
Multisets

A multiset is a set that can distinguish how often an element

occurs in it. (Alternatively, it is a list that cannot distinguish the

order of its elements.)

We write multisets with square brackets:

[a, b, c], [], [a, a, a, b, b], [b, a, a, b, a].

The last two multisets are equal.

Formally, a multiset is a function S from its domain to N , so one

can write S(n) for the number of occurrences of n in S.

A multiset is finite if
∑

d∈D S(d) is finite.

1

Operations on Multisets

Let D be the common domain of the multisets.

Define

A ∪B = λd ∈ D : A(d) +B(d),

A ∩B = λd ∈ D : min(A(d), B(d)),

A\B = λd ∈ D : A(d)− B(d).

In the definition of A\B, it is assumed that for all

d ∈ D : A(d) ≥ B(d).

2

Resolution with Multisets

Using multisets, one can define resolution as follows:

Resolution From [A] ∪R1 and [¬A] ∪R2 derive R1 ∪R2.

Factoring From [A,A] ∪R derive [A] ∪R.

It is possible to restrict resolution and factoring by a total order >

as follows: In resolution, it must be the case A > R1, and ¬A > R2.

With factoring, it mus be the case that A > R.

The resulting calculus is still complete. Try it out!

3

Multiset Order

Let D be a domain for the multisets. Let < be a well-order on D.

The multiset extension << of < to finite multisets is defined as

follows:

S1 << S2 iff for every d ∈ D with S1(d) > S2(d), there is a d′, s.t.

d < d′ and S1(d
′) < S2(d

′).

Alternatively, one can say that for the <-maximal element for

which S1(d) 6= S2(d), it must be the case that S1(d) < S2(d).

The maximal element exists because S1 and S2 are finite.

There is also the following definition: Pick one element d from S2

and replace it by an aribtrary, finite multiset of elements

[d1, . . . , dn] with di < d. Call the resulting set S1. Then S1 << S2.

4

Multiset Order (2)

One can view a multiset as a number, where the digits are taken

from N and D are the possible positions:

Let N1 = (dm, . . . , d0) and N2 = (d′m′ , . . . , d′0) be numbers : N1 is

bigger than N2 if on the first position where N1 and N2 differ, the

digit in N1 is bigger than the digit in N2.

If N1 is a number, then a smaller number N2 can be obtained by

decreasing one digit, while at the same time increasing arbitrary

digits at lower positions.

For example:

(1, 0, 0, 0, 0, 0, 0) > (0, 9, 9, 9, 9, 9, 9).

5

Superposition

Superposition is a combination of resolution and Knuth-Bendix

completion.

A clause is a finite set of ground equalities or negations of ground

equalities:

[f(a) ≈ b, g(b) ≈ b]

[a 6≈ b, a ≈ c]

[a 6≈ b, s(a) ≈ s(b)]

[a 6≈ b, a ≈ f(a)]

6

Ordering Equalities

Let ≻ be a simplification order. We extend ≻ to positive and

negative equalities as follows:

S(t1 ≈ t2) = [t1, t2],

S(t1 6≈ t2) = [t1, t1, t2, t2].

Then A ≻ B iff S(A) ≻≻ S(B).

Now we can use the order to direct equalities, and to sort equalities

within a clause.

In order to allow non-equality predicates, we assume a constant

term t, with the property t ≻ t for all other terms t.

[A ≈ t, A ≈ t]

[A 6≈ t, A 6≈ t]

7

Positive Superposition

Assume that [t1 ≈ t2] ∪R1 and [u1 ≈ u2] ∪R2 are derived

clauses. If

1. t1 ≻ t2,

2. (t1 ≈ t2) ≻≻ R1,

3. u1 ≻ u2,

4. (u1 ≈ u2) ≻≻ R2,

5. u1 contains t1 as subterm,

then derive [u1[t1 ⇒ t2] ≈ u2] ∪R1 ∪R2.

8

Negative Superposition

Assume that [t1 ≈ t2] ∪R1 and [u1 6≈ u2] ∪R2 are derived

clauses. If

1. t1 ≻ t2,

2. (t1 ≈ t2) ≻≻ R1,

3. u1 ≻ u2,

4. (u1 6≈ u2) �� R2,

5. u1 contains t1 as subterm,

then derive [u1[t1 ⇒ t2] 6≈ u2] ∪R1 ∪R2.

9

Equality Reflexivity

Assume that [t 6≈ t] ∪R is a derived clause. If

1. (t 6≈ t) �� R,

then derive R.

