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Abstract

We investigate polynomial-time approximability of the problems related to edge dominating sets of graphs. When edges are
unit-weighted, the edge dominating set problem is polynomially equivalent to the minimum maximal matching problem, in
either exact or approximate computation, and the former problem was recently found to be approximable within a factor of 2
even with arbitrary weights. It will be shown, in contrast with this, that the minimum weight maximal matching problem cannot
be approximated within any polynomially computable factor unlessNP.

The connected edge dominating set problem and the connected vertex cover problem also have the same approximability
when edges/vertices are unit-weighted. The former problem is already known to be approximable, even with general edge
weights, within a factor of 3.55. We will show that, when general weights are allowed, (1) the connected edge dominating set
problem can be approximated within a factor of 3, and (2) the connected vertex cover problem is approximable within a
factor of Inn + 3 but cannot be withiril — ) Inn for any s > 0 unless NR- DTIME (»r°(09109m)) ‘1 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction edgesinagraph. The problem EDS is then that of find-
ing a smallest eds or, if edges are weighted, an eds of
In this paper we investigate polynomial-time ap- minimum total weight. Yannakakis and Gavril showed
proximability of problems related to edge dominating that EDS is NP-complete even when the graphs are
sets of graphs. For two pairs of problems considered, planar or bipartite of maximum degree 3 [20]. A set
it will be shown that, while both problems in each of edges is called anatching(or independentif no
pair have the same approximability for the unweighted two of them have a vertex in common, and a match-
case, their approximation properties differ drastically ing is maximalif no other matching properly con-
when general non-negative weights are allowed. tains it. Notice that any maximal matching is neces-
In an undirected graph an edgeminatesall the sarily an eds, because an edge not in it must be ad-
edges adjacent to it, and adge dominating s€eds)  jacent to some in it. For this reason it is also called
is a set of edges collectively dominating all the other zp independent edge dominating sand the prob-
lem IEDS asks for a minimum maximal matching in
E-mail addressfujito@nuee.nagoya-u.ac.jp (T. Fujito). a given graph. Interestingly, one can also construct a
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maximal matching, from any eds, of no larger size in
polynomial time [11], implying that EDS and IEDS
are polynomially equivalent, in exact or approximate
computation, when graphs aseweightedBased on
this and the fact that any maximal matching cannot
be more than twice larger than any maximal match-
ing, it has been long known that either problem, with-
out weights, can be approximated within a factor of 2.
Moreover, weighted EDS was recently shown approx-
imable within a factor of 2 [5,3]. In contrast with this,
we will present strong inapproximability results for
weighted IEDS.

We next consider EDS with connectivity require-
ment, called theconnected edge dominating set
(CEDS) problem, where it is asked to compute a con-
nected eds (ceds) of minimum weight in a given con-
nected graph. Since it is always redundant to form a
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After improving this bound to 3- ¢, we will show that
weighted CVC is as hard to approximate as weighted
set cover, indicating that it is not approximable within
a factor better thaql — &) Inn unless

NP C DTIME (n©(91o9m))

[4]. Lastly, we present an algorithm approximating
weighted CVC within a factor of

H(A—1)+va0<|n(ﬂ—1)+3,

whereH (k) is thekth harmonic number and is the
maximal vertex degree of a graph. A related problem,
connected dominating se&tan be approximated within

a factor of Im + 3 for the unweighted case [8], but
when weighted, the best known bound is 1.3k [A].

cycle in a ceds, the problem can be restated as that of2. Independent edge dominating set

going after a minimum tree whose vertices “cover” all
the edges in a graph, and thus, it is also catlee
cover. Thevertex cove(VC) problem is another ba-
sic NP-complete graph problem [13], in which a min-
imum vertex set is sought i s.t. every edge o6

is incident to some vertex in the set. When a vertex
cover is additionally required to induce a connected

To show that it is extremely hard to approximate
IEDS, we use a reduction from 3SAT. Let us first
describe a general construction of gragly for a
given 3SAT instance (i.e., a CNF formul@), by
adapting the one used in reducing SAT to minimum
maximal independent set [12,10] to our case. For

subgraph in a given connected graph, the problem is simplicity, every clause o$ is assumed without loss

calledconnected vertex cové€VC) and known to be
as hard to approximate as VC is [6].

