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Abstract

We investigate polynomial-time approximability of the problems related to edge dominating sets of graphs. When edges are
unit-weighted, the edge dominating set problem is polynomially equivalent to the minimum maximal matching problem, in
either exact or approximate computation, and the former problem was recently found to be approximable within a factor of 2
even with arbitrary weights. It will be shown, in contrast with this, that the minimum weight maximal matching problem cannot
be approximated within any polynomially computable factor unless P=NP.

The connected edge dominating set problem and the connected vertex cover problem also have the same approximability
when edges/vertices are unit-weighted. The former problem is already known to be approximable, even with general edge
weights, within a factor of 3.55. We will show that, when general weights are allowed, (1) the connected edge dominating set
problem can be approximated within a factor of 3+ ε, and (2) the connected vertex cover problem is approximable within a
factor of lnn+ 3 but cannot be within(1− ε) lnn for anyε > 0 unless NP⊂ DTIME(nO(loglogn)).  2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In this paper we investigate polynomial-time ap-
proximability of problems related to edge dominating
sets of graphs. For two pairs of problems considered,
it will be shown that, while both problems in each
pair have the same approximability for the unweighted
case, their approximation properties differ drastically
when general non-negative weights are allowed.

In an undirected graph an edgedominatesall the
edges adjacent to it, and anedge dominating set(eds)
is a set of edges collectively dominating all the other
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edges in a graph. The problem EDS is then that of find-
ing a smallest eds or, if edges are weighted, an eds of
minimum total weight. Yannakakis and Gavril showed
that EDS is NP-complete even when the graphs are
planar or bipartite of maximum degree 3 [20]. A set
of edges is called amatching(or independent) if no
two of them have a vertex in common, and a match-
ing is maximal if no other matching properly con-
tains it. Notice that any maximal matching is neces-
sarily an eds, because an edge not in it must be ad-
jacent to some in it. For this reason it is also called
an independent edge dominating set, and the prob-
lem IEDS asks for a minimum maximal matching in
a given graph. Interestingly, one can also construct a
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maximal matching, from any eds, of no larger size in
polynomial time [11], implying that EDS and IEDS
are polynomially equivalent, in exact or approximate
computation, when graphs areunweighted. Based on
this and the fact that any maximal matching cannot
be more than twice larger than any maximal match-
ing, it has been long known that either problem, with-
out weights, can be approximated within a factor of 2.
Moreover, weighted EDS was recently shown approx-
imable within a factor of 2 [5,3]. In contrast with this,
we will present strong inapproximability results for
weighted IEDS.

We next consider EDS with connectivity require-
ment, called theconnected edge dominating set
(CEDS) problem, where it is asked to compute a con-
nected eds (ceds) of minimum weight in a given con-
nected graph. Since it is always redundant to form a
cycle in a ceds, the problem can be restated as that of
going after a minimum tree whose vertices “cover” all
the edges in a graph, and thus, it is also calledtree
cover. Thevertex cover(VC) problem is another ba-
sic NP-complete graph problem [13], in which a min-
imum vertex set is sought inG s.t. every edge ofG
is incident to some vertex in the set. When a vertex
cover is additionally required to induce a connected
subgraph in a given connected graph, the problem is
calledconnected vertex cover(CVC) and known to be
as hard to approximate as VC is [6].

These problems are closely related to EDS and
CEDS in that an edge setF is an eds forG iff
V (F), the set of vertices touched by edges ofF , is
a vertex cover forG, and similarly, a treeF is a
ceds iffV (F) is a connected vertex cover. It follows
that since the number of vertices is that of edges
plus one in any tree, the unweighted versions of
CEDS and CVC have the same approximability, and
in fact they are known to be approximable within a
factor of 2 [18,1]. It is not known, however, if CEDS
and CVC can be somehow related even if general
weights are allowed. An algorithm scheme of Arkin
et al. for weighted CEDS gives its approximation
factor in the form ofrSt + rwvc(1 + 1/k), for any
constantk, whererSt (rwvc) is the performance ratio
of any polynomial time algorithm for the Steiner tree
(weighted vertex cover, respectively) problem [1]. By
using the currently best algorithms for Steiner tree [17]
and for weighted vertex cover [2] in their scheme,
the bound for weighted CEDS is estimated at 3.55.

