
Optimization
(Jan 2010)

1

Example

Consider the following code fragment:

strcopy(const char* p, const q)

{

unsigned int i = 0;

while(p[i])

{

q[i] = p[i];

++ i;

}

}

2

Optimization

strcpy(pointerto(const char) p,

pointerto(char) q)

{

create i array(sizeof::<unsigned int > (), char)

init::< unsigned int > (i, 0);

loop:

jumpfalse end

equal::<char> (

copy::<char> (

add::< pointerto(char), unsigned int,

pointerto(char) >

(copy:: < pointerto(char) > (q),

copy:: < unsigned int > (i))), 0)

3

assign< char > (deref::<char> (

add::< pointerto(char), unsigned int,

pointerto(char) >

(copy:: < pointerto(char) > (q),

copy:: < unsigned int > (i))),

copy:: < char > (

add::< pointerto(char), unsigned int,

pointerto(char) >

(copy:: < pointerto(char) > (q),

copy:: < unsigned int > (i))))

assign< unsigned int > (i,

add::< unsigned int > (copy::< unsigned int >,

1));

goto loop;

end: }

4

5

Optimizations Applicable to Stringcopy

• char has size 1. This simplifies calculation of p + i and q + i.

One either has to detect this during generation of intermediate

representation, or simplify later.

• p[i] is calculated (and looked up) twice.

• If we would not be copying characters, but something with a

size, we could reuse the multiplication.

• A very smart optimizer could remove the multiplications

completely.

• Variable i can be put in a register.

• The label end: can be removed and replaced by the exit point.

(Depends on machine)

• The whole procedure could be inlined.

6

Cost

Optimization means that one wants to reduce the cost of executing

the program. There are several meaningful notions of cost:

1. Execution time of program.

2. Size of Program.

3. Energy Use of Program.

Nearly always, execution time is the most important goal.

(inlining, loop unfolding trade space for time.)

7

Redundant Expressions

Redundant expressions occur when expressions are recomputed.

Definition An expression E is redundant if it has already been

computed on every path that leads to E.

8

Redundant Expressions (2)

m := 2 × y × z;

n := 3 × y × z;

o := 2 × y − z;

can be replaced by

k := 2 × y;

m := k × z;

n := 3 × y × z;

o := k − z.

(Since × is left associative, y × z will not be automatically

detected. One could also try detect that 3 × y equals k + y.)

9

Redundant Expressions (3)

In the example

unsigned int i = 0;

loop:

if(*(p+i) == 0) goto end;

*(q+i) = *(p+i);

i = i + 1;

goto loop;

end:

return;

the second *(p+i) is redundant.

10

Redundant Expressions (4)

When is an expression redundant?

a := ∗(p + i);

i := i + 1;

b := ∗(p + i) (obviously not)

a := ∗(p + i);

∗(p + i) := 44;

b := ∗(p + i); (obviously not, but one could reuse 44)

11

Redundant Expressions (5)

There exists a quite sophisticated field of automated theorem

proving, but practical code is so big that only efficient (close to

linear) algorithms have been used in practice: (but maybe this will

change)

Instead, one builds a container of normalized available expressions.

(Usually a hash map.)

12

Normalization

We will create a set of local variables X and a set of rewrite rules

R, which maps expressions to local variables. Initialize X := { }.

First we give an algorithm for normalizing expressions. If

necessary, the algorithm extends X and R. The result NORM(E) is

always an input variable, a variable in X , or a constant.

• For an input variable x ∈ X , NORM(x) = x.

• For a non-input variable v, find a rule v ⇒ x in R. If no such

rule exists, then the variable is unitialized. Otherwise

NORM(v) = x.

• For a constant, NORM(c) = c.

13

Normalization (2)

• For an expresssion f(t1, . . . , tn), first recursively compute

x1 := NORM(t1), . . . , xn := NORM(tn).

If there is a rule f(x1, . . . , xn) ⇒ x in R, then

NORM(f(t1, . . . , tn)) = x.

Otherwise, invent a new x, add it to X and add the rule

f(x1, . . . , xn) ⇒ x to R. Now NORM(f(t1, . . . , tn)) = x.

R can be implemented very efficient with hashing or discrimination

trees.

14

Normalization (3)

Using NORM, the normalization procedures processes the

assignments. For each assignment v := E, do the following:

• Add a rule v ⇒ NORM(E) to R.

15

Normalization (4)

When the algorithm has processed all assignments, one can

reconstruct the expressions for the output variables of the block.

(These are the variables that are looked at later on a path that

originates from the block)

The x ∈ X will become local variables.

There is a problem that variables have been renamed. We come to

this later.

16

Normalization (5)

In practice, one should attempt to normalize expressions before

analyzing:

• Replace X + 0 ⇒ X, 0 + X ⇒ X.

• Replace X × 1 ⇒ X, X × 0 ⇒ 0, etc.

• Sort long multiplications and additions. (For example, first

numbers, next by index.) Try to evaluate as much as possible

at compile time.

17

Normalization (6)

It remains to generate the simplification of the block. The

simplification is a sequence of assignments, but without

recomputations.

Let v1, . . . , vn be the output variables of the block. (The variables

that are used on a path originating from the block.)

Replace each vi by NORM(vi) on every path originating from the

block.

18

Normalization (7)

Put

Xd := { },

(the intermediate variables that have an assignment.)

Xn := {NORM(vi) | NORM(vi) is not a constant or

input variable of the block },

(the intermediate variables that need to be defined.)

SIMP := (),

(the simplification of the block.)

19

Normalization (8)

While Xn\Xd is not empty, select an x (with maximal weight) from

Xn\Xd, and call ASSIGN(x).

