Multisets

A multiset is a set that can distinguish how often an element occurs in it. (Alternatively, it is a list that cannot distinguish the order of its elements.)

We write multisets with square brackets:

$$[a, b, c], [], [a, a, a, b, b], [b, a, a, b, a].$$

The last two multisets are equal.

Formally, a multiset is a function S from its domain to \mathcal{N} , so one can write S(n) for the number of occurrences of n in S.

A multiset is finite if $\sum_{d \in D} S(d)$ is finite.

Operations on Multisets

Let D be the common domain of the multisets.

Define

$$A \cup B = \lambda d \in D : A(d) + B(d),$$

$$A \cap B = \lambda d \in D : \min(A(d), B(d)),$$

$$A \setminus B = \lambda d \in D : A(d) - B(d).$$

In the definition of $A \setminus B$, it is assumed that for all $d \in D$: $A(d) \ge B(d)$.

Resolution with Multisets

Using multisets, one can define resolution as follows:

Resolution From $[A] \cup R_1$ and $[\neg A] \cup R_2$ derive $R_1 \cup R_2$.

Factoring From $[A, A] \cup R$ derive $[A] \cup R$.

It is possible to restrict resolution and factoring by a total order > as follows: In resolution, it must be the case $A > R_1$, and $\neg A > R_2$. With factoring, it mus be the case that A > R.

The resulting calculus is still complete. Try it out!

Multiset Order

Let D be a domain for the multisets. Let < be a well-order on D.

The multiset extension << of < to finite multisets is defined as follows:

 $S_1 \ll S_2$ iff for every $d \in D$ with $S_1(d) > S_2(d)$, there is a d', s.t. $d \ll d'$ and $S_1(d') \ll S_2(d')$.

Alternatively, one can say that for the <-maximal element for which $S_1(d) \neq S_2(d)$, it must be the case that $S_1(d) < S_2(d)$.

The maximal element exists because S_1 and S_2 are finite.

There is also the following definition: Pick one element d from S_2 and replace it by an aribtrary, finite multiset of elements $[d_1, \ldots, d_n]$ with $d_i < d$. Call the resulting set S_1 . Then $S_1 << S_2$.

Multiset Order (2)

One can view a multiset as a number, where the digits are taken from \mathcal{N} and D are the possible positions:

Let $N_1 = (d_m, \ldots, d_0)$ and $N_2 = (d'_{m'}, \ldots, d'_0)$ be numbers : N_1 is bigger than N_2 if on the first position where N_1 and N_2 differ, the digit in N_1 is bigger than the digit in N_2 .

If N_1 is a number, then a smaller number N_2 can be obtained by decreasing one digit, while at the same time increasing arbitrary digits at lower positions.

For example:

Superposition

Superposition is a combination of resolution and Knuth-Bendix completion.

A clause is a finite set of ground equalities or negations of ground equalities:

$$[f(a) \approx b, g(b) \approx b]$$

$$[a \not\approx b, a \approx c]$$

$$[a \not\approx b, s(a) \approx s(b)]$$

$$[a \not\approx b, a \approx f(a)]$$

Ordering Equalities

Let \succ be a simplification order. We extend \succ to positive and negative equalities as follows:

$$S(t_1 \approx t_2) = [t_1, t_2],$$

 $S(t_1 \not\approx t_2) = [t_1, t_1, t_2, t_2].$

Then $A \succ B$ iff $S(A) \succ \succ S(B)$.

Now we can use the order to direct equalities, and to sort equalities within a clause.