After improving this bound to 3+ ε, we will show that
weighted CVC is as hard to approximate as weighted
set cover, indicating that it is not approximable within
a factor better than(1− ε) lnn unless

NP⊂DTIME
(
nO(log logn))

[4]. Lastly, we present an algorithm approximating
weighted CVC within a factor of

H(∆− 1)+ rwvc � ln(∆− 1)+ 3,

whereH(k) is thekth harmonic number and∆ is the
maximal vertex degree of a graph. A related problem,
connected dominating set, can be approximated within
a factor of lnn + 3 for the unweighted case [8], but
when weighted, the best known bound is 1.35 lnn [9].

2. Independent edge dominating set

To show that it is extremely hard to approximate
IEDS, we use a reduction from 3SAT. Let us first
describe a general construction of graphGφ for a
given 3SAT instance (i.e., a CNF formula)φ, by
adapting the one used in reducing SAT to minimum
maximal independent set [12,10] to our case. For
simplicity, every clause ofφ is assumed without loss
of generality to contain exactly three literals. Each
variablexi appearing inφ is represented inGφ by
two edges adjacent to each other, and the endvertices
of such a path of length 2 are labeledxi and x̄i ; let
Ev denote the set of these edges. Each clausecj of φ
is represented by a triangle (a cycle of length 3)Cj ,
and vertices ofCj are labeled distinctively by literals
appearing incj ; letEc denote the set of edges in these
disjoint triangles. The paths inEv and triangles inEc
are connected together by having an edge between
every vertex of each triangle and the endvertex of a
path having the same label. The set of these edges
lying betweenEv andEc is denoted byEb. It is a
simple matter to verify that, for a 3SAT instanceφ
with m variables andp clauses,Gφ constructed this
way consists of 3(m + p) vertices and 2(m + 3p)
edges.

Lemma 1. Let M(G) denote a minimum maximal
matchingM in G. For any 3SAT instanceφ with m
variables andp clauses, and for any numbert , there
exists a graphGφ on3(m+p) vertices and2(m+3p)
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edges, and a weight assignmentw :E→ {1, t}, such
that

w
(
M(Gφ)

){
�m+ p, if φ is satisfiable,
> t, otherwise.

Proof. Let w(e) = 1 if e ∈ Ev ∪ Ec andw(e) = t if
e ∈ Eb. Suppose thatφ is satisfiable, and letτ be a
particular truth assignment satisfyingφ. Construct a
matchingMτ in Ev by choosing, for eachi, the edge
with its endvertex labeled byxi if τ (xi) is true and
the one having an endvertex labeled byx̄i if τ (xi) is
false. Consider any triangleCj in Ec. Sinceτ satisfies
φ, at least one edge among those inEb connecting
Cj andEv must be dominated byMτ . This means
that all the edges inEb betweenCj andEv can be
dominated byMτ , plus one edge onCj . LetMc denote
the set of such edges, each of which taken this way
from eachCj . Then,Mτ ∪Mc is clearly a minimal
matching since it dominates all the edges inGφ . Since
all the edges inMτ ∪Mc are of weight 1, its weight
is |Mτ ∪Mc| =m+ p. On the other hand, ifφ is not
satisfiable, there is no way to dominate all the edges
in Eb only by any matching built insideEv ∪Ec, and
hence, any maximal matching inGφ must incur a cost
of more thant . ✷

The computational hardness of approximating
weighted IEDS easily follows from this lemma:

Theorem 2. For any polynomial time computable
functionα(n), IEDS cannot be approximated on graphs
with n vertices within a factor ofα(n), unlessP=NP.

