
How to Compile C and C++.

December 21, 2009

The aim of this text is to understand in detail how a C++-compiler works. For
the moment, we do not cover the complete language. In particular, we will
ignore inheritance and enumeration types. If we have time left, we will say
something about it later.

1 Type System for C++/C

Ideally, types are defined by recursive type construction rules. These are rules
of the form: If A, B are types, then Φ(A, B) is also a type. The function space
constructor A → B in λ-calculus has this form. Another example is the product
constructor A × B.

Most types in C++ are recursive (array of, pointer to), but struct is a prob-
lem. The problem is that struct definitions can be circular, as in the following:

struct list

{

int element;

list* nextinlist;

};

list();

~list();

void mergewith(const list& l);

The member nextlinlist is of type list. The member function mergewith

has an argument of type const list&.
Circularities can also extend over more than one struct:

struct aa;

struct bb

{

aa* a;

aa getthea() const;

1

};

struct aa

{

bb* b;

bb gettheb() const;

};

aa bb::getthea() const

{

return *a;

}

bb aa::gettheb() const

{

return *b;

}

In order to solve this problem, C++ distinguishes complete and incomplete def-
initions. The first definition struct aa; is incomplete. Incomplete definitions
can only be used in declarations of pointers, references, and as arguments of
incomplete function definitions.

Definition 1.1 We define the types of C++ in two steps. First, we give a recur-
sive definition of the possible types: Assume an infinite set of struct variables,
which we will denote as s1, . . . , sn.

• The primitive types bool, char, int, unsigned int and double are primitive
types.

• Each struct variable si is a type.

• If T is a type, then pointerto(T) is a type.

• If T is a type, then refto(T) is a type. This is the translation for the usual
reference type.

• If T is a type, then refpointerto(T) is a type. A reference pointer is a
pointer that has been a reference before.

• If T is a type, and N is an unsigned integer, then array(N, T) and array(T)
are types.

• Each enumeration type is a type.

• If T1, . . . , Tn, U are types, then U(T1, . . . , Tn) is a type. (The type of func-
tions with arguments T1, . . . , Tn and result U.)

Each type (except refpointerto(X) and pointerto(X)) has two versions, namely
const and non − const.

2

Incomplete types will be used later for uninitialized memory. This is memory
that is allocated, which will eventually contain an object, but for which the
constructor has not yet been called.
pointerto is the standard pointer type. refto is used for references. After check-
ing, references are replaced by pointers. (Because that’s what they are, after
all.) We use a special kind of pointer refpointerto in order to remember that
the pointer originates from a reference. refpointerto is more restricted than
pointerto because on refpointerto, no pointer arithmetic is allowed.
The relation between pointers and arrays in C is subtle. It seems that the
behaviour of arrays can be explained as follows: By default, a variable represents
a reference to its type. If one has X x, then by default, x is of type X&. In
situations, where an X is required, the copy constructor of X is used to transform
X& into X. Types of form arrayof(N, X) have no copy constructor. Instead, they
can be converted to pointerto(X).

Definition 1.2 A struct definition S is a finite list of triples of form (I, T, c),
where

• I is an identifier,

• T is a C++ type,

• c is a storage class, which is either non-static or static.

A type system is a finite list of struct declarations (S1, . . . , Sn). Each Si

defines the struct variable si. The list (S1, . . . , Sn) must satisfy the following
condition:

• If variable sj occurs in declaration Si and j ≥ i, then sj is in the scope of
at least one pointerto, refto, or explicitrefto. (This is the forward reference
condition)

A static member of a struct that is not a function can be viewed as a global
variable. As far as I can see, its only relation with its struct is of syntactical
nature. It can be viewed as an independent global variable that happens to be
in the same namespace as the struct.

For functions, static meens something different: (All member functions are
static in the sense that they are not part of any object. Different objects do not
have different member functions.) For a member function, static means that
the function can only adress static variables of the the struct.