10

Equality Factoring

Assume that [t ≈ u1, t ≈ u2] ∪R is a derived clause. If

1. t ≻ u1,

2. u1 � u2,

3. (t ≈ u1) �� R,

then derive [t ≈ u1, u1 6≈ u2] ∪R.

In order to see the correctness of this rule, do a case split on

u1 ≈ u2.

Note: One could also use [t ≈ u2, u1 6≈ u2] ∪R, but it is better to

use [t ≈ u1, u1 6≈ u2] ∪R because this clause is ≻≻-bigger, and

therefore has a slightly better chance of being redundant.)

11

Algorithm Based on Superposition

In order to check whether a set S of clauses is satisfiable, one can

use the following algorithm:

As long as there exists a clause c, which can be derived from S by

positive/negative superposition, equality reflexivity, or equality

factoring, add c to S.

As soon as S contains the empty clause, we know that S is

unsatisfiable.

If no more clauses can be added, we know that S is satisfiable.

12

Soundness and Completeness

Theorem: If it is possible to derive the empty clause [] by repeated

applications of positive/negative superposition, equality reflexivity

and equality factoring from a clause set S, then the clause set S is

unsatisfiable.

Proof: As usual, this is the easy part. It is sufficient to inspect the

rules, and observe that they are logically sound.

13

Theorem: If a clause set S is not satisfiable, then it is possible to

derive the empty clause by repeated applications of

positive/negative superposition, equality reflexivity and equality

factoring.

Proof: We call a clause set S saturated if every clause c that can be

derived from S by a single application of positive/negative

superposition, equality reflexivity, or equality factoring, is already

present in S.

We will prove completeness by showing that every saturated clause

set has a model, but we first introduce redundancy.

Redundancy is a very important optimization, which tells that not

all derivable clauses have to be present in a saturated set. Because

of this, it is possible to delete clauses from a saturated set without

losing completeness.

14

Redundancy

We have already seen some forms of redundancy:

1. If we have two clauses c1 and c2 with c1 ⊂ c2 in S, then one

would like to delete c2 from S. One says that c1 subsumes c2.

2. If we have a clause [t1 ≈ t2] ∪R1 and another clause

[u[t1] ≈ u[t2]] ∪R2 with R1 ⊆ R2 in S, then one would like to

delete the second clause [u[t1] ≈ u[t2]] ∪R2 from S.

15

Redundancy (2)

Let c be a clause. Let S be a clause set. We way that c is

redundant in S if there exist clauses c1, . . . , cn ∈ S, with the

following properties:

1. c1, . . . , cn logically imply c, and

2. for each ci, ci �� c.

Here �� is the extension of � to clauses. (In theory, one should

write four times �, but I think two is enough.)

Since ci �� c is equivalent to ci ≺≺ c or ci = c, we can reformulate

the definition of redundancy as

1. either c ∈ S, or

2. there exist c1, . . . , cn with ci ≺≺ c, which logically imply c.

16

Saturated Clause Set

Let S be a clause set. We call S saturated if every clause c that can

be derived from clauses in S with a single step of positive/negative

superposition, equality resolution, or equality factoring, is

redundant in S.

We call S a saturation of of a clause set C if every clause c in C is

redundant in S.

17

Three Ways to Use Redundancy

Redundancy can be used in three possible ways:

1. If a new clause is obtained by one of the four rules, then check

its redundancy. If it is redundant, then don’t keep it. This is

called forward redundancy checking.

2. If we derive a new clause, then check if any existing clauses

become redundant. If this is the case, then delete these clauses.

This is called backward redundancy checking.

3. Try to make logically correct inferences, (while completely

ignoring the superposition calculus) that make existing clauses

redundant. This is called simplification.

18

Examples of Simplification

• Merging of repleated equalities is always possible: Every clause

of form [t ≈ u, t ≈ u] ∪R can be replaced by [t ≈ u] ∪R.

Similarly, every clause of form [t 6≈ u, t 6≈ u] ∪R can be

replaced by [t 6≈ u] ∪R.

In both cases, the merging is logically sound, and the result is

≺≺-smaller.

• A clause of form [t 6≈ u, f(t) ≈ c] ∪R can be replaced by

[t 6≈ u, f(u) ≈ c] ∪R if t ≻ u.

The replacement is logically sound, and the result is

≺≺-smaller.

19

Model Construction

Let S be a saturated set of clauses. We will show that S has a

model.

The model will be represented by a rewrite system I without

critical pairs, and ordered by ≻ .