These problems are closely related to EDS and
CEDS in that an edge sef is an eds forG iff
V(F), the set of vertices touched by edgeskifis
a vertex cover forG, and similarly, a treeF is a
ceds iff V(F) is a connected vertex cover. It follows

of generality to contain exactly three literals. Each
variable x; appearing ing is represented irGy by
two edges adjacent to each other, and the endvertices
of such a path of length 2 are labeledand x;; let
E, denote the set of these edges. Each clays# ¢
is represented by a triangle (a cycle of lengthC3)
and vertices ofC; are labeled distinctively by literals

that since the number of vertices is that of edges appearingirr;; let E. denote the set of edges in these
plus one in any tree, the unweighted versions of disjoint triangles. The paths if, and triangles ink,
CEDS and CVC have the same approximability, and are connected together by having an edge between
in fact they are known to be approximable within a every vertex of each triangle and the endvertex of a
factor of 2 [18,1]. It is not known, however, if CEDS  path having the same label. The set of these edges
and CVC can be somehow related even if general lying betweenE, and E. is denoted byE,. It is a
weights are allowed. An algorithm scheme of Arkin simple matter to verify that, for a 3SAT instange

et al. for weighted CEDS gives its approximation with m variables andy clausesG4 constructed this
factor in the form ofrsy + rwve(1 + 1/k), for any way consists of 8z + p) vertices and @n + 3p)
constantk, wherers; (rwye) is the performance ratio  edges.

of any polynomial time algorithm for the Steiner tree
(weighted vertex cover, respectively) problem [1]. By
using the currently best algorithms for Steiner tree [17]
and for weighted vertex cover [2] in their scheme,
the bound for weighted CEDS is estimated at 3.55.

Lemma 1. Let M(G) denote a minimum maximal
matchingM in G. For any 3SAT instance¢ with m
variables andp clauses, and for any numberthere
exists a graplGy on3(m + p) vertices an®@(m + 3p)
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edges, and a weight assignment E — {1, ¢}, such
that

<m+ p, if ¢ is satisfiable,
(M(G )) { >, otherwise.

Proof. Letw(e)=1ifec E, UE, andw(e) =1t if

e € Ep,. Suppose thap is satisfiable, and let be a
particular truth assignment satisfyigg Construct a
matchingM; in E, by choosing, for each, the edge
with its endvertex labeled by; if t(x;) is true and
the one having an endvertex labeled yif t(x;) is

false. Consider any trianglg; in E.. Sincer satisfies
¢, at least one edge among thoseAp connecting
C; and E, must be dominated by/,. This means
that all the edges irE, betweenC; and E, can be
dominated by\/,, plus one edge of;. Let M. denote

the set of such edges, each of which taken this way

from eachC;. Then,M; U M, is clearly a minimal
matching since it dominates all the edge&ig. Since
all the edges i, U M, are of weight 1, its weight
is |M; UM.| =m + p. On the other hand, i is not

satisfiable, there is no way to dominate all the edges

in Ep only by any matching built insid&€, U E,, and
hence, any maximal matching G must incur a cost
of more tharr. O

The computational hardness of approximating

weighted IEDS easily follows from this lemma:

Theorem 2. For any polynomial time computable

functiona (n), IEDS cannot be approximated on graphs

with n vertices within a factor of(n), unlessP = NP.

Proof. Given a 3SAT instance with m variables
and p clauses, construct a grapli, and assign a
weight w(e) € {1,¢} to each edge € E, as in the
proof of Lemma 1. SincéGy consists of & + p)
vertices and(m + p)a(3(m + p)) is computable in
time polynomial in the length op, m + 3p, we can
sett = (m + p)a(3(m + p)) = (m + p)a(n). If a
polynomial time algorithmA exists approximating
IEDS within a factor ofa(n), then, when applied to
Gy, A will output a number at mostn + p)a(n) if
¢ is satisfiable, and a number greater thaa (m +
p)a(n) if ¢ is not satisfiable. Hencey decides 3SAT
in polynomial time. 0O

3. Connected edge dominating set

We first consider a restricted version of CEDS; for
a designated vertex calledroot, anr-ceds is a ceds
touchingr, and the problenx-CEDS is to compute
an r-ceds of minimum weight. Given an undirected
graphG = (V, E) with edge weightsw: £ — Q,
let G = (V, E) denote its directed version obtained
by replacing each edgg:, v} of G by two directed
ones,(u, v) and(v, u), each of weightw({u, v}). For
the rootr, a non-empty sets C V — {r} is called
dependenif S is notan independent seté. Suppose
T C E is anr-ceds, and letl' denote the directed
counterpart obtained by choosing, for each pair of
directed edges, the one directed away from the root
to a leaf. Clearlyw(T) = w(T) Moreover, letT be
represented by its characteristic vecidr {0, 1}E
and, for anyx e QF and F C E, let x(F) > i Xa

Then,x” satisfies the linear inequality(§~(S)) > 1
for all dependent set§ C V — {r}, whered—(S) =
{(u,v) € E | u ¢ S,v € S}, because, when an edge
exists insideS, at least one arc of’ must enter it.
Thus, the following linear programming problem is a
relaxation ofr-CEDS:

Zceds=Min)_ _zw(a)x,

subject to:

x(87($)) >1 Vdependents&t <V — {r},
0<x, <1 VackE.