In order to allow non-equality predicates, we assume a constant term \mathbf{t} , with the property $t \succ \mathbf{t}$ for all other terms t.

$$[A \approx \mathbf{t}, A \approx \mathbf{t}]$$

$$[A \not\approx \mathbf{t}, \ A \not\approx \mathbf{t}]$$

Positive Superposition

Assume that $[t_1 \approx t_2] \cup R_1$ and $[u_1 \approx u_2] \cup R_2$ are derived clauses. If

- 1. $t_1 > t_2$,
- 2. $(t_1 \approx t_2) \succ R_1$,
- 3. $u_1 \succ u_2$,
- 4. $(u_1 \approx u_2) \succ R_2$,
- 5. u_1 contains t_1 as subterm,

then derive $[u_1[t_1 \Rightarrow t_2] \approx u_2] \cup R_1 \cup R_2$.

Negative Superposition

Assume that $[t_1 \approx t_2] \cup R_1$ and $[u_1 \not\approx u_2] \cup R_2$ are derived clauses. If

- 1. $t_1 > t_2$,
- 2. $(t_1 \approx t_2) \succ R_1$,
- 3. $u_1 \succ u_2$,
- 4. $(u_1 \not\approx u_2) \succeq \geq R_2$,
- 5. u_1 contains t_1 as subterm,

then derive $[u_1[t_1 \Rightarrow t_2] \not\approx u_2] \cup R_1 \cup R_2$.

Equality Reflexivity

Assume that [$t \not\approx t$] $\cup R$ is a derived clause. If

1.
$$(t \not\approx t) \succeq \geq R$$
,

then derive R.

Equality Factoring

Assume that $[t \approx u_1, t \approx u_2] \cup R$ is a derived clause. If

- 1. $t \succ u_1$,
- 2. $u_1 \succeq u_2$,
- 3. $(t \approx u_1) \succeq \succeq R$,

then derive $[t \approx u_1, u_1 \not\approx u_2] \cup R$.

In order to see the correctness of this rule, do a case split on $u_1 \approx u_2$.

Note: One could also use $[t \approx u_2, u_1 \not\approx u_2] \cup R$, but it is better to use $[t \approx u_1, u_1 \not\approx u_2] \cup R$ because this clause is $\succ \succ$ -bigger, and therefore has a slightly better chance of being redundant.)

Algorithm Based on Superposition

In order to check whether a set S of clauses is satisfiable, one can use the following algorithm:

As long as there exists a clause c, which can be derived from S by positive/negative superposition, equality reflexivity, or equality factoring, add c to S.

As soon as S contains the empty clause, we know that S is unsatisfiable.

If no more clauses can be added, we know that S is satisfiable.

Soundness and Completeness

Theorem: If it is possible to derive the empty clause [] by repeated applications of positive/negative superposition, equality reflexivity and equality factoring from a clause set S, then the clause set S is unsatisfiable.

Proof: As usual, this is the easy part. It is sufficient to inspect the rules, and observe that they are logically sound.

Theorem: If a clause set S is not satisfiable, then it is possible to derive the empty clause by repeated applications of positive/negative superposition, equality reflexivity and equality factoring.

Proof: We call a clause set S saturated if every clause c that can be derived from S by a single application of positive/negative superposition, equality reflexivity, or equality factoring, is already present in S.

We will prove completeness by showing that every saturated clause set has a model, but we first introduce redundancy.

Redundancy is a very important optimization, which tells that not all derivable clauses have to be present in a saturated set. Because of this, it is possible to delete clauses from a saturated set without losing completeness.

Redundancy

We have already seen some forms of redundancy:

- 1. If we have two clauses c_1 and c_2 with $c_1 \subset c_2$ in S, then one would like to delete c_2 from S. One says that c_1 subsumes c_2 .
- 2. If we have a clause $[t_1 \approx t_2] \cup R_1$ and another clause $[u[t_1] \approx u[t_2]] \cup R_2$ with $R_1 \subseteq R_2$ in S, then one would like to delete the second clause $[u[t_1] \approx u[t_2]] \cup R_2$ from S.

Redundancy (2)

Let c be a clause. Let S be a clause set. We way that c is redundant in S if there exist clauses $c_1, \ldots, c_n \in S$, with the following properties:

- 1. c_1, \ldots, c_n logically imply c, and
- 2. for each c_i , $c_i \leq \leq c$.

