
Object-Oriented Programming

1

The Three Paradigms of Programming

As far as I know, there are three paradigms of programming:

1. Logic Programming.

2. Functional Programming

3. Imperative Programming

2

Computing N ! with a Logic Program

fact(0, 1).

fact(N, M1) :- N > 0, N1 is N - 1,

fact(N, M), M1 is M * N.

(The meaning of :- is ← .)

• A logic program consists of true statements about the functions

that one wants to compute.

• In theory, one should not worry about efficiency, but in

practice one has to: Order of formulas matters, and order

inside formulas matters.

• LP supports backtracking very conveniently.

3

Computing N ! in a Functional Language

define fact(N) :

if N = 0 then 1

else

fact(N - 1) * N.

• The program can be interpreted as characteristic equation, or

definition.

• Designed by mathematicians. Among the three paradigms, it is

the closest to mathematical representation.

• Computation is rewriting with the definition.

4

Computation of N ! in an Imperative Language

int fact(int n)

{

int fact = 1;

while(n != 0)

{

fact = fact * n;

n = n - 1;

}

return fact;

}

5

Imperative Languages

• Imperative Languages evolved from machine languages:

Connecting Wires ⇒ Assembler ⇒ Fortran/Cobol ⇒

Algol/Pascal/C ⇒ Java/C#/C++.

• Imperative languages have assignemnts, commands that do or

change something. The computation model is based on the

notion of state.

6

Imperative Languages versus Functional Languages

Despite the different origins, imperative programming and

functional programming are not that far apart.

For programs that have as aim to compute a result, imperative

programming is a subset of functional programmming.

For each point in the program, one can define a function that

computes the result starting at this point in the program.

7

Imperative Languages versus Functional Languages (2)

For fact, the result is:

define fact(N) :

fact_while(N, 1).

define fact_while(N, F) :

if(N == 0) then F

else

fact_while(N - 1, F * N).

8

Imperative Programming versus Functional Programming
(3)

• Modern languages, like Java, C# and C++ are machine

independent. Java and C# have garbage collection.

• Since Algol, all programming language have local variables

with stack like semantics. (FORTRAN does not have this)

Programming in functional style is possible in modern imperative

languages, and you should do this wherever possible.

9

Definition of object-Oriented Programming

OOP is a buzzword. All modern programming languages have OO

features.

But nobody seems to really understand what it is.

Wikipedia says (on Feb 2009): ’Object Oriented Programming

(OOP) is a programming paradigm that uses ”objects” and their

interactions to design applications and computer programs.’

10

Using this definition, object-oriented programming is restricted to

imperative programming.

11

Standard Way of Obtaining Data Structures

In languages that are not object-oriented (like Pascal, or C), data

structures can be obtained by the following, recursive constructors:

• Primitive data types: int, bool, real, double.

• If D is a data type then array [1 .. N] of D is a data type.

• If D is a data type with a natural order, then

range D1 .. D2 of D is a a data type.

• If D1, . . . , Dn are data types, N1, . . . , Nn are identifiers, then

record N1 : D1 . . . Nn : Dn is a data type.

12

Difficulties with Records

Mathematically seen, the record constructor simply constructs

ordered tuples of form D1 ×D2 × · · · ×Dn.

For many applications, (maybe even most), this is not adequate:

• Not every tuple (d1, . . . , dn) represents a valid object.

• Objects that are equal can be represented by distinct tuples.

13

Problems with Records (2)

Dates can be defined as follows:

day = range 1 .. 31 of int

month = range 1 .. 12 of int

year = int

data = record { day : day, month : month, year : year };

Not every combination is a valid date:

(29, 2, 2009), (31, 4, 2008).

Determining which combinationa are valid dates can be very tricky.

Floating point numbers can be defined as follows:

double = sign × mantisse × expsign × exp.

Representation of double is again tricky. The number 0 has two

representations. Mantisses must be normalized.

14

Class = Record + Access Functions

The main achievement of modern programming languages is:

class = Set of Tuples + Small set of access functions.

Only the access functions can access the tuples.

Access functions gaurantee that:

• No ill-formed tuples can be constructed.

• Tuples that have the same meaning cannot be distinguished.

15

For data, access functions could be:

nextdate, previousdate.

differenceindays

adddays, subtractdays.

weakday

16

Theoretically, access functions can also be used in C or Pascal, but

in practice this is difficult.

In C/Pascal access to the representation is not blocked, so that the

user of a class can forget to use the access functions.

C++ automatically inserts assignments, constructors.

17

Other Applications of Controlled Access

• Guaranteeing correctness of algorithm. For example a sorting

algorithm that is guaranteed not to forget or invent elements.

• Hiding memory management. (important in C++.)

• Easy replacement of implementation. (As long as the access

functions remain the same)

18

Polymorphism (Inheritance)

If class C1 has all access functions which C2 has, then a C1 can be

used wherever a C2 can be used.

This is called inheritance.

In my view, the importance of class inheritance is overestimated,

and one must be extremely careful when using it.

Even when C1 has all access functions that C2 has (with the same

name), their behaviour need not be the same.

(For example N, R)

Inheritance should not be confused with reimplementation.

19

Polymorphism (Interfaces)

If some set of classes C1, . . . , Cn shares a set of access functions, it

is possible to define an interface I based on these access functions.

It is said that C1, . . . , Cn implement I, or that C1, . . . , Cn inherit

from I.

Interface inheritance is related to class inheritance but one must

not confuse them. (An interface has no direct members)

Given an interface, it is possible to define a function or a data

structure on I. Such function/data structure will work for every Ci.

20

Polymorphism (Templates)

If some set of classes C1, . . . , Cn shares a set of access functions, it

is possible to define a data structure or a function parametrized by

a Ci.

For example list< Ci > or print < Ci >

The difference between templates and interfaces is that: With a

template, a separate copy of the datastructure/function is compiled

for every Ci : This is more efficient at run time, but more

compilation is necessary and the resulting code is longer.

With a template, it is known at compile time which Ci will be

used. It is not possible to use different Ci in the same data

structure. This loss of flexibility can be a disadvantage, but it

allows compile time type checking.

The current implementation of templates in C++ is unpleasant.

21

Summary

Functional Programming and Imperative Programming are closely

related. You should be aware of that and use elements of functional

style whenever possible.

Classes are a way of defining types that can be combined with

imperative and with functional programming.

Defining the right class (right set of access functions) is hard. It

requires experience, and I will give a lot of attention to this during

the class.

Classes allow polymorphism. Templates are more important than

interfaces are more important than class inheritance.

22

