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Abstract

The reconstruction of discrete two-dimensional pictures from their projections is one of the central problems in the areas
of medical diagnostics, computer-aided tomography, pattern recognition, image processing and data compression. In this note,
we determine the computational complexity of two open problems in this field; one of our results settles a long-standing open
question. We will prove that it is NP-complete to reconstruct a two-dimensional pattern from its two orthogonal projectionsH

andV , if (1) the pattern has to be connected (and hence forms a so-calledpolyomino), or if (2) the pattern has to be horizontally
and vertically convex. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Problem statement

A finite binary pictureis an m × n matrix of 0’s
and 1’s. Intuitively speaking, the 1’s correspond to
black pixels (which constitute thepattern) and the
0’s correspond to white pixels (which form theback-
ground). The ith row projectionand thej th column
projectionare the numbers of black pixels in theith
row and in thej th column, respectively. In apat-
tern reconstruction problem, we are given two vectors
H = (h1, . . . , hm) ∈ N

m andV = (v1, . . . , vn) ∈ N
n,

and we want to decide whether there exists a pic-

E-mail address:gwoegi@opt.math.tu-graz.ac.at
(G.J. Woeginger).

1 Supported by a research fellowship of the Euler Institute for
Discrete Mathematics and its Applications (EIDMA) and by the
START program Y43-MAT of the Austrian Ministry of Science.

ture in which theith row projection equalshi and
in which thej th column projection equalsvj . Often,
the reconstructed pattern should fulfill several addi-
tional properties like symmetry, connectivity, or con-
vexity. In this note, we will mainly deal with the three
properties of beinghorizontally convex(in every row
the black pixels form a contiguous interval),vertically
convex(in every column the black pixels form an in-
terval), andconnected(connected in the usual sense:
every pixel is adjacent to its two vertical and to its two
horizontal neighbors, and the set of black pixels has
to be connected with respect to this adjacency rela-
tion). A connected pattern is called apolyomino(cf.
Golomb [7]).

1.2. Known results

Ryser [9], and subsequently Chang [2], studied the
pattern reconstruction problem without extra restric-
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Table 1
The computational complexity of pattern reconstruction

Horizontal/vertical convexity

v + h convex v convex h convex no restriction

Polyomino P[b,c] NP-complete[b] NP-complete[b] NP-complete[d]

No restriction NP-complete[d] NP-complete[b] NP-complete[b] P[a]

The result with superscript[a] was derived by Ryser. Results with superscript[b] were
derived by Barcucci, Del Lungo, Nivat and Pinzani. The result[c] is by Chrobak and Dürr. The
results[d] are derived in the current paper.

tions imposed onto the combinatorial structure of the
pattern. They gave an exact combinatorial characteri-
zation of the projections(H,V ) that correspond to a
pattern, and they derived a fast O(mn) time algorithm
that outputs a picture that is compatible with(H,V ).
Chang and Chow [3] defined an algorithm that recon-
structs patterns that are convex and symmetrical with
respect to the two orthogonal axes. Del Lungo [5] in-
vestigated a special case where the pattern fulfills a
certain “north-east connectivity” constraint.

Kuba [8] designed a heuristic algorithm for re-
constructing patterns that are horizontally and verti-
cally convex. Barcucci, Del Lungo, Nivat and Pin-
zani [1] performed a careful investigation on the com-
putational complexity of different variants of the pat-
tern reconstruction problem. As a main result, they
derived a polynomial time algorithm for the recon-
struction of horizontally and vertically convex poly-
ominoes. Moreover, they proved that the four recon-
struction problems for (1) horizontally convex poly-
ominoes, (2) vertically convex polyominoes, (3) hor-
izontally convex patterns, and (4) vertically convex
patterns all are NP-complete. Chrobak and Dürr [4]
presented a faster and simpler polynomial time algo-
rithm for the reconstruction of horizontally and verti-
cally convex polyominoes.

1.3. Our results

In this note, we settle the two questions that were
left open by Barcucci et al. [1]: First, we will prove
that the reconstruction of polyominoes is an NP-
complete problem. Then we show that a slight modifi-
cation of our argument also yields NP-completeness of
the reconstruction of vertically and horizontally con-
vex patterns; this answers an open problem that dates

back to the paper [8] by Kuba. See Table 1 for a sum-
mary of all known complexity results.

2. Reconstruction of polyominoes

Our first reduction is done from the following ver-
sion of the NP-complete THREE PARTITION problem
(Garey and Johnson [6]).

