Object-Oriented Programming, List 3

Due: 7 April 2009

1. You have seen how to implement the Taylor sequence for the function e^{x} in the lecture. Implement the Taylor sequence for $\sin (x)$. It is defined by

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots
$$

Write a program that asks for a number, and prints its sine. If you want to accept input in degrees, you will have to multiply it by $\pi / 180$ first.
2.

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

Write a program that approximates $\frac{\pi}{4}$ through this sequence. (Note. The sequence has a very bad convergence rate. Be patient.)
3. The tangent function $\tan (x)=\frac{\sin (x)}{\cos (x)}$ has no nice Taylor sequence, but it has a nice continued fraction:

X

Write a program that asks for an angle (in radians), and which prints the tangent of this angle.
Don't worry too much about efficiency. Start the fraction with some large number.