Proof. Given a 3SAT instanceφ with m variables
and p clauses, construct a graphGφ and assign a
weight w(e) ∈ {1, t} to each edgee ∈ E, as in the
proof of Lemma 1. SinceGφ consists of 3(m + p)
vertices and(m + p)α(3(m + p)) is computable in
time polynomial in the length ofφ, m + 3p, we can
set t = (m + p)α(3(m + p)) = (m + p)α(n). If a
polynomial time algorithmA exists approximating
IEDS within a factor ofα(n), then, when applied to
Gφ , A will output a number at most(m + p)α(n) if
φ is satisfiable, and a number greater thant = (m +
p)α(n) if φ is not satisfiable. Hence,A decides 3SAT
in polynomial time. ✷

3. Connected edge dominating set

We first consider a restricted version of CEDS; for
a designated vertexr calledroot, an r-ceds is a ceds
touchingr, and the problemr-CEDS is to compute
an r-ceds of minimum weight. Given an undirected
graphG = (V ,E) with edge weightsw :E → Q+,
let �G = (V , �E) denote its directed version obtained
by replacing each edge{u,v} of G by two directed
ones,(u, v) and(v,u), each of weightw({u,v}). For
the root r, a non-empty setS ⊆ V − {r} is called
dependentif S is not an independent set inG. Suppose
T ⊆ E is an r-ceds, and let�T denote the directed
counterpart obtained by choosing, for each pair of
directed edges, the one directed away from the root
to a leaf. Clearly,w(T ) = w( �T ). Moreover, let �T be

represented by its characteristic vectorx �T ∈ {0,1} �E,
and, for anyx ∈ Q

�E and �F ⊆ �E, let x( �F)∑a∈ �F xa .
Then,x �T satisfies the linear inequalityx(δ−(S)) � 1
for all dependent setsS ⊆ V − {r}, whereδ−(S) =
{(u, v) ∈ �E | u /∈ S, v ∈ S}, because, when an edge
exists insideS, at least one arc of�T must enter it.
Thus, the following linear programming problem is a
relaxation ofr-CEDS:

Zceds=min
∑
a∈ �Ew(a)xa

subject to:

x
(
δ−(S)

)
� 1 ∀ dependent setS ⊆ V − {r},

0� xa � 1 ∀a ∈ �E.

(1)

Lemma 3. For any feasible solutionx ∈Q
�E of (1), let

V+(x)= {u ∈ V | x(δ−({u})) � 1/2}. Then,V+(x) ∪
{r} is a vertex cover forG.

Proof. Take any edgee= {u,v} ∈E with r /∈ e. Then,
{u,v} is a dependent set, andx(δ−({u,v}))� 1, which
implies eitherx(δ−({u})) or x(δ−({v})) is at least 1/2.
Thus,{u,v} ∩ V+(x) �= ∅. ✷

From this lemma it is clear that any treeT ⊆ E
containing all the vertices inV+(x) ∪ {r} is anr-ceds
for G, and, in searching for suchT of small weight, it
can be assumed without loss of generality that the edge
weights satisfy the triangle inequality since any edge
between two vertices can be replaced, if necessary, by
the shortest path between them. Then, the problem of
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finding such a tree of minimum weight is called the
(metric) Steiner treeproblem: GivenG= (V ,E) with
edge weightw :E→Q+ and a setR ⊆ V of required
vertices(or terminals), find a minimum weight tree
containing all the required vertices and any others
(calledSteiner vertices). For this problem Rajagopalan
and Vazirani considered the so-calledbidirected cut
relaxation[16]:

Zsmt=min
∑
a∈ �Ew(a)xa

subject to:

x
(
δ−(S)

)
� 1 ∀ valid setS ⊆ V − {r},

0 � xa � 1 ∀a ∈ �E,

(2)

where the rootr is any required vertex and a set
S ⊆ V − {r} is valid if it contains a required vertex.
Based on this relaxation, they designed a primal-dual
approximation algorithm for metric Steiner tree and
showed that it computes a Steiner tree of cost at most
(3/2+ ε)Zsmt and that the integrality gap of (2) is at
most 3/2, when restricted to graphs in which Steiner
vertices form independent sets (calledquasi-bipartite
graphs). Our algorithm forr-CEDS is now described
as:

1. Compute an optimal solutionx for (1).
2. LetV+(x)= {u ∈ V | x(δ−({u}))� 1/2}.
3. Compute a Steiner treeT with R = V+(x) ∪ {r},

as the set of required vertices, by the algorithm of
Rajagopalan and Vazirani.