Problem. THREE PARTITION

Instance. Positive integersa1, . . . , a3k that are en-
coded in unary and that fulfill the two conditions

(i)
∑3k

i=1 ai = k(2B + 1) for some integerB, and
(ii) (2B + 1)/4< ai < (2B + 1)/2 for 1� i � 3k.

Question. Does there exist a partition ofa1, . . . , a3k

into k triples such that the elements of every triple
add up to exactly 2B + 1?

Now let an instance of THREE PARTITION be given.
From this instance, we will construct a row vector
H ∗ ∈ N

m and a column vectorV ∗ ∈ N
n with m =

(2B + 2)k + 1 andn = 12k such that the following
holds: There exists a polyomino with row projections
H ∗ and column projectionsV ∗, if and only if the
THREE PARTITION instance has a solution. Clearly,
this will establish NP-completeness of the reconstruc-
tion problem for polyominoes.

The vectorH ∗ starts with a single entryh∗
1 = n,

followed byk identical blocks, each block consisting
of 2B + 2 numbers. Every block starts with the entries
3k and 3k + 2, then there comeB − 1 entries equal to
3k + 1, then a single entry 3k + 2 followed by another
sequence ofB −1 entries equal to 3k+1, and then the
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block ends with another single entry 3k + 2. Hence, it
is of the form

(n, . . . ,3k,3k + 2,

3k + 1, . . . ,3k + 1︸ ︷︷ ︸
(B−1)-times

,3k + 2,

3k + 1, . . . ,3k + 1︸ ︷︷ ︸
(B−1)-times

,3k + 2, . . .).

The vectorV ∗ consists of 3k blocks each with four
entries, where theith block equals 1, ai + 1,2,m, i.e.,
V ∗ is of the form

(1, a1 + 1,2,m, 1, a2 + 1,2,m,

1, a3 + 1,2,m, 1, a4 + 1,2,m, . . . ,

1, a3k + 1,2,m).

We will say that for 1� i � 3k, the columns 4i − 3,
4i − 2, 4i − 1 and 4i constitute theith column block
(or c-block) Ci , and that for 1� j � k, the rows from
(2B + 2)(j − 1) + 2 to (2B + 2)j + 1 form thej th
row block(or r-block) Rj .

Lemma 1. If the THREE PARTITION instance has
a solution, then there exists a polyomino with row
projectionsH ∗ and column projectionsV ∗.

Proof. We start with coloring black all the pixels in
row 1 and all the pixels in the columns 4i, 1� i � 3k.
Next, letaj (1), aj (2), andaj (3) be the elements in the
j th triple in the solution of the THREE PARTITION

instance. In column 4j (1) − 2, we introduce a black
interval of lengthaj (1) that extends from row(2B +
2)(j − 1) + 3 to row (2B + 2)(j − 1) + aj (1) + 2;
in column 4j (2) − 2, we put a black interval of length
aj (2) that extends from row(2B+2)(j −1)+aj (1)+3
to row (2B + 2)(j − 1) + aj (1) + aj (2) + 2; in column
4j (3) − 2, we put a black interval of lengthaj (3) that
extends from row(2B + 2)(j − 1) + aj (1) + aj (2) + 2
to row (2B + 2)j + 1. Moreover, we blacken the three
pixels at the intersection of column 4j (1) − 1 with
row (2B +2)(j −1)+3, at the intersection of column
4j (2) − 1 with row (2B + 2)(j − 1) + B + 3, and at
the intersection of column 4j (3) − 1 with row (2B +
2)(j − 1) + 2B + 3. This procedure is repeated for
every triple in the solution of the THREE PARTITION

instance. It is easy to verify that the resulting pattern
is connected and hasH ∗ andV ∗ as row and column
projections, respectively.✷

Lemma 2. If there exists a polyomino with row
projectionsH ∗ and column projectionsV ∗, then the
THREE PARTITION instance has a solution.

Proof. Consider the polyomino with row projections
H ∗ and column projectionsV ∗: In every c-blockCi ,
1 � i � 3k, the rightmost column must be completely
black, as the corresponding projectionv∗

4i = m equals
the number of rows. This fixes the positions of 3k

black pixels in every row. Since every r-blockRj starts
with a row with exactly 3k black pixels, we know that
the black pixels in the rows(2B + 2)(j − 1) + 2,
1 � j � k, lie exactly at the intersections with the
columns 4i, 1 � i � 3k. Similarly, the first row must
be completely black, and this fixes the positions of the
single black pixel in every column 4i − 3, 1� i � 3k,
and the position of one of the two black pixels in every
column 4i − 1.

