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Abstract

Modal logic for almost a hundred year has been an important topic in many aca-
demic disciplines, including philosophy, mathematics, linguistics and computer sci-
ence. Currently it seems to be most intensively investigated by computer scien-
tists. Among numerous branches in which modal logic, sometimes in disguise, finds
applications, are hardware and software verification, cryptography and knowledge
representation. This thesis is about the decidability and the complexity of satis-
fiability problem of some variants of modal logic. The first part contains results
concerning so-called elementary modal logics, while the second part is devoted to
the Halpern–Shoham logic.

Elementary modal logics. In many practical applications of modal logic, it is
natural to consider some restrictions of classes of admissible frames.

Traditionally classes of frames are defined by modal axioms. However, many
important classes of frames can be defined, in a more natural way, by first-order
formulas, e.g. the formula ∀xyz.xRy ∧ yRz → xRz defines the class of transitive
frames, corresponding to modal logic K4.

We prove that there is an universal first-order formula with only three variables
such that the local satisfiability problem and the global satisfiability problem are
undecidable. The results hold also for the finite satisfiability. We also prove that
universal Horn formulas may lead to undecidability if we use inequality or two modal-
ities.

On the positive side, we prove that the local satisfiability problem and the global
satisfiability problem for modal logic over the class of frames defined by any uni-
versally quantified, first-order Horn formula is decidable. Then we show that also
the finite satisfiability problem for modal logic over such classes is decidable. This
subsumes decidability results for many natural modal logics, including T, B, K4, S4,
S5.

Halpern–Shoham Logic. The Halpern–Shoham logic is a modal logic of time
intervals. Some effort has been put in last ten years to classify fragments of this
beautiful logic with respect to decidability of its satisfiability problem. We com-
plete this classification by showing that the logic of subintervals, the fragment of the
Halpern–Shoham logic where only the operator “during”, or D, is allowed, is unde-
cidable over discrete structures. This is surprising as this, apparently very simple,
logic is decidable over dense orders and its reflexive variant is known to be decidable
over discrete structures. Our result subsumes a lot of previous negative results for
the discrete case, like the undecidability for ABE, BD, ADB, AĀD, and so on.





Streszczenie

Badanie problemów decyzyjnych dotycz ↪acych różnych logik rozpocz ↪e lo si ↪e już w latach trzy-
dziestych ubieg lego wieku. Pocz ↪atkowo traktowano je jako narz ↪edzie czysto matematyczne,
w ostatnich dekadach jednak okaza lo si ↪e, że istnieje dużo po l ↪aczeń mi ↪edzy tymi problemami
a automatyczn ↪a weryfikacj ↪a, sztuczn ↪a inteligencj ↪a czy nawet przetwarzaniem dokumentów.
Ta praca jest poświ ↪econa klasyfikowaniu opisanych niżej logik modalnych ze wzgl ↪edu na
rozstrzygalność i z lożoność problemu spe lnialności ich formu l.

Elementarne logiki modalne. Klasycznym sposobem definiowania logik modalnych
jest podanie ich aksjomatów - w ten sposób powstaj ↪a najbardziej znane logiki, takie jak K,
S4, S5 czy T. Okazuje si ↪e, że tak zdefiniowane logiki maj ↪a naturalne semantyki wyrażone
za pomoc ↪a struktur Kripkego. W przypadku elementarnych logik modalnych ([18]) jest
odwrotnie - logik ↪e modaln ↪a tworzy si ↪e przez ograniczenie struktur Kripkego zadan ↪a formu l ↪a
pierwszego rz ↪edu, używaj ↪ac ↪a jednego predykatu (R) interpretowanego jako relacja przej́scia
struktury. Przyk ladowo, logik ↪e S4 można zdefiniować formu l ↪a ∀xyz.xRx ∧ (xRy ∧ yRz ⇒
xRz). Taki sposób definiowania logiki wydaje si ↪e bardziej naturalny, jednak czasem prowadzi
do logik nierozstrzygalnych. Pierwsza cz ↪eść tej pracy zawiera dowód, że nawet bardzo prosta
formu la (∀xyz.¬xRy∨¬xRz∨yRx∨zRx∨zRy∨yRz) może prowadzić do nierozstrzygalnej
logiki. Wynik ten jest dowiedziony za pomoc ↪a narz ↪edzia, które wykorzystuj ↪e również do
pokazania nierozstrzygalności innych interesuj ↪acych logik.

Oprócz negatywnych wyników, niniejsza praca wskazuje również duż ↪a klas ↪e formu l defini-
uj ↪acych rozstrzygalne logiki modalne, mianowicie uniwersalne formu ly hornowskie. W przy-
padku, gdy rozpatrujemy lokaln ↪a spe lnialność, z lożoność takich logik okazuje si ↪e być za-
wsze w PSpace, podczas gdy w przypadku globalnej spe lnialności może wzrosn ↪ać do Exp-
Time. Dok ladna z lożoność zależy od pewnych w lasności formu ly — niniejsza praca zawiera
szczegó low ↪a analiz ↪e wszystkich przypadków. Okazuje si ↪e, że w zależności od formu ly problem
spe lnialności może być w P, NP-zupe lny, PSpace-zupe lny lub ExpTime-zupe lny.

Ponadto, rozpatruj ↪e również problem skończonej spe lnialności, który cz ↪esto jest trak-
towany jako bardziej praktyczny od ogólnej spe lnialności. Okazuje si ↪e, że również ten prob-
lem jest zawsze rozstrzygalny dla logik definiowanych uniwersalnymi formu lami hornowskimi.

Logika Halperna–Shohama. Logika Halperna–Shohama [15] s luży opisywaniu rzeczy-
wistości w oparciu o zdarzenia które trwaj ↪a, a wi ↪ec zajmuj ↪a pewien przedzia l czasu. Pode-
j́scie to znacznie różni si ↪e od klasycznego, w którym czas traktuje si ↪e jako zbiór punktów.
Logika ta, zaproponowana pod koniec lat osiemdziesi ↪atych, sk lada si ↪e z dwunastu opera-
torów modalnych opisuj ↪acych możliwe relacje mi ↪edzy przedzia lami w ustalonym porz ↪adku.
Co ważne, logika sama w sobie nie czyni istotnych za lożeń dotycz ↪acych natury czasu — może
on być dyskretny, g ↪esty, z końcami, bez końców, liniowy, drzewiasty itd.

Logika Halperna–Shohama przez wiele lat nie wzbudza la wi ↪ekszego zainteresowania. Na

pocz ↪atku XXI wieku jednak, dzi ↪eki motywacji p lyn ↪acej od ludzi zajmuj ↪acej si ↪e sztuczn ↪a in-

teligencj ↪a, badanie różnych fragmentów tej logiki sta lo si ↪e bardzo popularne. Niniejsza praca

zawiera dowód, że bardzo ma ly fragment tej logiki, zawieraj ↪acy jedynie operator modalny

D, odnosz ↪acy si ↪e do podprzedzia lów, ma nierozstrzygalny problem spe lnialności (lokalnej i

globalnej) w sytuacji, gdy rozpatrujemy porz ↪adki dyskretne.
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1. Modal logic

Modal logic was introduced by philosophers to study modes of truth. The idea was to
extend propositional logic by some new constructions, of which two most important
were ♦ϕ and �ϕ, originally read as ϕ is possible and ϕ is necessary, respectively.
A typical question was, given a set of axioms A, corresponding usually to some
intuitively acceptable aspects of truth, what is the logic defined by A, i.e. which
formulas are provable from A in a Hilbert-style system.

One of the most important steps in the history of modal logic was the invention in
1960s of a formal semantics based on the notion of the so-called Kripke structures.
Basically, a Kripke structure is a directed graph, called a frame, together with a
valuation of propositional variables. Vertices of this graph are called worlds. For
each world truth values of all propositional variables can be defined independently.
In this semantics, ♦ϕ means the current world is connected to some world in which
ϕ is true; and �ϕ, equivalent to ¬♦¬ϕ, means ϕ is true in all worlds to which the
current world is connected.

It appeared that there is a beautiful connection between syntactic and semantic
approaches to modal logic [38]: logics defined by axioms can be often equivalently
defined by restricting classes of frames. E.g., the axiom ♦♦P → ♦P (if it is possible
that P is possible, then P is possible), is valid precisely in the class of transitive
frames; the axiom P → ♦P (if P is true, then P is possible) – in the class of
reflexive frames, P → �♦P (if P is true, then it is necessary that P is possible) –
in the class of symmetric frames, and the axiom ♦P → �♦P (if P is possible, then
it is necessary that P is possible) – in the class of Euclidean frames.

Thus we may think that every modal formula ϕ defines a class of frames, namely
the class of those frames in which ϕ is valid. A formula ϕ is valid in a frame K if
for any possible truth-assignment of propositional variables to the worlds of K, ϕ is
true at every world. To express this definition we require second-order logic, since
it involves quantification over sets of elements: for each variable P and a subset V
of the set of worlds we have to consider the case in which P is true exactly in the
worlds from V . Note however, that many important classes of frames, in particular
all the classes we mentioned above, can be defined by simple first-order formulas.
For a given first-order sentence Φ over the signature consisting of a single binary
symbol R we define KΦ to be the set of those frames which satisfy Φ.

It is not hard to see that some modal logics defined by a first-order formula are
undecidable. A stronger result was presented in [17]—it was shown that there exists
a universal first-order formula with the equality such that the global satisfiability
problem over the frames that satisfy this formula is undecidable. In [19], this result
was improved — it was shown that the equality is not necessary. The proof from
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1. Modal logic

[19] works also for local satisfiability. In this thesis, we show that even a very simple
formula with three variables without the equality may lead to undecidability.

Decidability for various classes of frames can be shown by employing the so-called
standard translation of modal logic to first-order logic. Indeed, the satisfiability of a
modal formula ϕ in KΦ is equivalent to satisfiability of st(ϕ)∧Φ, where st(ϕ) is the
standard translation of ϕ. In this way, we can show that even multimodal logic is
decidable in any class defined by two-variable logic [33], even extended with linear
order [35] or equivalence closures of two distinguished binary relations [21].

A number of decidability results may be obtained by adapting the results for the
guarded fragment [12]. It has been shown that many interesting extensions of this
logic are decidable, including some restricted application of fixed-points [13] and
transitive closures [27] in guards. These results often can be extended for the finite
satisfiability problem [2, 22]. The complexity bounds obtained this way, however,
are high — usually between ExpTime and 2NExpTime.

The classes of frames we mentioned earlier, i.e. transitive, reflexive, symmetric
and Euclidean are decidable. They can be defined by first-order sentences even if
we further restrict the language to universal Horn formulas, UHF. Universal Horn
formulas were considered in [18], where a dichotomy result was proved, that the
satisfiability problem for modal logic over the class of structures defined by an UHF
formula (with an arbitrary number of variables) is either in NP or PSpace-hard.
The authors of [18] conjecture that the problem is decidable in PSpace for all
universal Horn formulas. We confirm this conjecture in this thesis.

In case of some UHF formulas, decidability of corresponding modal logics is shown
by demonstrating the finite model property, i.e. by proving that every modal formula
satisfiable over KΦ has also a finite model in KΦ. However, it is not hard to construct
a UHF formula Φ, such that some modal formulas have only infinite models over KΦ.
Assume e.g. that Φ enforces irreflexivity and transitivity, and consider the following
modal formula: ♦p ∧�♦p.

This naturally leads to the question, whether for any UHF formula Φ the finite
satisfiability problem for modal logic over KΦ is decidable. This question is par-
ticularly important, if one considers practical applications, in which the structures
(corresponding e.g. to knowledge bases or descriptions of programs) are usually
required to be finite.

Decision procedures for the finite satisfiability problem for modal and related
logics are very often more complex than procedures for general satisfiability. As
argued in [41], the model theoretic reason for the good behavior of modal logics is
the tree model property. A standard technique is to unravel an arbitrary model into
a (usually infinite) tree. Clearly such an approach is not sufficient if we are interested
only in finite models. In this thesis we are, however, able to prove that also finite
satisfiability problems are always decidable for logics over the classes defined by
universal Horn formulas.
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2. Halpern–Shoham logic

In classical temporal logic, structures are defined by assigning properties (proposi-
tional variables) to time points (time is an ordering, discrete or dense). However,
not all phenomena can be well described by such logics. Sometimes, we need to talk
about actions (processes) that take some time and we would like to be able to say
that one such action takes place, for example, during or after another.

The Halpern–Shoham logic [15], which is the subject of the second part of this
thesis, is one of the modal logics of time intervals. Judging by the number of papers
published, and by the amount of work devoted to the research on it, this logic is
probably the most influential time interval logic. But historically it was not the first
one. Actually, the earliest papers about intervals in context of modal logic were
written by philosophers, e.g., [16]. In computer science, the earliest attempts to
formalize time intervals were process logic [36, 37] and interval temporal logic [34].
Relations between intervals in linear orders from an algebraic point of view were
first studied systematically by Allen [1].

The Halpern–Shoham logic is a modal temporal logic, where the elements of a
model are no longer — like in classical temporal logics — points in time, but rather
pairs of points in time. Any such pair — call it [p, q], where q is equal to or later
than p — can be viewed as a (closed) time interval, that is, the set of all time
points between p and q. HS logic does not assume anything about order — it can
be discrete or continuous, linear or branching, complete or not.

Halpern and Shoham introduce six modal operators acting on intervals. Their
operators are “begins” B, “during” D, “ends” E, “meets” A, “later” L, “overlaps” O
and the six inverses of those operators: B̄, D̄, Ē, Ā, L̄, Ō. It is easy to see that the
set of operators is redundant. For example, A,B and E can define D (B and E
suffice for that – a prefix of my suffix is my infix) and L (here A is enough –“later”
means “meets an interval that meets”). The operator O can be expressed using E
and B̄.

In their paper, Halpern and Shoham show that (satisfiability of formulae of) their
logic is undecidable. Their proof requires logic with three operators (B,E and A are
explicitly used in the formulae and, as we mentioned above, once B,E and A are
allowed, D and L come for free) so they state a question about decidable fragments
of their logic.

Considerable effort has been put since then to settle this question. First, it was
shown [24] that the BE fragment is undecidable. Recently, negative results were
also given for the classes BĒ, B̄Ē, B̄E, AĀD, ĀDB̄, ĀDB, ĀD̄B̄, ĀD̄B [5, 8], and
BD [26]. Another elegant negative result was that OŌ is undecidable over discrete
orders [6].

5



2. Halpern–Shoham logic

On the positive side, it was shown that some small fragments, like BB̄ or EĒ,
are decidable and easy to translate into standard, point-based modal logic [10]. The
fragment using only A and Ā is harder and its decidability was only recently shown
[8, 9]. Obviously, this last result implies decidability of LL̄ as L is expressible by A.
Another fragment known to be decidable is ABB̄L̄ [32].

A very simple, interesting fragment of the Halpern and Shoham logic of unknown
status was the fragment with the single operator D (“during”), which we call here
the logic of subintervals. Since D does not seem to have much expressive power (a
natural language account of a D-formula would be “each morning I spend a while
thinking of you” or “each nice period of my life contains an unpleasant fragment”),
logic of subintervals was widely believed to be decidable. A number of decidability
results concerning variants of this logic has been published. For example, it was
shown in [7, 31] that satisfiability of formulae of logic of subintervals is decidable
over dense structures. In [30] decidability is proved for the (slightly less expressive)
“reflexive D”. The results in [40] imply that D (as well as some richer fragments of
the HS logic) is decidable if we allow models in which not all the intervals defined by
the ordering are elements of the Kripke structure. On the negative side, no nontrivial
lower bound was known for satisfiability of this logic.

In the second part of this thesis, we show that satisfiability of formulae from the D
fragment is undecidable over the class of finite orderings as well as over the class of
all discrete orderings. Our result subsumes the negative results for the discrete case
for ABE [15], BD [26] and ADB, AĀD [5, 8]. The logic of subintervals for finite
orderings is so simple that we are tempted to write that it is one of the simplest
known undecidable logics.
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3. Overview

The authors of [18] conjecture that the satisfiability problem of the modal logic over
any class definable by a UHF sentence is decidable in PSpace. We confirm the
conjecture from [18] with the following theorem.

Theorem 3.1. Let Φ be a UHF sentence. Then the local and the global satisfiability
problems for unimodal logic over KΦ are in PSPACE and EXPTIME, resp.

This theorem extends the decidability results for some well-known modal logics,
e.g., T, B, K4, S4, and S5. It also works for some interesting classes of frames,
for which, up to our knowledge, decidability has not been established so far. An
example is the class defined by ∀xyzv(xRy ∧ yRz ∧ zRv → xRv).

Then, we extend the result to cover the Horn formulas with equality. We prove
the following.

Theorem 3.2. Let Φ be a universal Horn formula with equality. Then the local
and the global satisfiability problems for unimodal logic over KΦ are in PSPACE and
EXPTIME, resp.

We also show decidability of the finite satisfiability.

Theorem 3.3. Let Φ be a universal Horn formula. Then the finite local and the
finite global satisfiability problems for modal logic over KΦ are decidable.

We also show that those results are optimal in many ways, showing that some
richer classes contain formulas which define undecidable logics.

Theorem 3.4. There exist three-variable universal formulas Γ, Γ′, universal Horn
formulas Γi,Γ

′
i with inequality, and universal Horn formulas Γb,Γ

′
b (all six formulas

are without equality) such that the following problems are undecidable.

3.4.1 The global satisfiability problem for unimodal logic over KΓ.

3.4.2 The local satisfiability problem for unimodal logic over KΓ′.

3.4.3 The global satisfiability problem for unimodal logic over KΓi.

3.4.4 The local satisfiability problem for unimodal logic over KΓ′
i
.

3.4.5 The global satisfiability problem for bimodal logic over KΓb.

3.4.6 The local satisfiability problem for bimodal logic over KΓ′
b
.

The same holds if we consider only finite structures.
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3. Overview

Related work. The results presented in this part of the thesis come from three
published papers [20, 29, 28]. The only actual exception is in Section 5 — Lemma
5.1 is a generalization of the technique used in [20] and [29]. Also, the undecidability
result for the bimodal case is not published.
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4. Preliminaries

As we work with both first-order logic and modal logic we will help the reader to
distinguish them in our notation: we denote first-order formulas with Greek capital
letters, and modal formulas with Greek lower-case letters. We assume that the
reader is familiar with first-order logic and propositional logic.

Except for Section 5.4, we consider only unimodal logics. Modal logic extends
propositional logic with the operator ♦ and its dual �. Formulas of modal logic are
interpreted in Kripke structures, which are triples of the form 〈W,R, π〉, where W
is a set of worlds, 〈W,R〉 is a directed graph called a frame, and π is a function that
assigns to each world a set of propositional variables which are true at this world.
We say that a structure 〈W,R, π〉 is based on the frame 〈W,R〉. For a given class of
frames K, we say that a structure is K-based if it is based on some frame from K.
We will use calligraphic letters M,N to denote frames and Fraktur letters M,N to
denote structures. To keep the notation light, we identify a structure 〈W,R, π〉 with
〈〈W,R〉, π〉.

For a frame 〈W,R〉 and a subset W ′ ⊆ W , we define R�W ′ = R ∩ (W ′ ×W ′).
Similarly, for a labeling function π, we define π�W ′ to be such that π�W ′(w) = π(w)
for all w ∈W ′ and π�X to be such that π�X(w) = π(w)∩X. We define the restriction
of a frame 〈W,R〉�W ′ for W ′ ⊆W as 〈W ′, R�W ′〉.

The semantics of modal logic is defined recursively. A modal formula ϕ is (locally)
satisfied in a world w of a model M = 〈W,R, π〉, denoted as M, w |= ϕ if

(i) ϕ = p where p is a variable and ϕ ∈ π(w),

(ii) ϕ = ¬p where p is a variable and ϕ 6∈ π(w),

(iii) ϕ = ϕ1 ∨ ϕ2 and M, w |= ϕ1 or M, w |= ϕ2,

(iv) ϕ = ϕ1 ∧ ϕ2 and M, w |= ϕ1 and M, w |= ϕ2,

(v) ϕ = ♦ϕ′ and there exists a world v ∈W such that (w, v) ∈ R and M, v |= ϕ′,

(vi) ϕ = �ϕ′ and for all worlds v ∈W such that (w, v) ∈ R we have M, v |= ϕ′.

Note that in this paper all formulas are in the negation normal form. By |ϕ| denote
the length of ϕ. We say that a formula ϕ is globally satisfied in M, denoted as
M |= ϕ, if for all worlds w of M, we have M, w |= ϕ.

For a given class of frames K, we say that a formula ϕ is locally (resp. globally)
K-satisfiable if there exists a K-based structure M, and a world w ∈ W such that
M, w |= ϕ (resp. M |= ϕ).

11



4. Preliminaries

We employ a standard notion of a type. For a given formula ϕ, a Kripke structure
M, and a world w ∈ W we define the type of w (with respect to ϕ) in M as
tpϕM(w) = {ψ : M, w |= ψ and ψ is subformula of ϕ}. We write tpM(w) if the
formula is clear from context. Note that |tpϕM(w)| ≤ |ϕ|, where |ϕ| denotes the
length of ϕ.

In our constructions we use the following terminology. A world w is k-followed
(k-preceded) in a frame M, if there exists a directed path (w, u1, u2, . . . , uk) (resp.
(u1, u2, . . . , uk, w)) inM. Note that we do not require this path to consist of distinct
elements. We say that a world w is k-inner in M if it is k-proceeded and k-
followed. We use also naturally defined notions of ∞-preceded, ∞-followed, and
∞-inner worlds. In particular, a world on a cycle is ∞-inner.

The set of universal Horn formulas, UHF, is defined as the set of those Φ over
the language {R} which are of the form ∀~x.Φ1 ∧ Φ2 ∧ ... ∧ Φi, where each Φi is
a Horn clause. A Horn clause is a disjunctions of literals of which at most one
is positive. We usually present Horn clauses as implications. For example, the
formula ∀xyz.(xRy ∧ yRz ⇒ xRz) ∧ (xRx ⇒ ⊥) defines the set of transitive and
irreflexive frames. We often skip the quantifiers and represent such formulas as a
set of clauses, e.g.: {xRy ∧ yRz ⇒ xRz, xRx ⇒ ⊥}. We assume without loss of
generality that each Horn clause consists of variables x, y and z1, z2, . . . , and is
of the form Ψ ⇒ ⊥, Ψ ⇒ xRx, or Ψ ⇒ xRy. We define Ψ(vx, vy, v1, . . . , vk) as
the instantiation of Ψ with x = vx, y = vy, z1 = v1, z2 = v2, and so on, e.g.
(xRz1 ∧ z1Rz2 ∧ z2Ry ⇒ xRy)(a, b, c, d) = aRc ∧ cRd ∧ dRb ⇒ aRb. We consider
also the set of universal Horn formulas with equality, UHF=, and the set of universal
Horn formulas with inequality, UHF6=, defined in a similar way.

We define the local (resp. global) satisfiability problem K-SAT (resp. global K-
SAT) as follows. For a given modal formula, is this formula locally (resp. globally)
K-satisfiable? For a given Φ ∈ UHF, we define KΦ as the class of frames satisfying
Φ. We will be interested in local and global KΦ-SAT problems.

When consider problems KΦ-SAT and global KΦ-SAT, formula Φ is fixed and does
not depend on the input. However, the complexity depends on this formula. To hide
unnecessary details, we often use a function g. Please keep in mind that once Φ is
fixed, g(|Φ|) can be treated as a constant, and, while considering complexity, the
precise value of g is not important (it will follow from the proofs).

To keep the notation light, we abbreviate N ∪ {∞} by N∞ and assume that n
mod ∞ = n for any n.

The following fact will prove useful.

Fact 4.1. Assume that X is a (possibly infinite) set of positive numbers that is
closed under addition. Then, there exists a finite subset X ′ of X such that gcd(X) =
gcd(X ′). Moreover, for each x > lcm(X ′), gcd(X ′) divides x if and only if x ∈ X.