1)

Lemma 3. For any feasible solution QE of (1), let
Vi) ={ueV|x@ ({u}))>1/2}. Then,Vi(x) U
{r}is a vertex cover foG.

Proof. Take any edge = {u, v} € E withr ¢ e. Then,
{u, v} is adependent set, ands~ ({u, v})) > 1, which
implies eitherc (6~ ({u})) orx (8~ ({v})) is atleast 12.
Thus,{u,v}NVyi(x)#£0. O

From this lemma it is clear that any tréeC F
containing all the vertices iy (x) U {r} is anr-ceds
for G, and, in searching for such of small weight, it
can be assumed without loss of generality that the edge
weights satisfy the triangle inequality since any edge
between two vertices can be replaced, if necessary, by
the shortest path between them. Then, the problem of
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finding such a tree of minimum weight is called the
(metri¢) Steiner tregoroblem: GivenG = (V, E) with
edge weighw : E — Q4 and a seR C V of required
vertices(or terminal9, find a minimum weight tree
containing all the required vertices and any others
(calledSteiner vertices For this problem Rajagopalan
and Vazirani considered the so-callbillirected cut
relaxation[16]:

Zsmi=min)_ _zw(a)x,

subject to: @
x(87(8)) =1 VvaldsetSCV —{r},
0<x<1 VacE,

where the rootr is any required vertex and a set
S CV —{r}isvalid if it contains a required vertex.
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vertexv,, and determine ar, v, )-cutC, of minimum
capacity. It is then rather straightforward to see that

min{y(C) | a € E — 8({r})}
=min{y(3~(5)) | S € V — {r} is dependert

whered({r}) is the set of arcs incident to. So, by
calculating |E — §({r})| minimum capacity(r, v,)-
cuts, we can find a dependent sebf minimum cut
capacityy (8~ (S)). If y(§7(S)) > 1, we conclude that
y € Peegs While, if not, the inequality (67 (S)) > 1is
violated byy and a separation hyperplane is found.

Notice that our graphG is quasi-bipartite when
Vi(x) U {r} is taken as the set of required vertices
since it is a vertex cover foG, and for the approxi-
mation quality of solutions, we have

Theorem 4. The algorithm above computes aiteds

Based on this relaxation, they designed a primal-dual of weight at most3 + ) Zceds

approximation algorithm for metric Steiner tree and

showed that it computes a Steiner tree of cost at most prggf. Let x ¢ QE" be an optimal solution of (1),

(3/2+ ) Zsmt and that the integrality gap of (2) is at
most 32, when restricted to graphs in which Steiner
vertices form independent sets (callgaasi-bipartite
graphs). Our algorithm for-CEDS is now described
as:

1. Compute an optimal solutionfor (1).

2. LetVo(x)={ueV|x(@E ({u)) >1/2).

3. Compute a Steiner treé with R = V. (x) U {r},
as the set of required vertices, by the algorithm of
Rajagopalan and Vazirani.

4. OutputT.

It is clear that this algorithm computes arceds for
G, except for one special case in whigh= {r} and
so, T = ¢; but in that case it is trivial to find an
optimal r-ceds sinceG is a star centered at. Not
so clear from this description is polynomiality of its
time complexity, and more specifically, that of step 1.
It can be polynomially implemented by applying the
ellipsoid method to (1), if the separation problem for
the polytopeP.egscorresponding to the feasible region
of (1), is solved in polynomial time [7]. So, let be

a vector inQ~f. It is easily tested if &< y, < 1 for

all @ € E. To test whethery(s=(S)) > 1 for every
dependent sef, we considery as a capacity function
on the arcs of5. For every ara:, not incident upom,
contracta by merging its two endvertices into a single

and T be anr-ceds computed by the algorithm. As
mentioned above, it was shown tha{T) < (3/2 +
€)Zsmt When graphs are quasi-bipartite [16]. So, it
suffices to show thatis a feasible solution of (2)
with R = V. (x) U {r} for then,

Zsmt< 2 Z w(a)xq = 2Zceds
ackE

and hence,
w(T) < 2(3/2+ €) Zceds

To this end, letS C V — {r} be any valid set. If
S is not an independent set i@, it is dependent,
ensuring thatx(§7(S)) > 1. Suppose nows is an
independent set. Since it is a valid s8tcontains a
vertexu (£ r) in Vo (x). But then,x(6~({u})) > 1/2,
and, sinceS is an independent set i@, 2x(§7(S)) >
2x (6~ ({u})) = 1. Thus, in either case x2satisfies all
the linear constraints of (2).0

Since the integrality gap of (2) is bounded by23
for quasi-bipartite graphs, we have

Corollary 5. The integrality gap of1) is at most3.