Using properties of strongly normalizing, confluent rewrite systems,

a clause c is true in this model iff either

1. c contains a positive equality t1 ≈ t2, for which t1 and t2 have

the same normal form in I.

2. c contains a negative equality t1 6≈ t2, for which t1 and t2 have

different normal forms in I.

20

Model Construction (2)

Let ≻ be our simplification order on terms. We first extend ≻ to

pairs of terms as follows:

(t1, t2) ≻2 (u1, u2) iff t1 ≻ u1 or (t1 = u1 and t2 ≻ u2).

If ≻ has ordinal length α, then ≻2 has ordinal length α× α.

For an ordinal λ with 0 ≤ λ < α× α, let πλ be the pair that has

index λ.

Given a saturated set S, we iterate through the pairs πλ, and

decide if πλ should be added to the interpretation.

21

Model Construction (3)

Let S be a saturated set. For λ ≤ α× α, we define:

• For a limit ordinal λ, put

Iλ =
⋃

λ′<λ

Iλ′ .

• In order to define I for a successor ordinal, we specify how to

obtain Iλ+1 from Iλ: First write πλ = (t1, t2).

If (1) t1 ≻ t2, and (2) Iλ does not contain a rule that can

rewrite t1, and (3) there exists a clause of form [t1 ≈ t2] ∪R

in S with (t1 ≈ t2) �� R, and (4) this clause [t1 ≈ t2] ∪R is

false in Iλ, and (5) R would be still false in Iλ ∪ {t1 → t2}, then

put Iλ+1 = Iλ ∪ {t1 → t2}. Otherwise, put Iλ+1 = Iλ.

22

Since 0 is a limit ordinal, and there are no ordinals below 0, we

have I0 = {}.

We assumed that I was defined for all λ′ < λ to obtain a value for

Iλ.

In the case of a successor ordinal, we looked only at the previous

value. In the case of a limit ordinal, we used all preceeding values.

In order to prove that the function Iλ is well-defined, one has to

remember that every successor ordinal has a unique predecessor,

which follows from well-foundedness.

23

Theorem: Every Iλ is strongly normalizing.

Proof: By construction we have t1 ≻ t2 for every rule (t1 → t2) in

Iλ, and ≻ is a reduction order.

Theorem: No Iλ has a critical pair.

Proof: Supppose there were one, we would have distinct rules

(t1 → t2), (u1 → u2) ∈ Iλ with t1 a subterm of u1.

Assume that (t1, t2) = πλ1
and (u1, u2) = πλ2

. If t1 6= u1, then it

must be the case that t1 ≺ u1, so that by definition of ≺2, we have

λ1 < λ2. If t1 = u1, we can assume without loss of generality that

t1 ≺ u2, so that in that case, we can also have λ1 < λ2.

At level λ2 of the construction, condition (2) would have been false,

so that (u1 → u2) would not have been added.

24

Theorem MAXANDONLY: For every rewrite rule t1 → t2 in Iα×α,

there is a clause c of form [t1 ≈ t2] ∪R in S, such that

1. t1 ≻ t2,

2. (t1 ≈ t2) ≻≻ R,

3. R is false in Iα×α.

Proof: Let λ be the ordinal for which πλ = (t1, t2). The fact that

(t1 → t2) ∈ Iα×α implies that some clause of form [t1 ≈ t2] ∪R

met the conditions (1,2,3,4,5) of the model construction at stage λ.

It follows from condition (1) that t1 ≻ t2. Condition (3) implies

that (t1 ≈ t2) �� R. Because R is false in Iλ ∪{t1 → t2}, R cannot

contain another instance of t1 ≈ t2. It follows that (t1 ≈ t2) ≻≻ R.

It follows from condition (5) that R is false in Iλ. We show on the

next slide that R is still false in Iα×α.

25

Proof of MAXANDONLY (2)

For a negative literal (u1 6≈ u2) ∈ R, the fact that it is false in Iλ+1

implies that Iλ+1 merges u1 with u2. Since Iλ+1 ⊆ Iα×α, Iα×α

still merges u1 with u2. As a consequence, (u1 6≈ u2) is still false in

Iα×α.

26

Proof of MAXANDONLY (3)

For a positive literal (u1 ≈ u2), suppose that Iα×α merges u1 with

u2. We show that this contradicts the fact that Iλ+1 does not

merge u1 with u2.

If u1 = u2, then obviously Iλ+1 would merge u1 with u2, so that

this is a contradiction.