The proof is straightforward, by employing Euclidian algorithm.
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4.1. Domino systems

4.1. Domino systems

By Zk we denote the set {0, 1, . . . , k − 1}.

Definition 4.2. A domino system is a tuple D = (D,HD, VD), where D is a set
of domino pieces and HD, VD ⊆ D × D are binary relations specifying admissible
horizontal and vertical adjacencies. We say that D tiles N × N if there exists a
function t : N × N → D such that ∀i, j ∈ N we have (t(i, j), t(i + 1, j)) ∈ HD
and (t(i, j), t(i, j + 1)) ∈ VD. Similarly, D tiles Zk × Zl, for k, l ∈ N, if there exists
t : Zk×Zl → D such that (t(i, j), t(i+1 mod k, j)) ∈ HD and (t(i, j), t(i, j+1 mod l)) ∈
VD.

The following lemma comes from [3, 14].

Lemma 4.3. The following problems are undecidable:

(i) For a given domino system D determine if D tiles N× N.

(ii) For a given domino system D determine if there exists k ∈ N such that D tiles
Zk × Zk.

The bounded-space domino problem is defined as follows. For a given triple
〈D, VD, HD〉, where VD, HD ⊆ D×D, and n = O(|D|), is there a tiling t : Zn×N→ D
such that for all k < n and l ∈ N, (t(k, l), t(k, l + 1)) ∈ VD and if k < n − 1, then
(t(k, l), t(k + 1, l)) ∈ HD? It is an easy exercise that this problem is PSpace-
complete.
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5. Undecidability

In this section we work with signatures consisting of a single binary symbol R (ex-
cept subsection 5.4), and a number of unary symbols, including Pij , for 0 ≤ i, j ≤ 2.
Structures over such signatures can be naturally viewed as Kripke structures in which
R is the accessibility relation, and unary relations describe valuations of propo-
sitional variables. To simplify our notation we assume that subscripts in Pij are
always taken modulo 3, e.g. if i = 2, j = 2, then Pi+1,j+1 denotes P00. We define
P = {Pij |i, j ∈ {0, 1, 2}}.

This section is organized as follows. Subsection 5.1 provides a tool for all the
proofs. Subsections 5.2, 5.3, and 5.4 contain proofs of undecidability of global satis-
fiability problems for three modal logics. Finally, in Subsection 5.5 we discuss local
satisfiability problems.

5.1. Key tool

For l ∈ N∞ we define the grid Gl as 〈Wl, Rl, πl〉 where

• Wl = {aij |0 ≤ i, j < l};

• aijRai′j′ iff i′ = i and j′ = j + 1 mod l or i′ = i+ 1 mod l and j′ = j;

• π(aij) = {Pij} for all i, j.

We say that a structure 〈W,R, π〉 is Gl-like if W = Wl, Rl ⊆ R, and aijRai′j′ implies
that |i−i′| mod l ≤ 1 and |j−j′| mod l ≤ 1, and π = πl. Roughly speaking, Gl-like
structure contains Gl and, perhaps, some additional edges connecting worlds that
are close in grid. Figure 5.1 contains an example of such a structure.

We say that a structure 〈W,R, π〉 is an extension of Gl if 〈Wπ, R�Wπ , (π�Wπ)�P〉
is Gl-like, where Wπ = {w ∈ W |∃i, j.Pij ∈ π(w)} is a substructure consisting of
all elements satisfying variables Pij . Figures 5.2 and 5.3 contain examples of such
extensions.

We are ready to define our tool for proving undecidability.

Lemma 5.1. Let Φ be a first order formula and ϕ be a modal logic formula such
that

(a) there exists a KΦ-based model of ϕ which is an extension of G∞;

(b) for all k there exists a KΦ-based model of ϕ which is an extension of G3k;
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5.1. Key tool

(c) for each KΦ-based model 〈W,R, π〉 of ϕ there is a homomorphism from G∞ into
〈W,R, π�P〉.

(d) for each finite KΦ-based model 〈W,R, π〉 of ϕ there is a homomorphism from Gl

into 〈W,R, π�P〉 for some l ∈ N.

Then the global satisfiability problem and the finite global satisfiability problem over
KΦ are undecidable.

Proof. Let Φ and ϕ be a formulas that satisfy the assumptions of Lemma 5.1. For
a given domino system D = (D,DH , DV ) we define

λD = λ0 ∧
∧

0≤i,j≤2

(λHij ∧ λVij).

For every d ∈ D we use a fresh propositional letter Pd. λ0 says that each world
contains a domino piece, λHij and λVij say that pairs of elements satisfying horizontal
and vertical adjacency relations respect DH and DV , respectively.

λHij =
∧
d∈D

((Pd ∧ Pij)→ �(Pi+1,j →
∨

d′:(d,d′)∈DH

Pd′)),

λVij =
∧
d∈D

((Pd ∧ Pij)→ �(Pi,j+1 →
∨

d′:(d,d′)∈DV

Pd′)).

Lemma 5.1 is a straightforward consequence of Lemma 4.3 and the following facts.

(i) D tiles N× N iff there exists a KΦ-based model of ϕ ∧ λD.

(ii) D tiles some Zk × Zk iff there exists a finite KΦ-based model of ϕ ∧ λD.

Proof of (i), ⇒. Let t be a tiling of N×N and M be a KΦ-based model of ϕ which
is an extension of G∞. We construct M′ by extending the labeling of M in such a
way that for every i, j ∈ N the element ai,j satisfies Pt(i,j). It is readily checked that
M′ is as required.

Proof of (ii), ⇒. If D tiles Zk × Zk then it also tiles Z3k × Z3k. Let t be a tiling
of Z3k × Z3k. Let M be a KΦ-based model of ϕ which is an extension of G3k. We
construct M′ by extending the labeling of M in such a way that for every i, j ∈ N the
element ai,j satisfies Pt(i,j). Again, checking that M′ is as required is straightforward.

Proofs of (i) and (ii), ⇐. Let M = 〈W,R, π〉 be a (finite) KΦ-based model of
ϕ ∧ λD and f be a homomorphism from G∞ into 〈W,R, πP〉. We define a tiling
t : N× N→ D (t : Zl × Zl → D , resp.) by setting t(i, j) = d for such d that f(i, j)
satisfies Pd (there is at least one such d owing to λ0). The formulas λHij , λ

V
ij imply

that t is a correct tiling.
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5. Undecidability

5.2. First-order formulas with three variables

We define formulas Γ and τ satisfying the conditions of Lemma 5.1. Let

Γ = ∀xyz.(xRy ∧ ¬yRx ∧ xRz ∧ ¬zRx)→ (yRz ∨ zRy)

It says, that if there are one-way connections from a world x to worlds y, z, then
there is also a connection (not necessarily one-way) between y and z. The G∞-like
structure illustrated in Fig. 5.1 (we assume that this structure is reflexive) is a model
of Γ. Note that it is important that some connections are two-way.

A modal formula τ says that every element satisfying Pij has three R-successors:
one in Pi+1,j , one in Pi,j+1, and one in Pi+1,j+1, and forbids connections from Pi+1,j+1

to Pi,j+1, Pi+1,j , and Pij . If we consider now any element a in a model, we see that
τ enforces the existence of its horizontal successor ah, its vertical successor av and
its upper-right diagonal successor ad (see Fig. 5.1). By τ , the connections to these
successors are one-way, so we need, by Γ, connections between ah and ad, and av
and ad. Again, by τ , these connections have to go from ah to ad, and from av to ad,
so ad is indeed a horizontal successor of av, and a vertical successor of ah. Formally

τ = τ0 ∧
∧

0≤i,j≤2

(τ♦ij ∧ τ
�
ij ),

where τ0 says that each element satisfies one of Pij , τ
♦
ij ensures that all elements

have appropriate horizontal, vertical and upper-right diagonal successors, and τ�ij
forbids reversing the horizontal, vertical and upper-right diagonal arrows.

τ♦ij = Pij → (♦Pi+1,j ∧ ♦Pi,j+1 ∧ ♦Pi+1,j+1),

τ�ij = Pij → �(¬Pi−1,j ∧ ¬Pi,j−1 ∧ ¬Pi−1,j−1).

Note that τ�ij allow for reflexive edges.
It is not hard to see that Γ and τ satisfy the requirements (a) (see Fig. 5.1) and

(b) (similarly) of Lemma 5.1. We prove that Γ and τ also satisfy (c) and (d).
Proof that Γ and τ satisfy (c). As in the case of the symbols Pij , when referring
to τ�ij or τ♦ij we assume that subscripts are taken modulo 3.

First we show how to define the homomorphism f on N×{0}. Let f(0, 0) = c for
an arbitrary element c of M satisfying P00. Such c exists owing to τ0 and τ♦ij . Assume
that for some i > 0 we have defined f(i− 1, 0) = a, and let ah be an R-successor of
a satisfying Pi0. Such ah exists thanks to τ♦i−1,0. Define f(i, 0) = ah.

Assume now that f is defined for N×{0, . . . , j−1} for some j > 0. We extend this
definition to N × {j}. Let f(0, j − 1) = a. By the inductive assumption a satisfies
P0,j−1. Choose av to be an R-successor of a satisfying P0j . Such av exists by τ♦0,j−1.
Set f(0, j) = av.

Assume that we have defined f(i−1, j−1) = a, f(i−1, j) = av, and f(i, j−1) = ah.
By the inductive assumptions M |= Pi−1,j−1(a)∧Pi−1,j(av)∧Pi,j−1(ah)∧aRah∧aRav.
Choose ad to be an R-successor of a satisfying Pij . Such ad exists by τ♦i−1,j−1. We
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5.2. First-order formulas with three variables

...

· · ·

P0j P1j P2j P0j P1j

Pi0

Pi1

Pi2

Pi0

Pij Pi+1,j

Pi,j+1 Pi+1,j+1

a ah

av ad

Figure 5.1.: A G∞-like structure. Reflexive arrows are omitted for clarity.

put f(i, j) = ad. By τ�ij , ah, av and ad cannot be connected to a, so Γ enforces R-

connections between ah and ad, and between av and ad. Since τAij forbids connection
from ad to ah, and from ad to av, it has to be that M |= ahRad ∧ avRad. This
finishes definition of f with the desired properties.

Proof that Γ and τ satisfy (d). We want to define for some k, l ∈ Z a function
f : Zk × Zl →M satisfying:

(a) M |= Pij(f(i, j)),
(b) M |= f(i, j)Rf(i+ 1 mod k, j),
(c) M |= f(i, j)Rf(i, j + 1 mod l).

We define f as a partial function on N×N and then restrict it to an appropriate
domain. We first define f on N× {0}, exactly as in the proof of Part (i), ⇐. Since
M this time is finite, it has to be that f(k, 0) = f(k′, 0) for some k > k′. To simplify
the presentation we assume k′ = 0, but this assumption is not relevant. Observe
that for i ∈ [0, k) we have M |= f(i, 0)Rf(i + 1 mod k, 0). We extend the definition
of f to [0, k) × N inductively. Assume that f is defined on [0, k) × {0, . . . , j − 1}.
We define it on [0, k) × {j}. For each i ∈ [0, k) we find an element aid in M such
that M |= Pi+1,j(a

i
d) ∧ f(i, j − 1)Raid. Such aid exists owing to τ♦i,j−1. We set

f(i + 1 mod k, j) = aid. Now Γ and formulas of the type τ� enforce for all i ∈ [0, k)
that M |= f(i, j − 1)Rf(i, j), and M |= f(i, j)Rf(i+ 1 mod k, j).

Finiteness of M implies now that for some l > l′ we have f � [0, k) × {l} = f �
[0, k) × {l′}. Again for simplicity we assume that l′ = 0. Observe that at this
moment f is as desired on Zk × Zl.

Finally, we extend f to f ′ : Zm × Zm → M for m = gcd(k, l) in the obvious way.
The function f ′ is the required homomorphism.
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5. Undecidability

...

· · ·

P0j P1j P2j P0j P1j

Pi0

Pi1

Pi2

P00 P10

P01 P11

A00

e0

e1

e2

Figure 5.2.: An extension of G∞ for the inequality case.

5.3. Undecidability for unimodal logic defined by Horn
formulas with inequality

Now we define a formula Γi and we prove that global KΓi-SAT is undecidable. In
the proof we use the inequality only to say that the out-degree of a vertex is large.
That is, we define an abbreviation deg≥k(v) that uses the fresh variables uv1, . . . , u

v
k

as follows.

deg≥k(v) =
∧

1≤i≤k
(vRuvi ) ∧

∧
1≤i<j≤k

uvi 6= uvj

For example, the formula deg≥5(v)⇒ vRz says that all the worlds with out-degree
greater than five are connected to all worlds.

Now, we are ready to define the formula Γi that gives us undecidability.

Γi = xRy ∧ xRu ∧ uRz ∧ deg≥2(x) ∧ deg≥4(u) ∧ deg≥2(z)⇒ yRz

The formula Γi contains only one Horn clause. Note that the structure illustrated
in Fig. 5.2 is a model of Γi.

To get the undecidability we construct a modal formula τi such that Γi, τi satisfy
the requirements of Lemma 5.1. Namely, τi says that:

(i) each world is labeled with exactly one of the variables from the set {Pij |i, j ∈
{0, 1, 2}} ∪{Aij |i, j ∈ {0, 1, 2}} ∪{ekij |i, j, k ∈ {0, 1, 2}}.

(ii) every element satisfying Pij has (at least) three R-successors: one in P(i+1)j ,
one in Pi(j+1), and one in Aij , and each of its successors satisfies P(i+1)j , Pi(j+1),
or Aij ;
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5.4. Undecidability for bimodal logic defined by Horn formulas

(iii) every element satisfying Aij has four successors: one in P(i+1 mod 3)(j+1 mod 3),
one in e0

ij , one in e1
ij , and one in e2

ij , and each of its successors satisfies

P(i+1)(j+1), e
0
ij , e

1
ij , or e2

ij .

(iv) every element satisfying ekij has a successor satisfying Aij and and each of its
successors satisfies Aij .

All those properties are easy to express in modal logic. It is not hard to see that
Γ, τ satisfy the requirements (a) (see Fig. 5.2) and (b) of Lemma 5.1.

Proof that Γi and τi satisfy (c). First we define the homomorphism f on N×{0}
exactly as in the three-variables case.

Assume now that f is defined for N×{0, . . . , j−1} for some j > 0. We extend this
definition to N × {j}. Let f(0, j − 1) = a. By the inductive assumption a satisfies
P0,j−1. Choose av to be an R-successor of a satisfying P0j . Such av exists by τ♦0,j−1.
Set f(0, j) = av.

Assume that we have defined f(i−1, j−1) = a, f(i−1, j) = av, and f(i, j−1) = ah.
By the inductive assumptions M |= Pi−1,j−1(a)∧Pi−1,j(av)∧Pi,j−1(ah)∧aRah∧aRav.
Choose a′d to be an R-successor of a satisfying Ai−1,j−1 and ad to be an R-successor
of a′d satisfying Pij . Such a′d, ad exist by properties (ii) and (iii) of τi. Moreover,
(iii) guarantees that a′d has the out-degree grater than 3, an therefore Γi enforces
R-connections from ah to ad, and from av to ad. We put f(i, j) = ad. This finishes
definition of f with the desired properties.

Proof that Γi and τi satisfy (d) is similar to the corresponding proof for three
variables case and the above proof and therefore we skip it.

5.4. Undecidability for bimodal logic defined by Horn
formulas

We start from the semantics of the bimodal logic. The frame of bimodal logic is a
triple 〈W,R,R′〉, where R,R′ ⊆ W 2. The semantics of this logic is defined as for
unimodal logic, but we have two more symbols (♦′,�′) and two more rules:

(vii) ϕ = ♦′ϕ′ and there is a world v ∈W such that (w, v) ∈ R′ and M, v |= ϕ′,

(viii) ϕ = �′ϕ′ and for all worlds v ∈W such that (w, v) ∈ R′ we have M, v |= ϕ′.

Observe that the proof of Lemma (5.1) works well for the case of bimodal logic.
We define

Γb = zRx ∧ xRs ∧ zRu ∧ uR′y ⇒ xRy

Actually, for the global satisfiability case it is enough to consider simpler formula,
namely zRx∧ zR′y ⇒ xRy, but it is harder to extend the result for this formula for
the local satisfiability case.

The formula τb says that:
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5. Undecidability

...

· · ·

P0j P1j P2j P0j P1j

Pi0

Pi1

Pi2

P00 P10

P01 P11

A00

Figure 5.3.: An extension of G∞ for the bimodal case. Relation R′ is marked by
dashed lines.

(i) each element is labeled with exactly one of the variables from the set {Pij |i, j ∈
{0, 1, 2}} ∪{Aij |i, j ∈ {0, 1, 2}}.

(ii) every element satisfying Pij has three R-successors: one in P(i+1)j , one in
Pi(j+1), and one in Aij ;

(iii) every element satisfying Aij has no R successors and one R′ successor in
P(i+1)(j+1).

It is now not hard to see that Fig. 5.3 contains a model of Γi and τi and so that
Γi and τi satisfy the assumption of Lemma 5.1.

5.5. Local satisfiability

Three variables case

Observe that our proof of the undecidability of global satisfiability over KΓ works
for the subclass of reflexive models. This allows us to use the trick from [19] to cover
also the case of local satisfiability. We enforce by a modal formula the existence of an
irreflexive world and, by a first-order formula, we make it connected to all reflexive
worlds. Such a universal world can be then used to reach all relevant elements in
the model. The class of structures is defined by a formula Γ′, which says that each
world with an incoming edge is reflexive and has an incoming edge from all irreflexive
worlds, and enforces Γ for all reflexive worlds:

Γ′ = ∀xyz.((xRy ∧ ¬zRz)→ (yRy ∧ zRy))∧
((xRx ∧ yRy ∧ zRz)→ (¬xRy ∨ yRx ∨ ¬xRz ∨ zRx ∨ yRz ∨ zRy)).
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5.5. Local satisfiability

In the modal formula we use a fresh symbol PU to distinguish an irreflexive world.
Now, for a given domino system D we can show that PU ∧�¬PU ∧♦>∧�(τ ∧λD) is
locally (finitely) satisfiable over KΓ′ iff D covers N×N (some Zk ×Zk). This proves
Theorem 3.4.

Inequality case

The trick from [19], that reduces the local satisfiability problem to the global one,
requires a formula which is not a Horn formula, so we cannot use it. It turns out,
however, that only a slight modification is needed. Observe that our proof of the
undecidability of global satisfiability over KΓi works for the subclass of models such
that the out-degree of each world is bounded by four. Now, we enforce by a modal
formula the existence of a universal world with out-degree (at least) 5 and, by a
first-order formula, we make it connected to all worlds. As before, we used it to
reach all relevant elements in the model.

Γ′i = (deg≥5(u) ∧ u 6= v ⇒ uRv) ∧ Γi

In the modal formula we use a fresh symbols f1, . . . , f5 to guarantee that a world
with the degree at least 5 exists. Now, for each modal formula ϕ we define its
local version ϕl by

∧
i∈{1,...,5} ♦fi ∧

∧
1≤i<j≤5 ¬♦(fi ∧ fj)∧�ϕ such that ϕl is locally

satisfiable over KΓ′
i

iff ϕ is globally (finitely) satisfiable over KΓi .

Bimodal case

In this case, the proof for the local satisfiability bases on the fact that in figure
presented in Fig. 5.3 no world has both R successors and R′ successors. Now we
require that all worlds with both R-successors and R′-successors is connected to all
worlds with at lest one predecessor.

Γ′b = Γb ∧ (xRu1 ∧ xR′u2 ∧ vRy ⇒ xRy) ∧ (xRu1 ∧ xR′u2 ∧ vR′y ⇒ xRy)

Note that Fig. 5.3 is a model of Γ′. To reduce K′Γ-SAT to KΓ-SAT, we simply
replace a formula ϕ by ϕl = ♦> ∧ ♦′> ∧ �ϕ. Clearly, ϕ′ can be satisfied only
in a world that has both R successors and R′ successors. Such a world has to be
connected to all worlds which have at least one predecessors, and therefore ϕ has to
be satisfied in all such worlds.
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6.1. Minimal tree-based models

In this section, we show that for every UHF formula Φ and every modal formula ϕ, if
ϕ is KΦ-satisfiable then it has a “nice” model. We start from an arbitrary KΦ-based
model M |= ϕ and unravel it (using standard unraveling technique, as in [38] and
[4]) into a model M0 whose frame is a tree with the degree of its nodes bounded by
|ϕ|. Clearly the frame of M0 is not necessarily a member of KΦ. In the next step,
we add to M0 the edges implied by the Horn clauses of Φ. This is performed in
countably many stages, until the least fixed point is reached. We observe that the
resulting structure, M∞, is still a model of ϕ, and its frame belongs to KΦ.

Formally, we say that an edge (w,w′) is a consequence of Φ inM = 〈W,R〉, if for
some worlds v1, . . . , vk ∈ W and Ψ1 ⇒ Ψ2 ∈ Φ we have M |= Ψ1(w,w′, v1, . . . , vk),
and Ψ2(w,w′, v1, . . . , vk) = wRw′. We denote the set of all consequences of Φ inM
by CΦ

 (M). We define the consequence operator as follows.

ConsΦ,W (R) = R ∪CΦ
 (〈W,R〉)

Now, the closure operator can be defined as the least fixed-point of Cons:

ClosureΦ,W (R) =
⋃
i>0 ConsiΦ,W (R)

Example 6.1. Consider the tree 〈W,R〉 presented in Fig. 6.1 and Φ = {xRz ∧
zRy ⇒ yRy, xRx ∧ xRy ∧ xRz ⇒ yRz}. Reflexive edges belong to ConsΦ,W (R),
dashed edges belong to Cons2

Φ,W (R), and dotted edges belong to Cons3
Φ,W (R). Quick

check shows that Cons3
Φ,W (R) = Cons4

Φ,W (R) and therefore Cons3
Φ,W (R) is equal

to ClosureΦ,W (R).

For a tree T = 〈W,R〉, we now define the T -based model of Φ as CΦ(T ) =
〈W,ClosureΦ,W (R)〉. We denote by Φ+ the set of the clauses from Φ containing
a positive literal, i.e. all clauses of Φ except those of the form Ψ ⇒ ⊥. Note that
CΦ(T ) is the smallest (w.r.t. inclusion of the set of edges) model of Φ+ containing all
edges from R. Of course, not all models can be obtained in this way. The following
lemma shows, however, that we can restrict our attention to models that are T -based
for some tree T with bounded degree.

Lemma 6.2. Let ϕ be a modal formula and let Φ ∈ UHF. If ϕ is KΦ-satisfiable,
then there exists a tree T with the degree bounded by |ϕ| and a labeling πT , such that

(i) 〈T , πT 〉 is a model of ϕ;

(ii) 〈CΦ(T ), πT 〉 is a model of ϕ that satisfies Φ.
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Figure 6.1.: A closure for Φ = {xRz ∧ zRy ⇒ yRy, xRx ∧ xRy ∧ xRz ⇒ yRz}.

The result holds for the local satisfiability and for the global satisfiability.

The proof is in Section 6.6.

6.2. Definitions

We study several properties of models. The following frames will be useful.

Definition 6.3. We define the linear structure LZ as 〈{i : i ∈ Z}, {(i, i+ 1)|i ∈ Z}〉,
and the infinite binary tree T∞ as 〈{s|s ∈ {0, 1}∗}, {(s, si)|s ∈ {0, 1}∗ ∧ i ∈ {0, 1}}〉.
For each s ∈ N∞, we define Is = LZ�Ws

, where Ws = {i|0 ≤ i < s}.