Here $\preceq \preceq$ is the extension of \preceq to clauses. (In theory, one should write four times \preceq , but I think two is enough.)

Since $c_i \leq \leq c$ is equivalent to $c_i \leq c$ or $c_i = c$, we can reformulate the definition of redundancy as

- 1. either $c \in S$, or
- 2. there exist c_1, \ldots, c_n with $c_i \prec \prec c$, which logically imply c.

Saturated Clause Set

Let S be a clause set. We call S saturated if every clause c that can be derived from clauses in S with a single step of positive/negative superposition, equality resolution, or equality factoring, is redundant in S.

We call S a saturation of of a clause set C if every clause c in C is redundant in S.

Three Ways to Use Redundancy

Redundancy can be used in three possible ways:

- 1. If a new clause is obtained by one of the four rules, then check its redundancy. If it is redundant, then don't keep it. This is called forward redundancy checking.
- 2. If we derive a new clause, then check if any existing clauses become redundant. If this is the case, then delete these clauses. This is called backward redundancy checking.
- 3. Try to make logically correct inferences, (while completely ignoring the superposition calculus) that make existing clauses redundant. This is called simplification.

Examples of Simplification

• Merging of repleated equalities is always possible: Every clause of form $[t \approx u, t \approx u] \cup R$ can be replaced by $[t \approx u] \cup R$. Similarly, every clause of form $[t \not\approx u, t \not\approx u] \cup R$ can be replaced by $[t \not\approx u] \cup R$.

In both cases, the merging is logically sound, and the result is $\prec \prec$ -smaller.

• A clause of form $[t \not\approx u, f(t) \approx c] \cup R$ can be replaced by $[t \not\approx u, f(u) \approx c] \cup R$ if $t \succ u$.

The replacement is logically sound, and the result is $\prec \prec$ -smaller.

Model Construction

Let S be a saturated set of clauses. We will show that S has a model.

The model will be represented by a rewrite system I without critical pairs, and ordered by \succ .

Using properties of strongly normalizing, confluent rewrite systems, a clause c is true in this model iff either

- 1. c contains a positive equality $t_1 \approx t_2$, for which t_1 and t_2 have the same normal form in I.
- 2. c contains a negative equality $t_1 \not\approx t_2$, for which t_1 and t_2 have different normal forms in I.

Model Construction (2)

Let \succ be our simplification order on terms. We first extend \succ to pairs of terms as follows:

$$(t_1, t_2) \succ_2 (u_1, u_2)$$
 iff $t_1 \succ u_1$ or $(t_1 = u_1 \text{ and } t_2 \succ u_2)$.

If \succ has ordinal length α , then \succ_2 has ordinal length $\alpha \times \alpha$.

For an ordinal λ with $0 \le \lambda < \alpha \times \alpha$, let π_{λ} be the pair that has index λ .

Given a saturated set S, we iterate through the pairs π_{λ} , and decide if π_{λ} should be added to the interpretation.

Model Construction (3)

Let S be a saturated set. For $\lambda \leq \alpha \times \alpha$, we define:

• For a limit ordinal λ , put

$$I_{\lambda} = \bigcup_{\lambda' < \lambda} I_{\lambda'}.$$

• In order to define I for a successor ordinal, we specify how to obtain $I_{\lambda+1}$ from I_{λ} : First write $\pi_{\lambda} = (t_1, t_2)$.

If (1) $t_1 \succ t_2$, and (2) I_{λ} does not contain a rule that can rewrite t_1 , and (3) there exists a clause of form $[t_1 \approx t_2] \cup R$ in S with $(t_1 \approx t_2) \succeq R$, and (4) this clause $[t_1 \approx t_2] \cup R$ is false in I_{λ} , and (5) R would be still false in $I_{\lambda} \cup \{t_1 \to t_2\}$, then put $I_{\lambda+1} = I_{\lambda} \cup \{t_1 \to t_2\}$. Otherwise, put $I_{\lambda+1} = I_{\lambda}$.