Now let us take a closer look at the c-blockCi

(consisting of columns 4i − 3, 4i − 2, 4i − 1 and
4i). We claim that theai + 1 black pixels in column
4i − 2 form two disjoint intervals: one single pixel in
row 1, and a contiguous interval ofai black pixels that
is completely contained withinone r-block. Because
of the discussion in the preceding paragraph, we
already know about the black pixel in row 1, and we
know that there is no black pixel at the crossing with
row 2. Now suppose that there are at least two further
black intervals in this column 4i − 2. Both of these
intervals must somehow be connected to the rest of
the polyomino. This connection cannot happen via the
left neighboring column (column 4i − 3 only has a
black pixel at the crossing with row 1) and hence, it
must happen via the right neighboring column 4i − 1.
The right neighboring column, however, contains only
two black pixels, one in row 1, and another one that
can only connect a single interval in column 4i − 2
to the rest of the polyomino. Hence, column 4i − 2
indeed contains an interval ofai black pixels. Finally,
this single interval cannot be part of two r-blocks, say
Rj andRj+1: In this case it would have to cross the
starting row(2B + 2)j + 2 of r-block Rj+1. By the
above discussion, we know that there is no black pixel
at the intersection of this row with column 4i −2. This
completes the proof of the claim.

Next, let us define a partitionP∗ of the numbers
ai into k parts: Numberai belongs to partj if and
only if the interval of lengthai in column 4i − 2
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belongs to the r-blockRj . Block Rj contains exactly
(3k + 1)(2B + 2) + 2 black pixels. From the above
claim we get that the intersection ofRj with c-Block
Ci either contains exactly 3k black pixels (in column
4i) or it does contain exactly 3k + ai + 1 black pixels
(3k in column 4i, ai in column 4i − 2, and a single
connecting pixel in column 4i − 1). With this it is
easy to see that if partj in the partitionP∗ containsx
elements, then these elements sum up to 2B + 4 − x.
By property (ii) of the THREE PARTITION instance,
x = 3 must hold for every part, and thus the partition
P∗ constitutes a solution to the THREE PARTITION

instance. ✷
Putting together the statements in Lemmas 1 and 2

yields our main result.

Theorem 3. The reconstruction of polyominoes from
their orthogonal projections isNP-complete.

3. Reconstruction of vertically and horizontally
convex patterns

Our second reduction is done from the following
version of the NP-complete problem NUMERICAL

MATCHING WITH TARGET SUMS (Garey and John-
son [6]).

Problem. NUMERICAL MATCHING WITH TARGET

SUMS

Instance. Positive integersa1, . . . , ak, b1, . . . , bk, and
c1, . . . , ck that are encoded in unary. For some
integer D and for all 1� i � k, the inequalities
D < ai < 2D, 2D < bi < 3D, and 3D < ci < 4D

are fulfilled. Moreover
k∑

i=1

(ai + bi) =
k∑

i=1

ci = S.

Question. Does there exist a partition of theai , bi , ci

into k triples such that every triple consists of one
a-element, oneb-element, and onec-element such
that thec-element equals the sum of thea-element
and theb-element?

Now let an instance of NUMERICAL MATCHING

WITH TARGET SUMS be given. From this instance,

we will construct a row vectorH ∗ ∈ N
m and a column

vectorV ∗ ∈ N
n with m = k + S andn = 4k such that

the following holds: There exists a horizontally and
vertically convex pattern with row projectionsH ∗ and
column projectionsV ∗, if and only if the NUMERICAL

MATCHING WITH TARGET SUMS instance has a
solution. Clearly, this will establish NP-completeness
of the reconstruction problem for horizontally and
vertically convex patterns.

This time, vectorH ∗ consists ofk blocks where the
ith block (i = 1, . . . , k) has ci + 1 entries; the first
entry of theith block is a one, and the remainingci

entries are twos, i.e.,

(1,2,2,2, . . . ,2︸ ︷︷ ︸
c1 times

,1,2,2,2, . . . ,2︸ ︷︷ ︸
c2 times

,

. . . , 1,2,2,2, . . . ,2︸ ︷︷ ︸
ck times

).

The vectorV ∗ consists of 2k blocks, where theith
block with 1� i � k equalsai + 1, ai and where the
(k + i)th block with 1� i � k equalsbi, bi , i.e.,V ∗ is
of the form

(a1 + 1, a1, a2 + 1, a2, . . . , ak + 1, ak,

b1, b1, b2, b2, . . . , bk, bk).

Since the remaining arguments are very similar to
those that led to Theorem 3, they are omitted.

Theorem 4. Reconstructing horizontally and verti-
cally convex patterns from their orthogonal projec-
tions isNP-complete.
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