The structures LZ and T∞ play a crucial role in our proofs. We often reason in
the following way. If for some T a property P is satisfied in a world of CΦ(T ), then
we show that it is also satisfied in some world of CΦ(LZ) or CΦ(T∞). Thanks to
the uniformity of those structures, we show that the property P is satisfied in all
g(|Φ|)-proceeded worlds. Then we show that P has to be satisfied in all g(|Φ|)-inner
worlds of CΦ(T ).

Now we define our most important tool. We say that a function f from M1 into
M2 is a morphism iff for all worlds w,w′ if M1 |= wRw′, then M2 |= f(w)Rf(w′).

Observation 6.4. LetM1,M2 be frames, let Φ ∈ UHF and let f be a function from
M1 into M2. If f is a morphism from M1 into M2, then f is a morphism from
CΦ(M1) into CΦ(M2).

We use morphisms to transfer properties between CΦ(T ) and CΦ(LZ) or CΦ(T∞).
One morphism, we often use, is hT : T → LZ defined as follows. For each v at the
ith level of T , hT (v) = i. Now we define an important property that tells us whether
a UHF formula enforces edges between different branches of a tree.

Definition 6.5. We say that a formula Φ ∈ UHF forks at the level i if for all s ∈ T∞
with |s| = i and t, t′ ∈ {0, 1}∗ there are no edges between s0t and s1t′ in CΦ(T∞).
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We say that Φ ∈ UHF has the tree-compatible model property (TCMP) if for each
i, Φ forks at the level i.

It is not hard to see that if Φ has the tree-compatible model property, then in all
tree-based models of Φ there are no edges among the worlds from disjoint subtrees.
Indeed, if there is an edge between two different subtrees S1,S2 of a model M, one
can define a morphism from M to T∞ which maps S1 and S2 into disjoint subtrees
of T . This implies that some world above S1 and S2 does not fork, and Φ does not
have the tree-compatible model property.

In the next section, we study the linear structure LZ, which turns out to be a good
approximation of paths in trees. The formulas without the tree-compatible model
property are discussed in Section 6.4.

6.3. The closures of linear structures

Now we study the possible shapes of CΦ(LZ). We say that the edge (i, j) is forward
if i < j, backward if i > j, short if |i − j| < 2, and long if |i − j| ≥ 2. We say that
Φ forces long (resp. backward) edges if there is a long (resp. backward) edge in
CΦ(LZ) and that Φ forces only long forward edges if it forces long edges but it does
not force backward edges.

Definition 6.6. We say that Φ ∈ UHF satisfies

S1 if Φ does not force long edges,

S2 if Φ forces only long forward edges and there exist l, a1, a2, . . . , al ∈ N bounded by
g(|Φ|) such that for all worlds i, i+ b, there is an edge from i to i+ b in CΦ(LZ)
if and only if b ≥ 0 and b− 1 is in the additive closure of {a1, a2, . . . , al}.

S3 if Φ forces long and backward edges and there exists m bounded by g(|Φ|) such
that for all worlds i, i+ b, there is an edge from i to i+ b in CΦ(LZ) if and only
if m divides |b− 1|.

Properties S2 and S3 look complicated, so we present a few examples. Below we
abbreviate xRu1 ∧ u1Ru2 ∧ · · · ∧ ui−2Rui−1 ∧ ui−1Ry by xRiy.

Example 6.7. Consider a formula xR2y ⇒ yRx. Here, Property S3 is satisfied for
m = 3. For example, 0 is connected to 1, 4, 7 and so on, while 2, 5, 8 and so on are
connected to 0 (see Fig. 6.2a). In general, a formula xRiy ⇒ yRx satisfies Property
S3 with m = i+ 1.

Example 6.8. Consider a formula ϕ3 ∧ ϕ4, where ϕi = xRiy ⇒ xRy. Here,
Property S2 is satisfied for l = 2, a1 = 2 and a2 = 3. For example, 0 is connected
to 1 (as in L∞), 3 (because of ϕ3), 4 (because of ϕ4), 5 (because of ϕ3, 0R3, 3R4,
and 4R5), and so on (see Fig. 6.2b). In general, for a formula of the form ϕi ∧ ϕj
Property S2 is satisfied with l = 2, a1 = i− 1 and a2 = j − 1.
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Figure 6.2.: Some closures for the linear structure.

It turns out that Properties S1, S2, and S3 cover all possible formulas.

Lemma 6.9. Each Φ ∈ UHF satisfies S1, S2, or S3.

Now we show why these linear structures are important. In the tree-compatible
case, along each path almost all worlds are connected as in the linear structure. The
only exception is for the worlds that are close to the “end” of the model.

Lemma 6.10. Let Φ ∈ UHF, T be a tree and vi, vj be g(|Φ|)-inner worlds at the
same path. Then there is an edge from vi to vj in CΦ(T ) if and only if there is an
edge from hT (vi) to hT (vj) in CΦ(LZ).

6.4. Forks

In this section, we study models of the formulas without the tree-compatible model
property.

Lemma 6.11. If Φ ∈ UHF forks at level g(|Φ|), then it has the tree-compatible model
property.

This lemma says that if there is a world that does not fork, then no world below
some level forks.

We say that two worlds w,w′ of a frame M are equivalent if for each world u we
have uRw iff uRw′. Now we argue that if Φ does not fork at the level i, then in
structures reachable from worlds at the level i such equivalence is very common:

Lemma 6.12. Let Φ ∈ UHF be a formula that does not fork, T be a tree with a
bounded degree and w be a world at level k = (|Φ| + 1)g(|Φ|) in CΦ(T ). Then for
n = 2k+ 1 and all i, all the n-followed descendants of w at level n+ i are equivalent
in the frame CΦ(T ).
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Example 6.13. Consider the formula Φ = {ϕ1, ϕ2}, where ϕ1 = xRz∧zRy ⇒ yRy
and ϕ2 = xRx∧xRy∧xRz ⇒ yRz, and the tree in Fig. 6.1. The formula ϕ1 enforces
the following property: each world that has a predecessor that has a predecessor is
reflexive. The formula ϕ2 makes the relation R Euclidean except for the non-reflexive
worlds. Formula Φ forks at the first two levels.

6.5. Boundedness

The properties defined above are enough to prove the decidability, but not to obtain
the optimal complexity.

We say that a formula Φ is bounded if CΦ(LZ) is not a model of Φ, and unbounded
otherwise. If the formula is bounded, then there is a k such that the length of each
path in each model of Φ is bounded by k, and the value of k depends only on Φ.
Recall that in problems KΦ-SAT and global KΦ-SAT formula Φ is not a part of
input. Hence the exact value of k is irrelevant, since it is regarded as a constant.

Example 6.14. Consider any n ∈ N and the formula Φn = x1Rx2 ∧ x2Rx3 ∧ · · · ∧
xn−1Rxn ⇒ ⊥. It is not hard to see that a given structure is a model of Φn if and
only if it does not contain a path of the length n.

Now we prove the polynomial model property for bounded formulas. The following
argument works for local and global satisfiability.

Let Φ be a bounded formula and ϕ be a modal formula. Then for any model
M = 〈W,R, π〉 of ϕ and Φ, we can find a W ′ ⊆ W such that M�W ′ is a model of
ϕ and |W ′| is polynomial in |ϕ|. At first, we add an arbitrary world from M that
satisfies ϕ to W ′. Then, recursively, for each world w in W ′ and each subformula ♦ψ
of ϕ, if w has a witness for ♦ψ in W but not in W ′, then we add one such witness
to W ′. We proceed until a fixed-point is reached. Observe that since the length of
each path is bounded by k, then this procedure takes at most k recursive steps, and
in each of them, it adds at most |ϕ| worlds for each element of W ′. Therefore, at the
end we have |W ′| = |ϕ|k and M�W ′ is a model of ϕ, so indeed we find a polynomial
model of ϕ. Of course, since Φ is universal, 〈W ′, R�W ′〉 satisfies Φ.

Clearly, the polynomial model property leads to a straightforward nondetermin-
istic algorithm that guesses a model and verifies it.

Lemma 6.15. If Φ is a bounded UHF formula, then KΦ–SAT is in NP.

6.6. Omitted proofs

6.6.1. Proof of Lemma 6.2

We start with an auxiliary lemma.

Lemma 6.16. Let M1 = 〈W,R1, π〉 and M2 = 〈W,R2, π〉 be two Kripke structures
sharing the universe and labeling, and such that R1 ⊆ R2. Let ϕ be a modal formula.
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6.6. Omitted proofs

If for each (u, v) in R2 \ R1 and each subformula of φ of the form ♦ψ such that
M2, v |= ψ there exists v′ such that (u, v′) ∈ R1 and M2, v

′ |= ψ, then for each
v ∈W we have tpM1(v) = tpM2(v).

Proof. We want to show that for each subformula ψ of ϕ and v ∈ W we have
M1, v |= ψ iff M2, v |= ψ. The proof goes by structural induction on ψ. The cases
where ψ is of the form P , ψ1 ∨ ψ2 and ¬ψ′ are straightforward.

Suppose that ψ = ♦ψ′ and v ∈W . If there exists a world w such that (v, w) ∈ R1

and M1, w |= ψ′, then by the inductive hypothesis we know that M2, w |= ψ′ and
therefore M2, v |= ψ.

If there exists a world w such that (v, w) ∈ R2 and M2, w |= ψ′, then by the
assumptions and the inductive hypothesis we know that there exists w′ ∈ W such
that (v, w′) ∈ R1 and M1, w |= ψ′, so M1, v |= ψ.

If ψ = �ψ′ then, similarly, using the inductive hypothesis for all its successors we
see that M1, v |= ψ iff M2, v |= ψ.

Now we are ready to prove Lemma 6.2.

Proof. Assume that there exists M = 〈W,R, π〉 and u0 ∈ W such that M |= Φ and
M, u0 |= ϕ.

We construct M0 = 〈T , πT 〉, where T = 〈W0, R0〉, by an unraveling of M as
follows. W0 is a subset of the set of finite sequences of elements of W . We define
W0 and R0 inductively. Initially, we put (u0) ∈ W0. Assume that (u0, . . . , uk) ∈
W0. Let ♦ψ1, . . . ,♦ψs be all formulas of the form ♦ψ from tpM(uk). There exist
u1
k+1, . . . , u

s
k+1 ∈ W , such that for every i ∈ {1, . . . , s} we have M |= ukRu

i
k+1

and ψi ∈ tpM(uik+1). For each such i we put (u0, . . . , uk, u
i
k+1) into W0 and add

((u0, . . . , uk), (u0, . . . , uk, u
i
k+1)) to R0. Define πT as πT ((u0, . . . , uk)) = π(uk).

Observe that T is a tree in which the degree of every node is bounded by |ϕ|.
Let f : W0 → W be defined as f((u0, . . . , uk)) = uk. By a straightforward

induction the reader may verify that, for every ~u ∈W0 we have tpM0(~u) = tpM(f(~u)).
This implies that T , (u0) |= ϕ.

Now, in countably many stages we add to T the edges implied by Φ. We putM0 =
T and we define the sequence of frames (Mi)i>0 and models (Mi)i>0. The frames
(Mi)i>0 share the universe W0 and the structures (Mi)i>0 share the universe W0

and the mapping πT . For K > 0 letMK = 〈W0,ConsKΦ,W0
(R0)〉, MK = 〈MK , πT 〉.

Let M∞ be the natural limit M∞ = 〈CΦ(M0), πT 〉.
We show by induction on K, that for each ~u1, ~u2 ∈ W0 if MK |= ~u1R~u2, then

M |= f(~u1)Rf(~u2). It follows that for each ~u1, ~u2 ∈ W0 if M∞ |= ~u1R~u2, then
M |= f(~u1)Rf(~u2).
For K = 0 the conclusion is a straightforward consequence of the definition of M0.
Assume that MK satisfies the inductive hypothesis. For each ~u1, ~u2 ∈ W0, if
MK+1 |= ~u1R~u2, then either MK |= ~u1R~u2 and by the inductive assumption
M |= f(~u1)Rf(~u2), or for some ~v1, ~v2, . . . , ~vk ∈ W0 and Ψ1 ⇒ Ψ2 ∈ Φ, we have
MK |= Ψ1( ~u1, ~u2, ~v1, ~v2, . . . , ~vk), and Ψ2( ~u1, ~u2, ~v1, ~v2, . . . , ~vk) = ~u1R~u2. In this
case, MK |= Ψ1( ~u1, ~u2, ~v1, ~v2, . . . , ~vk) implies by the inductive assumption that
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M |= Ψ1(f( ~u1), f( ~u2), f(~v1), f(~v2), . . . , f( ~vk)). Since M |= Ψ1 ⇒ Ψ2, we have
M |= f(~u1)Rf(~u2).

Let M∞ = 〈W0, R∞, πT 〉. The frames M0 and M∞ have the same universe and
R0 ⊆ R∞. We show that for each ~u ∈W0 we have tpM∞(~u) = tpM0(~u). This implies
that M∞, (u0) |= ϕ. Since the labeling of the worlds is the same, it is enough to
show that in M0 and M∞ each world is connected with the worlds that satisfy the
same subformulas. We show that by induction w.r.t. the size of subformula ψ of ϕ.

Clearly, for every edge (~u,~v) from R∞ \R0 and a subformula ♦ψ of ϕ, if a world
~v satisfies ψ in M∞, then by the inductive assumption we have ψ ∈ tpM0(~v) =
tpM(f(~v)), and since M |= f(~u)Rf(~v) we have that ♦ψ ∈ tpM(f(~u)) = tpM0(~u) (by
Lemma 6.16 applied to M1 = M0 and M2 = M∞).

Finally, we have to prove that CΦ(M0) |= Φ. By definition CΦ(M0) satisfies
every Ψ1 ⇒ Ψ2 ∈ Φ+. Suppose that CΦ(M0) does not satisfy Ψ ⇒ ⊥ ∈ Φ. For
some ~w1, ~w2, ~v1, ~v2, . . . , ~vk we have CΦ(M0) |= Ψ( ~w1, ~w2, ~v1, ~v2, . . . , ~vk), but then
M |= Ψ(f( ~w1), f( ~w2), f(~v1), f(~v2), . . . , f( ~vk)). This contradicts the assumption that
M |= Φ.

6.6.2. Proof of Lemma 6.9

Let us fix Φ ∈ UHF. The following definition will prove useful in the sequel. For
s ∈ Z we define the shift function shs as shs(i) = i+ s. LetM be a frame containing
LZ over the same universe, i.e. {i : i ∈ Z}. We say that M is uniform if for every
s ∈ Z the shift shs is an automorphism of M. We say that M is closed under
composition iff for every world i, positive k and a1, a2, . . . , ak ∈ Z:

1. ifM |= iRi+ k andM |= iRi+ a1∧. . .∧i+ ak−1Ri+ ak thenM |= iRi+ ak,
and

2. ifM |= iRi− k andM |= i+ akRi+ ak−1∧. . .∧i+ a1Ri thenM |= iRi+ ak.

A frame N is the composite closure ofM iff N is the least (w.r.t. the relation R)
closed under composition frame containing M.

Lemma 6.17. Frame CΦ(LZ) is uniform and closed under composition.

Proof. Clearly, for every s ∈ Z, the shift shs is an automorphism of LZ onto itself,
and due to Observation 6.4, shs is a morphism of CΦ(LZ) onto itself and it is a
bijection. Hence, shs is an automorphism of CΦ(LZ) and CΦ(LZ) is uniform.

If M |= iRi+ k and CΦ(LZ) |= iRi+ a1 ∧ i+ a1Ri+ a2 ∧ . . . ∧ i+ ak−1Ri+ ak,
then the function g defined as

g(j) =


j if j ≤ i
i+ aj−i if i < j ≤ i+ k

j + ak otherwise

is a morphism of LZ into CΦ(LZ). Thus, by Observation 6.4, g is a morphism
of CΦ(LZ) into CΦ(LZ). Since CΦ(LZ) |= iRi+ k, the morphism g implies that
CΦ(LZ) |= iRi+ ak.
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Similarly, if M |= iRi− k and M |= i+ akRi+ ak−1 ∧ . . . ∧ i+ a1Ri, then a
function

g(j) =


j if j < i+ ak
i+ ak−(j−i) if i+ ak ≤ j < i+ ak + k

j − ak − k otherwise

is again a morphism of CΦ(LZ) into CΦ(LZ) and since CΦ(LZ) |= iRi− k, the mor-
phism g implies that CΦ(LZ) |= iRi+ ak.

For any uniform and closed under composition N we define XN ,iΦ = {a : N |=
iRi+ a+ 1} and XNΦ = XN ,0Φ . Since the function shs is an automorphism of N , for

any i we have XN ,iΦ = XNΦ .

Lemma 6.18. Let N be a uniform and closed under composition structure.

(i) If x, y ∈ XNΦ and x ≥ 0, then x+ y ∈ XNΦ .

(ii) If x, y ∈ XNΦ and s, x ≥ 0, then x+ sy ∈ XNΦ .

(iii) For every a > 2, if −a ∈ XNΦ , then a ∈ XNΦ .

(iv) If XNΦ contains any positive number, then for all a ≥ 0, if −a ∈ XNΦ , then
a ∈ XNΦ .

Proof. For the (i) part, observe that if N |= 0Rx+ 1 and N |= 0Ry + 1, where
x > 0, then N |= (0Ry + 1) ∧ (y + 1Ry + 2) ∧ . . . (i+ y + xRi+ y + x+ 1). Hence,

by composite closure N |= iRi+ x+ y + 1 and x + y ∈ XNΦ . Property (ii) follows
from a straightforward induction based on (i).

For the (iii) part, note that if N |= 0R−(a− 1) where a > 2, then due to uni-
formity we have in N that a+ 1R2 and 2R−a+ 3. Of course, −a+ 3R−a+ 2,
−a+ 2R−a+ 1, . . . , −1R0. As N is closed under composition, it implies that
N |= 0Ra+ 1.

Finally, for the (iv) part, let b ∈ XNΦ be a positive number and a ≥ 0. If a = 1,
then we by Property (ii) for x = b, y = −1 and s = b − 1 we have a ∈ XΦ. If
a = 2, then consider two cases. If b is odd, we use Property (ii) for x = b, y = a and
s = (b + 1)/2 to show that 1 ∈ XNΦ and, by (i), that 2 = 1 + 1 ∈ XNΦ . If b is even,
use Property (ii) for x = b, y = a and s = b/2 − 1 to show that 2 ∈ XNΦ . If a > 2,
then the statement follows from Property (iii).

Now we consider the case when CΦ(LZ) contains long backward edges.

Lemma 6.19. Suppose that a uniform and closed under composition structure N
contains a backward edge and a long edge. There exists a finite subset X ′ of XNΦ
such that gcd(X ′) = gcd(XNΦ ) and, for every b, N |= iRi+ b+ 1 iff gcd(X ′) divides
b.
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Proof. Due to Lemma 6.18 (iv), for any positive b, if −b ∈ XNΦ , then b ∈ XNΦ . This
implies that gcd(XNΦ ) = gcd(X+), where X+ contains all positive elements from
XNΦ . Thanks to Fact 4.1, there exists finite X ′ such that for every b > lcm(X ′) we
have N |= iRi+ b+ 1 iff gcd(X ′) divides b. We will show that for every b ∈ Z, we
have b ∈ XNΦ iff gcd(X ′) divides b.

Of course, all elements of XNΦ are divisible by gcd(X ′). Suppose that b ∈ Z is
divisible by gcd(X ′). Sine N contains backward edges and long edges, there exists
aj ∈ XNΦ such that aj < −1. From Lemma 6.18 we know that −aj ∈ XNΦ and,
moreover, for any s ≥ 0, b+ s · (−aj) ∈ XNΦ . Let s be such that b′ = b+ s · (−aj) >
lcm(X ′). Since gcd(X ′) divides b and −aj , b′ ∈ XNΦ . Due to additivity of XNΦ , we
conclude that b = (b′ + s · aj) ∈ XNφ .

We say that a structure M is t, p-regular is for all b > 0

• if M |= iRi+ b+ 1 then p divides b;

• if b > t and p divides b, then M |= iRi+ b+ 1.

We define the period of M, denoted by pi(M), in the following way. If there exists
t < ∞ and p such that M is t, p regular, then we put pi(M) = p (note that such
p is always unique). Otherwise, we put p = 0. Moreover, we define the threshold
tr(M) ∈ N∞ as the least number t such that M is t, pi(M)-regular. Note that
pi(M) = 0 if and only if tr(M) =∞.

For a given two worlds i, j, where i, j ∈ Z, we define a distance between i and j,
dt(i, wj), as |i−j|. The following lemma explains that the threshold is an important
characteristic of a frame.

Lemma 6.20. Let M be a closed under composition, uniform frame with tr(M) <
∞ and u1, . . . , uk be a sequence of integers. There is a sequence v1, . . . , vk such that
for every i, j ∈ {1, . . . , k}

1. M |= uiRuj iff M |= viRvj,

2. ui ≤ uj iff vi ≤ vj, and

3. |vi − vj | ≤ k · tr(M) + pi(M).

4. |vi − vj | ≡ |ui − uj | mod pi(M) and |vi − vj | ≥ tr(M) iff |ui − uj | ≥ tr(M).

Moreover, for any a, b ∈ {1, . . . , k} there is a sequence v′1, . . . , v
′
k such that v′a =

ua, v′b = ub and for every i, j ∈ {1, . . . , k} M |= uiRuj iff M |= v′iRv
′
j and

min(dt(v′i, v
′
a), dt(v

′
i, v
′
b)) < (k − 1) · tr(M) + pi(M).

Proof. Without loss of generality, assume that the sequence u1, . . . , uk is ascending.
Let j be such uj+1 − uj > tr(M) + pi(M). Define u′j+i = uj+i − pi(M) for all
1 ≤ i ≤ k − j. Since M is uniform, the relations among u′j+1, . . . , u

′
n are the same

as the relations among uj+1, . . . , un.

Consider any i ≤ j and i′ > j. Since u′i′ − ui − 1 ≥ tr(M), there following
statements are equivalent:
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(i) there is an edge between u′i′ and ui;

(ii) pi(M) divides u′i′ − ui − 1;

(iii) pi(M) divides u′i′ − ui − 1 + pi(M) = ui′ − ui − 1;

(iv) there is an edge between ui′ and ui.

Clearly, u1, u2, . . . , uj , u
′
j+1, . . . , u

′
k satisfies 1 and 2, and u′j+1 − uj < uj+1 − uj .

By iterating the operation defined above finitely many times we obtain sequences
that satisfy the required properties.

Let W = {i : i ∈ Z} be a domain of CΦ(LZ) and R be any set of edges over W .
We define Rs as a number such that 〈0, Rs〉 ∈ ConsΦ(R)\R and for each b such that
〈0, b〉 ∈ ConsΦ(R)\R, |b| ≥ |Rs|, and if |b| = |Rs|, then b ≤ Rs. If ConsΦ(R)\R = ∅,
we put Rs = 1.

We define the sequence of approximations N0,N1, . . . of CΦ(LZ) in the following
way:

• N0 = LZ = 〈W,R0〉 and

• Np+1 = 〈W,Rp+1〉 is the compositely closure of 〈W,Rp ∪ {(i, i+Rsp)|i ∈ Z}〉.

Clearly, the limit of the sequence N0,N1, . . . is CΦ(LZ) and all approximations are
closed under composition and uniform.

Lemma 6.21. Let N0,N1, . . . be the sequence of approximations of CΦ(LZ) and n
be the number of variables in Φ. For every i, if NΦ

p contains long edges, then NΦ
p

has the threshold bounded by n3(log2(n)−log2(pi(Np))+1) and the period bounded by n.
Moreover, the sequence stabilizes after some finite index.

