
Parsing
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Tasks of the Parser

The parser works on the output of the tokenizer. The tokenizer has

converted the input (a sequence of characters) into a sequence of

tokens. (a sequence of tags with attributes)

The main task of the parser is to decompose the input and to

determine its structure.

Type checking and checking if every used variable has a

declaration, are not task of the parser.
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Why are Parsers and Tokenizers Separated

• Tokens have more ambiguity than the higher-level grammar,

and different conventions for handling ambiguity. 1234567

could be a single integer, or 7 distinct integers. Tokenizer:

Structure as long as possible. Parser: Structure as short as

possible.

• Irrelevance of comment would be hard to express in a grammar.

• DFA’s are very efficient, it is worth using them when possible.
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Building a Parser

As with tokenizers, there are two ways of building a parser:

• Writing it by hand.

• Using a parser generator. (Yacc,Bison)
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Grammars

Definition: An grammar is a structure of form G = (Σ, R, S), in

which

• Σ is the alphabet. (a set of tokens)

• R is a set of rewrite rules. Each element of R has form σ → w,

where σ ∈ Σ and w ∈ Σ∗.

• S ∈ Σ is the start symbol.
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Most definitions of a grammar separate Σ into terminal and

non-terminal symbols.

Terminal symbols cannot occur on the lhs of a rule.

This distinction is not important for compiler construction, so we

don’t use it.

The definition on the previous slide actually defined context-free

grammars. In a non context-free grammar, the rules in R can have

form w1 → w2, where w1, w2 ∈ Σ∗.
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The Rewrite Relation

The one-step rewrite relation ⇒ is the smallest relation having the

following properties:

• If (σ → w) ∈ R, then σ ⇒ w.

• If w1 ⇒ w2, and a ∈ Σ, then w1a⇒ w2a and aw1 ⇒ aw2.

The multi-step rewrite relation ⇒∗ is the smallest relation with the

following properties:

• For all words w ∈ Σ∗, w ⇒∗ w,

• If w1 ⇒∗ w2 and w2 ⇒ w3, then w1 ⇒∗ w3.
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Accepted Words

Let G = (Σ, R, S) be a grammar. G accepts a word w ∈ Σ∗ if

S ⇒∗ w.

If S ⇒∗ w, then a sequence S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn = n, is

called a derivation.

A derivation of S can be interpreted in two ways:

1. Start with S and replace left hand sides of rules by right hand

sides, until w is obtained.

2. Start with w and replace right hand sides of rules by left hand

sides, until S is obtained.

(1) is called top down. (2) is called bottom up.
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Example

Consider the grammar ({a, b, c, d}, R, a) with R consisting of the

rules

a→ abc, a→ bac, a→ d.

The following are correct derivations:

a⇒ abc⇒ bacbc⇒ bdcbc,

a⇒ abc⇒ abcbc⇒ abcbcbc,

a⇒ bac⇒ babcc,

a⇒ d.
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A Realistic Grammar

S → if B then S S → if B then S else S

S → while B do S

S → id := N ;

N → N +N N → N −N N → N ∗N N → N/N

N → −N N → (N)

N → id N → num

B → true B → false

B → N = N B → N ! = N B → N < N B → N > N

B → N <= N B → N >= N

B → B and B B → B or B B → !B, B → (B)
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Dependent Product

Definition: Let S1 be some set, and let S2 be a set of pairs. Then

the dependent product of S1 and S2, written as S1 ⊗ S2, is defined

as the set

{(s1, s2) | s1 ∈ S1 and there exists an s′2, s.t. s2 ∈ s′2 and

(s1, s
′

2) ∈ S2}.

11



Tokens

Definition: A token type is a pair (Σ, T ), in which Σ is a finite

alphabet, and T is a function s.t. for each σ ∈ Σ, T (σ) is a set.

A token (with attribute) is an element of Σ ⊗ T.

Example: If one sets Σ = {int, real}, with

T (int) = Z, T (real) = R, then

(real, 3), (real, 3.141526535), (int, 2), (int,−1) are tokens.

(int, 2.718271828) is not a token.
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Tokens (2)

In the slides about tokenizers, we used Λ instead of Σ, because Σ

was reserved for the input alphabet.

The alphabet of the parser are tokens constructed by the tokenizer.

Remember that T (a function) is just a set of pairs.
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Attribute Grammars

Definition: An attribute grammar is a structure of form

G = (Σ, T, R, S), in which

• (Σ, T ) are a token type.

• R is a set of annotated rewrite rules. Each element of R is a

pair of form σ → w:f, where σ ∈ Σ, w ∈ Σ∗, f is a function

from T (w1) × · · · × T (wn) to T (σ).

• S is the starting symbol.
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Rewrite Relation for Attribute Grammars

For an attribute grammar, the one step rewrite relation ⇒ is

defined as the smallest relation of type (Σ ⊗ T )∗ × (Σ ⊗ T )∗, which

has the following two properties:

• If (σ → w1 · . . . · wn):f ∈ R, then

(σ, f(x1, . . . , xn)) ⇒ (w1, x1) · . . . · (wn, xn).

• If (v1, x1) · . . . · (vm, xm) ⇒ (w1, y1) · . . . · (wn, yn), and

(σ, z) ∈ Σ ⊗ T, then

(v1, x1) · . . . · (vm, xm) · (σ, z) ⇒ (w1, y1) · . . . · (wn, yn) · (σ, z),

and

(σ, z) · (v1, x1) · . . . · (vm, xm) ⇒ (σ, z) · (w1, y1) · . . . · (wn, yn).
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Accepted Words

Let G = (Σ, T, R, S) be an attribute grammar. G accepts a word

w ∈ (Σ ⊗ T )∗ with attribute x if (S, x) ⇒∗ w.
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Grammar for a Pocket Calculator

We want to build a calculator that has floating point numbers,

identifiers, and operators.

