

Let F be a formula that contains an existially quantified

subformula. Write F = F [ ∃y:Y P ]. Assume that ∃y:Y P occurs

only in the scope of ∨,∧, ∀.

Assume that ∃y:Y P is in the scope of universal quantifiers

∀x1, . . . , ∀xn.

Invent a new function symbol f with arity n and type

X1 × · · · ×Xn → Y.

Replace F [ ∃y:Y P ] by F [ P [y := f(x1, . . . , xn)] ].

Skolemization can be repeated until all ∃ are gone.
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Skolemization (Improved)

If some variable xi is not free in ∃y:Y P, then it can be omitted

from f(x1, . . . , xn) on the condition that one is guaranteed to find

an instance for it.

Write F in the form F [ ∀xi:Xi Q ].

If F [ ∃xi:Xi ⊤] holds, one can remove xi as argument from the

Skolem function.
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Skolemization (3)

Theorem: Let F ′ be obtained by Skolemization of F.

Sequent A1, . . . , Ap, F ⊢ is provable (valid) iff A1, . . . , Ap, F
′ ⊢ is

provable (valid).

The technicalities of the proof are very tricky. The intuition is that

the function f can be defined in such a way that if ∃y:Y P is true,

then f(x1, . . . , xn) chooses a possible y.

One can also analyze the proofs, which is nicer, but even harder.
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Subformula Replacement

Let F be a formula that contains a subformula A. Write

F = F [ A ]. Let x1, . . . , xn be the free variables of A. Let

X1, . . . , Xn be their types.

Invent a new predicate symbol p with arity n. Replace F [ A ] by

two formulas

F [ p(x1, . . . , xn) ], ∀x1:X1 · · ·xn:Xn p(x1, . . . , xn) ↔ A.

13



Subformula Replacement (Positive)

In case A occurs only in the scope of ∨,∧, ∀, ∃, then F [ A ] can be

replaced by

F [ p(x1, . . . , xn) ], ∀x1:X1 · · ·xn:Xn p(x1, . . . , xn) → A.
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Subformula Replacement (2)

Theorem: Let F1, F2 be obtained by subformula replacement in F.

The sequent A1, . . . , Ap, F ⊢ is provable (or valid) iff the sequent

A1, . . . , Ap, F1, F2 ⊢ is provable (or valid).

Intuition is that predicate p can be defined in such a way that it

agrees with A.
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Antiprenexing

We can now give a complete CNF transformation for sequents:

Let A1, . . . , Ap ⊢ be a one sided sequent.

If one of the Ai contains a subformula of form A ↔ B, it can be

replaced by (¬A ∨B) ∧ (A ∨ ¬B).

If there are nested ↔s, this may cause exponential increase of

formula size.

This can be avoided by proper subformula replacement (the first

version) (Example: A ↔ (B ↔ (C ↔ D)). )
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Antiprenexing

After removal of ↔, the negation rules (of one sided sequent

calculus) can be applied without problems. The size of the

formulas stays the same.

It is sometimes useful to do antiprenexing:

The following replacements can always be made when variable x is

not free in A :

∃x:X (A ∧B) ⇒ A ∧ (∃x:X B)

∃x:X (B ∧ A) ⇒ (∃x:X B) ∧A

∀x:X (A ∨B) ⇒ A ∨ (∀x:X B)

∀x:X (B ∨ A) ⇒ (∀x:X B) ∨A
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Antiprenexing (2)

In case F [ ∃x:X ⊤ ] is true, the following replacements can be

made in context F [ ] :

∀x:X (A ∧B) ⇒ A ∧ (∀x:X B)

∀x:X (B ∧ A) ⇒ (∀x:X B) ∧A

∃x:X (A ∨B) ⇒ A ∨ (∃x:X B)

∃x:X (B ∨ A) ⇒ (∃x:X B) ∨A

The first two replacements are incorrect when type X is empty.

The last two replacements can cause incompleteness when type X

is empty.
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CNF Transformation

When the formula has been antiprenexed, it can be Skolemized.

After that, apply the following rewrite rules:

∀x:X (A ∧B) ⇒ (∀x:X A) ∧ (∀x:X B)

A ∨ (B ∧ C) ⇒ (A ∧B) ∨ (A ∧ C)

(A ∧B) ∨ C ⇒ (A ∧ C) ∨ (B ∧ C)

(∀x:X A) ∨B ⇒ ∀x:X (A ∨B)

A ∨ (∀x:X B) ⇒ ∀x:X (A ∨B)

Remove top level ∧ from the sequent, and replace explicitly

quantified variables by special variable symbols.

