Theorem Proving (List 3)

Deadline: 16.03.2016

- 1. Use Knuth-Bendix completion (ground superposition) to show that
 - (a) $a \approx b$, $b \approx c$, $c \approx d \models a \approx d$,
 - (b) $x+y \approx y+x, \ x+s(y) \approx s(x+y), \ s(y)+x \approx s(y+x) \models x+s(y) \approx s(y)+x,$
 - (c) $a \approx s(s(a)), \ s(s(a)) \approx s(t(a)), \ t(a) \approx b, \ t(s(b)) \approx c \models s(c) \approx a.$
- 2. Let \succ be the following order: (The real Knuth-Bendix order)
 - (a) If $\#t_1 > \#t_2$, then $t_1 \succ t_2$.
 - (b) If $\#t_1 = \#t_2$, then write t_1 in the form $t_1 = f(\alpha_1, \ldots, \alpha_n)$, and write t_2 in the form $t_2 = g(\beta_1, \ldots, \beta_m)$.
 - i. If $f \succ g$, then $t_1 \succ t_2$.
 - ii. If f = g, then let *i* be the smallest index for which $\alpha_i \not\approx \beta_i$. If $\alpha_i \succ \beta_i$, then $t_1 \succ t_2$.

Show that \succ from the previous question is a reduction order.

- 3. Using KBO based on $a \succ b \succ c \succ f$, determine in each clause the maximal equation, and the directions in which the equations will be applied.
 - (a) $[a \approx b, a \approx c]$
 - (b) $[a \approx b, f(a) \approx f(b)].$
 - (c) $[a \approx b, a \not\approx c]$
 - (d) $[a \not\approx b, a \not\approx b, a \approx c]$
 - (e) $[a \not\approx b, a \approx c].$
- 4. Using KBO with $a \succ b \succ c$, find a refutation for the following clause set:

$$\begin{bmatrix} a \approx b, \ a \approx c \end{bmatrix}$$
$$\begin{bmatrix} b \approx c \end{bmatrix}$$
$$\begin{bmatrix} a \not\approx b, \ a \not\approx c \end{bmatrix}$$

Can you find a refutation without equality factoring?

5. Consider the following (satisfiable) clause set:

$$\begin{bmatrix} A, B, C \end{bmatrix} \\ \begin{bmatrix} \neg A, B, C \end{bmatrix} \\ \begin{bmatrix} \neg B \end{bmatrix}$$

Translate it into equational logic. Saturate the clause set, using $A \succ B \succ C$.