Since 0 is a limit ordinal, and there are no ordinals below 0, we have $I_0 = \{\}.$

We assumed that I was defined for all $\lambda' < \lambda$ to obtain a value for I_{λ} .

In the case of a successor ordinal, we looked only at the previous value. In the case of a limit ordinal, we used all preceding values.

In order to prove that the function I_{λ} is well-defined, one has to remember that every successor ordinal has a unique predecessor, which follows from well-foundedness.

Theorem: Every I_{λ} is strongly normalizing.

Proof: By construction we have $t_1 > t_2$ for every rule $(t_1 \to t_2)$ in I_{λ} , and > is a reduction order.

Theorem: No I_{λ} has a critical pair.

Proof: Suppose there were one, we would have distinct rules $(t_1 \to t_2), (u_1 \to u_2) \in I_{\lambda}$ with t_1 a subterm of u_1 .

Assume that $(t_1, t_2) = \pi_{\lambda_1}$ and $(u_1, u_2) = \pi_{\lambda_2}$. If $t_1 \neq u_1$, then it must be the case that $t_1 \prec u_1$, so that by definition of \prec_2 , we have $\lambda_1 < \lambda_2$. If $t_1 = u_1$, we can assume without loss of generality that $t_1 \prec u_2$, so that in that case, we can also have $\lambda_1 < \lambda_2$.

At level λ_2 of the construction, condition (2) would have been false, so that $(u_1 \to u_2)$ would not have been added.

Theorem MAXANDONLY: For every rewrite rule $t_1 \to t_2$ in $I_{\alpha \times \alpha}$, there is a clause c of form $[t_1 \approx t_2] \cup R$ in S, such that

- 1. $t_1 > t_2$,
- 2. $(t_1 \approx t_2) \succ R$,
- 3. R is false in $I_{\alpha \times \alpha}$.

Proof: Let λ be the ordinal for which $\pi_{\lambda} = (t_1, t_2)$. The fact that $(t_1 \to t_2) \in I_{\alpha \times \alpha}$ implies that some clause of form $[t_1 \approx t_2] \cup R$ met the conditions (1,2,3,4,5) of the model construction at stage λ . It follows from condition (1) that $t_1 \succ t_2$. Condition (3) implies that $(t_1 \approx t_2) \succeq R$. Because R is false in $I_{\lambda} \cup \{t_1 \to t_2\}$, R cannot contain another instance of $t_1 \approx t_2$. It follows that $(t_1 \approx t_2) \succ R$.

It follows from condition (5) that R is false in I_{λ} . We show on the next slide that R is still false in $I_{\alpha \times \alpha}$.

Proof of MAXANDONLY (2)

For a negative literal $(u_1 \not\approx u_2) \in R$, the fact that it is false in $I_{\lambda+1}$ implies that $I_{\lambda+1}$ merges u_1 with u_2 . Since $I_{\lambda+1} \subseteq I_{\alpha \times \alpha}$, $I_{\alpha \times \alpha}$ still merges u_1 with u_2 . As a consequence, $(u_1 \not\approx u_2)$ is still false in $I_{\alpha \times \alpha}$.

Proof of MAXANDONLY (3)

For a positive literal $(u_1 \approx u_2)$, suppose that $I_{\alpha \times \alpha}$ merges u_1 with u_2 . We show that this contradicts the fact that $I_{\lambda+1}$ does not merge u_1 with u_2 .

If $u_1 = u_2$, then obviously $I_{\lambda+1}$ would merge u_1 with u_2 , so that this is a contradiction.

