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Basic Davis Putnam

Davis Putnam = Unit resolution + Split rule.

Γ

Γ, p | Γ,¬p
split p and ¬p are not in Γ.

C ∨ l̄, l

C, l
unit

Used in the most efficient SAT solvers.

The final state of Basic DP is ⊥ or a set of configurations

(distinct satisfying assignments).

Basic DP can be used to enumerate all satisfying

assignments.

Ex: Prove correctness.

Ex: Show that unit simulates the elim rule of the truth table

procedure.
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Basic Davis Putnam (example 1)

A DP refutation of {p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q}

p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q

p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q, p | p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

p ∨ q, q, p ∨ ¬q,¬p ∨ ¬q, p | p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

p ∨ q, q, p ∨ ¬q,¬p, p | p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

⊥ | p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

q,¬p ∨ q, p,¬p ∨ ¬q,¬p

⊥

Ex: Use Basic DP to refute {¬p ∨ ¬q ∨ r, p ∨ r, q ∨ r, ¬r}.
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Basic Davis Putnam (example 2)

A satisfying assignment for {¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q}:

¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q

¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q, p | ¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

q, p ∨ ¬q,¬p ∨ ¬q, p | ¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

q, p ∨ ¬q,¬p, p | ¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

⊥ | ¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q,¬p

¬p ∨ q,¬q,¬p ∨ ¬q,¬p

¬q,¬p ∨ ¬q,¬p

Ex: Implement Basic DP.

Ex: Use Basic DP to find a satisfying assignments for:

{p∨¬q,¬p∨ q, q∨¬r,¬q∨¬r}, and {p∨ q∨¬r, p∨¬q,¬p,¬r,¬u}.

4



'

&

$

%

Davis Putnam

The pure literal rule, subsumption, and model elimination

are commonly used rules:

Γ, C ∨ l

Γ
pure l l̄ is not in Γ.

C ∨ l, l

l
sub

Γ, l1 ∨ . . . ∨ ln

Γ, l1 | . . . | Γ, ln
m elim l1, . . . , ln are not in Γ.

We say that non-case-splitting rule is a constraint

propagation rule.

Ex: Show the new rules preserve correctness.

Ex: Implement the new rules.
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“Lookahead rules”

Γ1 `∗ Γ2, when Γ2 is obtained after the application of zero or

more reduction rules starting at the configuration Γ1.

LA(1) rule:

Γ Γ, p `∗ Γ1 Γ,¬p `∗ Γ2

Γ, Γ1 ∩ Γ2

In practice, only constraint propagation rules are used in `∗.

Example:

p ∨ q,¬p ∨ q
p ∨ q,¬p ∨ q, p

p ∨ q, q, p

q, p

p ∨ q,¬p ∨ q,¬p

q,¬p ∨ q,¬p

q,¬p

p ∨ q,¬p ∨ q, q
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“Lookahead” rules (cont.)

LA(2) rule:

Γ Γ, p, q `∗ Γ1 Γ,¬p, q `∗ Γ2 Γ, p,¬q `∗ Γ3 Γ,¬p,¬q `∗ Γ4

Γ, Γ1 ∩ Γ2 ∩ Γ3 ∩ Γ4

Recursive Learning:

Γ, l1 ∨ . . . ∨ ln Γ, l1 `∗ Γ1 . . . Γ, ln `∗ Γn

Γ, Γ1 ∩ . . . ∩ Γn

Ex: Show that the “lookahead” rules are sound.
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Davis Putnam in practice

Depth-first search (stack of configurations).

A commonly used strategy is: pure l∗ ; (split ; unit∗)∗.

Another strategy is: pure l∗ ; (la(1 )∗ ; split ; unit∗)∗.

A more efficient version of the unit rule is used: literals are

not removed from clauses.

A clause C is satisfied if it contains a literal assigned to

true.

A clause C is a conflicting clause if all literals are assigned

to false.

A clause C is a unit clause if it is not satisfied, and all but

one literal are assigned to false.
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Davis Putnam in practice (cont.)

