
Register Assignment/Code
Generation
(Jan 2010)

1

Code Generation

Assume that we have a program in SSA. We want to generate

machine instructions:

• Eliminate the φ-functions.

• Choose registers for intermediate results.

• Select machine instructions.

2

Elimination of φ-functions

A statement of form x0 = φ(x1, . . . , xn) means that x0, x1, . . . , xn

are supposed to be the same variable, but we will see that this

intuition does not always work.

Foramally, φ(x1, . . . , xn) can be interpreted as: The value from

{x1, . . . , xn} with the most recent time stamp. (Uninitialized

variables have time stamp −∞.)

3

Elimination of φ-functions (1)

In many cases, one can simply merge the variables and forget the

φ-function:

Fact(N0)

F0 = 1;

loop:

N2 = Phi(N0, N2);

F2 = Phi(F0, F2);

if(N2 == 0) goto end:

F1 = F2 * N2;

N2 = N1 - 1;

goto loop;

end: return F2;

4

Lost Copy Problem

X = 1;

loop:

Y = X;

X = X + 1;

if(something) goto loop;

return Y;

5

Lost Copy Problem (2)

After optimization, the SSA would have the following form:

X0 = 1;

loop:

X1 = Phi(X0,X2);

X2 = X1 + 1;

if(something) goto loop;

return X1;

If one would merge the variables X0,X1,X2, the return-statement

would return the wrong copy of X.

6

Replacing Φ-functions by Assignments

A1 = ...

goto merge;

A2 = ...

goto merge;

A3 = ...

goto merge;

merge:

A4 = Phi(A1, A2, A3);

7

A1 = ...

A4 = A1; goto merge;

A2 = ...

A4 = A2; goto merge;

A3 = ...

A4 = A3; goto merge;

merge:

... A4 ...

8

Replacing Φ-Functions by Assignments

As with everything in CC, even this is harder than it seems:

P1:

if(...) X = A; else X = B;

some statement not using X;

if(...) goto L1 else goto L2;

P2:

if(...) X = C; else C = D;

some statements not using X.

if(...) goto L1 else goto L2;

L1: Uses X;

L2: Uses X;

9

Replacing Φ-Functions by Assignments

Solution: First move Φ-Functions as early as possible.

Put the assignment:

1. At earliest point from which every path will reach the

Φ-function. (preferred)

2. If no such point exists, then such point must be created by

edge splitting.

10

Edge Splitting

X1 = 0;

loop:

if(...) goto end;

X2 = Phi(X1, X3);

X3 = X2 + 1;

goto loop; // No edge splitting necessary.

X1 = 0;

loop:

X2 = Phi(X1, X3);

X3 = X2 + 1;

if(...) goto loop; // Edge splitting necessary.

return X2;

11

Variable Conflicts

We want to answer the following question: When is it possible to

identifiy to variables v1, v2?

Definition: Two variables v1 and v2 are in conflict if there exists a

path of form:

v1 =

· · ·

v2 =

... = ... v1

In words: There exists a path through the flow graph starting with

an assignment of v1, ending with a use of v1, and somewhere on

this path, v2 is assigned. If such path exists then v1, v2 must be

distinct variables. (Because the assignment v2 = ... would spoil the

value of v1.)

12

Simplification of SSA

1. As long as there are two variables v1, v2 that are not in conflict,

substitute v1 := v2 in the flow graph.

When there are more such pairs, give preference to a pair v1, v2

that is connected by a Φ-function. (Alternatively, one can

restrict simplifiation to variables that are connected by a

Φ-function.)

2. Delete repeated arguments in Φ-functions.

3. Delete Φ-applications of form vi = Φ(vi).

(This algorithm is quadratic, but it can be made linear.)

13

Optimal Elimination of Φ-Functions

First simplify the SSA.

After that, replace the remaining Φ-functions by assignments.

14

Register Allocation

The final aim is to generate efficient machine code.

Processors have local variables, called registers which can be read

and written very efficiently. (Typically one clock cycle.)

Modern memory is much slower than modern processors. (333

DDR, vs. 1.8 Ghz.) There is roughly a factor of 6 between them.

In addition, storing a variable in memory requires address

calculation, which adds to the processing time.

15

Register Allocation (2)

move D0, D1

is quicker than:

move $4(A7), $8(A7)

(Assuming that A7 is the stack register.)

16

Register Allocation (3)

Unfortunately, processors do not have many registers.

I think that the problem is not that there is no space for registers

on the chip.

The problem is that registers spoil the opcode space.

(But this was in 1992, maybe times have changed.)

17

Register Allocation for Tree-Like Expressions

For simple, tree-like expressions, register allocation is easy:

How many registers are required to evaluate: a + (b × (c + d))?

18

Tree-Like Expressions

We give a simple, recursive algorithm for determining how many

registers are needed for evaluation a tree-like expression.

