'Tokenizers



Tasks of the Tokenizer

e Group the input (which is just a stream/string of characters)

into tokens. (Numbers, operators, special words, strings)

e Fliminate comments.

o In (' : Deal with #include, #if #else #endif and the like.

Tokenizers are also called scanners.




Tokens

Definition: A token type is a pair (A, T'), in which A is a finite set of
tokens labels, and T is a function s.t. for each A € A, T'()\) is a set.

A token (with attribute) is a pair (A, x), s.t. A € A and x € T'(\).

Example: If one puts A = {int, real}, with
T(int) = Z, T(real) = R, then
(real, 3), (real, 3.141526535), (int,2), (int, —1) are tokens.

(int, 2.718271828) is not a token.




Tokens without Attribute

Not all tokens have an attribute. For example reserved words

while, do, if, then, else usually don’t.

For those, one needs a trivial type T = {( )}. Then
T'(while) = T'(do) = T'(if) = T'(then) = T'(then) = T.




Implementation Issues

I usually use CT1. A token is a struct containing an enum type,
and a list for each possible type of attribute. The list has length 1
when the attribute has the type of the list, and 0 otherwise.

In C, one could use a struct containing an enum and a pointer to

the heap, or an enum with a union type.
In Java, one could use a struct containing an enum and an Object.

Whatever implemention you choose, you should use an
object-oriented approach. Make sure that there is a token class,
make sure that it can be printed, that it can be passed to

procedures, and put in containers.




Implementation (2)

It is a good idea to add information about where it comes from to a

token. This makes it more easy to generate error messages.

A tokenizer is a function with signature
token readtoken( reader& ); When called, it reads characters

from reader until it has enough information to build a token.

The reader has a field char nextchar; and a method
void moveforward( ); which replaces nextchar by the next

char.




Building a Tokenizer

There are basically two ways of building a tokenizer.

e Hacking (sometimes called ’careful coding by hand.’) If the
tokenizer is not big, you can follow this approach.

e Using a scanner generator. (Lex)




Writing a Tokenizer by Hand

If the tokens are not too many, you can follow this approach.
Draw an NDFA for each non-trivial token.

Stare at the NDFAs and the tokens for which you didn’t draw an
NDFA and find all overlaps.

Find ways of dealing with the overlaps. (Combine NDFAs with
overlaps into one. First read one token, if NDFA gets stuck, read as
another token. Do postprocessing of read tokens)




Overlaps

Sometimes, different tokens have shared prefixes.

An example is int and real. One can decide only at the end that
1234533434343433434 is an int, and not a real.

Similarly, identifiers and reserved words overlap, like while, do,

dummy, which.
Operators +, ++ and -, ->, -- overlap.
- overlap with integer -1

If you write a tokenizer by hand, you have to worry about overlaps.

(which means that you loose modularity)




Usage of a scanner generator

The tokens are defined by regular expressions. The scanner
generator constructs an NDFA, and translates this into an
equivalent DFA. The resulting DFA is very efficient (optimal). The
DFA reads the input only once. When defining the tokens, the user
doesn’t need to worry about overlaps.

Disadvantages are that the user has to spend time learning to use
the tool, that the resulting scanner does not give much help when
computing the attribute, (DFAs are only good at saying ’yes’ or

'no’) and that the resulting scanners are not flexible.




Non-flexibility

In general, tokenizers tend to be not as clean as parsers, and

sometimes one has to use tricks.

For example in Prolog, it is important whether there is a space

between an identifier and a ’(’.

In some languages, a . terminates the input, but inside ( ), or

[ 1, it is just a usual operator.
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Non-Deterministic Finite Automata

Definition: An NDFA is a structure of form (3, Q, Qs, Qq4,6), in
which

e > is the alphabet,

() is the set of states (finite),

Qs C @ is the set of starting states,
Q. C (@ is the set of accepting states,
0 C (Q x X* x () is the transition relation.

We have been drawing NDFAs in the lecture and in the exercises.
In a drawing, states are anonymous. If you want to represent an

NDFA in a computer, you need some set ().