4. OutputT .

It is clear that this algorithm computes anr-ceds for
G, except for one special case in whichR = {r} and
so, T = ∅; but in that case it is trivial to find an
optimal r-ceds sinceG is a star centered atr. Not
so clear from this description is polynomiality of its
time complexity, and more specifically, that of step 1.
It can be polynomially implemented by applying the
ellipsoid method to (1), if the separation problem for
the polytopePcedscorresponding to the feasible region
of (1), is solved in polynomial time [7]. So, lety be

a vector inQ
�E . It is easily tested if 0� ya � 1 for

all a ∈ �E. To test whethery(δ−(S)) � 1 for every
dependent setS, we considery as a capacity function
on the arcs of�G. For every arca, not incident uponr,
contracta by merging its two endvertices into a single

vertexva , and determine an(r, va)-cutCa of minimum
capacity. It is then rather straightforward to see that

min
{
y(Ca) | a ∈ �E − δ({r})

}
=min

{
y(δ−(S)) | S ⊆ V − {r} is dependent

}
,

whereδ({r}) is the set of arcs incident tor. So, by
calculating |E − δ({r})| minimum capacity(r, va)-
cuts, we can find a dependent setS of minimum cut
capacityy(δ−(S)). If y(δ−(S))� 1, we conclude that
y ∈ Pceds, while, if not, the inequalityx(δ−(S))� 1 is
violated byy and a separation hyperplane is found.

Notice that our graphG is quasi-bipartite when
V+(x) ∪ {r} is taken as the set of required vertices
since it is a vertex cover forG, and for the approxi-
mation quality of solutions, we have1

Theorem 4. The algorithm above computes anr-ceds
of weight at most(3+ ε)Zceds.

Proof. Let x ∈ Q
�E be an optimal solution of (1),

and T be anr-ceds computed by the algorithm. As
mentioned above, it was shown thatw(T ) � (3/2+
ε)Zsmt when graphs are quasi-bipartite [16]. So, it
suffices to show that 2x is a feasible solution of (2)
with R = V+(x)∪ {r} for then,

Zsmt� 2
∑
a∈ �E

w(a)xa = 2Zceds,

and hence,

w(T )� 2(3/2+ ε)Zceds.

To this end, letS ⊆ V − {r} be any valid set. If
S is not an independent set inG, it is dependent,
ensuring thatx(δ−(S)) � 1. Suppose nowS is an
independent set. Since it is a valid set,S contains a
vertexu( �= r) in V+(x). But then,x(δ−({u})) � 1/2,
and, sinceS is an independent set inG, 2x(δ−(S))�
2x(δ−({u}))� 1. Thus, in either case, 2x satisfies all
the linear constraints of (2).✷

Since the integrality gap of (2) is bounded by 3/2
for quasi-bipartite graphs, we have

Corollary 5. The integrality gap of(1) is at most3.

1 Independently of our work, Koenemann et al. recently ob-
tained the same performance guarantee by essentially the same al-
gorithm [15].
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Lastly, since any ceds is anr-ceds for somer ∈ V ,
by applying the algorithm withr = u for eachu ∈ V
and taking the best one among all computed, CEDS
can be approximated within a factor of 3+ ε.

4. Connected vertex cover

Savage showed that non-leaf vertices of any depth
first search tree form a vertex cover of size at most
twice the smallest size [18]. Since such a vertex
cover clearly induces a connected subgraph, it actu-
ally means that a cvc of size no more than twice larger
than the smallest vertex cover always exists and can
be efficiently computed. When vertices are arbitrar-
ily weighted, however, the weighted set cover prob-
lem can be reduced to it in an approximation preserv-
ing manner, as was done for node-weighted Steiner
trees [14] and connected dominating sets [8]:

Theorem 6. The weighted set cover problem can be
approximated within the same factor as the one within
which weighted CVC can be on bipartite graphs.

Proof. From a set cover instance(U,F) andw :F→
Q+, whereF ⊆ 2U and

⋃
S∈F S = U , construct a

bipartite graphG as a CVC instance, using a new
vertex c, with vertex set(U ∪ {c}) ∪ F s.t. an edge
exists betweenc and everyS ∈F , and betweenu ∈U
and S ∈ F iff u ∈ S. All the vertices inU and c
are assigned zero weights, while every vertexS ∈ F
inheritsw(S), the weight of setS, from (U,F).