lIndependently of our work, Koenemann et al. recently ob-
tained the same performance guarantee by essentially the same al-
gorithm [15].
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Lastly, since any ceds is anceds for some € V, Due to the non-approximability of set cover [4], it
by applying the algorithm witlr = u for eachu € V follows that
and taking the best one among all computed, CEDS
can be approximated within a factor oft3e. Corollary 7. The weighted CVC cannot be approxi-
mated within a factor better tha¢l — ¢) Inn for any
e > 0, unlessNP ¢ DTIME (rC(0glogm)
4. Connected vertex cover
One simple strategy for approximating weighted
Savage showed that non-leaf vertices of any depth CVC, which turns out to yield a nearly tight bound,
first search tree form a vertex cover of size at most is to compute first a vertex covef C V for G =
twice the smallest size [18]. Since such a vertex (v, E), and then to augment it to become connected
cover clearly induces a connected subgraph, it actu- by an additional vertex sgb € V — C. While many
ally means that a cvc of size no more than twice larger good approximation algorithms are known for vertex
than the smallest vertex cover always exists and can cover, we also need to find sudh of small weight.
be efficiently computed. When vertices are arbitrar- Although this problem is not exactly same as weighted
ily weighted, however, the weighted set cover prob- set cover, it can be seen as a specialization of the
lem can be reduced to it in an approximation preserv- submodular set coveproblem: Given a finite set
ing manner, as was done for node-weighted Steiner N and a nondecreasing, submodular set function
trees [14] and connected dominating sets [8]: f:2N - R, computeD € N of minimum weight
such thatf (D) = f(N). For our case, consider the
Theorem 6. The weighted set cover problem can be complete graph? with its vertex set consisting of all
approximated within the same factor as the one within the components i;[C], and for eacht € V — C, let
which weighted CVC can be on bipartite graphs. E, be any edge set off spanning all and only the
neighboring components af. TakeN =V — C and
Proof. From a set cover instan¢&, ) andw : F — definef on 2V such thatf (D) = r(U,ep Eu), Where
Q4+, where F € 2V and Jg S = U, construct a  r is the rank function of the circuit matroid off.
bipartite graphG as a CVC instance, using a new Such a construction ensurgsbe nondecreasing and
vertex c, with vertex set(U U {c}) U F s.t. an edge submodular. Moreover, using the fact tHat— C is

exists between and every§ € F, and between € U an independent set i@, it can be shown thaf (D) =
and S € F iff u € §. All the vertices inU and ¢ k(C) — k(C U D), wherex (F) denotes the number of
are assigned zero weights, while every verfex F connected components in the subgr&gt¥] induced
inheritsw(S), the weight of ses, from (U, F). by F. SinceG[C U D] is connected ifff (D) =« (C) —

For a vertex subset’ of G let I'(V’) denote the 1= f(V — C), the problem of computing minimum
set of vertices adjacent to a vertex . Clearly, D C V — C such thatG[C U D] is connected,
F' C Fis a set cover foU, F) iff U C I'(F') in is formulated exactly by the submodular set cover
G, and moreover, for any set covét, 7' U U U {c} problem for(V — C, f). The greedy algorithm for this

is a cvc of the same weight. On the other hand, for case is then described as:
any cvcC forG, U CTI'(CNnF),ie.,CNFisaset
cover, of the same weight becausey i I'(C N F)
for someu € U, I"({u}) N C = @, and hence, there is
no way to properly cover an edge incidentitdy C.
Thus, since it costs nothing to includeand vertices
in U, any cvc forG can be assumed to be of the
form 77U U U {c¢} s.t. 7' is a set cover foKU, F),
with its weight equaling to that of’. Therefore, any
algorithm approximating CVC within a factercan be It was shown by Wolsey that the performance of the
used to compute a set cover of weight at mosimes greedy algorithm for submodular set cover generalizes
the optimal weight. O the one for set cover:

1. Initialize D < @.
2. While G[C U D] is not connected do
3. Letu be a vertex maximizing
kK (CUD)—«k(CUDU{v}H)/w()
amongv e V — C.
4. SetD « DU {u}.
5. OutputD.
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Theorem 8 [19]. The greedy algorithm for submodu-
lar set cover computes a solution of weight bounded
by H(max;cny f({j})) times the minimum weight.

Since maxeny f({j}) < A — 1, in our case, for
a graph of maximal vertex degred, the greedy
heuristic works with an approximation factor bounded
by H(A—-1) <1+In(A-1).

Theorem 9. The algorithm above computes a cvc of
weight at mostyyc+ H(A — 1) <In(A —1) 4+ 3times
the minimum weight.

Proof. Let C* be an optimal cvc and” U D be
the one computed by the algorithm above Gt
where C is a vertex cover of weight at mosjyc
times that of the minimum vertex cover, ardl is
the greedy submodular set cover fov — C, f).
Clearly,w(C) < rawew(C*). Observe thaG[C* U C]
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