Since $I_{\lambda+1}$ does not merge u_1 with u_2 , there must exist a rule $(w_1 \to w_2) \in (I_{\alpha \times \alpha} \setminus I_{\lambda+1})$, that is used when merging u_1 with u_2 . If $w_1 = t_1$, then this would result in a critical pair, because of the rule $(t_1 \to t_2) \in I_{\lambda+1}$.

It follows that $(w_1, w_2) \succ_2 (t_1, t_2)$, so that $w_1 \succ t_1$. Since every rewrite sequence is \succ -decreasing, it must be the case that $u_1 \succeq w_1$ or $u_2 \succeq w_1$. Since $t_1 \succ t_2$, this would imply that $(u_1 \approx u_2) \succ (t_1 \approx t_2)$, which contradicts condition (3).

All clauses in S are true in $I_{\alpha \times \alpha}$.

We will prove this by transfinite induction, using the order $\prec\prec$ on clauses.

We will assume that all clauses c' with $c' \prec \prec c$ are true in $I_{\alpha \times \alpha}$, and use this fact to show that c is true in $I_{\alpha \times \alpha}$.

The proof consists of many cases, which depend on the form of the maximal element in c.

Maximal Element is Negative

Assume that c has form $[t \not\approx t] \cup R$ with $(t \not\approx t) \succeq \succeq R$.

Since S is saturated, there are clauses $c_1, \ldots, c_n \in S$, with $c_i \leq R$, which logically imply R. By induction, these clauses are true in $I_{\alpha \times \alpha}$, so that R is true in $I_{\alpha \times \alpha}$.

This implies that $[t \not\approx t] \cup R$ is also true in $I_{\alpha \times \alpha}$.

Maximal Element is Negative (2)

Assume that c has form $[t_1 \not\approx t_2] \cup R$ with $(t_1 \not\approx t_2) \succeq \succeq R$ and $t_1 \succ t_2$.

If there is no rule $(u_1 \to u_2) \in I_{\alpha \times \alpha}$ that can rewrite t_1 , then $t_1 \not\approx t_2$ must be true in $I_{\alpha \times \alpha}$, so that c is true in $I_{\alpha \times \alpha}$.

So assume there is a rule $(u_1 \to u_2) \in I_{\alpha \times \alpha}$, that can rewrite t_1 .

By MAXANDONLY, there is a clause $[u_1 \approx u_2] \cup R'$ in S, s.t. $u_1 \succ u_2$, $(u_1 \approx u_2) \succ \succ R'$, and R' is false in $I_{\alpha \times \alpha}$. Since u_1 is a subterm of t_1 , one can apply negative superposition with c and obtain the clause $[t_1[u_1 \Rightarrow u_2] \not\approx t_2] \cup R \cup R'$. This clause is $\prec \prec$ -smaller than c. Using the fact that S is saturated in the same way as on the previous slide, we see that

[$t_1[u_1 \Rightarrow u_2] \not\approx t_2$] $\cup R \cup R'$ is true in $I_{\alpha \times_{\alpha}}$. Since $I_{\alpha \times_{\alpha}}$ still merges [$t_1[u_1 \Rightarrow u_2]$ with t_2 , and R' is false in $I_{\alpha \times_{\alpha}}$, it follows that R must be true in $I_{\alpha \times_{\alpha}}$. This implies that c is true in $I_{\alpha \times_{\alpha}}$.

Maximal Element is Positive

The cases where the maximal element is positive are similar, but much trickier.

If the maximal element is positive, then c can be written in the form

[
$$t_1 \approx t_2$$
] $\cup R$ with $t_1 \succeq t_2$ and $(t_1 \approx t_2) \succeq \succeq R$.

There exists a λ with $0 \leq \lambda < \alpha \times \alpha$, s.t. $\pi_{\lambda} = (t_1, t_2)$.

In order to show that c is true, we need to make a very big case distinction. We check the cases on the following slides.

If $t_1 = t_2$, then c is obviously true.

If $t_1 \neq t_2$, then $t_1 \succ t_2$.