The unit rule is “broken” in two rules:

C ∨ l

C ∨ l, l
unit> C ∨ l is a unit clause, and l is unassigned.

C

⊥
unit⊥ C is a conflicting clause.

The term BCP (boolean constraint propagation) is usually

used to reference the rules unit> and unit⊥.

unit⊥ is the elim of the truth table procedure.

The configuration is implemented as a partial assignment.
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Davis Putnam in practice (example 1)

A refutation of: Γ ≡ {¬p ∨ ¬q ∨ r, p ∨ r, q ∨ r, p ∨ ¬r, ¬p ∨ ¬r}.

Γ split

Γ,¬p | Γ, p ¬p ∨ ¬r is a unit clause

Γ,¬p | Γ, p,¬r ¬p ∨ ¬q ∨ r is a unit clause

Γ,¬p | Γ, p,¬r,¬q q ∨ r is a conflicting clause

Γ,¬p | ⊥ backtrack

Γ,¬p p ∨ r is a unit clause

Γ,¬p, r p ∨ ¬r is a conflicting clause

⊥
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Davis Putnam in practice (example 2)

The satisfying assignments of: Γ ≡ {¬p ∨ q, p ∨ ¬q}:

Γ split

Γ,¬p | Γ, p ¬p ∨ q is a unit clause

Γ,¬p | Γ, p, q p, q is a satisfying assignment

Γ,¬p | Γ, p, q backtrack to search next assignment

Γ,¬p p ∨ ¬q is a unit clause

Γ,¬p,¬q ¬p, ¬q is a satisfying assignment
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Davis Putnam in practice (example 3)

Consider the following set of clauses:

Γ ≡ ¬p1 ∨ ¬p3 ∨ ¬p4,¬p1 ∨ p3 ∨ ¬p4, p2 ∨ p4 ∨ q, p3 ∨ p4,¬p3 ∨ p4

Γ split

Γ,¬p1 | Γ, p1 split

Γ,¬p1 | Γ, p1,¬p2 | Γ, p1, p2 split

Γ,¬p1 | Γ, p1,¬p2 | Γ, p1, p2,¬p3 | Γ, p1, p2, p3 ¬p1 ∨ ¬p3 ∨ ¬p4 is unit

Γ,¬p1 | Γ, p1,¬p2 | Γ, p1, p2,¬p3 | Γ, p1, p2, p3,¬p4 ¬p3 ∨ p4 is conflicting

Γ,¬p1 | Γ, p1,¬p2 | Γ, p1, p2,¬p3 | ⊥ backtrack

Γ,¬p1 | Γ, p1,¬p2 | Γ, p1, p2,¬p3 ¬p1 ∨ p3 ∨ ¬p4 is unit

Γ,¬p1 | Γ, p1,¬p2 | Γ, p1, p2,¬p3,¬p4 p3 ∨ p4 is conflicting

Γ,¬p1 | Γ, p1,¬p2 | ⊥ backtrack

Γ,¬p1 | Γ, p1,¬p2 split

Γ,¬p1 | Γ, p1,¬p2,¬p3 | Γ, p1,¬p2, p3 ¬p1 ∨ ¬p3 ∨ ¬p4 is unit

. . .
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Lemma Generation

Lemma generation is a commonly used technique in SAT

solvers to avoid redundant work.

The configuration is composed of a set of clauses and a

partial function f from literals to clauses.

We say the partial function f is the implication graph.

In a configuration Γ, f(l) = c if the value of l was implied by

c using unit>. We say c is a justification for l.

In the initial configuration, the implication graph is empty.

Let f(l := c) be the function update.

f ; C ∨ l

f(l := C ∨ l); C ∨ l, l
unit> C ∨ l is a unit clause, and l is unassigned.
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Lemma Generation (cont.)

Lemma generation rule:

f ; C1 ∨ l̄

f ; C1 ∨ l̄, C1 ∨ C2

l gen C1 ∨ l̄ is a conflicting clause, and f(l) = C2 ∨ l.

The l gen is the resolution rule.

The new clause C1 ∨ C2 is also a conflicting clause, and it is

implied by the initial set of clauses.