Proof. We prove the lemma by induction.
The induction base. If Np is the first frame containing a long edge, then Np−1 is

equal to LZ or a reflexive or symmetric closure (or both) of LZ. A quick check shows
that in this case both the threshold and period of NΦ

p are bounded by n.
The induction step. Suppose that Rsp > n · tr(Np) + pi(Np). The edge (0, Rsp) is

implied by the formula Φ applied to some worlds u1, . . . , un with us = 0 and ut = Rsp
for some s, t. Let v1, . . . , vn be a result of application of Lemma 6.20 to the sequence
u1, . . . , un and the frame Np. Since the connections among v1, . . . , vn are the same
as among u1, . . . , un, the edge (vs, vt) is a consequence of Φ in Np. If (vs, vt) were an
edge in Np, then also (0, Rsp) would, because of Property 4 of Lemma 6.20. But it

is not the case by the definition of Rsp. The existence of the edge (vs, vt) contradicts
the minimality of Rsp. Therefore Rsp ≤ n · tr(Np) + pi(Np).

Assume that Rsp > 0.
Let j = Rsp − 1. If j is divisible by pi(Ni), then Np+1 is tr(Np), pi(Np)-regular,

and therefore tr(Np+1) ≤ tr(Np) and pi(Np+1) = pi(Np).
Assume otherwise, that j is not divisible by pi(Np).
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Let P = gcd(pi(Np), j) and T = tr(Np) + j · pi(Np). Every number divisible by
P from the interval [0, pi(Np) − 1] is the remainder of some number form {j, 2 ·
j, . . . , pi(Np) · j} from division by pi(Np). Hence, every number b ≥ 0 divisible by
P is equal to αj + βpi(Np) where α ∈ {1, . . . , pi(Np)} and β ∈ Z. If b > T , then

βpi(Np) > tr(Np) and βpi(Np) ∈ X
Np
Φ . Thus, for every b ≥ T , if P divides b, then

b ∈ X
Np+1

Φ . On the other hand, the frame M = 〈{i : i ∈ Z}, {(i, i+ αP ) : i ∈
Z, α ≥ 0}〉 is closed under composition and it contains the frame Np and the edges

{(i, i+ j + 1) : i ∈ Z}. It implies that Np+1 is contained in M and if b ∈ XNp+1

Φ ,
then P divides b.

Hence, the threshold of Np+1 is bounded by T and the period is equal P .
Observe that T = tr(Np) + j · pi(Np) < (n2 + 1) · (tr(Np) + 1). By induc-

tive assumption, it can be bounded by (n2 + 1) · (n3(log2(n)−log2(pi(Np))+1) + 1) <
n3+3(log2(n)−log2(pi(Np))+1). Since gcd(pi(N )p, j) ≤ pi(Np)/2, log2(pi(Np)) − 1 ≤
log(pi(Np+1)) and - log2(pi(Np)) ≥ −(log(pi(Np+1)) + 1), we can conclude that
T < n3+3(log2(n)−log2(pi(Np+1))−3+1) = n3(log2(n)−log2(pi(Np+1))+1).

If Rsp < 0, then pi(Np+1) satisfies the condition of Lemma 6.19, i.e. there exists d
such that iRp+1j iff d|j − 1− i. Of course, d is the period of Np+1 and its threshold

is equal 0. Moreover, since d divides all b ∈ XNpΦ and X
Np
Φ contains a number from

the interval [2, n] we have d ≤ n.
Finally, at every step p, either the period decreases or a new edge (0, Rsp) is added,

where |Rsp| < n · tr(Np) + pi(Np) and the period does not change. Hence, if between
step p1, p2 the period does not decrease and the frames Np1 ,Np2 are different, then
they have the same threshold and |p1−p2| ≤ 2·(n·tr(Np1)+pi(Np1)). Hence, after at
most n ·2 · (n3(log2(n)−log2(pi(Np))+1) +n) steps the sequence N0,N1, . . . stabilizes.

Now we are ready to prove Lemma 6.9. If CΦ(LZ) contains no long edges, then Φ
satisfies S1 and we are done.

If CΦ(LZ) contains only forward edges, the let {a1, . . . , al} be a minimal set such

that X is the additive closure of X
CΦ(LZ)
Φ . It is not hard to see that l and all a1, . . . , al

are smaller than the threshold of CΦ(LZ), and by Lemma 6.21 the threshold of
CΦ(LZ) is bounded by some nO(log2(n)).

If CΦ(LZ) contains long and backward edges, then Lemma 6.19 implies that there
is some m such that for all worlds i, i+ b, there is an edge from i to i+ b if and
only if m divides |b− 1|. By Lemma 6.21 the value of m can be bounded by n.

6.6.3. Proof of Lemma 6.10

Let Φ ∈ UHF and n be the number of variables in Φ. We start from two auxiliary
lemmas.

Lemma 6.22. Let s ∈ N∞.

(i) Let k be the maximal number such that v is k-proceeded (k-followed) in Is. If
v is k + 1-proceeded (resp. k + 1-followed) in CΦ(Is), then it is ∞-proceeded
(resp. ∞-followed) in CΦ(Is).

32



6.6. Omitted proofs

(ii) If i, i+ j are ∞-inner in CΦ(Is), then there is a morphism f from LZ into
CΦ(Is) such that f(i) = i and f(i+ j) = i+ j.

Proof. For part (i), let k be a maximal number such that v is k-inner in Is. Assume
that k is also the maximal number such that v is k-proceeded in Is. Since v is
k+1-proceeded in CΦ(Is), there exists a path v1, v2, . . . , vk+1, k. If all worlds among
v1, v2, . . . , vk+1, v are different, then at least one of them is a descendant of v and
therefore v belongs to a cycle in CΦ(Is) and is ∞-inner. If vi = vj for some i < j,
then there is an infinite path . . . vi, vi+1, . . . , vj = vi, vi+1, . . . vj , vj+1, . . . , vk + 1, k
that proves that v is ∞-inner. The proof for the k-followed case is symmetric.

For part (ii), let . . . v−2, v−1, i be a path that shows that i is ∞-proceeded and
i+ j, v1, v2, . . . be a path that proves that i+ j is∞-followed. We define f(l) equals
vl−i for l < i, l for i ≤ l ≤ j, and vl−j otherwise. It is readily checkable that f is as
required.

Lemma 6.23. There exists k = O(g(|Φ|)) such that for every s > 2 · k if u, v are
k-inner in CΦ(Is), then CΦ(Is) |= uRv iff CΦ(LZ) |= uRv.

Proof. Clearly, for every s and all u, v ∈ Is, CΦ(Is) |= uRv implies CΦ(LZ) |= uRv.
Let T and P denote the upper bounds on the threshold and the period of the
structures among N0,N1, . . . with finite threshold, b(p) = pn(T + n) and N0,N1, . . .
be the sequence of approximations of CΦ(LZ). We show by induction w.r.t. p that
if i, i+ j + 1 are b(p)-inner in Is and Np |= iRi+ j + 1, then CΦ(Is) |= iRi+ j + 1.

The induction base. The frame N0 = LZ contains only short, forward edges that
are also in Is and therefore in CΦ(Is).

The induction step. If Np+1 = Np then we are done. Otherwise, assume that for
every all s > 0, i ∈ Z if i, i+ j + 1 are b(p)-inner in CΦ(Is) and Np |= iRi+ j + 1,
then CΦ(Is) |= iRi+ j + 1.

We first discuss the case when Np contains only forward edges.
First, we show that for all s > 0, i ∈ Z if i, i+Rsp are b(p + 1)-inner in CΦ(Is),

then CΦ(Is) |= iRi+Rsp. Let u1, u2, . . . , un, with u1 = i and u2 = i+Rsp, be the

worlds that imply the edge (i, i+Rsp) in Np+1. We consider two cases.

If Np = LZ, then we may assume that u1, u2, . . . , un are contained in {i− n,
i− n+ 1, . . . , i+ n}, so if i is n-inner in Is, then CΦ(Is) |= iRi+Rsp.

Otherwise, the frame Np contains a long edge and, therefore, its threshold is finite.
Clearly, |Rsp| is smaller than tr(Np+1) + pi(Np+1), in particular it is smaller than
T+n. Let v1, v2, . . . be a result of application of Lemma 6.20 to u1, u2, . . . , a = 1 and
b = 2. If v1, v2 are b(p+ 1)-inner, then all v1, . . . , vk are b(p)-inner. By the inductive
hypothesis for all v, v′ ∈ {v1, . . . , vn}, if Np |= vRwv′ , then CΦ(Is) |= vRwv′ . Hence,
CΦ(Is) |= iRi+Rsp.

If Rsp ≤ 0, then the above fact implies that for any s > 0 if some worlds i, i+Rsp
are b(p+1)-inner in Is, then i, i+Rsp, i+Rsp + 1, . . . , i is a cycle, and therefore i and

i+Rsp are ∞-inner in CΦ(Is). If some world i is not b(p+ 1)-proceeded in Is but it

is b(p+1)-proceeded in CΦ(Is), then by Lemma 6.22 (i) it is∞-proceeded and, since
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it has a ∞-inner descendant, it is ∞-proceeded. Therefore all b(p+ 1)-inner worlds
in CΦ(Is) are ∞-inner. For any ∞-inner worlds i, i+ j Lemma 6.22 (ii) shows that
if CΦ(LZ) |= iRi+ j then CΦ(Is) |= iRi+ j. This proves the lemma and therefore
we can stop the induction here.

It remains to consider the case when Rsp > 1. Let r = Rsp − 1. We observe that

X
Np+1

Φ is the additive closure of X
Np
Φ ∪{r}. Indeed, the set X

Np+1

Φ contains X
Np
Φ ∪{r}

and Lemma 6.18 implies that X
Np+1

Φ is additively closed. On the other hand, for
every additively closed set Y the frame 〈{i : i ∈ Z}, {(i, i+ j + 1) : i ∈ Z, j ∈ Y }〉 is

closed under composition. Hence, X
Np+1

Φ is equal to the additive closure ofX
Np
Φ ∪{r}.

Since X
Np
Φ is additively closed, the set X

Np+1

Φ is equal to {j +αr : α ≥ 0, j ∈ XNpΦ }.
Thus, we have to show that for every s, α, i ∈ N, if i, i+ j + αr + 1 are b(p + 1)-

inner in Is and j ∈ XNp+1

Φ , then CΦ(Is) |= iRi+ j + αr + 1. We will show that by
induction w.r.t. α.

The base case, α = 0, follows from the inductive hypothesis for p, that is if
i, i+ j + 1 are b(p)-inner in CΦ(Is) and Np |= iRi+ j + 1 (which means that j ∈
X
Np
Φ ), then CΦ(Is) |= iRi+ j + 1.
The induction step. Let t = s− (j + r(α− 1)). Assume that i, i+ j + αr + 1 are

b(p + 1)-inner in Is. Then i+ r is b(p + 1)-inner in It and Is. Hence, CΦ(It) |=
iRi+ r − 1 and by the induction assumption CΦ(Is) |= i+ rRi+ j + αr + 1.

Let us consider a function f defined as follows:

f(k) =

{
k if k ≤ i+ r
k + j + (α− 1) · r if k > i+ r

We have that f(i+ r) = i+ r and f(i+ r + 1) = i+ j + αr + 1, therefore CΦ(Is)
contains edge (f(i+ r), f(i+ r + 1)). For k, k + 1 6= i+ r such that k, k + 1 ∈ It
we have f(k), f(k + 1) ∈ Is and Is |= f(k)Rf(k + 1). Hence, f is a morphism
from It into CΦ(Is). By Observation 6.4 f is a morphism from CΦ(It) into CΦ(Is)
and since CΦ(It) |= iRi+ r + 1, we have CΦ(Is) |= f(i)Rf(i+ r + 1). That is
CΦ(Is) |= iRi+ j + αr + 1.

For the proof of Lemma 6.10 is a consequence of Lemma 6.23. The proof of “⇒”
is a simple application of Observation 6.4 to the morphism hT . For the “⇐”, let
v0, v1, . . . be a path containing vi and vj such that vi, vj are g(|Φ|)-inner in this path
and let s ∈ N∞ be the length of this path. Then this path is isomorphic with Is.
Due to Lemma 6.23 there is an edge from hT (vi) to hT (vj) in CΦ(LZ) if and only if
there is such an edge in CΦ(Is), and therefore there is such edge in CΦ(T ).

6.6.4. Proof of Lemma 6.11

Let Φ ∈ UHF. For a tree 〈W,R〉, we define a partial closures M0, M1, . . . such
that M0 = T and Mi+1 = 〈W,Ri+1〉 = 〈W,ConsΦ,W (Ri)〉. Evidently, CΦ(T ) is a
natural limit of the sequence of partial closures. We say that a partial closure Mi

34



6.6. Omitted proofs

is tree-compatible if for all worlds w, v, if there is an edge between w and v in Mi,
then there is a path between w and v in T . Clearly, if Φ has the tree-compatible
model property, then all partial closures of T∞ are tree-compatible.

Recall that |s| is the length of s. For a given word s, by s|k we denote the prefix of
s0ω with length k. In other words, s|k contains first k letters of s, and if s is shorter
than k, then last k − |s| letters are 0.

Proof. Let k be a number from Lemma 6.23 and k′ be a number from Lemma 6.21.
We show that if a formula Φ ∈ UHF does not fork on some level, then it does not
fork at a level k+nk′+n, where n is a maximal number of variables in clauses from
Φ.

Let M0, M1, . . . be partial closures of T∞ and p + 1 be the first index, such
that Mp is tree-compatible and Mp+1 is not. In this case, there is a clause Ψ of
Φ such that for some worlds Mk |= Ψ(u1, . . . , ul) for u1 = sit, u2 = si′t′ for some
s, t, t′ ∈ {0, 1}∗ and i 6= i′. Since T∞ is isomorphic with all of its subtrees, we may
assume the all of those worlds are at levels greater that k.

If |s| < k + nk′ + n, then we are done. Otherwise, for each j ∈ {1, . . . , l},
we define u′j in the following way. If uj is at the level m ≤ |s| in T∞, we put
u′j = s|m. If uj = s′′i′′t′′, where |s′′| = |s|, i ∈ {0, 1} and t′′ ∈ {0, 1}∗, we set

u′j = si′′t̄ where t̄ = t||t′′| if i = i′′ and t̄ = t′||t′′| otherwise. A quick check shows that

CΦ(T∞) |= Ψ(u′1, . . . , u
′
l).

Let vs, v1, . . . , vl be a result of application of Lemma 6.20 to πT∞(s), πT∞(u′1),
. . . , πT∞(u′l). Thanks to automorphisms of LZ we may assume that the world with
the lowest number among vs, v1, . . . , vl is k. Lemma 6.21 guarantees then that the
highest number is bounded by k + lk′ + n. It is not hard to see that if there is an
edge between u′j and u′j′ in Mp, then there is also such an edge in CΦ(LZ) between
πT∞(u′j) and πT∞(u′j′), and thus there is an edge between vj , vj′ .

Write vs = c. Let s′ = s|c. Now, for each vj of the form d, we define a world v′j of

T∞ in the following way. If u′j is of the form s̄it̄ for some ī, t̄, then v′j = s′̄it̄′, where

t̄′ = t̄|c−|s′|−1 (note that Lemma 6.20 preserves the order and therefore c−|s′|−1 ≥ 0).
Otherwise, we put v′j = s′|d. Note that each v′j is at the level vj .

Lemma 6.23 guarantees that for each v′j and v′j′ , if these worlds are at the same
path, then there are connected if and only if vj , vj′ are. It is not hard to see that v′j
and v′j′ are on the same path if and only if u′j and u′j′ are. It means that Ψ(v′1, . . . , v

′
l)

holds and therefore s′ is not forking and |s′| < k + k′n+ n.

6.6.5. Proof of Lemma 6.12

For k1 ∈ N and k2 ∈ N∞, we define the frame Y(k1, k2) as T∞�WY
, where WY = {s :

s v 0k1+k2 ∨ s v 0k11k2} (v denotes the prefix relation).

Let Φ be a UHF formula that does not fork, n be the number of variables in Φ
and mi = (n+ i)g(|Φ|). We start with auxiliary lemmas.
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Lemma 6.24. Let m = m1 − 1. There exist x, y ∈ [1,m0] such that |x − y| < m0

and CΦ(Y(m,m2)) |= 0xR0m1y−m.

Proof. LetM0 = T∞ and for every i ≥ 0 letMi+1 = 〈W,Ri+1〉 = 〈W,ConsΦ,W (Ri)〉.
The frame CΦ(T∞) is the limit ofM0,M1, . . .. Let i, p, p0, p1 be such thatMi+1 |=
p0p0Rp1p1, but for all v, v′, Mi |= vRv′ implies that v, v′ are along the same path
in T∞. In other words the edge (p0p0, p1p1) violates tree-compatibility.

Let v1 = p0p0, v2 = p1p1 and v3, . . . , vn be worlds such that Φ applied to
v1, v2, . . . , vn in Mi implies the edge (p0p0, p1p1) in Mi+1. Since the function
f : T∞ → T∞ defined as f(u) = 0m2u is a morphism of Mi into Mi, we may
assume that |p| ≥ m2 and all worlds v1, . . . , vn are below the level m2 in T∞.

Let N be the result of removing, from CΦ(Y(|p|,∞)), all edges (p, p′) such that p
and p′ are on different paths in Y(|p|,∞), i.e. p 6v p′ ∧ p′ 6v p.

Let g be a function fromMi (containing T∞) intoN (containing Y(|p|,∞)) defined
as follows:

g(s) =

{
0|s| if |s| ≤ |p1|
0|p1|z|s|−|p1| if |s| > |p1| and z is the (|p1|+ 1)th letter in s

The function g is a morphism from Mi into N such that g(p) = 0|p|, g(p0p0) =

0|p|0|p0|+1 and g(p1p1) = 0|p|1|p1|+1.
Let l1, . . . , ln be levels of g(v1), . . . , g(vn). The numbers l1, . . . , ln not smaller than

m2. Let la1 , . . . , l
a
n be the result of applying Lemma 6.20 to CΦ(LZ) and the sequence

l1, . . . , ln. For i, j ∈ {1, . . . , n} we have |lai − laj | < m0 and the realtions in CΦ(LZ)
are the same among la1 , . . . , l

a
n as among l1, . . . , ln.

Let m′ be a maximal number such that lai > m′ iff li > |p| and m = m1 − 1.
For each i, we define l′i = lai −m′ +m Since the shift sh(m−m′) is automorphism of
CΦ(LZ), the realtions in CΦ(LZ) are the same among l′1, . . . , l

′
n as among l1, . . . , ln.

Moreover, by the maximality of m, there is j such that l′j = m+ 1, and therefore for
i ∈ {1, . . . , n} we have l′i ∈ [g(|Φ|),m2 − 1]. Since li ≥ m2 we have l′i < li.

We define worlds v′1, . . . , v
′
n in Y(m,∞) as follows: for i ∈ {1, . . . , n},

v′i =

{
0m1l

′′
i −m if vi = 0|p|1li−|p|

0l
′′
i otherwise (when vi = 0li)

By the definition of m, for i, j ∈ {1, . . . , n} worlds vi, vj are along the same path
in Y(|p|,∞) if and only if v′i, v

′
j are along the same path in Y(m,∞). In particular

v′1, v
′
2 are on different paths.

Let N ′ be the result of removing from CΦ(Y(m,∞)) all edges (p, p′) such that p
and p′ are on different paths in Y(m,∞). Since for all i, j ∈ {1, . . . , n} the worlds
vi, vj are g(|Φ|)-inner in N , we have N |= viRvj iff they are along the same path in
Y(|p0|,∞) and CΦ(LZ) |= liRlj . The same equivaence holds for N ′

. Then, for all

i, j ∈ {1, . . . , n}, we have N |= viRvj iff N ′ |= v′iRv
′
j . This implies that Φ applied

to v′1, . . . , v
′
n in N ′ implies the edge (v′1, v

′
2).
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Finally, let N f be the frame resulting from closure of Y(m,m2) w.r.t. Φ along
paths. The frame N f is a finite subframe of N ′. The worlds v′1, . . . , v

′
n belong

to N f and they are g(|Φ|)-inner in N f . Hence, Lemma 6.23 implies that for all
i, j ∈ {1, . . . , n}, we have N f |= v′iRv

′
j iff N ′ |= v′iRv

′
j . Thus, CΦ(N f ) |= v′1Rv

′
2.

Since v′1 = 0l
′
1 , v′2 = 0m1l

′
2−m and CΦ(N f ) = CΦ(Y(m,m2)), the result follows with

x = l′1 −m < m0 and y = l′2 −m < m0.

Lemma 6.25. Let m, l, x, y ∈ N be such that CΦ(Y(m, l)) |= 0m+xR0m1y. Then,
CΦ(Y(m+ 1, l + |x− y|)) |= 0m+kR0m+11k where k = max(x, y).

Proof. Since rotation of branches, i.e. the function r : CΦ(Y(m, l)) → CΦ(Y(m, l))
defined as f(0z) = 0z for z ≤ m, f(0m+z) = 0m1z for z ≤ l and f(0m1z) = 0m+z for
z ≤ l, is an automorphism of CΦ(Y(m, l)), we can assume that x ≤ y.

The morphism f : Y(m, l)→ Y(m, l) defined as f(s) = 0|s| implies that CΦ(Y(m, l))
contains edge (0m+x, 0m+y).

Finally, we define a function g : Y(m, l)→ Y(m+ 1, l + |x− y|) as follows.

g(p) =


0|p|+1 if p ends with 0 and |p| < m+ x

0|p|+y−x if p ends with 0 and |p| ≥ m+ x
0p if p ends with 1

Since CΦ(Y(m+ 1, l + |x− y|)) |= 0m+xR0m+y, the function g is a morphism
from Y(m, l) to CΦ(Y(m+ 1, l + |x− y|)) and, by Observation 6.4, it is a morphism
from CΦ(Y(m, l)) to CΦ(Y(m+ 1, l + |x− y|)). Hence, CΦ(Y(m+ 1, l + |x− y|)) |=
g(0m+x)Rg(0m1y). Since g(0m+x) = 0m+x+(y−x), g(0m1y) = 0m+11y, the result
follows.

Lemma 6.26. There is x ∈ [1,m0] such that CΦ(Y(m1,mn+2)) |= 0m1+xR0m11x+1.

This lemma is a straightforward consequence of Lemmas 6.24 and 6.25.

Lemma 6.27. Let T be a tree of bounded degree and w be a world at level m1 in
T . There exists x ∈ [1,m0] such that for every i ≥ 0, if u1, u2 are mn+2-followed
descendants of w in CΦ(T ) at levels m1+x+i and m1+x+i+1, then CΦ(T ) |= u1Ru2.

We remark that in contrary to Lemmas 6.24 and 6.25 in Lemma 6.27 the worlds
need to be mn+2-followed only in CΦ(T ). Some worlds that are not mn+2-followed
in T may become mn+2-followed in CΦ(T ).

Proof. Let m = m1, x ∈ [1,m0] be such that for s1 = 0m+x and s2 = 0m1x+1 we
have CΦ(Y(m,mn+2)) |= s1Rs2. Such x exists due to Lemma 6.26.

The proof is by induction w.r.t. i.
The base case, i = 0. Let u1, u2 be mn+2-followed descendants of w in CΦ(T )

at levels m + x and m + x + 1. There is a morphism f of Y(m,mn+2) into CΦ(T )
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6. Model properties

such that f(0m) = w, f(s1) = u1 and f(s2) = u2 for s1 = 0m+x and s2 = 0m1l+1.
Therefore CΦ(T ) |= u1Ru2.

The inductive step. Let u1, u2 be mn+2-followed descendants of w in CΦ(T ) at
levels m+x+(i+1) and m+x+(i+1)+1 and let v1, v2 be predecessors of u1, u2 in
CΦ(T ) at levels m+x+i,m+x+i+1. Clearly, v1, v2 are mn+2-followed descendants
of w in CΦ(T ). By the induction assumption, CΦ(T ) |= (v1Rv2).

Notice that there is a morphism g from Y(m,mn+2) into Y(m+ x,mn+2 − x) such
that g(0m+x) = 0m+x and g(0m1x+1) = 0m+x−111. Since CΦ(Y(m,mn+2)) |= s1Rs2,
the morphism g, extended to a morphism from Y(m,mn+2) to Y(m+ x,mn+2 − x),
implies that CΦ(Y(m+ x,mn+2 − x)) |= 0m+x−10R0m+x−111.