The last two rules can be applied in context F [ ] only when

F [∃x:X ⊤] is true. Otherwise, subformula replacement must be

used.
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Example: Drinker

Let us try to prove the drinker paradox:

∃x ⊤ ⊢ ∃x ( D(x) → ∀x D(x) ).

Assuming that there are people in the bar, there is somebody, s.t.

if he drinks, then everyone drinks.

One sided sequent:

∃x ⊤, ¬∃x ( D(x) → ∀x D(x) ) ⊢ .

NNF:

∃x ⊤, ∀x ( D(x) ∧ ∃x ¬D(x) ) ⊢
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Drinker (2)

Antiprenexing is possible, because we have ∃x ⊤.

∃x ⊤, ∀x D(x) ∧ ∃x ¬D(x) ⊢

Skolemization results in:

∃x ⊤, ∀x D(x) ∧ ¬D(c) ⊢

These are the clauses:

⊤, {D(X)}, {¬D(c)} ⊢

Without antiprenexing, unimproved Skolemization would have

resulted in:

⊤, {D(X)}, {¬D(f(X))} ⊢
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Resolution-Based Proof Search

Once the sequent has been transformed into CNF, resolution can

be applied until either the empty clause is obtained, no more

clauses can be derived, or the stars stop shining.
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Subsumption

Let c1 and c2 be two clauses.

We say that c1 subsumes c2 if there exists a substitution Θ, s.t.

c1Θ ⊆ c2, and some other restrictions apply.

Other restrictions can be ‖c1‖ ≤ ‖c2‖, or max(c1) < max(c2).

If two clauses are equal (renamings of each other), they subsume

each other.

If a sequent contains two clauses c1, c2 such that c1 subsumes c2,

then the clause c2 can be removed.
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Implementation

Resolution is usually implemented by the given clause algorithm.

(Invented by William McCune.)

The sequent Γ ⊢ is split into two parts:

• P passive clauses are not (yet) used for resolution.

• A active clauses can be used in resolution.

Initially, A = ∅, and P = A.

24



Given Clause Algorithm (2)

• If P is empty, then the original sequent Γ ⊢ has no proof.

• Otherwise, pick the lightest or oldest clause in P. Call this

clause g, the given clause and remove it from P.

• Construct all possible resolvents between g and A, and possibly

between g and itself.

If this results in non-subsumed resolvents, then add them to P.

• Insert g into A.
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Backward Subsumption

If g subsumes a clause in A or P, this clause can be removed.

Applying subsumption in this way is called backward subsumption.

Doing this only for A is called the Kaiserslautern approach.

Applying backward subsumption A and P is called the Otter

approach.
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Complexity of Subsumption

Subsumption testing in general is NP complete.
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Suppose one wants to prove the following sequent by resolution:

∀x ( p(x) → q(c) ) ⊢ [ ¬∀x(¬ p(x) ∧ ¬ q(x)) ] → ∃y q(y).

Make the sequent one-sided:

∀x (p(x) → q(c)), [ ¬∀x(¬ p(x) ∧ ¬ q(x)) ] ∧ ¬∃y q(y) ⊢

NNF:

∀x ( ¬p(x) ∨ q(c) ), ∃x ( p(x) ∨ q(x) ) ∧ ∀y ¬q(y) ⊢

Skolemization:

∀x ( ¬p(x) ∨ q(c) ), ( p(d) ∨ p(d) ) ∧ ∀y ¬ q(y) ⊢
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Clauses:

(1) {¬ p(X), q(c)}

(2) {p(d), q(d)}

(3) {¬ q(Y )}.

Then, there is the following resolution refutation: We give both the

ground refutation, and the non-ground refutation:
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(1) {¬ p(d), q(c)} {¬p(X), q(c)} (initial clause)

(2) {p(d), q(d)} {p(d), q(d)} (initial clause)

(3) {¬ q(d)} {¬ q(Y )} (initial clause)

(4) {¬ q(c)} {¬ q(Y )} (initial clause)

(5) {¬ p(d)} {¬ p(Y )} (from 1 and 4)

(6) {q(d)} { q(d) } (from 2 and 5 )

(7) {} {} (from 3 and 6)
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Refinements

An L-order ≺ is an order on literals with the following property:

A � B implies AΘ � BΘ, for all substitutions Θ.

This property is called liftability.

An A-order is an L-order with the following property:

A ≺ B implies ±A ≺ ±B.
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L-ordered Resolution

Let ≺ be an L-order. A literal A is maximal in its clause c if A ∈ c,

and there is no literal A′ ∈ c with A � A′

To the (modern) definition of resolution, add the following

restrictions:

Literal A is maximal in c1, literal B is maximal in c2.

To factoring, add the following restriction: Literal A is maximal in

c.

Theorem: L-ordered resolution + factoring is complete.
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