The procedure ASSIGN(x) recursively assigns the variables that

are needed to obtain a definition of x. (It is assumed that x is has

no assignment when ASSIGN(x) is called.)

• Lookup the rule of form (f(x1, . . . , xn) ⇒ x) ∈ R that

defines x.

• As long as one of the x1, . . . , xn that is not a constant, nor an

input variable, does not occur in Xd, select the xi with greatest

weight among those. Call DEFINE(xi).

• Append the assignment x := f(x1, . . . , xn); to SIMP.

Put Xd := Xd ∪ {x}.

20

Example

(x, y are input variables.)

a := x + y;

b := x + 1 + y;

c := 17;

d := x + y + c;

e := x + z;

(Later, a, b, d are used)

21

Static Single Assignment Form

• The normalization algorithm has problems when variables are

reassigned:

a := (x + y + z);

a := a + a;

b := (x + y + z);

⇒ Rename variables in advance.

• It renames its output variables.

Renaming is problematic when paths merge.

22

Static Single Assignment Form

Definition: Let P be the code of a procedure. (We assume that this

is the basic block of analysis.)

We call P in static single assignment form if each variable that

occurs in P is either an input variable, or has exactly one point of

assignment. (which is an initialization)

In order to merge variables, the Φ function is used. (It seems to

mean ’phoney’)

23

SSA

Consider the procedure:

Procedure fact(N)

F := 1;

loop :

if(N = 0) goto end;

F := F × N ;

N := N − 1;

goto loop;

end :

return N

24

SSA

Its SSA is:

Procedure fact(N1)

F1 := 1;

loop : (This is a merging point)

F2 := Φ(F1, F3);

N3 := Φ(N1, N3);

if(N3 = 0) goto end;

F3 := F2 × N2;

N3 := N2 − 1;

goto loop;

end :

return N3

25

SSA

SSA of string copy example:

unsigned int i1 = 0;

loop:

i2 := Phi(i1, i3);

if(*(p+i2) == 0) goto end;

*(q+i2) = *(p+i2);

i3 = i2 + 1;

goto loop;

end:

return;

26

Problems with Analysis

• Primitive types only: It is almost impossible to analyze objects.

• Pointer assignments are problematic.

• It will not ’take out’ variables from arrays. (See next slide)

• Function calls are opaque.

27

Problematic code:

// Remove capital vocals:

unsigned int i = 0;

if(p[i] == 0) goto end;

loop:

if(p[i] == ’A’) p[i] = ’a’;

if(p[i] == ’E’) p[i] = ’e’;

if(p[i] == ’I’) p[i] = ’i’;

if(p[i] == ’O’) p[i] = ’o’;

goto loop;

end:

return;

Optimizer will certainly see possible reuse of (p+i), but what

about *(p+i)?

28

Typical use of reference:

int x = 4;

{

int unused;

int& returnval = unused;

{

int& p = x;

p = p + 1;

returnval = p;

}

// Such code could originate from the

// inlined translation of (++ x);

}

References that are initialized with a local variable can be

substituted away.

29

Example where address is taken:

int x;

lots of computation involving x;

dosomesomethingwith(x);

// x is reference variable.

more computation involving x;

In this case, variable x can be stored in memory before the

procedure call, and retrieved after the procedure call. One must

use a heuristic in order to decide if it is worth the effort.

30

Which variables can be analyzed?

Variables with a primitive type (boolean, int, unsigned, char,

pointer, double, real), which in addition:

• are local to an expression. (Constructed by the compiler for

the evaluation of the expression.)

• are local in a procedure. It must be guaranteed that no

pointer/reference to the variable can exist, which can be read

from or written to. (If the pointer is short-lived, one can

shortly store the variable to memory.)

31

Which Variables can be Analyzed?

From variables that are accessed through pointer, reference or

array, a local copy can be made if:

• the pointer, reference, array (with its index) are constant.

• the variable cannot be accessed in another way. (No other

pointer/reference/array is accessed, there is no function call

during the time the local copy exists.)

In general, as soon as pointers, references, arrays are involved,

things get very very complicated. No satisfactory solution exists. (

C has a restrict keyword.)

32

I will say something more about register allocation and code

selection, when I understand a bit more about this topic.

(Hopefully, next week)

33

Constant Analysis

Consider

for(unsigned int i = 0; i < n; ++ i)

{

for(unsigned int j = 0; j < n; ++ i)

{

M[i][j] = 0.0;

}

}

The address calculation M + i can be reused in the inner loop.

34

Let G1 ⊆ G be a subset of the flow graph of a program.

The set of constants values V is a set of pairs (of variables and

values). It is the smallest set satisfying the following conditions:

Definition

• If v has no assignment in G1, then (v, v) ∈ V .

• If v is assigned an expression f(v1, . . . , vn) in G1, then first

define v1, . . . , vn as follows: if (vi, xi) ∈ V , then vi = xi.

Otherwise, vi = vi. If the expression f(v1, . . . , vn) can be

simplified into an expression e containing only variables in V ,

then (v, e) ∈ V .

• If, for a conditional statement, the condition evaluates to f or t,

then the unreachable code can be removed from the flow graph.

35

A few simplification rules:

0 × A ⇒ 0

t = t ⇒ t

c1 op c2 ⇒ can be computed

if c1, c2 are numerical.

f and A ⇒ f

t or A ⇒ t

neg f ⇒ t

neg t ⇒ f

AC operators (associative commutative) should be sorted with

constant part before non-constant part, in order to improve the

chance of partial evaluation.

36

Removal of Constants from Loops

One should run the constant construction algorithm for each

strongly connected component of the flow graph.

Constant subexpressions can be computed at the entry points.

37

