
Theorem Proving: Introduction

1



Applications of Theorem Proving

• Logic is used for reasoning about programs. complete

correctness proofs, or proofs of absence of crashes.

• Propositional logic is used for reasoning about boolean circuits.

• It has been used used for the verification of mathematical

results like the 4-color theorem, a proof of the Kepler

conjecture is being formalized. The main theorem of algebra

has been formalized. Large parts of high-school calculus have

been formalized.

• It is used for databases. (declarative databases)

• Natural language processing. (Anaphora resolution, question

answering)

• Search engines, ontologies, XML.

2



Current Research

• Theory and implementation of automated proof search. (in

first-order logic, in logic with theories)

• Building up experience in the verification of programs and

mathematics.

• Logic support during the development of programs.

• Finding good logics for ontologies.

• Integration of Common Basic Types into logic (SMT).

3



Topics of the Lecture

• Propositional Logic. Sequent calculus for propositional Logic.

• Semantics for propositional logic, completeness and soundness

of sequent calculus.

Theorem Proving with propositional logic. Circuit Verification.

Solving Sudokus. Alphametic Puzzles

• Higher-Order Logic. Formalization of Mathematics in HOL.

Correctness proof of Unification in HOL system.

• Curry-Howard isomorphism, COQ system.

4



• Theorem Proving in First-Order Logic, Skolemization, Normal

Forms.

• Implementation of Resolution. Data structures.

• CASC competition.

• Geometric Logic, Partial Functions, Kleene logic.

5



When selecting a proof checker, or designing one, the following

questions are important:

6



Classical or Intuitionistic?

Intuitionistic proofs have more meaning than classical proofs. In

general, when an intuitionistic proof promises that something

exists, it is possible to compute the object that is promised. This

means that the proof contains an algorithm. Intuitionistic proofs

are harder to find. Some theorems may have a classical proof, but

not an intuitionistic proof.

I do not believe in intuitionistic logic as a tool in software

construction, because it breaks fundamental rules of software

development: Specification should be separated from

implementation. In addition to that, the underlying algorithmic

calculus is too rigid to be useful (only primitive programs with

functional recursion are possible.) Still, it is very elegant and

fundamental, so it should be taught. Knowing about intuitionistic

logic improves the quality of your proofs.

7



Level of Automation

How much can the system do automatic? If you are designing a

calculus, how suitable is this calculus for automatic treatment?

There exist pretty strong first-order theorem provers, but these

systems are very sensitive to small perturbations: They cannot

handle types, not even simple types. They cannot handle any form

of higher-order syntax, or primitive data types, even when they are

allowed to ignore them.

Do you want to verify programs or proofs? If you want to verify

programs, you will want automatic treatment of primitive types.

(integers, reals, etc.)

Some calculi allow definition of logical operators (or, and, exists,

equality). This is theoretically very elegant, but once the operators

are removed, they are not recognizable anymore by an automatic

system.

8



Proofs and Trust

How much code in the system needs to be trusted? Ideally, the

system should generate proofs in a simple calculus, that can be

checked independently by a simple program.

In practice, one needs to trust the OS, the memory, the processor,

and the compiler. If the proofs can be checked by different

programs on different computers, this is not a real issue.

If no proofs can be generated, the system may use the HOL(light)

approach. In the HOL approach, constructed proofs are checked

internally by defining a class theorem with constructors that

correspond to logical proof rules. This implies that every object

that with type theorem object is indeed a theorem.

This approach is still quite good, but proofs cannot be checked

independently. The HOL approach was developed in early 1970-ies,

because memory was expensive in those days. (50 groszy/bit.)

9



Proofs and Trust (2)

Proofs and trust are an issue with theorem provers. First-order

theorem provers don’t output proofs, and are changing all the time.

Together with the interface problems discussed before, it can be

concluded that usage of first-order theorem provers in verification is

problematic.

10



Treatment of Definitions

If you are designing a calculus, you need to answer the following

question: How to handle definitions?

Do you want a dedicated mechanism, or to use

equality/equivalence? Defining new predicates is not a real

problem.

The real problem is with the definition of functions: Introduce from

∀x∃y P (x, y) implies that function f chooses. This is not

conservative, while definitions are supposed to be conservative (i.e.

they can be easily eliminated.) Axiom of choice (or ǫ axiom) is

convenient but controversial.

Better is using the condition ∀x∃y P (x, y) ∧ ∀y P (x, y′) → y ≈ y′. I

prefer this approach, but HOL uses the ǫ rule.

11



Type System

Which type system to use? If you don’t define a type system in the

logic, you have to make types explicit, using → and ∧. This gets

very quickly very unpleasant. In addition, it doesn’t help you with

checking type correctness. (Untyped, first-order logic is like

assembler.)

Simple types are better, but still sometimes too weak. Polymorphic

types are better. Overlapping types? (Nice, but hard to check.)

Automatic introduction of inductive types is useful, but difficult to

implement. HOL has it, and it works very good. COQ also has it,

but I don’t like it.

12



Implementation of Substitution

If you are going to implement something, then you have to decide

how to implement local variables and substitution. De

Bruijn-indices, or named variables? Both have their problems.

Named variables carry meaning, but their treatment is

computationally costly.

De Bruijn indices are technically simpler, but formulas become tied

to their defining contexts. This makes implementation tricky. If

you wouldn’t do that, abstraction becomes costly and

computational advantage is lost.

Still I think that de Bruijn indices with lazy substitution are the

best way.

13



Three Main Approaches to Mathematical Proofs

We will study calculi in which mathematical proofs can be

represented, and automatically verified. As far as I know, there are

three reasonable approaches to the verification of mathematical

proofs:

1. First-Order logic + Set Theory. The advantage of this

approach is its techical simplicity. It is easy to define and to

implement. Unfortunately, in bigger proofs, set theory behaves

like assembler language. It is too low level (untyped).

2. Higher-Order Logic. Higher-Order Logic is reasonably simple,

easy to implement, and powerful enough to be practically

useful.

3. Intuitionistic Logic with Curry-Howard isomorphism.

14


