
Exercise Compiler Construction (7)

Hans de Nivelle

Due: December 9th 2009

1. Consider the class token that was used in the calculator of the last ex-
ercise. (it can be downloaded with maphoon2008.tar.gz.) We restrict
our attention to the subset of tokens that is defined by1

tkn_IDENTIFIER, tkn_NUMBER, tkn_PLUS, tkn_TIMES,

tkn_MINUS, tkn_DIVIDES, tkn_FACULTY

You may assume that the operators PLUS, TIMES, DIVIDES, MINUS
are always binary.

Reverse Polish notation is a convenient representation of expressions trees,
where every operator is written behind its operands. Reverse Polish no-
tation is defined by:

RPOL(f(t1, . . . , tn)) = RPOL(f1) · . . . · RPOL(fn) · f.

For example, the expression (1+(2*A))*will be represented by 1 2 A * +.
Reverse polish notation useful for evaluating expressions. Expressions can
be evaluated by traversing the expression from left to right using a stack.
When an object is encountered, it is pushed on the stack. When an op-
erator is encountered, the operator is performed on the two operands on
the top of the stack, and the result is pushed back on the stack. Write a
function

double evaluate(const std::list< token > & expr,

const listconst varstore&);

that evaluates expressions in Polish notation. You can use the tokenizer
from the previous exercise to read expr.

2. Polish notation is similar to reverse Polish notation, but in Polish notation
every operator comes before its arguments. The formal definition is

POL(f(t1, . . . , tn)) = f · POL(f1) · . . . · POL(fn).

Write a function
1I that by now that the right word is ’FACTORIAL’ but it is too late to change it now

1

std::list< token > rpol2pol(const std::list< token > &)

that converts reverse Polish notation to Polish notation.

3. Write a function

std::ostream& operator << (std::ostream& ,

const std::list< token > & pol);

that prints an expression in Polish notation, but the output must be
in standard infix notation. The function must insert parentheses where
needed, but not more parentheses than needed. So if the input list is
+, *, 1, 2, 3, the output will be 1 * 2 + 3. If the input list is
* + 1 2 3, then the output will be (1 + 2) * 3. (The best way to

do this, is by using an additional function

void printinfix(std::ostream&,

std::list< token > :: const_iterator & p,

unsigned int leftattr,

unsigned int rightatttr);

Here leftattr is the attraction of the left context, and rightattr is the
attraction of the right context. Parentheses must be inserted when the
attraction (left or right) is bigger than the attraction of the main operator
that we try to print.

2