We first cover the case where there are no further occurrences of t_1 in c. In this case, c can be written in the form $[t_1 \approx t_2] \cup R$, where R does not contain t_1 . It is easily checked that $(t_1 \approx t_2) \succ \succ R$.

If $I_{\alpha \times \alpha}$ contains a rule $u_1 \to u_2$ that can rewrite t_1 , then by MAXANDONLY, there is a clause of form $[u_1 \approx u_2] \cup R'$ in S, s.t. $u_1 \succ u_2$, $(u_1 \approx u_2) \succ R'$, and R' is false in $I_{\alpha \times \alpha}$.

We can apply positive superposition with c and obtain $[t_1[u_1 \Rightarrow u_2] \approx t_2] \cup R \cup R'$. This clause is $\prec \prec$ -smaller than c, so that we can assume that it is true by the reasoning that we have already seen before. Since R' is false in $I_{\alpha \times \alpha}$, it follows that either R is true in $I_{\alpha \times \alpha}$, or $I_{\alpha \times \alpha}$ merges $t_1[u_1 \Rightarrow u_2]$ with t_2 . In the latter case, since $I_{\alpha \times \alpha}$ contains $u_1 \to u_2$, it also merges t_1 with t_2 .

We now check the case where $t_1 > t_2$, there are no occurrences of t_1 in R, there is no rule $(u_1 \to u_2)$ in $I_{\alpha \times \alpha}$ that can rewrite t_1 , and R was true in I_{λ} .

Assume that R contains a positive equality $u_1 \approx u_2$, such that I_{λ} merges u_1 and u_2 . Since $I_{\lambda} \subseteq I_{\alpha \times \alpha}$, the terms u_1 and u_2 are also merged by $I_{\alpha \times \alpha}$, so that R is true in $I_{\alpha \times \alpha}$.

Assume that R contains a negative equality $u_1 \not\approx u_2$, s.t. I_{λ} does not merge u_1 with u_2 . Since neither u_1, u_2 contains $t_1, I_{\lambda+1}$ will also not merge u_1 with u_2 . Now assume that $I_{\alpha \times \alpha}$ merges u_1 with u_2 .

This implies that $I_{\alpha \times \alpha} \setminus I_{\lambda+1}$ contains a rule $(w_1 \to w_2)$ that played a role in merging u_1 or u_2 . It follows that either $u_1 \succeq w_1$ or $u_2 \succeq w_1$, which implies $t_1 \succ w_1$. This contradicts the fact that $(w_1 \to w_2) \in (I_{\alpha \times \alpha} \setminus I_{\lambda+1})$.

We check the case where $t_1 > t_2$, there are no occurrences of t_1 in R, there is no rule in $I_{\alpha \times \alpha}$ that can rewrite t_1 , and R is false in I_{λ} .

If I_{λ} merges t_1 with t_2 , then because $I_{\lambda} \subseteq I_{\alpha \times \alpha}$, $I_{\alpha \times \alpha}$ also merges t_1 with t_2 , so that c is true in $I_{\alpha \times \alpha}$.

If I_{λ} does not merge t_1 with t_2 , then the clause $[t_1 \approx t_2] \cup R$ is false in I_{λ} .

If R would be true in $I_{\lambda} \cup \{t_1 \to t_2\}$, then the true element in R cannot have form $u_1 \not\approx u_2$: If $I_{\lambda} \cup \{t_1 \to t_2\}$ does not merge u_1 with u_2 , then certainly, also I_{λ} does not merge u_1 with u_2 .

If it has form $u_1 \approx u_2$, and is true in $I_{\lambda} \cup \{t_1 \to t_2\}$, but not in I_{λ} , this can only happen when u_1 or u_2 contains t_1 , which contradicts the assumption that R does not contain t_1 .