For a vertex subsetV ′ of G let Γ (V ′) denote the
set of vertices adjacent to a vertex inV ′. Clearly,
F ′ ⊆ F is a set cover for(U,F) iff U ⊆ Γ (F ′) in
G, and moreover, for any set coverF , F ′ ∪ U ∪ {c}
is a cvc of the same weight. On the other hand, for
any cvcC for G, U ⊆ Γ (C ∩ F), i.e.,C ∩F is a set
cover, of the same weight because, ifu /∈ Γ (C ∩ F)
for someu ∈ U , Γ ({u}) ∩ C = ∅, and hence, there is
no way to properly cover an edge incident tou by C.
Thus, since it costs nothing to includec and vertices
in U , any cvc forG can be assumed to be of the
form F ′ ∪ U ∪ {c} s.t. F ′ is a set cover for(U,F),
with its weight equaling to that ofF ′. Therefore, any
algorithm approximating CVC within a factorr can be
used to compute a set cover of weight at mostr times
the optimal weight. ✷

Due to the non-approximability of set cover [4], it
follows that

Corollary 7. The weighted CVC cannot be approxi-
mated within a factor better than(1− ε) lnn for any
ε > 0, unlessNP⊂DTIME(nO(log logn)).

One simple strategy for approximating weighted
CVC, which turns out to yield a nearly tight bound,
is to compute first a vertex coverC ⊆ V for G =
(V ,E), and then to augment it to become connected
by an additional vertex setD ⊆ V − C. While many
good approximation algorithms are known for vertex
cover, we also need to find suchD of small weight.
Although this problem is not exactly same as weighted
set cover, it can be seen as a specialization of the
submodular set coverproblem: Given a finite set
N and a nondecreasing, submodular set function
f : 2N → R+, computeD ⊆ N of minimum weight
such thatf (D) = f (N). For our case, consider the
complete graphH with its vertex set consisting of all
the components inG[C], and for eachu ∈ V − C, let
Eu be any edge set ofH spanning all and only the
neighboring components ofu. TakeN = V − C and
definef on 2N such thatf (D)= r(⋃u∈D Eu), where
r is the rank function of the circuit matroid ofH .
Such a construction ensuresf be nondecreasing and
submodular. Moreover, using the fact thatV − C is
an independent set inG, it can be shown thatf (D)=
κ(C)− κ(C ∪D), whereκ(F ) denotes the number of
connected components in the subgraphG[F ] induced
byF . SinceG[C∪D] is connected ifff (D)= κ(C)−
1= f (V − C), the problem of computing minimum
D ⊆ V − C such thatG[C ∪ D] is connected,
is formulated exactly by the submodular set cover
problem for(V −C,f ). The greedy algorithm for this
case is then described as:

1. InitializeD←∅.
2. WhileG[C ∪D] is not connected do
3. Letu be a vertex maximizing

(κ(C ∪D)− κ(C ∪D ∪ {v}))/w(v)
amongv ∈ V −C.

4. SetD←D ∪ {u}.
5. OutputD.

It was shown by Wolsey that the performance of the
greedy algorithm for submodular set cover generalizes
the one for set cover:
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Theorem 8 [19]. The greedy algorithm for submodu-
lar set cover computes a solution of weight bounded
byH(maxj∈N f ({j })) times the minimum weight.

Since maxj∈N f ({j }) � ∆ − 1, in our case, for
a graph of maximal vertex degree∆, the greedy
heuristic works with an approximation factor bounded
byH(∆− 1)� 1+ ln(∆− 1).

Theorem 9. The algorithm above computes a cvc of
weight at mostrwvc+H(∆−1)� ln(∆−1)+3 times
the minimum weight.

Proof. Let C∗ be an optimal cvc andC ∪ D be
the one computed by the algorithm above forG,
whereC is a vertex cover of weight at mostrwvc
times that of the minimum vertex cover, andD is
the greedy submodular set cover for(V − C,f ).
Clearly,w(C)� rwvcw(C

∗). Observe thatG[C∗ ∪C]
remains connected because any superset of a cvc is
still a cvc. But then, it means thatC∗ − C ⊆ V − C
is a submodular set cover for(V − C,f ). We thus
conclude that

w(C ∪D) � rwvcw(C
∗)+H(∆− 1)w(C∗ −C)

�
(
rwvc+H(∆− 1)

)
w(C∗). ✷
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