2 Intermediate Representation

In the intermediate representation, we try to make explicit as much as possi-
ble, without losing algebraic semantics. If one gives up algebraic semantics,
analysis (needed for optimization) becomes much harder. In the intermediate
representation, the following things are made explicit:

3

• References, constructor calls and implicit this-arguments. Con-
sider the assignment in the following program fragment:

struct X

{

X operator = (X); // Def 1.

const X& operator = (const X&); // Def 2.

};

main()

{

X x1;

X x2;

x1 = x2;

}

By default, the variable x2 is of type X&. If Def2 is used, the reference x2

can be passed to the assignment operator without further conversion. If
Def1 is used, the reference x2 has to be changed into an object of type
X, which is done by the copy constructor. The compiler has to decide
whether a copy constructor is necessary and to insert it, if necessary.

In order to modify x1, operator = needs to have access to it. This is pos-
sible, because operator = is a method of struct X. Inside the definition
of operator =, the user can use a variable this of type X* to modify the
assigned variable.

As a consequence, assignment must be a binary function with argument
types pointerto(X) and refpointerto(X). It would be more natural to have
the first argument of type refpointerto(X) as well, but it is a pointer in
C++ for historical reasons, and we will stick with that.

• Initializations and unitialized memory.

The best solution would be if memory could be always initialized at the
same time when it is allocated, but unfortunately this will not be possible.

As a general rule, a constructor of some struct X cannot allocate by itself
the memory to which it will write its X. It is possible that the memory
is allocated on the heap, and the constructor cannot do the heap alloca-
tion. If the members of struct X have their own constructors, then if the
constructor for struct X allocates its memory, the constructors for the
members cannot do their own allocation.

If one wants to compile a function call f(t) with signature X f(Y y)

one has two choices: Either one first allocates space for the result X, then
computes t, and after that calls f. In this case the X-constructor cannot

4

allocate by itself. The alternative is that one first computes t, then calls
f, which allocates and constructs its result X. When that is done, the X
has to be moved when t is cleaned up, which involves calling the copy
constructor for X.

Therefore, we need unitialized memory as separate type. We will use an ar-
ray of characters as unitialized memory. A constructor for type X is a func-
tion that has (at least) one argument of type refpointerto(array(sizeof(X), char).

• Resolving Overloading

+ on integers is another operator than + on double. Adition between
pointers and integers is yet another operator. When an integer I is added
to a pointer of type X*, the new value of the pointer will be p+I.sizeof(X),
and the + that we used in this last expression is yet another +. In the
intermediate representation, all these +-ses will have different names, so
that there will be no remaining ambiguity.

One of the design aims of the intermediate representation is that it should be
suitable for optimization. In addition, there should exist an easy transformation
into the final code.

In order to resolve ambiguity, we will allow typenames as defined in Defi-
nition 1.2 to be part of function names. This makes it easy to give names to
instances of polymorphic methods, like for + or = . So a function name will
have form

U1 :: U2 :: · · · :: Un,

where each Ui is either an identifier, or a type name put between 〈 〉. We give a
few examples:

• The sizeof operator for type T has name sizeof :: 〈T 〉. For the type
const char*, it has name sizeof :: 〈pointerto(const char)〉.

• A member function x of struct X can have name 〈structvar N〉 :: x, where
N is the number of struct variable that represents X.

• The new function for type X has name new :: 〈X〉. It returns an object of
type pointerto(array(sizeof :: 〈X〉, char)).

Figure 1 gives a list of the elementary operators. These are operators that deal
with references, copy constructors, assignment and initialization. We will give
some explanations:

• If f is a function of type int f(int), then it is not possible to directly apply
f on a variable of type x, because a variable represents a reference, i.e. it
has type refpointerto(int). In order to transform refpointerto(int) to int,
the operator copy :: 〈int〉 (refpointerto(int) has to be applied. Then the
complete expression is

f(copy :: 〈int〉 (x)),

which is of type int.

5

• Arrays are somewhat special in C/C++ because they have no copy con-
structor. Instead, they can be transformed into a pointer. Suppose that
the function strcpy has type void strcpy(pointerto(char), pointerto(char)),
and that we have two variables p, q of type array(char). The expression
strcpy(p,q) has to be translated as follows:

strcpy(array2pointer :: 〈char〉 (p), array2pointer :: 〈char〉 (q)).