Since Iλ+1 does not merge u1 with u2, there must exist a rule

(w1 → w2) ∈ (Iα×α\Iλ+1), that is used when merging u1 with u2. If

w1 = t1, then this would result in a critical pair, because of the rule

(t1 → t2) ∈ Iλ+1.

It follows that (w1, w2) ≻2 (t1, t2), so that w1 ≻ t1. Since every

rewrite sequence is ≻-decreasing, it must be the case that u1 � w1

or u2 � w1. Since t1 ≻ t2, this would imply that

(u1 ≈ u2) ≻ (t1 ≈ t2), which contradicts condition (3).

27

All clauses in S are true in Iα×α.

We will prove this by transfinite induction, using the order ≺≺ on

clauses.

We will assume that all clauses c′ with c′ ≺≺ c are true in Iα×α,

and use this fact to show that c is true in Iα×α.

The proof consists of many cases, which depend on the form of the

maximal element in c.

28

Maximal Element is Negative

Assume that c has form [t 6≈ t] ∪R with (t 6≈ t) �� R.

Since S is saturated, there are clauses c1, . . . , cn ∈ S, with ci �� R,

which logically imply R. By induction, these clauses are true in

Iα×α, so that R is true in Iα×α.

This implies that [t 6≈ t] ∪R is also true in Iα×α.

29

Maximal Element is Negative (2)

Assume that c has form [t1 6≈ t2] ∪R with (t1 6≈ t2) �� R and

t1 ≻ t2.

If there is no rule (u1 → u2) ∈ Iα×α that can rewrite t1, then

t1 6≈ t2 must be true in Iα×α, so that c is true in Iα×α.

So assume there is a rule (u1 → u2) ∈ Iα×α, that can rewrite t1.

By MAXANDONLY, there is a clause [u1 ≈ u2] ∪R′ in S, s.t.

u1 ≻ u2, (u1 ≈ u2) ≻≻ R′, and R′ is false in Iα×α. Since u1 is a

subterm of t1, one can apply negative superposition with c and

obtain the clause [t1[u1 ⇒ u2] 6≈ t2] ∪ R ∪R′. This clause is

≺≺-smaller than c. Using the fact that S is saturated in the same

way as on the previous slide, we see that

[t1[u1 ⇒ u2] 6≈ t2] ∪R ∪R′ is true in Iα×α
. Since Iα×α still merges

[t1[u1 ⇒ u2] with t2, and R′ is false in Iα×α, it follows that R must

be true in Iα×α. This implies that c is true in Iα×α.

30

Maximal Element is Positive

The cases where the maximal element is positive are similar, but

much trickier.

If the maximal element is positive, then c can be written in the

form

[t1 ≈ t2] ∪R with t1 � t2 and (t1 ≈ t2) �� R.

There exists a λ with 0 ≤ λ < α× α, s.t. πλ = (t1, t2).

In order to show that c is true, we need to make a very big case

distinction. We check the cases on the following slides.

31

If t1 = t2, then c is obviously true.

If t1 6= t2, then t1 ≻ t2.

We first cover the case where there are no further occurrences of t1

in c. In this case, c can be written in the form [t1 ≈ t2] ∪R, where

R does not contain t1. It is easily checked that (t1 ≈ t2) ≻≻ R.

If Iα×α contains a rule u1 → u2 that can rewrite t1, then by

MAXANDONLY, there is a clause of form [u1 ≈ u2]∪R′ in S, s.t.

u1 ≻ u2, (u1 ≈ u2) ≻≻ R′, and R′ is false in Iα×α.

We can apply positive superposition with c and obtain

[t1[u1 ⇒ u2] ≈ t2] ∪R ∪R′. This clause is ≺≺-smaller than c, so

that we can assume that it is true by the reasoning that we have

already seen before. Since R′ is false in Iα×α, it follows that either

R is true in Iα×α, or Iα×α merges t1[u1 ⇒ u2] with t2. In the latter

case, since Iα×α contains u1 → u2, it also merges t1 with t2.

32

We now check the case where t1 ≻ t2, there are no occurrences of t1

in R, there is no rule (u1 → u2) in Iα×α that can rewrite t1, and R

was true in Iλ.

Assume that R contains a positive equality u1 ≈ u2, such that Iλ

merges u1 and u2. Since Iλ ⊆ Iα×α, the terms u1 and u2 are also

merged by Iα×α, so that R is true in Iα×α.

Assume that R contains a negative equality u1 6≈ u2, s.t. Iλ does

not merge u1 with u2. Since neither u1, u2 contains t1, Iλ+1 will

also not merge u1 with u2. Now assume that Iα×α merges u1 with

u2.