There is a morphism h of Y(m+ x,mn+2 − x) into CΦ(T ) such that h(0m+x−1) =
v2, h(0m+x−10) = u1 and h(0m+x−111) = u2. By Observation 6.4, h is a mor-
phism from CΦ(Y(m+ x,mn+2 − x)) to CΦ(T ). Since CΦ(Y(m+ x,mn+2 − x)) |=
0m+x−10R0m+x−111, we have CΦ(T ) |= u1Ru2.

Let Φ be a formula that does not fork at the level k, T be a tree of bounded degree,
w be a world at level m = m1 and i > 0. Now we prove that all (mn+2 + 1)-followed
descendants of w in CΦ(T +) at level m+m0 + i are equivalent.

Let i > 0 and a, b be (mn+2 + 1)-followed (in CΦ(T +)) descendants of w at level
L = m+m0 + i. It is sufficient to show that all predecessors of a are predecessors of
b. Let c be a predecessor of a in CΦ(T ). Clearly, c is (mn+2 + 2)-followed in CΦ(T ).

Let pa (pb) be the predecessor of a (b resp.). Let Sa,0, Sa,1 (Sb,0, Sb,1) be the
partition of the successors of a (b resp.) such that worlds Sa,1 are (mn+2)-followed
in CΦ(T ) and worlds Sa,1 are not. The sets Sa,1, Sb,1 are nonempty, since a, b are
(mn+2+1)-followed. We define T + as the frame, based on T , resulting from removing
from T worlds Sa,0, Sb,0 and their descendants in T , i.e. the successors of a or b which
are not (mn+2)-followed in CΦ(T ) and their descendants (in T ). Additionally, T +

has the edges (pa, b), (pb, a) and edges (x, y) for x ∈ {a, b} and y ∈ Sa,1∪Sb,1. Notice
that a, b have the same predecessors and successors in T +. Since c is (mn+2 + 2)-
followed in CΦ(T ), it belongs to T +.

In the following we show three facts:

(i) CΦ(T +) |= cRa (ii) CΦ(T +) |= cRb (iii) CΦ(T ) |= cRb

In order to show (i), we consider a morphism f from T into itself, which is
identity on T + and maps worlds from Sa,0 and their descendants (in T ) into a path
of maximal length beginning in a. Similarly, worlds from Sb,0 and their descendants
are mapped into a path of maximal length beginning in b. We notice that the range
of f is contained in T +, since any maximal path beginning in a has to contain a
world from Sa,1. Otherwise, when a maximal path π beginning in a contains a world
s0 from Sa,0, there is a morphism which maps all the descendants of a on π, and
this implies that s0 is mn+2-followed in CΦ(T ).

Hence, the morphism f is really a morphism from T into T +, f(a) = a and
f(c) = c. This implies that CΦ(T +) |= cRa.
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6.6. Omitted proofs

For (ii), notice that since a and b have the same predecessors and the same
successors in T +, the function g which is identity on T + except that it swaps a with
b is an automorphism of T +. Hence, by Observation 6.4 g is an automorphism of
CΦ(T +). This implies that if a 6= c, then CΦ(T +) |= cRb.

If a = c, then a is reflexive in CΦ(T +) and g implies that b is also reflexive in
CΦ(T +). Then, the function h from T + into T + which maps all the descendants
of b on b is a morphism from T + into CΦ(T +). The composition of h with f is
a morphism from T into CΦ(T +). The function h ◦ f is also a morphism from
CΦ(T ) into CΦ(T +) which maps a to a and the descendants of b into b. Let s
be mn+2-followed descendant of b. Due to Lemma 6.27, CΦ(T ) |= aRs. Hence,
CΦ(T +) |= h ◦ f(a)Rh ◦ f(s) where h ◦ f(a) = a and h ◦ f(s) = b.

For (iii), Lemma 6.27 implies that the identity is a morphism from T + into CΦ(T ).
Hence, the identity a morphism from CΦ(T +) into CΦ(T ) and CΦ(T +) |= cRb implies
CΦ(T ) |= cRb.

We showed that all predecessors of a are predecessors of b and, by symmetry, all
predecessors of b are predecessor of a, and therefore a and b are equivalent.
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A well-known result shows that every satisfiable modal formula is satisfied in a finite
tree. This tree-model property is crucial for the robust decidability of modal logics.
Standard restrictions of classes of frames lead to similar results, stating that some
“nice” models exists for all satisfiable formulas. Here we generalize those results for
the classes of models that are definable by the Horn formulas.

Recall that the UHF formula Φ is not a part of an instance. To prove the decid-
ability, it is enough to show that for every Φ there is an algorithm solving KΦ-SAT.
We are not going to present one uniform algorithm solving the satisfiability problem
for all UHF formulas, because the complexity of such algorithm would be high.

If Φ is an inconsistent Horn formula, the satisfiability problem is in P (the answer
is always “no”). For the case of consistent bounded formulas, we already proved that
the satisfiability is NP-complete, (see Section 6.5).

Below we study consistent and unbounded formulas. We show different algorithms
for formulas that fork at all levels and for formulas that do not fork at some level.

7.1. Tree-compatible case

In the following subsections we study formulas that fork at all levels. We show
algorithms for formulas satisfying S1 and S2, and prove that it is impossible that a
formula, which forks at all levels, satisfies S3.

7.1.1. Formulas that do not force long edges

Assume that all edges in CΦ(LZ) are short. Here we can use standard approaches
to satisfiability of modal logic over the class of all models. For local satisfiability we
can bound the depth of tree-models and the degree of their worlds linearly in ϕ and
then check the existence of such models in a depth-first search manner in PSpace
(see e.g. [23]; please note that while the cited result does not consider reflexivity and
symmetry, there are only some minor changes needed to cover these cases).

For the global satisfiability, we can enforce models of depth exponential with
respect to the length of the modal formula ϕ. The existence of models can be
checked by an alternating procedure, which first guesses the type of the root and then
guesses types of its children and universally repeats the procedure for the children.
This algorithm works in alternating polynomial space, and thus the problem is in
ExpTime. The corresponding lower bound can be obtained by encoding the halting
problem for alternating Turing machine with polynomial space.
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7.1. Tree-compatible case

7.1.2. Formulas that force only long forward edges

Assume that the condition S2 holds for some l, a1, . . . , al. This case can be treated
similarly to the case of satisfiability over the class of transitive models, i.e. the case of
logic K4 (see [23] or Section 6.7 in [4]). Let A be the additive closure of {a1, . . . , al}
and c be the product of all positive ai (c =

∏
1≤i≤l,ai>0 ai).

Let PM(v) be a set of proper k-inner predecessors of v in M and Wi = {j|j ≤ i}.
We have the following properties.

For all a ∈ A and i, PLZ(i) ⊆ PLZ(i+ a) (7.1)

For all a ∈ A and i, PLZ(i+ a) ∩Wi−c ⊆ PLZ(i) (7.2)

For the (7.1) note that for any j ∈ PLZ(i) we have i− j − 1 ∈ A and a ∈ A, and
therefore j+a− i−1 ∈ A simply because A is closed under addition. Property (7.2)
follows from property S2 and fact that for each a ∈ A there exists a′ ∈ A such that
a = a′ mod c and a′ < c (which follows from Chinese remainder theorem).

For i ≥ k, PLZ(i) =
⋃

a∈A,a<2c

PLZ(i− a) ∪ {i− 1} (7.3)

The inclusion “⊆” comes from property (7.1). For the “⊇” case, consider any k-
inner predecessor j of i. If i− j > 2c, then Property (7.2) for a = c guarantees that
j ∈ PLZ(i− j) only if j ∈ PLZ(i). If 1 < i− j ≤ 2c, then i− j − 1 ∈ A. Since j is a
predecessor of j + 1, j ∈ PLZ(j + 1) = PLZ(i− (i− j − 1)) and i− j − 1 < 2c. Case
when i− j = 1 is trivial.

For a given world w with a type t, we define universal requirements of w, denoted
by UR(w), as the subset of t that consists of formulas of the form �ϕ. Moreover, we
define predecessors requirements of w, denoted by PR(w), as the set of the universal
requirements of the predecessors of w, i.e.,

⋃
{UR(v)|v is a predecessor of w}.

Clearly, property (7.3) implies that for all i ≥ k

PR(i) =
⋃

a∈A,a<2c

PR(i− a) ∪ UR(i− 1) ∪ PRni(i) (7.4)

where PRni(wi) is a sum of requirements given by those predecessors of i that are
not k-inner.

Now, we are ready to design an alternating algorithm that guesses a tree-based
structure in top-down manner. For input ϕ, it starts from guessing and verifying first
k levels. Then, the algorithm recursively calls procedure verify(head, URs, PR, �ψ)
where

• head contains information about the first k levels of structure;

• PRs is a list of predecessors requirements of previous 2c k-inner worlds;

• CR is a set of predecessors requirements for the current world;

• ♦ψ is a subformula of ϕ.
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The procedure guesses a type t that satisfies ψ and all requirements. Then it guesses
a subset of subformulas of ϕ in order to provide all witnesses for the current world,
and for each of them guesses whether they are k-inner. For each witness that is
k-inner it simply guesses and verifies the remaining levels (at most k − 1). For all
others witnesses, it universally calls itself for this subformula with PRs and CR
updated using Equation (7.4).

The algorithm described above verifies if ϕ has a model, but it may run forever.
Therefore we add one more parameter to procedure verify: a list of visited config-
urations (i.e. triples (PRs,CR,♦ψ)), and additional condition: return “Yes” if the
same configuration is visited second time.

It is not hard to see that if this algorithm returns “Yes”, then it is possible to build
a model. Also, thanks to the property (i) of Lemma 6.2, if ϕ has a model, then it has
a tree-based model such that all witnesses for the world at the level k are realized at
the level k + 1. In such tree-based model, worlds are connected only if they are on
the same path in tree and, moreover, k-inner worlds v, w are connected if and only
if hT (v) and hT (w) are. Such a canonical model can be guessed and verified by the
algorithm. What remain to be explained is that this algorithm works in polynomial
time.

The key observation here is that predecessors requirements cannot shrink, i.e., if
we have two configurations (PRs1, CR1, �ψ1) and (PRs2, CR2, �ψ2) such that the
algorithm visits the second one after the first one, then for each r ∈ PRs1 ∪ {CR1}
(we abuse a notation here since no confusion will result) there is r′ ∈ PRs2∪{CR2}
such that r ⊆ r′. It means that the number of possible PRs lists can be bounded by
|ϕ|2c ·(2c)! , and the number of all configurations can be bounded by |ϕ|2c+1 ·(2c)!·|ϕ|,
which is clearly polynomial in |ϕ|. Therefore, after a polynomial number of steps
some configuration must occur twice. Since APTime = PSpace, it leads to the
membership is PSpace in both global and local case.

7.1.3. Formulas that force long and backward edges

We prove that this case is not possible — S3 is inconsistent with the tree-compatible
model property.

Let Φ satisfy S3 for some m > 0. Let k = g(|Φ|) and w = 0k. By Lemma 6.10
we see that there are edges from 0k+(i+1)(m−1) to 0k+i(m−1) in C(T∞) for any i ≥ 0.
Define h : LZ → C(T∞) as h(x) = 0k−x(m−1) for x < 0 and h(x) = 0k1x otherwise.
Clearly h is a morphism, and by Observation 6.4 it is also a morphism from CΦ(LZ)
to C(T∞). Since in CΦ(LZ) there is an edge from 1 to 1− 3m+ 1, there is also an
edge from 0k1 to 0k+1−3m+1 and therefore w is not forking.

7.2. The tree-incompatibility

Let Φ be a formula without the tree-compatible model property. Recall that two
worlds w,w′ of a frameM are equivalent if for each world u we have uRw iff uRw′.
We are going to exploit the property guaranteed by Lemma 6.12. We start with
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the observation that says that if we have two equivalent worlds v, w with the same
types, then we can remove one of them.

Observation 7.1. Let M = 〈W,R, π〉 be a structure such that 〈W,R〉 |= Φ, and ϕ
be a modal formula such that M |= ϕ. If for all subformulas ψ of ϕ satisfied by w
there is a world w′ of M such that w 6= w′, w,w′ are equivalent and w′ satisfies ψ,
then for W ′ = W \ {w} we have 〈W ′, R�W ′〉 |= Φ and M�W ′ |= ϕ.

The proof is straightforward — the types of remaining worlds do not change.

Let M be a tree-based model based on the frame C(T ). We denote by level i of
M the set of worlds from M such that the length of the path from root to w in T
(notice that T is a tree) is equal i.

Observation 7.2. Let ϕ be a formula and M be a tree-based model of Φ and ϕ.
Then there is a model of Φ and ϕ such that the size of each level of M is bounded
polynomially in |ϕ|.

First, observe that the number of worlds at level i ≤ 2g(|Φ|) can be bounded by
|ϕ|i because Lemma 6.2 guarantees that the degree of the tree is bounded by |ϕ|.
Thanks to Lemma 6.11, Φ does not fork at level g(|Φ|). It follows from Lemma 6.12
that for all worlds w at the level g(|Φ|) and all i ≥ 2g(|Φ|), all descendants of w at
the level i are equivalent. Therefore, using Lemma 6.16, we can remove all but |ϕ|
of them. Since the number of worlds at the level g(|Φ|) can be bounded by |ϕ|g(|Φ|),
the number of worlds at the level i > 2g(|Φ|) can be bounded by |ϕ|g(|Φ|) · |ϕ|, so
polynomially in |ϕ|.

Observation 7.2 says that we can reduce the number of worlds needed at each level
by some polynomial of |ϕ|. The existence of such models can be verified by a non-
deterministic machine working in polynomial space that first guesses first 2g(|Φ|)
levels, and then recursively guesses and verifies the consecutive levels, similarly to
the tree-compatible case. Since the number of worlds needed at each level can be
bounded polynomially in |ϕ|, such an algorithm would work in NPSpace=PSpace
[39]. We can conclude that here the satisfiability problem is in PSpace. This ends
the proof of Theorem 3.1. However, it does not lead to the optimal complexity.

7.3. Sharpening the complexity

In this section, we study the satisfiability problems more carefully to obtain the
precise complexity. The complexity results are summarized in Table 7.1.

7.3.1. Formulas with TCMP

Proposition 7.3. For a given UHF formula Φ, if Φ has the tree-compatible model
property and satisfies S2, then global KΦ-SAT is in NP.
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7. The decidability

Properties of Φ global-KΦ-SAT KΦ-SAT

Φ is inconsistent P P

Φ is consistent and bounded NP-c NP-c

Φ is consistent, unbounded, . . .

. . . has the TCMP and satisfies S1 ExpTime-c PSpace-c

. . . has the TCMP and satisfies S2 NP-c PSpace-c

. . . has the TCMP and satisfies S3 impossible

. . . and does not have the TCMP and satisfies S1 PSpace-c NP-c

. . . and does not have the TCMP and satisfies S2 NP-c NP-c

. . . and does not have the TCMP and satisfies S3 NP-c NP-c

Table 7.1.: A summary of a complexity of a satisfiability problem for modal logic
defined by Horn formulas.

Proof. Let Φ satisfy S2 for some l, a1, . . . , al bounded by g(|Φ|) and let c be the
product of all ai and M be a T-based model of ϕ from KΦ. We prove that ϕ has a
KΦ-based model with the number of types bounded by |ϕ| · c.

We say that a world w at the level i (of T ) is saturated if for all k and every
successors w′ of w at levels i+ kc, PR(w) = PR(w′).

Observe that in M there is a world w such that the subtree rooted in w contains
only saturated worlds. Let M′ be this subtree. Of course, M′ is a KΦ-model of ϕ.
For each subformula ♦ψ of ϕ and each i < c, if there is a world in M′ at level jc+ i
for some j that satisfies ψ, then we take a 1-type of one such world and call it tψ,j .
It is not hard to see that there exists a model M′′ that contains only w and worlds of
these types — we can construct such a model starting from w, and then recursively
constructing new levels that contain all needed witnesses for the previous level.

The non-deterministic algorithm proceeds as follows. First, it guesses sets of
requirements PR0, PR1, . . . , PRc−1, and a subset of types of the form tψ,j . If this
types are consistent with requirements and for each tψ,i we can find tψ1,i+1 mod c, . . . ,
tψs,i+1 mod c such that these types provide all needed witnesses for a world of type
tψ,i, then it returns “Yes”, otherwise it returns “No”. Clearly, it works in polynomial
time and solves global KΦ-SAT.

Proposition 7.4. For a given UHF formula Φ, if Φ has the tree-compatible model
property, then KΦ-SAT is PSpace-hard.

Proof. We encode the QBF problem, adjusting the usual technique (see e.g. [23]).
Let P = ϑ1p1ϑ2p2 . . . ϑnpn.ρ be an instance of QBF problem, where ϑi ∈ {∀, ∃} and
ρ is quantifier-free. We define a modal formula ϕ such that P is true is and only if
ϕ has a KΦ-based model.

We define an operator �iψ = ψ ∧�ψ ∧��ψ ∧ · · · ∧�iψ. Formula ϕ contains the
variables l0, l1, . . . , ln and p1, . . . , pn and is a conjunction of the following formulas.

1. l0
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2. �n
∨

0≤i≤n li ∧�n
∧
j 6=i ¬(li ∧ lj)

3. �n(li ⇒ ♦li+1) for each i < n such that ϑi+1 = ∃
4. �n(li ⇒ ♦(li+1 ∧ pi+1) ∧ ♦(li+1 ∧ ¬pi+1)) for each i < n such that ϑi+1 = ∀
5. �n((li ∧ pi ⇒ �n−ipi) ∧ (li ∧ ¬pi ⇒ �n−i¬pi)) for each i < n

6. �n(ln ⇒ ψ)

Consider a tree T that consists of n+ 1 levels, and each world at ith level has one
successor if ϑi = ∃ and two successors otherwise.

Assume that P is true. We define a labeling π of T inductively, starting from the
root. Let root satisfy only l0. Let w be at level i. Define ti+1 = π(w) \ {li} ∪ {li+1}.
If ϑi = ∀, then w has two successors and we set their labellings to be ti+1 and
ti+1 ∪ {pi+1}. Otherwise, if set the labeling of the successor of w to ti+1 if formula
ϑi+2pi+2 . . . ϑnpn.ρ is satisfied for a valuation that makes true precisely the variables
from ti+1 and ti+1 ∪ {pi+1} otherwise. Then, 〈CΦ(T ), π〉 is a KΦ-based model of ϕ.

On the other hand, if ϕ has a model, then we can show that T can be homomor-
phically embedded in this model and the image of this embedding is a justification
that P is true.

Proposition 7.5. For a given UHF formula Φ, if Φ has the tree-compatible model
property and satisfies S1, then global KΦ-SAT is PSpace-hard.

The proof is almost the same as the previous one, except that we replace the
conjunct 1 by ln ⇒ ♦l0.

7.3.2. Formulas without TCMP that do not force long edges

Proposition 7.6. For a given UHF formula Φ, if Φ does not have the tree-compatible
model property and satisfies S1, then it has a polynomial model property for the local
satisfiability problem.

Proposition 7.6 follows from the fact that in the local satisfiability case for any
tree-based model M based of C(T ) such that of M0, 0 |= ϕ, we can simply remove
all worlds w that are at the levels greater than d, the quantifier depth of ϕ. Indeed,
S1 says that there are only short edges in closures and therefore the removed worlds
were not reachable by ϕ. The resulting model contains at most |ϕ|2g(|Φ|)+1 worlds
at first 2g(|Φ|) levels and then at most |ϕ| worlds at each of remaining d − 2g(|Φ|)
levels, so clearly a polynomial number of worlds.

Proposition 7.7. For a given UHF formula Φ, if Φ does not have the tree-compatible
model property and satisfies S1, then global KΦ-SAT is PSpace-hard.

Proof. To make the proof more readable, we consider only the formula Φ = {sRt ∧
tRy ∧ sRx⇒ xRy}. Proofs for other cases are similar.

Let 〈D, VD, HD〉 be an instance of the bounded-space domino problem and n =
O(|D|). We define a formula ϕ = ψc ∧ψv ∧ψh ∧ψe over variables {t0, . . . , tn−1} ∪D
where:
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• ψc =
∨
d∈D d ∧

∧
d,d′∈D,d 6=d′(¬d ∨ ¬d′);

• ψe =
∧
i<n ♦ti;

• ψv =
∧
i<n

∧
d∈D(ti ∧ d⇒ (

∨
(d,d′)∈VD �(ti ⇒ d′)));

• ψh =
∧
i<n−1

∧
d∈D(�(ti ∧ d)⇒ (

∨
(d,d′)∈HD

�(ti+1 ⇒ d′))).

Clearly, the reduction is polynomial. Suppose that M is a model of Φ and ϕ and
v0 is any world of M. We define the tiling t by repeating the following procedure.
For a given i, we define vj,i as a successor of vi that satisfies tj and we put t(j, i) = d,
where d is satisfied in vj,i. Note that ψe guarantees that such a successor exists, ψv
guarantees that if there is more than one such successor, then all of them satisfy the
same d, and ψc guarantees that all worlds satisfy precisely one d. Finally, we set
vi+1 equal to any successor of vi that satisfies t0.

It is not hard to see that for all k < n− 1 and l ∈ N property (t(k, l), t(k+ 1, l)) ∈
HD is guaranteed by ψh since both vk,l and vk+1,l are successors of vl. To check
the other property, consider any l ∈ N and k < n. Since vlRvl+1, vl+1Rvk,l+1,
and vlRvk,l, Φ guarantees that we have vk,lRvk,l+1 and therefore ψv guarantees that
(t(k, l), t(k, l + 1)) ∈ VD.

We showed that if ϕ has a model that satisfies Φ, then the domino problem has a
solution. It should be now easy to see that the converse is also true.

7.3.3. Formulas without TCMP that force only long forward edges

Proposition 7.8. For a given UHF formula Φ, if Φ does not have the tree-compatible
model property and satisfies S2, then global and local KΦ-SAT are NP-complete.

Proof. Let Φ be a UHF formula that does not have the tree-compatible model prop-
erty and satisfies S2 for some l, a1, . . . , al, ϕ be a modal formula and M be a tree-
based model of Φ and ϕ. Let c = a1 · · · · · al and for a world w at level g(|Φ|) and
i > g(|Φ|), set Cwi be the set of all descendants of w at level i. According to previous
observations, we may assume that the size of each such set is polynomial in |ϕ|. Our
goal is to show that for any w, it is enough to consider only polynomially many
non-isomorphic sets Cwi . Clearly, it will make the algorithm described above run in
the polynomial time.

In Section 7.1 we showed similar property, but the technique used there is not
sufficient for this case — now, it is not enough just to satisfy one formula of the
form ♦ψ at each level. We solve this problem in the following way: in each Cwi , we
put as many witnesses as possible. We extend the notation from Section 7.1 defining
PR(X) =

⋃
w∈X PR(w). Note that since all worlds in Cwi are equivalent, for any

v ∈ Cwi we have PR(v) = PR(Cwi ). Moreover, Properties (7.1) and (7.2) also holds
in this case.

Observation 7.9. Let w, v be worlds such that v ∈ Cwj for some j and let i be such
that g(|Φ|) < i < j and c divides j−i. If UR(v) ⊆ PR(Cwi+1) and PR(v) = PR(Cwi ),
then model obtained by adding a copy v′ of v to Cwi satisfies both Φ and ϕ.
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Note that the set of successors of v is a subset of the set of successors of v′, and
therefore v has all the needed witnesses. Moreover, the set of predecessors of v′

is a subset of the set of predecessors of v, so v′ does not violate any predecessor
requirements. Finally, since v′ does not add any new requirements, it should be
clear that new model satisfies ϕ. Therefore the new model satisfies ϕ and, in an
obvious way, Φ.