S → T, f(x) = x.

S → S + T, f(x, y, z) = x+ z.

S → S − T, f(x, y, z) = x− z.
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T → U, f(x) = x.

T = T × U, f(x, y, z) = x× z.

T = T/U, f(x, y, z) = x/z.
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U → V, f(x) = x.

U → −U, f(x, y) = −y.

U → U !, f(x, y) = x!.

U → num, f(x) = x,

U → (S), f(x, y, z) = y.
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Operators

Operators are convenient way of representing binary or unary

functions.

An operator is either

infix An infix operator is a binary operator that is written

between its operands.

A+B, A−B.

prefix A prefix operator is a unary operator that is written in

front of its operand.

−A, + +A.

postfix A postfix operator is a unary operator that is written

behind its operand.
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Operators

Operators can have conflicts

• Between two infix operators:

A+B × C.

• Between prefix and infix:

−A+B.

• Between infix and postfix:

A+B!.

• Between prefix and postfix:

−A!.
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Non-Recursive Nature of Realistic Attribute Grammars

Consider a rule σ → w:f. The attribute function f specifies how to

compute the attribute of σ from the attributes of f.

Not all computations can be expressed by attributes, because it can

happen that information in one subtree is needed in another

subtree. (Told differently: In must languages, there is not only an

information flow from the leaves to the root of the parse tree, but

also from left to right.)
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Grammar for Calculator with Variables

S → SC, S → C.

(The input is a sequence of commands, C is a single command.)

C → id := E., C → E.,

(A single command is either an assignment, or command to

evaluate some expression E)

E → E + F, E → E − F, etc.

H → id , H → num .

Variables that are assigned by the rule C → id := E., need to be

remembered and used when processing the rule H → id .
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The attribute function for H → id needs to know the assignment

of id that was made in rule C → id := E.

Two solutions:

1. Cheating: The attribute functions are implemented in an

imperative language which allows global variables. Store the

variable assignments in a global variable.

2. Replace the attribute type of C by (Σ → Σ) ×R, where R is

the type of reals and Σ is the type of partial functions from

identifiers to R. (Type of binding stores)

It is good to know that (2) exists, but (1) is practically useful.
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Making Side-Effects Compositional

E,F,G,H receive attribute type Σ → R.

S and C receive the attribute type (Σ → Σ).

H → id, F = λn:I λσ:Σ (σ n),

H → num, F = λx:R λσ:Σ x

E → E + F, λx1:Σ → R x2:⊤ x3:Σ → R λσ:Σ (x1 σ) + (x2 σ),

E → E − F, λx1:Σ → R x2:⊤ x3:Σ → R λσ:Σ (x1 σ) − (x2 σ),

etc.

C → id := E, λn:I x2:⊤ x3:Σ → R λσ:Σ σn

(x3 σ).

C → E, λx1:Σ → R λσ:Σ σ.

(And (x1 σ) is printed)
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Directions of Parsing

Parsing can be either top down or bottom up. Bottom up is more

natural, because one can compute the attributes, and it has the

advantage that decisions can be somewhat postponed.

I will not discuss top down parsing.
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Shift/Reduce Parsing

As far as I know, shift/reduce parsing is the approach to parsing

that is used most often.

Let G = (Σ, T, R, S) be an attribute grammer.

A state of a shift/reduce parser consists of a triple Σ∗ × Σ∗ × Σ∗.

The first component of the pair is called stack, the second

component is called lookahead, and the third component is the

unread input.

27



Shift/Reduce Parsing

The transition relation ⊢ of a shift/reduce parser is defined by the

following three cases:

read: For all φ, ψ, ρ ∈ Σ∗, w ∈ Σ, x ∈ T (w),

(φ, ψ, (w, x) · ρ) ⊢ (φ, ψ · (w, x), ρ).

shift: For all φ, ψ, ρ ∈ Σ∗, w ∈ Σ, x ∈ T (w),

(φ, (w, x) · ψ, ρ) ⊢ (φ · (w, x), ψ, ρ).

reduce: If ( σ → w1 · . . . · wn ):f ∈ R, then for all φ, ψ, ρ ∈ Σ∗,

(φ · (w1, x1) · . . . · (wn, xn), ψ, ρ) ⊢ (φ · (σ, f(x1, . . . , xn)), ψ, ρ).
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Shift/Reduce Parsing

Define ⊢∗ in the usual way from ⊢ .

Let G = (Σ, T, R, S) be an attribute grammar. A shift/reduce

parser based on Γ accepts a word w if

(ǫ, ǫ, w) ⊢∗ (S, ǫ, ǫ).

In practice, the following definition is used: Let G = (Σ, T, R, S) be

an attribute grammar. A shift/reduce parser based on G accepts a

word w, if

(ǫ, ǫ, w · #) ⊢∗ (S,#, ǫ).

Here # 6∈ Σ is a special symbol to mark the end of the input.

(Think of # as the EOF symbol.)
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Shift/Reduce Parsing

We want parsing to be a deterministic process: In other words, we

have to find a subrelation |= ⊆ ⊢∗ that

• |= is deterministic: forall

S, S1, S2, S |= S1, S |= S2 ⇒ S1 = S2.

• has as small as possible lookahead,

• still finds all solutions.
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Shift/Reduce Parsing

I hope you agree that shift/reduce parsing is easy in principle.

Only one question remaining: How to find |= ?
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