The array2pointer function does nothing, except changing the type of a
reference to an array of char into a pointer to char.

• We assume that for primitive data types, assignment has form T assign ::
〈T 〉 (refpointer(T), T). The first argument is the variable being assigned
to, so that it must be a reference pointer. For the second argument, one
has the choice of using a reference to T, or T itself. Since primitive types
are small, we choose T.

The default assignment for user defined types has form

T assign :: 〈T 〉 (refpointer(T), refpointer(const T)).

The second argument is changed into a const reference, so that the over-
head of an additional copy constructor is avoided.

For user defined assignment operators, the type of the first argument is
changed into pointerto(T), because it is a method of T which has a this-
variable. The type of the second argument is chosen by the user.

• The purpose of the init-operator is to overwrite raw memory with its first
value. (The init-function will not appear in the final code, because every
function will obtain an additional argument that tells it where to write its
result.)

As example, consider the following code fragment

{

int x = 3;

x = f(x);

}

First the variable x is created:

int x;

After its creation, x is not yet an integer. It has type array(sizeof ::
〈int〉(), char). Now one can do

init :: 〈int〉(x, 3),

after which x is of type int. The assigmnent is translated as

assign :: 〈int〉(x, f(copy :: 〈int〉(x)).

6

Figure 1: Elementary Copying/Assignment Operations

• If T is not an array type, then T has a copy constructor:

T copy :: 〈T 〉 (refpointerto(T)),

and
T copy :: 〈T 〉 (refpointerto(const T).

The copy constructor is either default, or defined by the user (for struct
variables)

• For every type T, there are operators

pointerto(T) array2pointer :: 〈T 〉 (refpointerto(array(N, T))),

and

pointerto(T) array2pointer :: 〈T 〉 (refpointerto(array(T))).

• If T is one of char, bool, unsigned int, int, double, of form pointerto(U),
then T has a built-in assignment operator

T assign :: 〈T 〉(refpointerto(T), T).

• If T is a struct variable, for which the user defined assignment operators,
they must have one of the following forms:

U assign :: 〈T 〉 (pointerto(T), V),

U assign :: 〈T 〉 (pointerto(T), const V),

U assign :: 〈T 〉 (pointerto(T), refpointerto(V)),

U assign :: 〈T 〉 (pointerto(T), refpointerto(const V)).

• If for a struct variable T, the user did not define an assignment operator,
then the default assignment operator has the following form:

refpointer(const T) assign :: 〈T 〉 (refpointerto(T), refpointerto(const T)).

• Every type T has a sizeof operator

unsigned int sizeof :: 〈T 〉().

• Every type T, possibly const, has an initialization operator

init :: 〈T 〉(refpointerto(array(sizeof :: 〈T 〉(), char), T).

7

Figure 2 contains operators that are related to adressing. The first operator
adressoff takes the adress of an object and returns it as pointer. It is essentially
the translation of & in C++. In its normal use, & is applied on a reference, like
in int* p = &q; with q an int variable. Since a reference is already an adress,
the operator actually does nothing, except for changing the type.
The complement of adressof is deref. deref is the translation of * in C++. If p
is of type char*, then *p is of type char&, so that * also does nothing, except
for changing the type.
In C++, it is forbidden to take the adress of a constant, (like in const int*p = &4;),
but it is allowed to make a reference from a constant. This gives the strange
situation that the following code is legal:

inline const int* cheat(const int& x) { return &x; }

const int*p = cheat(4); // Legal.

const int*p = &4; // Illegal, but with the same result.

The third operator in Figure 2 takes an object, and makes a reference from
it. (This is implicitly used by the cheat function above.) It is part of the
standard of C++ that it is possible to supply an object of type X, where in fact
an reference of type const X& is needed. It is guaranteed that the X is kept
alive until the expression is completely evaluated.

const X& operator = (const X&);

X f(int);

X x1, x2, x3, x4;

x1 = (x2 = (x3 = (x4 = f(2))));

// Legel C++, f(2) is kept and its reference

// is passed through all the assignments.