Observation 7.10. Let w be a world at level g(|Φ|), let i > g(|Φ|), and let A =
{0, 1, . . . } be a (possibly finite) set of consecutive numbers. Let C =

⋃
{Cwi+ac|a ∈ A}

be such that for all j, j′ ∈ A, PR(Cwj ) = PR(Cwj′ ) and PR(Cwj+1) = PR(Cwj′+1).
Then, we can define a set C ′ with |C ′| ≤ |ϕ| such that each element of

⋃
C can be

replaced by a copy of an element from C ′ in a way such that the obtained model is
still a model of ϕ and Φ.

Let C =
⋃
C. We define a C ′ ⊆ C in the following way. For every subformula of

ϕ of the form ♦ψ, if there is a type t satisfying ψ such that t is realized in infinitely
many elements of C, then we take one world of this type and add it to C ′. If there
is no such type, but there is a world in C that satisfies ψ, then we find a maximal
j ∈ A such that there is such a world v ∈ Cwi+jc and we add v to C ′. Clearly,

|C ′| ≤ |ϕ|. Then, we define C ′i+jc = C ′ ∩
⋃
a∈A,a≥j C

w
i+ac and replace each Cwi+jc by

C ′i+jc. Note that such a model can be obtained by applying Observation 7.9 first,
and then Lemma 6.16, and therefore it satisfies both ϕ and φ.

Let w be a world at level g(|Φ|) and i be such that g(|Φ|) ≤ i < g(|Φ|) + c. Prop-
erty (7.1) still holds and shows that the sequence PR(Cwi ), PR(Cwi+c), PR(Cwi+2c) . . .
never shrinks, and the same holds for PR(Cwi+1), PR(Cwi+c+1), PR(Cwi+2c+1), . . . .
Therefore, the sequence Cwi , C

w
i+c, C

w
i+2c can be split into at most |ϕ|2 subsequences

that satisfy the requirements of Observation 7.10, so the number of different sets
of the form Cwi can be bounded by |ϕ|3. Taking into account all possible w and i,
we can bound the number of possible sets Cwi by |ϕ|g(|Φ|) · c · |ϕ|3, which is clearly
polynomial in ϕ.

7.3.4. Formulas without TCMP that force long and backward edges

Proposition 7.11. For a given UHF formula Φ, if Φ does not have the tree-
compatible model property and satisfies S3, then it has the polynomial model property.

Proof. Suppose that Φ does not have the tree-compatible model property and sat-
isfies S3 for some k,m. Observe that in CΦ(LZ) for all i > k and l ≥ 0, worlds i
and i+ lm are equivalent. Let M be a model of ϕ. It follows from Lemmas 6.11
and 6.12 that for all w at the level g(|Φ|) and all i, all descendants of w at levels
2g(|Φ|) + i, 2g(|Φ|) + i+m, 2g(|Φ|) + i+ 2m, . . . are equivalent. Thanks to Lemma
6.16 we can remove all but polynomially many of them and obtain a smaller model
that still satisfies ϕ. We may repeat this procedure for all such w, finally obtaining
model of polynomial size in |ϕ|.
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7. The decidability

7.4. Horn formulas and equality

In this section, we prove Theorem 3.2. It is not hard to see that each negative
occurrence of equality may be eliminated by simply identifying variables. Thus, in
the rest of this section we focus on formulas without negative occurrences of equality.
For a given Φ ∈ UHF=, let Φ# contain all the clauses of Φ except for those with the
positive occurrence of equality.

We say that an UHF= formula Φ essentially uses equality if there is a modal
formula ϕ such that ϕ has a Φ#–based model but it does not have a Φ–based model.
Clearly, if Φ does not essentially use equality, then KΦ–SAT is equal to KΦ#–SAT.

Proposition 7.12. For any UHF= formula Φ that essentially uses equality, KΦ–SAT
and global KΦ–SAT are in NP.

Proof (sketch). Let Φ be an UHF= formula that essentially uses equality.
Clearly, there is a tree T such that CΦ#(T ) is a model of Φ# but not a model

of Φ — otherwise, every tree-based model over K# would be a model over KΦ,
contradicting the fact Φ essentially uses equality. We consider two cases.

Suppose that there are two worlds w, v at different levels in T such that for some
clause Ψ ⇒ x = y of Φ in CΦ#(T ) the formula Ψ is satisfied for some instantiation
that substitutes x by w and y by v. Consider the morphism hT (recall that hT (w) = i
if w is at the level i) and the worlds hT (w) and hT (v). Clearly, in CΦ(LZ) we
have Ψ(hT (w), hT (v)). By the definition of hT we know that hT (w) 6= hT (v), and
therefore CΦ(LZ) is not a model of Φ. It implies that Φ is bounded and therefore it
has the polynomial model property.

The other case is more interesting. In this case, there are worlds w, v at the same
level in T such that some clause of Φ of the form Ψ ⇒ x = y is not satisfied in
CΦ#(T ) for some instantiation that substitutes x with w and y with v. An example
of formula with this property if vRx∧ vRy ⇒ x = y. It is not hard to see that there
are such worlds also in CΦ#(T∞).

We say that (possibly infinite) directed acyclic graph (DAG) is proper if it has a
root r such that all vertices of this DAG are reachable from r, and for all elements
v, v′ all paths from v to v′ have the same length. Note that trees are special cases
of proper DAGs.

We adjust Lemma 6.2: if ϕ is KΦ-satisfiable, then there exists a proper directed
acyclic graph T with the degree bounded by |ϕ| and a labeling πT , such that 〈T , πT 〉
is a model of ϕ and 〈CΦ(T ), πT 〉 is a model of ϕ that satisfies Φ.

As for trees, we define the level of v in DAG as the length of path from the root to
v. Therefore, morphism πT is well-defined also for DAGs. Then, we adjust Lemma
6.12: if, for any proper DAG T , w is a world at level g(|Φ|) in CΦ(T ), then for all i,
there is at most one g(|Φ|)-followed descendant of w at level 2 ·g(|Φ|)+i in the frame
T . It means that the number of worlds at each level can be bounded by |ϕ|g(|Φ|).
Then we show, as in the case of tree-incompatibility, that it is enough to consider
polynomial number of different types of levels, and therefore that both the global
and the local satisfiability problems are NP-complete.
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8. Finite satisfiability

In this section, we show that for any Φ ∈ UHF, finite KΦ–SAT and finite global
KΦ–SAT are decidable. In case of some UHF formulas, decidability of corresponding
modal logics is shown in previous section by proving that every modal formula
satisfiable over KΦ has also a finite model in KΦ — for such a formulas, the finite
local (global) satisfiability problem is equal to the local (resp. global) satisfiability
problem and, therefore, has the same complexity. However, some logics lack the
finite model property (with respect to the given class of frames). Below we study
the satisfiability problem for all possible UHF formulas.

8.1. Formulas that do not force long edges

In this section, we consider formulas Φ ∈ UHF that satisfy S1. We have already
seen that often the logics defined by UHF formulas have the finite model property,
e.g., the logics defined by the bounded formulas. In such cases, the question about
the existence of a finite model is equivalent to the question about the existence of
any model, and therefore these problems have the same complexity. Below we study
unbounded (and therefore consistent) formulas.

8.1.1. Local satisfiability

Proposition 8.1. Each unbounded UHF formula Φ that does not force long edges
has the finite model property in the local satisfiability case.

Proof. Let M be a T -based model of a modal formula ϕ for some T such that
CΦ(T ) ∈ KΦ. Such a model exists due to Lemma 6.2. Since Φ does not force long
edges, under the morphism hT it follows that CΦ(T ) can only contain edges between
states on identical or consecutive levels.

In order to obtain a finite model, we simply remove from M all worlds from levels
greater than |ϕ|. Since the truth of ϕ depends only on the worlds that are reachable
from a root by a path with the length bounded by |ϕ| (in fact, by a modal depth of
ϕ), the resulting model is a finite model of ϕ and, of course, it satisfies Φ since Φ is
universal.

We showed that ϕ has a KΦ-based model if and only if it has a finite KΦ-based
model, so KΦ-SAT is equal to finite KΦ-SAT.
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8. Finite satisfiability

Properties of Φ finite global-KΦ-SAT finite KΦ-SAT

inconsistent P (trivial)

consistent and bounded FMP, NP-c

unbounded, satisfies S2 NExpTime

unbounded, satisfies S3 FMP, NP-c

is unbounded, does not force long edges and . . .

. . . forks at all levels and
merges at some level

Lack of FMP,
PSpace-c

FMP,
PSpace-c

. . . forks at all levels and
does not merge at any
level

FMP,
ExpTime-c

FMP,
PSpace-c

. . . does not fork at some
level

FMP,
PSpace-c

FMP,
NP-c

Table 8.1.: A summary of a results for the finite satisfiability problems for modal
logic defined by Horn formulas.

8.1.2. Global satisfiability

The case of global satisfiability is much more complicated. In the case of general
satisfiability, it was enough to consider the behavior of a first order formula on T∞
and LZ. In the case of finite satisfiability, we need one more structure, called X ,
that contains a world with in-degree 2.

Formally, we define the frame X as 〈WX , RX〉, where WX = {i|i ∈ Z} ∪ {i|i ∈
Z \ {0}} and RX = {(i, i+ 1)|i ∈ Z} ∪ {(i, i+ 1)|i ∈ Z \ {−1, 0}} ∪ {(−1, 0), (0, 1)}.
Fig. 8.1 contains a fragment of the structure X .

We say that a formula Φ merges at a level k < 0 if in CΦ(X ) there is an edge from
k − 1 to k.

Example. Consider the formula Φ = xRz ∧ zRv ∧ yRv ⇒ xRy over X . Clearly,
Φ implies an edge from −2 to −1, so Φ merges at level 1. However, frames T∞ and
LZ satisfy Φ.

We consider three cases. For each formula Φ of UHF such that Φ does not force long
edges, merges at some level and forks at all levels, we show that the modal logic
over KΦ does not have the finite model property (Proposition 8.3), and that the
global KΦ–SAT is PSpace–complete (Propositions 8.7 and 8.8). In the remaining
cases, i.e. the case of formulas that do not force long edges, do not merge at any
level and fork at all levels and and the case of formulas that do not force long edges
and do not fork at all levels, the decidability follows from the finite model property
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8.1. Formulas that do not force long edges

(Propositions 8.9 and 8.10).

−3

−2

−1

0

1

−3

−2

−1

1

Figure 8.1.: A fragment of X structure (solid edges). Consider a formula Φ = yRw∧
wRv ∧ xRv ⇒ xRy that forces an edge (−1,−2). When applied to
x = w = 0, y = −1 and v = 1, it implies edge (0,−1). Then, applied to
x = 0, v = −1, w = −2 and y = −3 it implies long edge (0,−3).

The following lemma shows an important regularity in models of formulas that
merge.

Lemma 8.2. Let Φ be an unbounded UHF formula that does not force long edges
and merges at a level k, M be a model of Φ, v1, v2, . . . , vl be a walk (i.e. a path, but
not necessarily simple) in M such that all vi are ∞-inner.

(i) If vlRvl−c for some c > 0, then for all i > c, viRvi−c.

(ii) If vl−cRvl for some c > 0, then for all i > c, vi−cRvi.

Proof. Let . . . , v−2, v−1, v0, v1 and vl, vl+1, . . . be infinite walks in M. Such walks
exist since v1 and vl are ∞-inner.

We prove (i) in by induction. Assume that for some i > 0 for all j > i we have
vjRvj−c. We define a morphism h from X into M as

h(w) =


vi+s+1 if w = k + s for some s ≤ 0
vi−c+s if w = k + s for some s > 0

vi−c+s if w = k + s for some s ∈ Z

A quick check shows that h is a morphism and since CΦ(X ) contains an edge from
k − 1 to k, M has to contain edge from vi to vi−c.

The proof of (ii) is similar and thus omitted.

Now we use the above lemma to show the lack of finite model property.

Proposition 8.3. Each unbounded UHF formula Φ that does not force long edges,
merges at a level k < 0 and forks at all levels lacks the finite model property in global
case.

Proof. Consider a formula τ defined as the conjunction of the following formulas.
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8. Finite satisfiability

1.
∨
i∈{1,2,3,4} pi ∧

∧
i,j∈{1,2,3,4},i 6=j ¬(pi ∧ pj) (each world satisfies exactly one of

p1, p2, p3, p4).

2. p1 ⇒ (♦p2 ∧�p2)

3. p2 ⇒ (♦p3 ∧�p3)

4. p3 ⇒ (♦p2 ∧ ♦p4 ∧�(p2 ∨ p4))

5. p4 ⇒ (♦p1 ∧�p1)

p1 p2 p3

p4

p2

p1

p3 p2

p2

p4 p1

p3

p3

· · ·

Figure 8.2.: An infinite model of τ .

An infinite model of this formula is presented in Fig. 8.2.

Assume that M is a finite model of τ and let w be a world that satisfies p1 in M.
Quick check shows that such a world always exists. We define the path w0, w1, . . . , wl
such that all worlds of the form w2i+2 satisfy p3 and all worlds of the form w2i+1

satisfy p2. We do it recursively, starting from w0 = w. Then, if i is odd, we find a
successor v of wi−1 that satisfies p2. Such a successor exists because of the parts 2
and 4 of τ . If i is even, we define v as a successor of wi−1 that satisfies p3 — it exists
because of 3. If v is already on the path, then we end the construction, otherwise
we put wi = v.

Since M is finite, the above construction terminates. It means that there is some
r < l such that M |= wlKwr. Clearly, wl and wk are ∞-inner. It follows from
Lemma 8.2 that M |= wl−rKw0. But wl−r satisfies p2 or p3, w0 satisfies p0, and
parts 3 and 4 of τ forbid such connections. Therefore there is no finite model of τ
based on a frame from KΦ.

In order to show the decidability we provide some auxiliary lemmas. We start from
a simple property of the global satisfiability problem — each satisfiable formula has
a model, which is strongly connected.

Lemma 8.4. Let Φ ∈ UHF, ϕ be a modal formula and M be a finite KΦ-based
structure such that M |= ϕ. Then there is a KΦ-based substructure N of M such
that N |= ϕ and the frame of N is strongly connected.

52



8.1. Formulas that do not force long edges

Proof. Let N1, N2, . . .Nk be a partition of M into maximal (w.r.t. number of
worlds) strongly connected components such that for any i > j there is no path
from (any world of) Ni to Nj . Such a partition exists since the relation “there is a
path from v to w” is a preorder and, while considered on maximal strongly connected
components, it is antisymmetric (if there is a path from Ni to Nj and from Nj to
Ni, then Ni and Nj are not maximal) and therefore it is an order.

We put N = Nk. Clearly, N satisfies Φ since Φ is universal. Moreover, since
each world from N has all its successors in N (there is no path to worlds in other
connected components), N satisfies ϕ.

We say that a frameM is k-periodic if it consists of a pairwise disjoint, non-empty
sets of worlds W1, W2, . . . , Wk such that for each v, w from M there is an edge
from v to w if and only if for some i ≤ k, v ∈Wi and w ∈W(i mod k)+1. Notice that
1-periodic frame is a clique. For each k ∈ N we define the cycle Ck as Ik with one
additional edge, namely (k − 1, 0). Clearly, each Ck is k-periodic.

We are going to prove the decidability by showing that each satisfiable formula
has a model that is k-periodic for some k. In order to do so, we have to prove two
technical lemmas.

Lemma 8.5. Let Φ ∈ UHF.

(a) If Φ has a k-periodic model M, then Ck is a model of Φ.

(b) If Ck is a model of Φ, then any k-periodic frame is a model of Φ.

(c) If LZ is a model of Φ, then for all c > |Φ|, Cc is a model of Φ.

(d) If for some c > |Φ| the frame Cc is a model of Φ, then LZ is a model of Φ.

Proof. For (a), observe that if a periodic modelM that consists of sets W1, W2, . . . ,
Wk is a model of Φ, then Ck is isomorphic with an induced substructure of M that
consists of one world from every Wi.

In the rest of the proof we use one more definition. We say that a morphism
h :M→M′ is complete if for all v, v′ we have h(v)Rh(v′) if and only if vRv′. Note
that if there is a complete morphism h :M→M′ and Φ does not hold in M, then
it does not hold in M′.

For (b), assume that there is a periodic frame M that consists of sets W1, W2,
. . . , Wk and is not a model of Φ, but Ck is a model of Φ. We define a complete
morphisms f :M→ Ck as f(v) = i for v ∈ Wi. Since Φ does not hold in M and f
is a complete morphism, Φ does not hold in Cl — a contradiction.

We prove (c) as follows. Let c > |Φ|. Assume that there is a clause Ψ satisfied
in LZ but not in Cc, and let v1, v2, . . . , vn be worlds of Cc such that Ψ(v1, . . . , vn) is
false. Let k be such that no world among v1, . . . , vn is equal k. Consider the function
f : Cc�{v1,...,vn} → LZ defined as

f(s) =

{
s for s > k
c+ s for s < k
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8. Finite satisfiability

A quick check shows that the function f is a complete morphism. Since Ψ(v1, . . . , vn)
does not hold in Cc , it follows that Ψ(f(v1), . . . , f(vn)) does not hold in LZ. But
LZ |= Ψ, a contradiction.

For the proof of (d), let k > |Φ|, Ψ ⇒ Ψ′ be satisfied in Ck but not in LZ. Let
v1 = s, v1 = t, v3 . . . , vn be worlds of LZ such that Ψ(v1, . . . , vn) is true, Ψ′(v1, . . . , vn)
is not, and |s − t| is minimal. Let f(i) = i mod k be a morphism from LZ onto
Ck. If t − s mod k 6= 1, Ψ ⇒ Ψ′(f(v1), . . . , f(vn)) does not hold and we have a
contradiction. Otherwise, |s− t| ≥ k−1 so there is a world l such that l is between s
and t and l is different from all of s, t, v3, . . . , vn. Then, morphism g : LZ�{v1,...,vn} →
LZ defined as g(s) = s for s < l and g(s) = s− 1 otherwise leads to the contradiction
with the minimality of |s− t|.

Lemma 8.6. Let Φ be an unbounded UHF formula that does not force long edges.
Assume that for some i, j < 0, CΦ(X ) contains an edge (i, j) or (i, j). Then j−i = 1
and CΦ(LZ) = LZ.

Proof. As X is symmetric, CΦ(X ) |= iRj implies CΦ(X ) |= iRj. So we assume that

CΦ(X ) |= iRj.
Let us consider a morphism f from X into LZ defined as

f(k) = f(k) = k

If |j − i| > 1, then there is a long edge in CΦ(LZ) and it contradicts the assumption
that X does not force long edges.

If j − i = −1, then the morphism f implies that there is an edge (j, j − 1) in
CΦ(LZ) and, since CΦ(LZ) is uniform, for all k there are edges (k, k − 1) in CΦ(LZ).
We define another morphism g to show that then CΦ(LZ) contains a long edge. Let
g be a morphism from X into CΦ(LZ) defined as

g(w) =

{
|k| if w = k for some k

−|k| if w = k for some k

It is not hard to see that g is a morphism and therefore that CΦ(LZ) contains a long
edge (|i|,−|j|). An example is presented in Fig. 8.1.

If j = i, then the morphism f implies that there is a reflexive world in CΦ(LZ),
and therefore all worlds are reflexive. Consider a morphism h from X into CΦ(LZ)
defined as

h(w) =

{
1 if w = k for some k ≤ i
0 otherwise

Since all worlds in CΦ(LZ) are reflexive, h is indeed a morphism, so there is edge
(1, 0) in CΦ(LZ) and, as in the previous case, all edges in CΦ(LZ) are symmetric and
therefore CΦ(LZ) contains a long edge.

For the proof of CΦ(LZ) = LZ, recall that if CΦ(LZ) contains a symmetric or
reflexive edge, then it contains long edges. But Φ does not force long edges, and
therefore CΦ(LZ) = LZ.
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In particular, the above lemma shows that if a first-order formula Φ does not force
long edges and merges, then CΦ(X ) does not contain symmetric or reflexive edges.

Proposition 8.7. Let Φ be an unbounded UHF formula that does not force long
edges, merges at a level k < 0 and forks at all levels. Then finite global KΦ-SAT is
in PSpace.

Proof. Let ϕ be a modal formula and M be a model of ϕ and Φ that is a strongly
connected component. Such a model exists due to Lemma 8.4. Assume that M
contains at least two worlds.

We define a characteristic cycle of M as a walk v0, v1, . . . , vl−1 that contains all
worlds from M and, moreover, in M there is an edge from vl−1 to v0. Note that
such a characteristic cycle exists because M is strongly connected. For the better
readability, below we omit “ mod l” in subscripts of vs.

Our aim is to show that M is s-periodic for some s.

Let XM ⊆ N be such that k ∈ XM if and only if there is vi such that M |=
viRvi+k+1. Lemma 8.2 implies that for all vi and k ∈ XM, M |= viRvi+k+1.

We show that XM is additively closed. Assume that x, y ∈ XM. It means that
M contains edges (vx+y+1, vx+y+2) , (vx+1, vx+y+2) and (v0, vx+1). We define a
morphisms h from X to M, the frame of M, as

h(w) =


vs if w = k − 1 + s for all s ≤ 0
vx+1 if w = k
vx+y+1+s if w = k + s for all s > 0

vx+y+1+s if w = k + s for all s ∈ Z

We see that h(k − 1) = v0 and h(k) = vx+y+1, and since in M there is an edge from
k − 1 to k, x+ y ∈ XM.

Let X lM = {i mod l|i ∈ XM}. By Fact 4.1, X lM can be represented as {i ·gcd(XM)
mod l|i ∈ N}. Define Wi = {vi+j·gcd(XM)|j ∈ N}. It follows that all elements of Wi

all successors in Wi+1, and therefore M is gcd(XM)-periodic.

We need to compress sets Wi. For each i and each subformula ψ of ϕ, if there is
a world in Wi that satisfies ψ, we mark one such world. Then we remove unmarked
worlds. It is easy to see that the types of worlds remain the same.

We have proved that all models of ϕ are s-periodic with the sets of the size
bounded by |ϕ|, but the value of s can be arbitrary large. Now we show that there
is a NPSpace (=PSpace) procedure that checks, for a given modal formula ϕ, if ϕ
has a Φ-based finite global periodic model.

The NPSpace algorithm works as follows. First, it checks if there is a single world
or a single clique (1-periodic set) with the size bounded by ϕ that satisfy ϕ and Φ
and if there is, it returns “Yes”. Otherwise, it guesses a set W1 with size bounded
by |ϕ| and then, recursively, it guesses the successive sets with size bounded by the
same number, checking if guessed worlds are consistent with their predecessor, and

returns “no” otherwise. The algorithm stops after

(
2|ϕ|

|ϕ|

)
+1 steps and returns “yes”.
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8. Finite satisfiability

If there is a model of ϕ, then the algorithm returns “yes”. Indeed, we showed that
ϕ has single world model or a s-periodic model with size of sets bounded by |ϕ|,
and the algorithm can simply guess this world or guess the consecutive sets of this
model.

If the algorithm returns “yes”, then it visited two sets satisfying the same subfor-
mulas, so there is a sequence of sets V1, V2, . . . , Vk, V1 with k ≤ 2|ϕ| such that each set
contains all witnesses needed by its predecessors. We build a s-periodic model that
contains sets V1, . . . , Vk repeated d|Φ|/ke+ 1 times. Clearly, the obtained structure
satisfies ϕ. By Lemma 8.6 LZ = CΦ(LZ), and by Lemma 8.5 the obtained structure
is a model of Φ.

The corresponding lower bound follows from the encoding of the bounded-space
domino problem.

Proposition 8.8. Let Φ be an unbounded UHF formula that does not force long
edges, merges at a level k < 0 and forks at all levels. Then finite global KΦ-SAT is
PSpace-hard.