As a consequence $I_{\lambda+1}$ contains $t_1 \to t_2$, which implies that $I_{\alpha \times \alpha}$ contains $t_1 \to t_2$, which makes c true.

(Finally, the model construction has done some useful work!)

It remains to check the cases where $t_1 > t_2$, and there are other occurrences of t_1 in R. The occurrences cannot be in negative equalities, because that would imply that $R > > (t_1 \approx t_2)$.

It follows that R can be written in the form

[
$$t_1 \approx u_1, \ t_1 \approx u_2, \dots t_1 \approx u_n \] \cup R',$$

where R' does not contain t_1 , and each $t_1 > u_j$. (It is possible that $u_j = t_2$.)

If $I_{\alpha \times \alpha}$ merges t_2 with one of the u_j , we may assume without loss of generality that it is u_1 . One can form the equality factor $[t_1 \approx t_2, t_2 \not\approx u_1, t_1 \approx u_2, \ldots, t_1 \approx u_n] \cup R'$ from c. Since the equality factor is $\prec \prec$ -smaller than c, we can assume by the reasoning that we have already seen before that it is true in $I_{\alpha \times \alpha}$.

Since we assumed that $I_{\alpha \times \alpha}$ merges t_2 with u_1 , it follows that $t_2 \not\approx u_1$ is not true in I_{α} , which implies that c is true in I_{α} .

It remains to check the case where $I_{\alpha \times \alpha}$ does not merge t_2 with any of the u_j .

If I_{λ} merges t_1 with t_2 , then c is obviously true in $I_{\alpha \times \alpha}$.

If I_{λ} does not merge t_1 with t_2 , then c meets the conditions (1,2,3,4) in the model construction. By the argument from three slides ago, no element in R' will be true in $I_{\lambda} \cup \{t_1 \to t_2\}$.

If one of $t_1 \approx u_j$ would be true in $I_{\lambda} \cup \{t_1 \to t_2\}$, this would imply that $I_{\lambda+1}$ merges t_1 with t_2 , and also t_1 with u_j . This would imply that $I_{\lambda+1}$ also merges t_2 with u_j , which contradicts the fact that we are checking here the case where $I_{\alpha \times \alpha}$ does not merge merge t_2 with any of the u_j . It follows that condition (5) is met, so that $I_{\lambda+1}$ contains $t_1 \to t_2$, which implies that $I_{\alpha \times \alpha}$ makes c true.

Selection Functions

The superposition calculus can be further extended with selection functions:

A selection function is a function from clauses to sets of negative equalities. It must be the case that $\Sigma(c) \subseteq c$.

This means that $\Sigma(c) = \emptyset$, when c has no negative equalities.

Use of Selection Functions

- A positive equality occurring in a clause $c = [t_1 \approx t_2] \cup R$ can be used in a rule application if $(t_1 \approx t_2) \succ \succ R$ (or $(t_1 \approx t_2) \succeq \succeq R$, dependent on the rule) and $\Sigma(c) = \emptyset$.
- A negative equality occurring in a clause $c = [t_1 \not\approx t_2] \cup R$ can be used in a rule application if either $\Sigma(c) = \emptyset$ and $(t_1 \not\approx t_2) \succeq R$, or $\Sigma(c)$ is not empty and $(t_1 \not\approx t_2) \in \Sigma(c)$.

Completeness with Selection Functions

The model construction stays almost the same: Condition (3) has to be replaced by: there exists a clause of form $[t_1 \approx t_2] \cup R$ in S with $(t_1 \approx t_2) \succeq R$, and $\Sigma([t_1 \approx t_2] \cup R) = \emptyset$.

As far as I see, the proof that all clauses are true in $I_{\alpha \times \alpha}$ stays the same.

Conclusions

The completeness proof is due to Leo Bachmair and Harald Ganzinger 1994.

It created order in a big chaos of combinations of optimizations of paramodulation, with different completeness proofs.

It is the basis of many theorem provers. (More about this later.)