We say C1 ∨ C2 is a lemma.

Γ1 | . . . | Γn | Γ, C

Γ1, C | . . . | Γn, C | Γ, C
lemma C is a lemma.
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Lemma Generation (cont.)

The implication graph can be refined when lemmas are

inserted in a configuration.

Scenario: C ∨ l is a lemma in a configuration, where l is

true, f(l) is undefined (i.e., l does not have a justification),

and C is a conflicting clause. So, f can be refined because

C ∨ l is a justification for l.

f ; C ∨ l, l

f(l := C ∨ l); C ∨ l
refine f(l) is undefined, C is a conflicting clause.
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Lemma Generation (example)

Consider (again) the following set of clauses:

S ≡ {¬p1 ∨ ¬p3 ∨ ¬p4,¬p1 ∨ p3 ∨ ¬p4, p2 ∨ p4 ∨ q, p3 ∨ p4,¬p3 ∨ p4}

Let f0 be the empty function (implication graph).

f0; S split

f0; S,¬p1 | f0; S, p1 split

f0; S,¬p1 | f0; S, p1,¬p2 | f0; S, p1, p2 split

. . . | f0; S, p1, p2,¬p3 | f0; S, p1, p2, p3 unit>

. . . | f1 ≡ f0(¬p4 := ¬p1 ∨ ¬p3 ∨ ¬p4); S, p1, p2, p3,¬p4 l gen at ¬p3 ∨ p4

. . . | f1; S1 ≡ (S,¬p1 ∨ ¬p3), p1, p2, p3,¬p4 lemma

f0; S1,¬p1 | . . . | f1; S1, p1, p2, p3,¬p4 unit⊥

f0; S1,¬p1 | . . . | f0; S1, p1, p2,¬p3 | ⊥ backtrack
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f0; S1,¬p1 | . . . | f0; S1, p1, p2,¬p3 refine at ¬p1 ∨ ¬p3

. . . | f2 ≡ f0(¬p3 := ¬p1 ∨ ¬p3); S1, p1, p2,¬p3 unit>

. . . | f3 ≡ f2(¬p4 := ¬p1 ∨ p3 ∨ ¬p4); S1, p1, p2,¬p3,¬p4 l gen at p3 ∨ p4

. . . | f3; S2 ≡ (S1,¬p1 ∨ p3), p1, p2,¬p3,¬p4 l gen at ¬p1 ∨ ¬p3

. . . | f3; S3 ≡ (S2,¬p1), p1, p2,¬p3,¬p4 lemma at ¬p1

f0; S1,¬p1 | f0; S1,¬p1, p1,¬p2 | f3; S3, p1, p2,¬p3,¬p4 unit⊥

f0; S1,¬p1 | f0; S1,¬p1, p1,¬p2 | ⊥ backtrack

f0; S1,¬p1 | f0; S1,¬p1, p1,¬p2 unit⊥

f0; S1,¬p1 | ⊥ backtrack

f0; S1,¬p1

The following strategy can be used when a conflicting

clause is detected:

l gen∗ ; lemma ; (unit⊥ ; backtrack)∗ ; refine
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Optimizations

Optimizing the application of unit> and unit⊥.

Simple idea: Create a list of positive and negative

occurrences for each propositional variable.

When a propositional is assigned to true(false), only the list

of negative(positive) occurrences need to be visited.

Watch literals: A clause is irrelevant if it contains two or

more unassigned literals. So, each clause is referenced only

by two proposition variables.

When a propositional is assigned to true(false), only the list

of negative(positive) watched occurrences need to be

visited. The watch literals are reassigned.

The number of visited clauses is minimized.
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Splitting Heuristics

Perform case-splits based on a variable order.

Put “related” variables close to each other.

Most important variables first (number of positive/negative

occurrences).

Variables that participate of several conflicts are important.

Reorder the variables from time to time.

Randomization (motivation: try to avoid to get stuck in

bad variable order).

Try to satisfy the most recent generated lemmas. Remark:

This heuristic is not based on the variable order.