NDFAs (2)

An NDFA accepts a word w iff there exist a finite sequence of

words wq, ..., w,, and a sequence of states qi,q2,...,qn11, S.t.
® W =W ... Wy,

® 4 S Q87 Qn—I—l S Qaa

e Each (g;, w;,q;11) € 0.




Non-Determinism

It would be nice if one could use use a program of form

state = (s;

nextstate = delta( state, r. lookahead );

while( nextstate != undefined )

{
r. moveforward( ); // Reads new r. lookahead
state = nextstate;
nextstate = delta( state, r. lookahead );

// Determine the type of token, based on

// the state in which we got stuck.




Non-Determinism (2)

Unfortunately, this is not possible, because (1) § is not a function,
but a relation, and (2) Qs is not a single state, but a set of states.

In practice, (1) is never a problem, but (2) usually is. Problem (2)
is caused by the fact that in the beginning one does not know what

token will come, so one has to start with the initial states for all of

them.




Remarks

NDFAs can be programmed by hand using gotos, or by keeping an

explicit state variable or a set of state variables.

Tokenizers are usually greedy. This means that they try to read the

longest possible token. Doing something else would be problematic.




Regular Expressions (1)

(’Regular’ means ’according to rules’, which is actually a quite

empty term.)
Let X be an alphabet.
Every word s € X" is a regular expression.
If e is a regular expression then e* is also a regular expression.

If e, es are regular expressions then e - ey is a regular

expression.

If e1, es are regular expressions then e; | es is a regular

expression.




Regular Expressions (2)

Other constructs can be added as well:

e If e is a regular expressions, n > 0, then e™ is a regular

expression.
If e is a regular expression, then e? is a regular expression.
If e is a regular expression, then e* is a regular expression.

If the alphabet X is ordered by a total order <, and 01,09 € X

o1 < 09, then o4 ...09 is a regular expression.

All these constructions are definable, but the definitions can be

quite long. For example, e’ =¢-...-e.

o1...00=01 | oy | oy || -+ | o2. (This is only possible if X is
11071 |07

finite)




Regular Expressions (3)

Examples:

digit := ’0’ .. ’9’
letter := ’a’ .. ’z’ | A
ident := letter ( letter | digit | ’_° ) +
float := (C "" | "+" | "=" )
digit +
( 7.7 digit + ) 7
(C’e” | PE2 ) (=2 | >+ | "" ) digit + ) 7

What do you find more readable? NDFAs or regular expressions?




Regular Expressions (4)

We define recursively when a word in X* satisfies a regular

expression:

e If s is a regular expression built by a single word w and w = s,

then w satisfies s.

e If w is a word, then w satisfies e* if either w = €, or there exist

w1, wso, such that w = wy - w9, w; satisfies e and wo satisfies e*.

o If w is a word, then w satisfies e; - ey if there exist wy, ws, s.t.

w = wj - we, w;y satisfies e;, and wq satisfies es.

e If w is a word, then w satisfies ey | es if either w satisfies e; or
w satisfies es.

This is not a logic course, but the logically correct definition would
be: satisfies(w,e) := the C-smallest 2-place binary predicate that
has the list of properties mentioned above.




Structure of a Scanner Generator

A scanner generator proceeds as follows:

1. Translate the regular expressions belonging to the tokens into
NDFAs.

. Combine the NDFAs for the tokens into a single NDFA.

. Translate the NDFA into a DFA.
. Minimize the DFA.

. Compress the DFA and generate tables.




Translating a Regular Expression into an NDFA

Translating regular expressions into NDFAs is surprisingly easy.

For a regular expression e, the translation A(e) = (2, Q, Qs, Qq, 0)
will be defined on the following slides.

Y. will be always the same.

A is defined by recursion on the structure of e.




Translating a Regular Expression into an NDFA

Assume that e is built from a single word s. The translation A(e) is
the automaton (3, {qs, qa}, {¢s},{qa}, {(gs:5,qa)}).




Translating a Regular Expression into an NDFA

Asume that e has form e = e - e5. Let

Al — A(al) — (Eanan,San,a751)7

and let
Ay = A(az) = (2,Q2,Q2.5,Q2.4,02).

Assume that ()1 and (J2 have no states in common. Otherwise,

rename the states in A;.