This implies that Iα×α\Iλ+1 contains a rule (w1 → w2) that played

a role in merging u1 or u2. It follows that either u1 � w1 or

u2 � w1, which implies t1 ≻ w1. This contradicts the fact that

(w1 → w2) ∈ (Iα×α\Iλ+1).

33

We check the case where t1 ≻ t2, there are no occurrences of t1 in

R, there is no rule in Iα×α that can rewrite t1, and R is false in Iλ.

If Iλ merges t1 with t2, then because Iλ ⊆ Iα×α, Iα×α also merges

t1 with t2, so that c is true in Iα×α.

If Iλ does not merge t1 with t2, then the clause [t1 ≈ t2] ∪R is

false in Iλ.

If R would be true in Iλ ∪ {t1 → t2}, then the true element in R

cannot have form u1 6≈ u2 : If Iλ ∪ {t1 → t2} does not merge u1

with u2, then certainly, also Iλ does not merge u1 with u2.

If it has form u1 ≈ u2, and is true in Iλ ∪ {t1 → t2}, but not in Iλ,

this can only happen when u1 or u2 contains t1, which contradicts

the assumption that R does not contain t1.

As a consequence Iλ+1 contains t1 → t2, which implies that Iα×α

contains t1 → t2, which makes c true.

(Finally, the model construction has done some useful work!)

34

It remains to check the cases where t1 ≻ t2, and there are other

occurrences of t1 in R. The occurrences cannot be in negative

equalities, because that would imply that R ≻≻ (t1 ≈ t2).

It follows that R can be written in the form

[t1 ≈ u1, t1 ≈ u2, . . . t1 ≈ un] ∪R′,

where R′ does not contain t1, and each t1 ≻ uj . (It is possible that

uj = t2.)

If Iα×α merges t2 with one of the uj , we may assume without loss

of generality that it is u1. One can form the equality factor

[t1 ≈ t2, t2 6≈ u1, t1 ≈ u2, . . . , t1 ≈ un] ∪R′ from c. Since the

equality factor is ≺≺-smaller than c, we can assume by the

reasoning that we have already seen before that it is true in Iα×α.

Since we assumed that Iα×α merges t2 with u1, it follows that

t2 6≈ u1 is not true in Iα, which implies that c is true in Iα.

35

(and now we have seen the equality factoring rule in action!)

36

It remains to check the case where Iα×α does not merge t2 with

any of the uj .

If Iλ merges t1 with t2, then c is obviously true in Iα×α.

If Iλ does not merge t1 with t2, then c meets the conditions

(1,2,3,4) in the model construction. By the argument from three

slides ago, no element in R′ will be true in Iλ ∪ {t1 → t2}.

If one of t1 ≈ uj would be true in Iλ ∪ {t1 → t2}, this would imply

that Iλ+1 merges t1 with t2, and also t1 with uj . This would imply

that Iλ+1 also merges t2 with uj , which contradicts the fact that

we are checking here the case where Iα×α does not merge merge t2

with any of the uj . It follows that condition (5) is met, so that Iλ+1

contains t1 → t2, which implies that Iα×α makes c true.

37

Selection Functions

The superposition calculus can be further extended with selection

functions:

A selection function is a function from clauses to sets of negative

equalities. It must be the case that Σ(c) ⊆ c.

This means that Σ(c) = ∅, when c has no negative equalities.

38

Use of Selection Functions

• A positive equality occurring in a clause c = [t1 ≈ t2] ∪R can

be used in a rule application if (t1 ≈ t2) ≻≻ R (or

(t1 ≈ t2) �� R, dependent on the rule) and Σ(c) = ∅.

• A negative equality occurring in a clause c = [t1 6≈ t2] ∪R

can be used in a rule application if either Σ(c) = ∅ and

(t1 6≈ t2) �� R, or Σ(c) is not empty and (t1 6≈ t2) ∈ Σ(c).

39

Completeness with Selection Functions

The model construction stays almost the same: Condition (3) has

to be replaced by: there exists a clause of form [t1 ≈ t2] ∪R in S

with (t1 ≈ t2) �� R, and Σ([t1 ≈ t2] ∪R) = ∅.

As far as I see, the proof that all clauses are true in Iα×α stays the

same.

40

Conclusions

The completeness proof is due to Leo Bachmair and

Harald Ganzinger 1994.

It created order in a big chaos of combinations of optimizations of

paramodulation, with different completeness proofs.

It is the basis of many theorem provers. (More about this later.)

41

