Object-Oriented Programming (List 4)

Due: April 14th 2010

1. Write a function double dmod (double x , double y) that (assuming $x \geq 0, y>0)$ computes $x-n . y$ where n is the biggest natural number, s.t. $x-n . y \geq 0$. (It is the same as $\%$, but on double.)
2. You have seen how to implement the Taylor sequence for the function e^{x} in the lecture, and successsfully written a program for computing $\sin (x)$ in the previous exercise list. Now implement the Taylor sequence for $\cos (x)$. It is defined by

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots
$$

In contrast to last week, you now have to write it as function. Write a function double cosine (double x), that computes the cosine of a number. Use the function for printing a table of cosines from 0 to 90 degrees.
3. Write a function

```
unsigned int selectmin( const std::vector< unsigned int > & v )
```

that selects the minimum element from a vector. (Without assuming that the vector is sorted.)
4. Write a function

```
void appendinorder( std::vector< unsigned int > & v, unsigned int x );
```

that, assuming that v is a sorted vector, inserts x on the proper place in the vector.
5. Write function

```
std::vector< unsigned int > sort( const std::vector< unsigned int > & v )
```

that sorts a vector, using the previous function appendinorder.
6. Modify the previous functions, so that appendinorder can sort a vector of double .