The pointer addition functions add do not involve any multiplication. If one
wants to add i to a pointer p, one first has to multiply i by the size of *p.
If p is of type int*, then the expression p[i] is translated into the following
intimidating expression:

deref :: 〈int〉 (add :: 〈pointerto(int), int, pointerto(int) 〉

(copy :: 〈pointerto(int)〉 (p)), times :: 〈int〉(copy :: 〈int〉(i), sizeof :: 〈int〉())).

If p would be declared as int p[100], then

copy :: 〈pointerto(int)〉 (p)

would have to be replaced by

array2pointer :: 〈int〉 (p).

Very probably, one also has to insert a cast from unsigned int to int around
sizeof :: 〈int〉 ().

8

Figure 2: Adressing and Referencing Operators

• For every type T, possibly const, there is an adress operator

pointerto(T) adressof :: 〈T 〉 (refpointerto(T)).

• For every type T, possibly const, there is a dereferencing operator

refpointerto(T) deref :: 〈T 〉 (pointerto(T)).

• For every type T, there is a reference operator

refpointerto(const T) makeref :: 〈T 〉 (T).

• Pointers and reference pointers have addition operators of the following
form

Z add :: 〈X, Y, Z〉 (X, Y).

Here X is the input (pointer or reference), Y is the value that is added to
it (int or unsigned int), and Z is the result of the addition (again pointer
or reference). If X refers or points to something that is const, then the
type that Z refers or points to must be also const.

Reference addition is used for accessing the fields of a struct. If x is of type
struct X, and f is a field of X, then x.f denotes reference addition. The refer-
ence to x is increased by the position of field f in X and cast into a reference to
the type of f. The intermediate representation is as follows:

add :: 〈refpointer(X), unsigned int, refpointer(F)〉(x, N),

where F is the type of field f, and N is some number derived from the position
of field f in struct X.

We made the types of add very liberal, so that the optimizer can combine
different additions, like for example in the expression p. x[i]. y [j], into a
single addition.

3 Intermediate Result of Compilation

• We assume we have goto, jumpfalse refpointerto(bool), and labels.

• create v array(n, char). Create unitialized variable v with size n on stack.

• release v. Drop variable v from stack.

• Function calls are always on the last allocated variables. The first argu-
ment is a refpointerto the place where the result must be written.

9

Figure 3: Arithmetic Operators

• The types bool, char, int, unsigned int, double, and also
pointerto(const char) have constants. When the type matters, we
write

const :: 〈X〉(n),

otherwise just n.

• For each of the types bool, char, int, unsigned int, double, there are the
arithmetic operators add, sub, mult, div which have form:

X add :: 〈X〉(X, X).

• For each of the types bool, char, int, unsigned int, double, there are com-
parison operators lessthan, greaterthan, lessequalthan, greaterequalthan,
equal, notequal with form

bool lessthan :: 〈X〉 (X, X).

• There are cast operations of form

Y cast :: 〈X, Y 〉(X),

which take an X and transform it into a Y.

We will invent other primitive operations when we need them. (Bit operations,
unary operations, etc.)

10

4 Unfolding

In the unfolded version, functions are used only in initializations.
Expressions are unfolded as follows:

1. If the expression contains makeref-operators, (which transform an object
into a reference), then create local a local variable for the object.

2. As long as we have nested expressions of form, init(v, f(t1, . . . , tn)), pro-
ceed as follows: If not void, create local variables for the ti. Replace ex-
pression by

create v1

init(v1, t1),

...

create vn

init(vn, tn),

init(v, f(v1, ..., vn).

In case one of the ti was a makeref, we initialize the variable created in
step 1, and then store the adress of it in vi. For subterms of type void,
there is no init.

This is also the point on which inline functions can be expanded. They are
instantiated away. The return statement is replaced by

1. initialization of the result.

2. Cleanup of local variables.

3. A goto out of the function.

11