Proof. We encode the bounded-space domino problem, keeping whole row of a so-
lution in one world. Let 〈D, VD, HD〉 be an instance of the bounded bounded-space
domino problem and n = O(|D|). We build a modal formula using variables pdi for
i < n and d ∈ D. The intended meaning of pdi is that the point in the column i is
tiled by d. We define a formula τ l that guarantees that each point is tiled by exactly
one element of D as follows.

τ l =
∧
i<n

(
∨
d∈D

pdi ∧
∧

d,d′∈D,d 6=d′
¬(pdi ∧ pd

′
i ))

Formula τh will ensure that the tilling is consistent with the relation HD.

τh =
∧

i<n−1

∨
(d,d′)∈HD

(pdi ∧ pd
′
i+1)

We ensure that each world has a successor that describes the row which is consis-
tent with the current one with respect to the relation VD.

τv = ♦> ∧
∧
i<n

∨
(d,d′)∈VD

(pdi ∧�pd
′
i )

Finally, we put τ = τ l ∧ τh ∧ τv. If 〈D, VD, HD〉 has a solution that consists of
rows r1, r2, . . . , then among first nn + 1 of them some rows ri, rj with i < j have
to be the same. Let l = c(j − i). We encode the solution on CΦ(Cl), such that s
represents a configuration i+ (s mod j). That ends the proof.

Now we prove that formulas that do not force long edges, fork at all levels and do
not merge at any level, define logics with the finite model property. In the proof,
we start from an infinite tree–based model M, and construct a very large structure
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that locally looks like a part of M, but is finite. We need to do it carefully in order
not to violate the first–order formula.

Proposition 8.9. Each unbounded UHF formula Φ that does not force long edges,
forks at all levels and does not merge at any level k < 0 has the finite model property
in the global case.

Proof. Let Mb be a tree-based model of ϕ and Φ based on a tree T b, n = |ϕ| and
N = |Φ|. If there is a world in Mb without a proper successors, then the structure
that contains only this world is a model of ϕ and Φ. Otherwise, all worlds are ∞-
followed. We assume that the degree of all worlds is equal n — if it is smaller, we
can duplicate any subtree.

Let w be any g(|Φ|)-inner world in T b, T be a subtree of T b induced by w, and
M be a substructure of Mb that consists of the worlds from T . Clearly, M satisfies
Φ and Property (i) of Lemma 6.2 guarantees that it is a model of ϕ.

Let M be a set of worlds in M. For each w ∈M , we define a tree S ′w as a subtree
ofM rooted in w, Sw as a structure that contains first 2N levels of S ′w, and Sw as
a substructure of M that contains the worlds from Sw. Let F be a set of all types
realized in M. For each type t ∈ F , we pick one world wt of this type and define
St = Sw and St = Sw

For each St, we label leaves in St in a consecutive way, e.g. from left to right, such
that leaves labeled with 1, 2, . . . , n have the same parent and so on.

For each s ∈ {0, 1}, p ∈ P and t ∈ F , we define Tst,p as a copy of St. We define
the finite structure Ms as a disjoint union of all possible Tst,p. We say that a world
w is at a level k in Tst,p if it is a copy of a world that is at a level k in St and that it
is at a level k in Ms if it is at a level k in some tree of Ms. We say that a world v
is a parent of v′ in Mk if wRv, v is at a level k and v′ is at a level k+ 1 for some k.
For any two worlds v, v′ that are in the same tree, we define lca(v, v′) as the lowest
common ancestor of v and v′ (w.r.t. the relation parent). We define llca(v, v′) as
the level of lca(v, v′) if such world exists and llca(v, v′) = −1 otherwise.

We define a structure M′ as a disjoint union of M0 and M1 with additional edges
defined as follows. Consider a tree T0

t,p and its leaf v labeled by p. Let w be a world
in M with the same type and t1, . . . , tk be types of successors of w in T . For each
j ≤ k we add an edge from v to the root of T1

tj ,p and, if some connection between
w and its successors is symmetric, we make this edge symmetric as well. We do the
same for the leaves from M1, but we connect them with the roots from M0.

It is not hard to see that all worlds in M′ satisfy ϕ. We prove that M′ satisfies Φ.

Assume otherwise and let Ψ ⇒ Ψ′ be the formula not satisfied in M′. There are
worlds v1, . . . , vn such that Ψ(v1, . . . , vN ) holds but Ψ′(v1, . . . , vN ) does not.

We define a function νk : M′ → {0, . . . , 4N − 1} as

νk(v) =


s− k for each v at a level s ≥ k in M0

s+ 2N − k for each v at a level s in M1

s+ 4N − k for each v at a level s < k in M0
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8. Finite satisfiability

Let k be such that no world among v1, . . . , vn is at a level k in M0 and M1.
A function f : M′�{v1,...,vn} → CΦ(LZ) defined as f(v) = νk(v) is a morphism.

It is not possible that Ψ′ = ⊥, because then Φ would not be satisfied in CΦ(LZ)
and since Φ is unbounded, CΦ(LZ) is a model of Φ . Similarly, if Ψ′ = xRx, then
some world in CΦ(LZ) would be reflexive and, since all worlds in M are g(|Φ|)-inner
in Mb, all worlds in M and so Ψ′(v1, . . . , vN ) would be satisfied.

The only remaining case is Ψ′ = xRy. Let v1 be at a level l1 in Ms1 and v2 be at
a level l2 is Ms2 . There are two cases: either s1 = s2 and |l1 − l2| ≤ 1, or s1 6= s2

and one of v1, v2 is a root and the other one is a leaf. Otherwise, Φ would force long
edges.

Assume that s1 < s2 and let k be such that no world among v1, . . . , vn is at a level
k in M0. Consider a morphism g : M′�{v1,...,vn} →M′ defined as

g(v) =

{
v′ if v is at a level i ≥ k in M0 and v′ is a parent of v
v otherwise

It implies that Φ requires also an edge for some world that is not a leaf to some
root, and so by a morphism f we can show that Φ forces long edges. The case when
s1 > s2 is symmetric.

Assume that s1 = s2 = 0. If v1 = v2, then, by a morphism f , all worlds of CΦ(LZ)
are reflexive and Ψ′ would be satisfied, as before. If v2 is a parent of v1, then, by a
morphism f , all edges in CΦ(LZ) are symmetric and Ψ′ would be satisfied. So we
can assume that v1 and v2 are not on the same path in M0.

Assume that l1 ≤ N and l2 ≤ N and let k > N be such that no world among
v3, . . . , vN is at the level k in M0. We define a morphism h1 : M′�{v1,...,vn} → T∞ as
follows.

h1(v) =

{
0νk(v) if νk(v) < 4N − k
04N−k+llca(v,v1)1s−llca(v,v1) if v at level s and νk(v) ≥ 4N − k

Let m = llca(v1, v2). Since v1 and v2 are not on the same path, m < min(l1, l2).
Since h1(v1) = 04N−k+l1 and h1(v2) = 04N−k+m1l2−m and h1 is a morphism, it
implies that Φ does not fork a the level 04N−k+m — a contradiction.

Now consider the case when l1 ≥ N and l2 ≥ N . Let k < N be such that no world
among v3, . . . , vN is at the level k in M0.

If llca(v1, v2) ≤ k, then Φ merges at some level. We prove it using the following
morphism h2 : M′�{v1,...,vn} → X . Let T0

t,p be the tree that contains v1.

h2(v) =


s− 2N if v at a level s ≥ k in M0 and llca(v1, v) > k

s− 2N if v at a level s ≥ k in M0 and llca(v1, v) ≤ k
s if v at a level s in M1

2N + s if v at a level s in M0

It is readily checkable that h2 is a morphism and it implies that Φ merges at some
level.
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Let llca(v1, v2) > k. We prove that Φ does not fork at some level. To this end,
let k′ be such that no world among v3, . . . , vN is at the level k′ in M1. We define
V1 = VM0 ∪ VM1 as follows. Set v ∈ VM0 if and only if v is at a level s > k in M0

and lcm(v1, v) ∈ {v1, v} (in other worlds, v is an ancestor or descendant of v1 in
M0). Finally, for each leaf w from VM0 labeled by m and each t ∈ F , VM1 contains
all worlds from levels less than k′ in T1

t,m.
Let t = llca(v1, v2)− k, We define a morphism h3 : M′�{v1,...,vn} → T∞.

h3(v) =

{
0νk(v) if v ∈ V1 or νk(v) < t

0t1νk(v)−t otherwise

It is readily checkable that h3 is a morphism and it implies that Φ does not fork
at the level t.

The case when s1 = s2 = 1 is symmetric.

In the case of formulas that do not force long edges and do not fork at some level,
the finite model property follows from the fact that each satisfiable formula has a
k-periodic model for some k.

Proposition 8.10. Each unbounded UHF formula Φ that does not force long edges
and does not fork at some level k > 0 has the finite model property in global case.

Proof. First, observe that CΦ(LZ) = LZ and, since Φ is unbounded, LZ is a model
of Φ. Let v be a world at a level g(|Φ|) and M′ be a model that consists of all
descendants of v at levels greater than 2g(|Φ|). By Lemmas 6.12, all worlds in M′

at the same level are equivalent. Since the number of types is bounded, there exist
two levels k, l in M′ such that k− l > |Φ|+ 1 and the sets of types realized at a level
k and l are equal. We create model M′′ by removing all worlds at a level greater
than or equal to k and connecting all worlds from level k − 1 to worlds from level
l. Finally, we define a model M′′′ by taking for each level one world of each type
realized at this level. A quick check shows that all M′, M′′, and M′′′ satisfies ϕ and
that M′′′ is finite.

Now we justify that M′′′ is a model of Φ. Since LZ is a model of Φ, Lemma 8.5
shows that Ck−l is a model of Φ, and the same lemma shows that therefore any
k − l–periodic model is a model of Φ. Model M′′′ is obviously k − l-periodic.

8.2. Formulas that force long edges

For the formulas that satisfy S3, we proved the polynomial model property in Section
7. The rest of this section is devoted to formulas Φ ∈ UHF that satisfy S2.

First, observe that the modal logic defined by Φ can lack the finite model property.
Consider, for example, (xRz1 ∧ z1Ry ⇒ xRy) ∧ (xRx ⇒ ⊥) and a modal formula
♦> ∧ �♦>. A quick check shows that all models of these formulas are infinite (in
local and global cases). On the other hand, a modal logic defined by a formula
xRx ∧ (xRz1 ∧ z1Ry ⇒ xRy) has the finite model property.
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8. Finite satisfiability

We show that modal logic over KΦ has the following property: if a formula ϕ has
a finite model, then it has a model of size bounded by |ϕ|O(|ϕ|). Clearly, it leads to
a NExpTime algorithm that simply guesses such a model and verifies it.

Consider a modal formula ϕ and its KΦ-based model M with universe M . We
say that a world w is redundant for ϕ and model M if M�M\{w} is a model of ϕ.
We prove the following lemma by showing that a model that is large enough has to
contain a redundant world.

Lemma 8.11. Let Φ be unbounded UHF formula that forces long edges. If ϕ has a
finite KΦ-based model, then it has a model of the size bounded by |ϕ|O(|ϕ|).

Proof. Let Φ be an unbounded UHF formula that satisfies S2 for some l and a1, . . . , al
and ϕ be a modal formula with a KΦ-based model M.

Let c = a1. Observe that for all i ∈ Z and k ≥ 0 we have CΦ(LZ) |= iRi+ kc+ 1.
We start from bounding the number of worlds that are not g(|Φ|)-preceded. We

use the standard selection technique [4] — we start from an arbitrary world that
satisfies ϕ, and then recursively for each world added in the previous stage we pick
at most |ϕ| witnesses. Let M′ be a model obtained this way. We define the royal
part of M′ as the set of worlds that contain all worlds that are not g(|Φ|)-preceded
and the court as the set of g(|Φ|)-preceded worlds that were added as witnesses for
some worlds from the royal part. Clearly, the sizes of the royal part and the court
can be bounded by |ϕ|g(|Φ|)+1.

Let w be a g(|Φ|)-inner world not from the court such that for each subformula
♦ψ of ϕ such that ψ is satisfied in w there exists a g(|Φ|)-inner world wψ 6= w that
satisfies ψ and that there is a path from w to wψ with the length cj for some j. We
show that w is redundant.

Consider any predecessor w′ of w. If w′ is not g(|Φ|)-preceded, then it has all the
required witnesses in the court and the royal part. Otherwise, let ψ be a subformula
of ϕ such that w satisfies ψ. We show that there is an edge from w′ to wψ. To this
end, consider a path v1, v2, . . . , vg(|Φ|), w

′, w, v′1, v
′
2, . . . , v

′
cj , wψ, v

′′
1 , v
′′
2 , . . . , v

′′
g(|Φ|).

Such a path exists since w′ is g(|Φ|)-preceded and wψ is g(|Φ|)-inner, and there is a
straightforward morphism from I2g(|Φ|)+2+cj into this path. So it is enough to show
that there is an edge from g(|Φ|) + 1 to g(|Φ|) + 1 + cj + 1 in C(I2g(|Φ|)+2+j). By
earlier observations, CΦ(LZ) contains an edge from g(|Φ|) + 1 to g(|Φ|) + 1 + cj + 1,
and Lemma 6.10 implies that there is an edge from g(|Φ|) + 1 to g(|Φ|) + 1 + cj + 1
in C(I2g(|Φ|)+2+cj).

By iterating the above argument we can remove all g(|Φ|)—inner worlds except
for at most |ϕ|c·|ϕ| worlds. Finally, we again use the selection technique to bound
the number of worlds that are not g(|Φ|)-followed by |ϕ|c·|ϕ| · |ϕ|g(|Φ|). Since Φ is not
a part of an instance, we reduced the number of worlds to |ϕ|O(|ϕ|).

The above lemma leads to the following result.

Proposition 8.12. If Φ is unbounded UHF formula that forces long edges, then
finite KΦ-SAT and finite global KΦ-SAT are in NExpTime.

60



Part III.

Halpern–Shoham logic
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9. Overview

9.1. Main theorems

Our contribution consists of the proofs of the following two theorems:

Theorem 9.1. The satisfiability problem for the formulae of the logic of subintervals,
over models which are suborders of the order 〈Z,≤〉, is undecidable.

Since truth value of a formula is defined with respect to a model and an initial
interval in this model (see Preliminaries), and since the only allowed operator is D,
which means that the truth value of a formula in a given interval depends only on
the labeling of this interval and its subintervals, Theorem 9.1 can be restated as:
The satisfiability problem for the formulae of the logic of subintervals, over finite
models is undecidable, and it is this version that will be proved in Section 10.

Theorem 9.2. The satisfiability problem for the formulae of the logic of subintervals,
over all discrete models, is undecidable.

An overview of the proofs. One possible source of undecidability, and the one
we are making use of, is the interaction of regularity and measurement. Consider
the following example proposition:

Proposition 9.3. The problem:

For a given regular language L ⊆ Σ∗ and a given set B ⊆ Σ2, do there exist a
natural number n and a word w ∈ L such that |w| (the length of w) is greater than
n and for each sub-word avb of w (where a, b ∈ Σ), if the length of avb is n, then
〈a, b〉 ∈ B?

is undecidable.

The proposition is obvious – if we can make sure that any two symbols in the
word, which are at distance n, are a “correct pair”, then we can easily encode a
Turing machine.

In Sections 10.2 and 10.3, we show how is it possible, in the logic of subintervals,
to encode any regular language.

But encoding the measurement is not that simple. The logic of subintervals is not
able – as far as we know – to measure the length of each sub-word of w. We need to
mark each endpoint of the measured interval by a symbol that does not occur inside
this interval. This means that we can only afford a bounded number of measurements
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taking place at the same time. Imagine we had four identical hourglasses, which we
are free to turn at any moment while reading consecutive symbols of the word.
This would not be enough to directly encode a Turing machine, but still enough
for undecidability. In Section 10.1 we describe a class of regular languages (one
regular language for each Minsky machine) for which the possibility of such four
simultaneous measurements leads to an undecidable non-emptiness problem. This
property is stated in Lemma 10.2 which is a counterpart of Proposition 9.3.

In Section 10.4, we define our measuring tool, which we call a cloud, and in Section
10.5, which completes the proof of Theorem 9.1, we show how to use it. Actually,
the idea here is very simple: how much you see is a monotonic function of how high
you are.

In the proof of Theorem 9.1, the measuring device, the cloud, is existentially quan-
tified. Its role is identical with the role of the number n in Proposition 9.3. “They”
provide it, together with the word w, and we only check that all the specification
conditions are met. This approach would not work in the situation of Theorem 9.2.
The reason for that is that the logic of subintervals gives no means (that we are
aware of) to specify the requirement that all the intervals of the cloud are finite (i.e.,
contain a finite number of elements of the order). Or – using other words – that
time periods measured by the hourglasses are finite. This could lead to pathologies
that we do not even want to think about. Instead, in Section 11, we build our
own hourglass which we call the parabola. It is not as good as the cloud – its size
increases from time to time. But a closer look at Lemma 10.2 shows that we can
live with it. And, unlike the cloud, the parabola does not suffer from the possible
pathologies of discrete orderings.

Related work. The results presented in this part are based on the LICS paper
[25]. However, this thesis contains some additional results and more detailed proofs.

9.2. Preliminaries

Orderings. Originally, Halpern–Shoham logic was defined for any order that satisfy
the “linear interval property”, i.e. for each a, c1, c2, b if a ≤ c1, a ≤ c2, c1 ≤ b, and
c2 ≤ b, then c1 ≤ c2 or c2 ≤ c1. In such orderings, when we restrict our attention to
the operators that look only “inside” of an initial interval, such as D, the reachable
part of the ordering is totally ordered. For that reason in the rest of this paper we
consider only the total orderings.

As in [15], we say that a total order 〈D,≤〉 is discrete if each element is either
minimal (maximal) or has a predecessor (successor); in other words for all a, b ∈ D
if a < b, then there exist points a′, b′ such that a < a′, b′ < b and there exists no c
with a < c < a′ or b′ < c < b.

Semantics of the D fragment of logic HS (logic of subintervals). Let 〈D,≤〉
be a discrete ordered set 1. An interval over D is a pair [a, b], with a, b ∈ D and
a ≤ b. A labeling is a function γ : I(D) → P(Var), where I(D) is the set of all

1To keep the notation light, we will identify the order 〈D,≤〉 with its set D
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intervals over D and Var is a finite set of propositional variables. A structure of the
form M = 〈I(D), γ〉 is called a model.

We say that an interval [a, b] is a leaf iff it has no subintervals (i.e., a = b).
The truth values of formulae are determined by the following (natural) semantic

rules:

1. For all v ∈ Var, we have M, [a, b] |= v iff v ∈ γ([a, b]).

2. M, [a, b] |= ¬ϕ iff M, [a, b] 6|= ϕ.

3. M, [a, b] |= ϕ1 ∧ ϕ2 iff M, [a, b] |= ϕ1 and M, [a, b] |= ϕ2.

4. M, [a, b] |= 〈D〉ϕ iff there exists an interval [a′, b′] such that M, [a′, b′] |= ϕ,
a ≤ a′, b′ ≤ b, and [a, b] 6= [a′, b′].

Boolean connectives ∨,⇒,⇔ are introduced in the standard way. We abbreviate
¬〈D〉¬ϕ by [D]ϕ and ϕ ∧ [D]ϕ by [G]ϕ.

Note that we use the proper subinterval relation D (the prefixes and suffixes are
treat as subintervals), but our technique works also in the strict case, where instead
of [a, b] 6= [a′, b′] we assume that a 6= a′ and b 6= b′ — see Section 12.3. On the other
hand, if we remove the condition [a, b] 6= [a′, b′], then the problem is known to be
decidable[30].

A formula ϕ is said to be satisfiable in a class of orderings D if there exist a
structure D ∈ D, a labeling γ, and an interval [a, b], called the initial interval, such
that 〈I(D), γ〉, [a, b] |= ϕ. A formula is satisfiable in a given ordering D if it is
satisfiable in {D}.

Useful formulae. We will often use the formulae of the form λi that are satisfied
in the intervals with the specific length. We define those formulae as λi = 〈Di〉> ∧
¬〈Di+1〉>, where the exponentiation Dk is defined as usual:
〈D0〉φ = φ,
〈Dk〉φ = 〈D〉〈Dk−1〉φ for all k > 0.
It is readily checked that λk is as required — for example, λ0 = > ∧ [D]⊥ — it is
satisfied in the intervals with no subintervals, i.e. the intervals with the length 0.
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In Section 10 we only consider finite orderings.
Our representation. We imagine the Kripke structure of intervals of a finite
ordering as a directed acyclic graph, where intervals are vertices and each interval
[a, b] of length greater than 0 has two successors: [a+ 1, b] and [a, b− 1]. Each level
of this representation contains intervals of the same length (see Fig. 10.1). As usual,
each vertex is associated with a subset of propositional variables.

[0, 5]

[0, 4] [1, 5]

[0, 3] [1, 4] [2, 5]

[0, 2] [1, 3] [2, 4] [3, 5]

[0, 1] [1, 2] [2, 3] [3, 4] [4, 5]

[0, 0] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5]

p, r, v

p, q, t, u, z

Figure 10.1.: Our representation of order 〈{0, 1, . . . , 5},≤〉.

10.1. The Regular Language LA

In this section, for a given two-counter finite automaton (Minsky machine) A we
will define a regular language LA. There is nothing about the logic of subintervals
in this section – we are just preparing an undecidable problem which will be handy
to encode.

Let Q be the set of states of A, and let Q′ = {q′ : q ∈ Q}. Define B = {f, fr, s, sr}
and B′ = {b′ : b ∈ B}

The alphabet Σ of LA will consist of all the elements of Q ∪ Q′ (jointly called
states), symbols x and x′ (jointly called X-symbols) and of all the subsets (possibly
empty) of B and of B′. Talking about the subsets of B and B′, we will not respect
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types, saying for example “fr occurs in the word v” rather than “there is a symbol
in v that contains fr”.

Symbols (of Σ containing) f and f ′ (s and s′) will be called first (resp., second)
counters. Symbols fr and f ′r (sr and s′r) will be called first (resp., second) shadows
(or shadows of the first/the second counter).

The language LA consists of the words w over Σ that satisfy the following seven
conditions:

C1. The first symbol of w is the initial state q0 of A and the last symbol of w is
either q or q′, where q is one of the final states of A.

By a configuration, we will mean a maximal sub-word1 of w, whose first element
is a state (called the state of the configuration) and which contains exactly one state
(so that w is split into disjoint configurations). A configuration will be called even
if its state is from Q and odd if it is from Q′.

C2. Odd and even configurations alternate in w. All the non-state symbols oc-
curring in even configurations are subsets of B and all the non-state symbols
occurring in odd configurations are subsets of B′.

C3. Each configuration, except for the last one (which only consists of a state)
contains exactly one first counter and exactly one second counter.

We want a word from LA to encode a sequence of configurations of A which, once
an additional distance constraint is satisfied (see Lemma 10.2), will be a correct
accepting computation of A. So, except for a state of A, in each configuration, we
need to remember the values of the two counters. We define the value of the first
counter of a configuration as the number of symbols (strictly) between the state of
the configuration and its first counter. The same applies to the second counter.

Example. A configuration with the state q, the first counter set to 3, and the
second counter set to 4 can be stored as a word q∅∅∅{f, fr, sr}{s}∅∅x (the meaning
of fr, sr, and x will be defined later).

Using this language, we can state:

C4. In the first configuration, the value of both the counters is zero.

Which can also be read as: The second symbol of w contains f and s.

Now the role of shadows is going to be revealed:

C5. There are no shadows in the first and the last configuration. Each configura-
tion, except for the first and the last, contains exactly one first shadow and
exactly one second shadow.

1By a sub-word, we mean a sequence of consecutive elements of a word, an infix or a prefix or a
suffix.
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In reading the next condition, it is good to have in mind that the position of a
shadow in a given configuration, relative to the state of the configuration, will be
enforced, by the distance constraints of Lemma 10.2, to be the same as the position
of the corresponding counter in the previous configuration.