Ex: Implement a DP based procedure using the reduction

rules described in this lecture.
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Solving Real Problems.

Under and over-constrained problems are surprisingly easy.

Modern SAT solvers can handle (easy) instances with

hundreds of thousands variables.

Is SAT polynomial in practice?

The hardest problems are critically constrained instances.

For hard instances, DP based solvers can only handle

something between 400-700 variables.

Do we find hard instances in practice?

Yes. Example: There is no polynomial size resolution proof

for the pigeon hole problem: there is no 1-1 function from

m objects (pigeons) to n objects (holes) if m > n.

Ex: Model the pigeon hole problem using propositional

logic.

20



'

&

$

%

St̊almarck Method

St̊almarck Method = Lookahead + equivalence classes.

Input: triplets (p = li ∧ lj, and p = li ⇔ lj).

Ex: Write a program to convert a formula into a set of

triplets.

Configuration: triplets, equalities between literals.

Equivalence classes are usually used to represent the set of

equalities between literals.

l1 = l2, l2 = l3

l1 = l2, l2 = l3, l1 = l3
trans

l1 = l2

l1 = l2, l2 = l1
symm

l1 = l2, l1 = l̄2

⊥
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St̊almarck Method: ∧-triplets rules

p = l1 ∧ l2, p = >

p = >, l1 = >, l2 = >

p = l1 ∧ l2, p = l̄1

l1 = >, l2 = ⊥, p = ⊥

p = l1 ∧ l2, p = l̄2

l1 = ⊥, l2 = >, p = ⊥

p = l1 ∧ l2, l1 = >

p = l2, l1 = >

p = l1 ∧ l2, l2 = >

p = l1, l2 = >

p = l1 ∧ l2, l1 = ⊥

p = ⊥, l1 = ⊥

p = l1 ∧ l2, l2 = ⊥

p = ⊥, l2 = ⊥

p = l1 ∧ l2, l1 = l2

p = l1, p = l2, l1 = l2

p = l1 ∧ l2, l1 = l̄2

p = ⊥, l1 = l̄2
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St̊almarck Method: ⇔-triplets rules

p = l1 ⇔ l2, l1 = >

p = l2, l1 = >

p = l1 ⇔ l2, l2 = >

p = l1, l2 = >

p = l1 ⇔ l2, l1 = ⊥

p = l̄2, l1 = ⊥

p = l1 ⇔ l2, l2 = ⊥

p = l̄1, l2 = ⊥

p = l1 ⇔ l2, p = >

p = >, l1 = l2

p = l1 ⇔ l2, p = ⊥

p = ⊥, l1 = l̄2

p = l1 ⇔ l2, l1 = l2

p = >, l1 = l2

p = l1 ⇔ l2, l1 = l̄2

p = ⊥, l1 = l̄2

p = l1 ⇔ l2, p = l1

p = l1, l2 = >

p = l1 ⇔ l2, p = l2

p = l2, l1 = >

p = l1 ⇔ l2, p = l̄1

p = l̄1, l2 = ⊥

p = l1 ⇔ l2, p = l̄2

p = l̄2, l1 = ⊥

Ex: Show the triplet rules are sound.
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St̊almarck Method (cont.)

The triplet rules are constraint propagation rules.

A formula is n-easy if it can be refuted using LA(n) and the

triplet rules.

Strategy: t rules∗; la(1)∗; la(2)∗; la(3)∗; . . ..

St̊almarck Method is usually used as an optimization, since

it is infeasible to perform la(n)∗ (n ≤ 2) for big formulas.

The St̊almarck Method is a breadth-first search procedure.

Remark: the triplet rules can be used in a depth-first search

procedure based on case-splits.
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Available SAT solvers

ZChaff (http://www.ee.princeton.edu/ chaff/zchaff.php)

Berkmin (http://eigold.tripod.com/BerkMin.html)

Grasp (http://sat.inesc-id.pt/ jpms/grasp/)

Repository of SAT solvers (http://www.satlive.org).

Repository of SAT problems (http://www.satlib.org).

Ex: Try to solve the challenge problems located at satlib

using your SAT solver.
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