Aler - ex) = (2,0Q,Qs,Qq,0) is obtained as follows:
¢ Q — Ql U Q27
® Qs — Q1,87 Qa — Q2,a7

e 6 =06UbU{(q,6¢) | g€ Qra, ¢ €Qas}.




Translating a Regular Expression into an NDFA

For a regular expression e of form e = e | eo, let

Al — -’4(61) — (Ea Q17 Q1,87 Ql,av 51)7
and let
A = Ales) = (2,Q2,Q2.5,Q2.4,02).

Assume that A; and As have no states in common. If they have,
then rename the states in A;. Then A(e; | e2) = (2, Q, Qs, @y, ) is

obtained as follows:
® Q — Ql U Q27

¢ Qs — Ql,s U Q2,37 Qa — Ql,a U QZ,CL-
e 0 — 01 UOo.




Translating a Regular Expression into an NDFA

For a regular expression e of form e = e, let

Ay = Aer) = (2, @1, Q1,55 Q1,a, 01).
Then A(e?) = (3, Q, Qs, Qu, §) is obtained as follows:
e Q=Q1U{q}
o Qs ={q}, Qa=1{q},
e 0 =01U{(q,6,9) | € Q1stU{(¢,€6,9) | ¢ € Q1.




Translating a Regular Expression into an NDFA

Theorem Let e be regular expression. Then w satisfies e iff A(e)

accepts w.




Deterministic Finite Automata

Definition: An NDFA A = (3, Q, Qs, Qq,6) is called deterministic if

1. (s contains at most one element,
2. (q,8,4") € 0 = s has length 1.

3. (Q787Q1)7 (Q787Q2) S 0 = qi1 — q2.

In summary, a DFA always knows which transition to make when it

sees the next token.




Determinization

In the slides that follow, we present a procedure that transforms an

NDFA into an equivalent DFA.




Simplification of ¢

In our definition of NDFA, it is allowed to have transitions of form

(¢, w,q") in 6, where |w| > 2.

The first step is to eliminate these transitions. Let

A=(3,0Q,Qs,Q,,0) be an NDFA.

e As long as § contains a transition (¢, w, q’) with |w| > 2, do the
following: Write n = |w|. Let q1,...,¢n—1 a sequence of new
states, not in (). Put

Q L= QU{Q17"'7Qn—1}7

and put

6 :=0\{(¢,w,q")} U{(q,w1,q1), (q1,w2,q2), .., (qn—1,wn,q")}.




Outline (1)

If you have a non-deterministic automaton A = (X, Q, Qs, Qq4,0),
then for every word w € X*, there exists a set of reachable states
()’ C (), which is obtained as follows:

A state ¢ is reachable under w if there exists a finite sequence of

words wq, ..., w,, and a sequence of states qi,q2,...,qn11, S.t.
® W =Wy ... Wy,
* 1 €Qs, nt1 =4,
e Each (q;, w;,q;11) € 0.

(Intuitively, the state ¢ is reachable under w if the automaton can

start in a starting state, eat the word w, and end up in state q)




Outline (2)

The algorithm explores all sets of reachable states R C () and

constructs the graph of them.

Since there are only finitely many subsets of (), this exploration
will eventually end, and the resulting graph will be a deterministic

finite automaton.




Epsilon Closure

Let S C (Q a set of states belonging to an NDFA
A= (2,0Q,Qs,Q4,0). The e-closure of S is the smallest set S’, s.t.

e SCY,

e If ¢ €5 and (q,¢,¢") € 4, then ¢’ € 5.
CLOS(S) can be computed as follows:

o §':=5,

e As long as there exist ¢ € S" and (q,¢,¢") € 6, s.t. ¢ € 5" do
S'=5"U{q},

e Now S’ = CLOS(S).




Step Function

Let S C @Q be a set of states belonging to an NDFA
A= (20,05, Q4,0). Let 0 € X. Then STEP(S, o) is defined as
the set

{q' | thereisaqe S, s.t. (q,0,¢") € 6}.