• For a constant c or variable v, #c = #v = 1. (Assuming that

there is no address calculation involved. Otherwise, one has to

include the address calculation in the tree.)

• If both t1, t2 are variables or constants, and there exists a

simple machine instruction for computing f(t1, t2), then

#f(t1, t2) = 1.

• If t1 is a variable or constant, and there exists a simple machine

instruction for computing x = f(t1, x), then #f(t1, t2) = #t1.

• If t2 is a variable or constant, and there exists a simple machine

instruction for computing x = f(x, t2), then #f(t1, t2) = #t2.

19

Tree-Like Expressions (2)

• If both of t1, t2 are not variable or constant, and #t1 6= #t2,

then #f(t1, t2) = max(#t1, #t2).

• If both #t1 = #t2 are not variable or constant, then

#f(t1, t2) = 1 + #t1.

(The last two steps can be extended to more arguments in the case

where f is associative.)

20

Tree-Like Expressions (3)

In case that #t1 < #t2, the following code can be generated:

• Compute t2 in Ri;

• Compute t1 in Rj ;

• Rj = f(Rj , Ri) or Ri = f(Rj , Ri);

21

Non-Tree-Like Expressions

Unfortunately, reality is non-tree like. (This is what redundancy

analysis is based on.)

The algorithm on the previous slides cannot be used in practice.

But there is an important message that should be remembered:

Complicated expressions (of which one expects that they will need

many registers) should be evaluated first.

22

Choosing the Order of Evaluation

Remember the slides on optimization:

The normalization algorithm uses a set of rewrite rules R for

storing the normalizations of expressions. After analysis, it

generates a minmal sequence of assignments that compute the

output of the block.

This minimal sequence of assignments should be generated in such

an order, that the most complicated expressions are calculated first.

23

Register Assignment

Definition Assume that G is a flow graph. The conflict graph (V, E)

of G is defined as

• V the set of variables that occur in G.

• E = {(v1, v2) | v1 and v2 are in conflict with each other .}

Let R = {R0, . . . , R7} (or something similar.)

A register assignment is a function φ : V → R, s.t.

∀e1, e2, (e1, e2) ∈ E ⇒ φ(e1) 6= φ(e2).

Question: Find φ with smallest range.

Problem is NP -complete. (Because it is equivalent to graph

colouring.)

24

Spilling

If no φ can be found, then there are not enough registers. (Or the

heuristic failed.)

1. Assume that R = {R0, . . . , R7}. Try to find a register

assignment φ : V → R.

2. If no φ can be found, then select one v ∈ V. (Typically with the

biggest amount of conflicts. One could also try to estimate how

often the variable is used, etc.) Store this variable in memory.

Compute the new graph. Go to the first step.

Moving local variables to memory is called spilling.

25

Code Generation

We can assume that we have somehow managed to assign registers

to the intermediate values.

Some machine instructions are quite complicated, and it would be

nice if the compiler could use these instructions.

26

Code Generation (2)

Translation 1:

move $4(A6), (A5) ++

Translation 2:

move A6, A4

add 4, A4

move (A4), R0

move R0, (A5)

add 1, A5

It is not hard to guess which translation will be more efficient.

27

Code Generation (3)

It is hard to find something concrete in the literature, but I

imagine that it works as follows:

Determine which registers are used only once. Put some mark on

these registers.

(In the previous example, A4 would be marked.)

This marking is essential, because marked registers can be skipped

in the translation. If for example on the previous slide, the value

A6+4 in A4 is reused later, then the first translation is impossible.

The best approach is to have the SIMP-function and the

R-datastructure generate the markings together with the

assignments.

28

Instruction Selection

Instructions can be represented by tree rewrite rules:

• move R0, R1 R1 → R0,

• move 4(A5), R1 R1 → M(+(4, A5)).

• add 4(A5), R1 R1 → +(M(+(4, A5)), R1)

• move R0, 4(A5) W (R0, +(4, A5))

29

Instruction Selection

Suppose one has the sequence:

A∗

4
= A∗

6
+ 4;

R∗

0
= M(A∗

4
);

W (R∗

0
, A5);

A5 = A5 + 1;

Find a maximal sequence of assignments that assigns marked

variables.

We now have a tree that assigns a value to a non-marked variable.

(That is a variable that we want to remember the result of.)

Let R be the set of marked registers. These are the registers that

we are allowed to store intermediate results in. For each node n, we

will compute a set C(n), as explained on the next slide.

30

Instruction Selection

For every node, (except those with label W), the set C(n) is a set

of pairs (Ri, x), where Ri is a register and x is a natural number.

The meaning of (Ri, x) ∈ C(n) is: Let t be the subtree on n. It is

possible to have a sequence of instructions that puts t in register Ri

and which has computational cost x.

Leaves (containing a register R) are initialized with

C(n) = {(R, 0}. (This means that we get the premisses for free.)

Inner nodes are initialized with ∅.

After that, tree matching is used to compute other C(n).

31

