Theorem Proving (List 3)

Deadline: 16.03.2016

1. Use Knuth-Bendix completion (ground superposition) to show that
(a) $a \approx b, b \approx c, c \approx d \models a \approx d$,
(b) $x+y \approx y+x, x+s(y) \approx s(x+y), s(y)+x \approx s(y+x) \models x+s(y) \approx$ $s(y)+x$,
(c) $a \approx s(s(a)), s(s(a)) \approx s(t(a)), t(a) \approx b, t(s(b)) \approx c \models s(c) \approx a$.
2. Let \succ be the following order: (The real Knuth-Bendix order)
(a) If $\# t_{1}>\# t_{2}$, then $t_{1} \succ t_{2}$.
(b) If $\# t_{1}=\# t_{2}$, then write t_{1} in the form $t_{1}=f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, and write t_{2} in the form $t_{2}=g\left(\beta_{1}, \ldots, \beta_{m}\right)$.
i. If $f \succ g$, then $t_{1} \succ t_{2}$.
ii. If $f=g$, then let i be the smallest index for which $\alpha_{i} \not \approx \beta_{i}$. If $\alpha_{i} \succ \beta_{i}$, then $t_{1} \succ t_{2}$.

Show that \succ from the previous question is a reduction order.
3. Using KBO based on $a \succ b \succ c \succ f$, determine in each clause the maximal equation, and the directions in which the equations will be applied.
(a) $[a \approx b, a \approx c]$
(b) $[a \approx b, f(a) \approx f(b)]$.
(c) $[a \approx b, a \not \approx c]$
(d) $[a \not \approx b, a \not \approx b, a \approx c]$
(e) $[a \not \approx b, a \approx c]$.
4. Using KBO with $a \succ b \succ c$, find a refutation for the following clause set:

$$
\begin{aligned}
& {[a \approx b, a \approx c]} \\
& {[b \approx c]} \\
& {[a \not \approx b, a \not \approx c]}
\end{aligned}
$$

Can you find a refutation without equality factoring?
5. Consider the following (satisfiable) clause set:

$$
\begin{aligned}
& {[A, B, C]} \\
& {[\neg A, B, C]} \\
& {[\neg B]}
\end{aligned}
$$

Translate it into equational logic. Saturate the clause set, using $A \succ B \succ$ C.