Let A= (%,0Q,Qs,Q4,0) be an NDFA. The determinization of A is
the automaton A" = (X, Q’, Q",, Q’.,0"), which is the result of the

following algorithm:
e Start with A’ := (X, {CLOS(Qs)}, CLOS(Q,),0,0).

e Aslong as there exist an S € (', and a 0 € X, s.t.
S’ = CLOS(STEP(S,0)) € Q’', put

Q :=Q uU{s'}, & :=58U{(S 08}

If Q, NS’ # 0, then also
Q, = Q, U{5'}.

e As long as there exist S, 5’ € )/, and a ¢ € X, such that
S’ = CLOS(STEP(S,0)) and (5, 0,S5") ¢ 9, put

§:=5U{(S,0,5}.




Minimalization of a DFA
It can happen that the DFA that was obtained by the previous

construction, is not minimal. Such a DFA will appear if one

determinizes the NDFA resulting from the following regular

expression: (ab|(ab)*)*.

On the following slides we will give a procedure for detecting states
with the same observational behaviour. Once the states are found,

they can be unified, which results in an automaton with less states.




Definition: Let (3, Q,Qs, Qa,0) be a DFA. A state partition II is a
set of sets of states with the following properties:

e For every ¢ in (), there isan S € 11, s.t. ¢ € S.

e For every q € QQ, if there are 51,55 € 11, s.t. ¢ € S; and ¢ € Ss,

then Sl — SQ.

So II separates () into different groups. Each q € () occurs in

exacty one group.




The aim is to construct II in such a way that states that 'behave in

the same way’ go into the same group.

Initially, all states are put in a single group. Then all groups are

inspected for states that behave different in some way. If such
states are found, the group is separated into two new groups. The

procedure stops when no more separations are possible.

Two states have different behaviour if
. One of them is an accepting state, while the other is not

. There is a letter s € X, such that the transitions from the
states end up in states that are in different partitions.

. There is a letter s € XJ, such that from one of the states a

transition is possible, while from the other it is not.




Minimalization Algorithm (Initial Partition)

e The algorithm starts with the partition

Il := {Q\Qaa Qa}-

If different elements in (), accept different tokens, one has to
further partition (), according to the tokens that are being

accepted.

For example if (), consists of three states q1, g2, g3, where g; accepts

real, and ¢, g3 accept int, then one has to start with the partition

II:={ Q\{q1,92, 93}, {91 },1q2, 43} }-




Minimalization Algorithm (Refining the Partition)

e As long as there exist S, S’ € 11, states ¢1,¢2 € S, and a o € X,
and a state ¢] € 5’, s.t.

(q1,0,4q1) €9,

while at the same time there is no state g5 € S, s.t.
(42,0, 43) € 0,

replace S in II by two sets as follows:

{qge S| thereisaq €85’ st. (¢q,0,q9") € 6},

{qge S| thereisno ¢ €95, s.t. (¢,0,q) € 6}.




Minimalization Algorithm (Reading Of the Result)

Let A= (3,Q,Qs,Q4,0) be a DFA. Let II be the partition
constructed by the determinization algorithm. Then the simplified

automaton A" = (3,Q’, Q%, Q" ,d") can be constructed as follows:

o Q' =1I,

e Q. ={Sell| Qs €5},
e Q) ={Sell|Q, €5},
o ' ={(5,s,5") | thereare q,¢' € 5,5, s.t. (¢,s,4") € d}.




Pruning the DFA
Let (2,Q,Qs,Q4,60) a (N)DFA. If @ contains states that

1. are not reachable from (), or
2. from which there exists no path to a state in @),

then remove these states, and all the transitions in d in which these

states occur.




FLEX tool

The FLEX tool reads a list of regular expressions and associated

actions.

It performs the minimal DFA construction listed on the previous

pages.




Usage of FLEX tool (my impression)

e It is really very easy to write a complex scanner with FLEX.
e | find the syntax of FLEX not so good.

e F'LEX gives no support in the computation of the attributes.
One still has to use atoi, atof. This means that one still uses
an NDFA that somebody wrote by hand. (But you have seen
in the exercises that the main problem is in the combination of
different tokens. At least this problem was solved by FLEX)

The C7 interface is not so good? C*1 is more than a few

plusses on C. It is another programming paradigm, and I don’t
see this in FLEX.