Since the format of an instruction of A is:

If the state is $q$

and the first counter equals/does not equal 0

and the second counter equals/does not equal 0

then change the state to $q_1$

and decrease/increase/keep unchanged the first counter

and decrease/increase/keep unchanged the second counter.

it is clear what we mean, saying that configuration C in word w matches the as-
sumption of the instruction I.

C6. If C and C1 are consecutive configurations in w, and C matches the assumption
of an instruction I, then:

– If I changes the state into q1, then the state of C1 is q1.

– If I orders the first (second) counter to remain unchanged, then the
first (resp., second) counter in C1 coincides with the first (resp., second)
shadow in C1.

– If I orders the first (second) counter to be decreased, then the first (resp.,
second) counter in C1 is the immediate predecessor of the first (resp.,
second) shadow in C1.

– If I orders the first (second) counter to be increased, then the first (resp.,
second) counter in C1 is the immediate successor of the first (resp., sec-
ond) shadow in C1.

One remaining condition is the following:

C7. There is exactly one x in each even configuration. All the counters and shadows
of the same configuration are to the left of x. Each x is followed by a state
symbol. The same holds for odd configurations and x′.

This completes the definition of the language LA. It is clear that it is regular –
each of the seven conditions above can be checked by a very small finite automaton.
Before we formulate Lemma 10.2, which will be our main tool, we need one more
definition:

Definition 10.1. Let w ∈ LA and let cvd be a sub-word of w, (where c, d ∈ Σ). We
will call cvd an interesting infix if there is exactly one X symbol in v and one of the
following conditions holds:
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1. c and d are states;

2. c is a first counter and d is a shadow of the first counter;

3. c is a second counter and d is a shadow of the second counter.

Notice that the condition that there is exactly one X symbol in v is a way of
saying that positions of c and d belong to two consecutive configurations.

Lemma 10.2. The following two conditions are equivalent:

(i) Two-counter automaton A, starting from the initial state q0 and empty coun-
ters, accepts.

(ii) There exists a word w ∈ LA and a natural number n such that the length of all
the interesting infixes of w is n.

Proof. For the⇒ direction consider an accepting computation of A and take n as any
number greater than all the numbers that appear on the two counters of A during
this computation plus 3 (this is for X-symbols, states and the counters). For the
⇐ direction, notice that the distance constraint from (ii) implies that the distance
between a state and the subsequent first (second) shadow equals the value of the
first (resp., second) counter in the previous configuration. Together with condition
5, defining LA, this implies that the subsequent configurations in w ∈ LA can indeed
be seen as subsequent configurations in the valid computation of A.

Since the halting problem for two-counter automata is undecidable, the proof of
Theorem 9.1 will be completed once we write, for a given automaton A, a formula
Ψ of the language of the logic of subintervals which is satisfiable (in a finite model)
if and only if condition (ii) from Lemma 10.2 holds. Actually, what the formula Ψ
is going to say is, more or less, that the word written (with the use of the labeling
function γ) in the leaves of the model is a word w as described in Lemma 10.2,
condition (ii).

In the following subsections, we are going to write formulae Φorient, ΦLA , Φcloud,
and Φlength such that Φorient ∧ΦLA ∧Φcloud ∧Φlength will be the formula Ψ we want.

10.2. Orientation

As we said, we want to write a formula saying that the word written in the leaves
of the model is the w described in Lemma 10.2, condition (ii).

The first problem we need to overcome is the symmetry of D – the operator does
not see a difference between past and future, or between left and right, so how can we
distinguish between the beginning of w and its end? We deal with this problem by
introducing five variables L,R, s0, s1, s2 and writing a formula Φorient which will be
satisfied by an interval [a, b] if [a, a] is the only subinterval of [a, b] that satisfies L and
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[b, b] is the only subinterval of [a, b] that satisfies R, or [b, b] is the only subinterval
of [a, b] that satisfies L and [a, a] is the only subinterval of [a, b] that satisfies R, and
all the following conditions hold:

• any interval that satisfies L or R satisfies also one of s0, s1, or s2;

• each leaf is labeled either with s0 or with s1 or with s2;

• each interval labeled with s0 or with s1 or with s2 is a leaf;

• if c, d, e are three consecutive leaves of [a, b] and if si holds in c, sj holds in d
and sk holds in e then {i, j, k} = {0, 1, 2};

• the initial interval has the length at least 3.

If [a, b] |= Φorient, then the leaf of [a, b] where L holds (resp., where R holds) will
be called the left (resp., the right) end of [a, b].

Let exactly one of(Y ) =
∨
y∈Y (y ∧

∧
y′∈Y \{y} ¬y′) be a formula saying (which is

not hard to guess) that exactly one variable from the set Y is true in the current
interval. Φorient is the conjunction of the following formulae:

(i) 〈D〉〈D〉〈D〉>

(ii) [G]((λ0 ⇒ exactly one of({s0, s1, s2})) ∧ (s0 ∨ s1 ∨ s2 ⇒ λ0))

(iii) [G](λ2 ⇒ 〈D〉s0 ∧ 〈D〉s1 ∧ 〈D〉s2)

(iv) [G](L ∨R⇒ s0 ∨ s1 ∨ s2)

(v) 〈D〉R ∧ 〈D〉L

(vi) [G](L⇒ ¬R)

(vii)
∨
i∈{0,1,2}(〈D〉(L ∧ si) ∧ [D](λ1 ∧ 〈D〉L⇒ ¬〈D〉s(i−1) mod 3))

(viii)
∨
i∈{0,1,2}(〈D〉(R ∧ si) ∧ [D](λ1 ∧ 〈D〉R⇒ ¬〈D〉s(i+1) mod 3))

Formulae (i), (ii), (iii), and (iv) express the property defined by the conjunction
of the five items above (notice, that λ0 means that the current interval is a leaf).

Formula (v) says that there exists an interval labeled with R and an interval
labeled with L.

Formula (vi) states that no interval satisfies both L and R.
Formula (vii) guarantees that no interval containing exactly 2 leaves, which is

a superinterval of an interval labeled with L and si, can contain a subinterval la-
beled with s(i−1) mod 3. It implies that an interval labeled with L can only have one
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superinterval containing exactly 2 leaves — if there were two, then their common su-
perinterval containing 3 leaves would not have a subinterval labeled with s(i−1) mod 3,
thus contradicting (iii).

Finally, formula (viii) works like (vii) but for R.

Figure 10.2.: Two possible models that satisfy the formulae from Section 10.2.

In the rest of paper, we restrict our attention to models satisfying formula Φorient,
and treat the leaf labeled with L as the leftmost element of the model.

Notice that everything we did above can be applied not only to the whole model,
but also to any subinterval of the model. We will say that set U marks the left
endpoint of interval [c, d] if some u ∈ U holds in [c, c] and no u′ ∈ U holds in any
other subinterval of [c, d]. Analogously we define what it means that a set marks the
right endpoint of an interval. What we proved in this section is:

Lemma 10.3. There exists a formula mle(U) (and mre(U)) which is true in interval
[a, b] if and only if U marks the left (resp. the right) end of [a, b].

Notice that we only know how to express the fact that u ∈ U is valid in the left
end of [a, b] if u does not occur anywhere else in this interval.

10.3. Encoding a Finite Automaton

In this section, we show how to make sure that consecutive leaves of the model, read
from L to R, are labeled with variables that represent a word of a given regular
language.

Lemma 10.4. Let A = 〈Σ,Q, q0,F , δ〉, where q0 ∈ Q, F ⊆ Q, δ ⊆ Q × Σ × Q be
a finite–state automaton. There exists a formula ψA of the D fragment of Halpern–
Shoham logic over alphabet Q ∪ Σ that is satisfiable (with respect to the valuation
of the variables from Q) if and only if the word, over the alphabet Σ written in the
leaves of the model, read from L to R, belongs to the language accepted by A.

Proof. It is enough to write a conjunction of the following properties.

1. In every leaf, exactly one letter from Σ is satisfied (so there is indeed a word,
written in the leaves). Moreover, the letters from Σ are true at leaves only.
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2. Each leaf is labeled with exactly one variable from Q. Moreover, the variable
from Q are true at leaves only.

3. For each interval whose length is 1, if this interval contains an interval labeled
with si, with a ∈ Σ, and with q ∈ Q, and another interval labeled with
s(i+1) mod 3 and with q′ ∈ Q, then 〈q, a, q′〉 ∈ δ (notice that we rely here on the
assumption that Φorient holds in the model).

4. The interval labeled with R is labeled with such q ∈ Q and a ∈ Σ such that
〈q, a, q′〉 ∈ δ for some q′ ∈ F .

5. The interval labeled with L is labeled with q0.

Clearly, a model satisfies properties 1-5 if and only if its leaves are labeled with an
accepting run of A on the word over Σ written in its leaves. The formulae of the D
fragment of Halpern–Shoham logic expressing properties 1-5 are not hard to write:

1. [G]((λ0 ⇒ exactly one of(Σ)) ∧ (
∨

Σ⇒ λ0))

2. [G]((λ0 ⇒ exactly one of(Q)) ∧ (
∨
Q ⇒ λ0))

3. [G](λ1∧〈D〉si∧〈D〉si+1 mod 3 ⇒
∨
〈q,a,q′〉∈δ〈D〉(si∧q∧a)∧〈D〉(si+1 mod 3∧q′)),

for each i ∈ {0, 1, 2}

4. [G](R⇒
∨
〈q,a,q′〉∈δ,q′∈F (q ∧ a))

5. [G](L⇒ q0)

Now, let A be a finite automaton recognizing language LA from Section 10.1. We
put ΦLA = ψA.

10.4. A Cloud

We still need to make sure that there exists n such that each configuration (but the
last one) has length n− 1 and that each interesting infix has length exactly n. Let
us start with:

Definition 10.5. Let M = 〈I(D), γ〉 be a model and p a propositional variable. We
call p a cloud if there exists k ∈ N such that p ∈ γ([a, b]) if and only if the length of
[a, b] is exactly k.

So one can view a cloud as a set of all intervals of some fixed length. Notice, that
if the current interval has length k then exactly k+ 1 leaves are reachable from this
segment with the operator D.
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¬p ¬p ¬p ¬p

p,¬e p, e p,¬e p, e p,¬e

¬p ¬p ¬p ¬p ¬p ¬p

Figure 10.3.: An example of a cloud.

We want to write a formula in the language of the D fragment of Halpern-Shoham
logic saying that p is a cloud. In order to do that, we use an additional variable e.
The idea is that an interval [a, a+ n] satisfies e iff [a+ 1, a+ n+ 1] does not.

Let Φcloud be the conjunction of the following formulae.

1. 〈D〉(p ∧ 〈D〉L) — there exists an interval that satisfies p and this interval
contains the leftmost element of the model.

2. [G](p ⇒ [D]¬p) — intervals labeled with p cannot contain intervals labeled
with p.

3. [G](〈D〉p⇒ 〈D〉(p∧e)∧〈D〉(p∧¬e)) — each interval that contains an interval
labeled with p actually contains at least two such intervals — one labeled with
e and one with ¬e.

Lemma 10.6. If M, [aM, bM] |= Φcloud, where aM and bM are endpoints of M, then
p is a cloud.

Proof. We will prove that if an interval [x, y] is labeled with p, then also [x+1, y+1]
is labeled with p. A symmetric proof shows that the same holds for [x − 1, y − 1],
so all the intervals of length equal to m, where m is the length of [x, y], are labeled
with p.

This will imply that no other intervals can be labeled with p and p is indeed a
cloud. This is because each such interval either has a length greater than m, and thus
contains an interval of length m, and as such labeled with p, or has a length smaller
than m, and is contained in an interval labeled by p, in both cases contradicting 2.

Consider an interval [x, y] labeled with p. Interval [x, y + 1] contains an interval
labeled with p, so it has to contain two different intervals labeled with p – one labeled
with e and the other one with ¬e. Suppose, without loss of generality, that [x, y] is
the one labeled with e, and let us call the second one [u, t]. If t < y + 1, then [u, t]
is a subinterval of [x, y] and is labeled with p, a contradiction. So t = y + 1.

Let us assume that u > x+1. The interval [u−1, y+1] must contain two different
intervals labeled with p. One of them is [u, y + 1], and it cannot contain another
interval labeled with p, so the other one must be [u− 1, y] or one of its subintervals.
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But then it is a subinterval of [x, y] (because u − 1 > x + 1 − 1 = x) which also is
labeled with p, but this leads to a contradiction. So u = x+ 1.

10.5. Using a cloud.

10.5.1. An example

Before we proceed into the technical aspects of encoding the automata, let us show
a simple example of the usage of a cloud.

Let A′ be a finite automaton that recognizes the language defined by the regular
expression (ac∗bc∗)∗. Consider the formula Φorient∧ΦLA0

. In each model of ρ, leaves
contain some word w accepted by A. Our goal is to force the following property.

(e) There exists n ∈ N such that each maximal block c that is between a and b
has the length n.

We use a cloud. In fact, n will be equal to the length of the intervals in the cloud.
Property (e) can be expressed as a conjunction of Φcloud and the following formulae.

(i) [G](p⇒ ¬(〈D〉a ∧ 〈D〉b))

(ii) [G](p⇒ 〈D〉(a ∨ b))

Figure 10.4.: An example of using a cloud.
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Now, consider two examples in Figure 10.4. At the left side, the red vertex contains
no subinterval that satisfies a or b — it contradicts Formula (ii). At the right side,
the red vertex contain a subinterval that satisfies a and a subinterval that satisfies
b — it contradicts Formula (i). Therefore, this block of c has to have the length 2,
equal to the length of the intervals in the cloud.

10.5.2. Encoding two-counter automaton

Let us now concentrate on models which satisfy Φorient ∧ΦLA ∧Φcloud. Since Φcloud

is satisfied, then p is a cloud. Let n denote the number of leaves contained in the
intervals that form the cloud. Since ΦLA is satisfied, we know that the word written
in the leaves of the model must belong to LA. What remains to be done is writing
a formula Φlength that would guarantee that the distance constraints from Lemma
10.2 are satisfied in this word.

The following lemma is just a restatement of Definition 10.1 in the language of
the last paragraph of Section 10.1:

Lemma 10.7. Let w ∈ LA and let v be a sub-word of w. Then v is an interesting
infix if it contains exactly one X-symbol and one of the following conditions holds:

• one of the endpoints of v is marked with a state from Q and the other endpoint
is marked with a state from Q′;

• the left endpoint of v is marked with f (f ′, s, s′) and the right endpoint is
marked with f ′r (fr, s

′
r, sr, resp.).

Using the formulae mle and mre from Section 10.2, it is straightforward to trans-
late the conditions of the lemma into a formula Phiinteresting saying that the current
interval is interesting:

[G]((mle(Q) ∧mre(Q′) ∨ (mle(Q′) ∧mre(Q))⇒ interesting)

∧ [G](mle({l ∈ Σ|f ∈ l}) ∧mre({l ∈ Σ|f ′r ∈ l})⇒ interesting)

∧ [G](mle({l ∈ Σ|f ′ ∈ l}) ∧mre({l ∈ Σ|fr ∈ l})⇒ interesting)

∧ [G](mle({l ∈ Σ|s ∈ l}) ∧mre({l ∈ Σ|s′r ∈ l}))⇒ interesting)

∧ [G](mle({l ∈ Σ|s′ ∈ l}) ∧mre({l ∈ Σ|sr ∈ l})⇒ interesting)

Note that the part about containing exactly one X-symbol comes for free here from
the definition of the language and the properties of mle and mre. Now, we are ready
to write Φlength.

Φlength = Φinteresting ∧ [G](interesting ⇒ p)

which means that if what you see is exactly an interesting interval, then you are
exactly on the level of the cloud.

This ends the proof of Theorem 9.1.
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The idea of the proof of Theorem 9.2 is exactly the same as of Theorem 9.1. But,
because of the possible pathologies of discrete orders, almost all the details of the
proof will now be much more complicated.

11.1. Damage assessment

Let us see which of the constructions form Section 10 can be saved in the new
context.
Orientation In the new situation we still can, as we did in Section 10.2, write
formulae enforcing that the model has its left endpoint, marked with L, and its
right endpoint, marked with R. But the trick with labeling each three consecutive
elements with s0, s1 and s2, which we used to define direction inside the model will,
in the discrete case, orient only the locally finite fragments of the model (i.e., those
maximal sets C of elements of the ordering such that, for each a, b ∈ C the interval
[a, b] contains only finitely many elements).

On the other hand, if the model is infinite, then the left endpoint has its successor,
which has a successor, etc. so that we have a copy of the ordered set of natural num-
ber as an initial fragment of the model. We will identify elements of this fragment
with natural numbers. If formula Φorient is satisfied, then the set of natural numbers
is oriented as in Section 10.2.

It also turns out that we can actually force the model to be infinite. To do that,
take a new variable nat, and write a formula Φnat saying that:

• nat only holds at leaves;

• L implies nat;

• if an interval contains two leaves, and in some of those two leaves nat holds,
then it holds in all of them;

• there is an leaf where nat does not hold.

Those properties can by expressed using D in the following way:

• [G](nat⇒ λ0)

• [G](L⇒ nat);

• [G](λ1 ∧ 〈D〉nat⇒ [D]nat);
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• 〈D〉(λ0 ∧ ¬nat)

Let now Φd
orient be the formula Φorient ∧ Φnat. From now on, we assume that all

the models under consideration satisfy Φd
orient.

The regular language LdA and the finite automaton. In the finite satisfiability
case, the set of satisfiable formulae was recursively enumerable. Now, as we will see
later, it is coRE-hard. This means that we now need, for a given Minsky machine
A, to write a formula Ψd, of the logic of subintervals, which will be satisfiable if and
only if A does not accept. We can assume that A has only one final (accepting)
state qf and that the machine runs forever if this state is not reached. So the formula
we are going to write in this chapter should be satisfiable if and only if the machine
A runs forever and never reaches qf .

Since we still want to represent the computation of A as a word written in atoms
of the model (to be more precise, in the atoms that are natural numbers), we must
be ready to deal with an infinite word. The method the transition function of an
automaton is encoded in Section 10.3 still works, so we can encode any automaton
on infinite words with a ”safety accepting condition”, which means that it accepts a
word if no forbidden state is entered during a run. Let LdA be the language of infinite
words satisfying conditions [C1] – [C7] from Section 10.1 (with the obvious exception
of the parts of conditions [C1], [C3] and [C5] which concern the final configuration)
and additionally

C8. The third symbol of w is its first X-symbol.

Clearly, LdA can be recognized by an automaton with safety accepting condition.
So we can write a formula ΦLdA

which will be satisfied in a model if and only if the

word written in atoms being natural numbers belongs to LdA. Notice that ΦLdA
will

be satisfied also by some words which only consist of finitely many configurations
(last of them ending with infinitely many empty symbols). This cannot be prevented
by a safety automaton, and we will need to find another way to forbid such words.
Lemma 10.2. The last remark leads to one change in Lemma 10.2. Another change
will result from the fact that, in the new context we do not have the cloud anymore
– the method it was defined does not translate to discrete orderings. So we no longer
will be able to make sure that all the interesting infixes have the same length. But
it turns out that we do not really need that much.

Definition 11.1. We say that an infinite word w is nice if for each pair v, u of
interesting infixes such that v begins earlier than u, if k is the number of X-symbols
between the left endpoint of v and the left endpoint of u then |v|+ k = |u|.

The following version of Lemma 10.2 is easy to prove:

Lemma 11.2. The following two conditions are equivalent:

(i) Two-counter automaton A, started from the initial state q0 and empty counters,
runs forever.
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(ii) There exists a nice word w ∈ LdA with infinitely many X-symbols in w.

Notice that if there are two interesting infixes of a nice word, whose left ends are
in the same configuration, then their lengths are equal. This is exactly what we need
to be sure that the values of counters in each configuration are correctly reflected
by the positions of shadows of the counters in the following configuration.

The second consequence of the fact that a word is nice is that the length of a
subsequent configuration is always one plus the length of the previous one. This
means that, if the first configuration was long enough to contain the values of the
counters, then each configuration will be long enough, regardless of the possible
unbounded growth of those values. And it follows from condition [C8] that the first
configuration is long enough.

Having the idea on mind, proving Lemma 11.2 is straightforward.

11.2. The parabola

Let us remind that we identify the initial fragment of the model with the set N.

Definition 11.3. Let M = 〈I(D), γ〉 be a model and p, pE , x, x
′ be a quadruple of

variables. We call the quadruple p, pE , x, x
′ the parabola if:

(i) only leaves are labeled with x or with x′, and the leaf [3, 3] is labeled with x;

(ii) [1, 4] is labeled with p;

(iii) if [i, j] is labeled with p and [i, i] is not labeled with x or with x′, then [i+1, j+1]
is labeled with p;

(iv) each interval labeled with p contain a subinterval labeled with x or with x′, but
no such interval marks the right endpoint with x or with x′;

(v) all intervals labeled with pE mark the right endpoint with x or with x′;

(vi) no subinterval of an interval labeled with p can contain a subinterval with x
and a subinterval with x′;

(vii) if [i, j] is labeled with p and x (resp., x′) marks the left endpoint of [i, j], then
[i+ 1, j + 1] is labeled by pE (see Figure 11.2);

(viii) if [i, j] is labeled with pE, then [i, j + 1] is labeled with p;

(ix) no other interval whose left endpoint is a natural number are labeled with p.
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Figure 11.1.: A fragment of the parabola.

Notice that the x, x′ from the parabola coincide with the X-symbols from Σ, which
means that if p, pE , x, x

′ is the parabola then there are infinitely many X-symbols
in w, and, in consequence, w consists of infinitely many configurations — a property
that could not be enforced by a safety automaton alone.

The variable pE is auxiliary in some sense - we use it to mark in each row that
contains p, the first column after the columns with p. In other words, an interval
[i, j] will be labeled with pE if [i−1, j−1] is labeled with p and [i−1, i−1] is labeled
with x or x′ (so, therefore, [i, j + 1] should be labeled with p) — see Figure 11.2.

The role of variable p is as the role of cloud — we will use it to guarantee that
the interesting infixes have the right length.

Lemma 11.4. Let M = 〈I(D), γ〉 be a model and p, pE , x, x
′ be the parabola in M.

Let w ∈ LdA be the infinite word of symbols written in the natural numbers of M.
Then the following two conditions are equivalent:

(i) w is a nice word with infinitely many X-symbols;

(ii) each interesting infix of w is (as an interval) labeled with p.

Proof. Condition [C8] implies that the fourth symbol of w is a state symbol, and
consequently, that [1, 4] is the first interesting infix of w, and condition (ii) from the
definition of the parabola implies that it is labeled by p.

Notice that conditions from the definition of parabola guarantee that if [i, j] is
labeled with p, then there exists an interval labeled with p that begins in i+ 1 and
has the length greater by one than [i, j] if there is an X-symbol in [i, i] (conditions
(vi)-(viii)) and has the same length as [i, j] otherwise (condition (iii)). It implies
that the length of intervals labeled with p is increased by one with each X-symbol,
so the length of two intervals labeled with p whose left ends are separated by k
X-symbols differs by k — exactly as in the definition of a nice word. The condition
(iv) guarantee that there are infinitely many X-symbols.

The idea behind the formula Φd
par is simple. At first, note that we still can use

formulae mle and mre defined exactly as in the definition of a cloud to define the
parabola.
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Let us Φd
par be the conjunction of the following formulae (they correspond to the

properties from Definition 11.3).

(i) [G](x ∨ x′ ⇒ λ0) ∧ 〈D〉(λ3 ∧ 〈D〉L ∧mre({x}));

(ii) 〈D〉(p ∧ 〈D〉L ∧ λ3) (recall that by definition L is satisfied in [1, 1]);

(iii) [G]((〈D〉p ∧ ¬mle({x}) ∧ ¬mle({x′}))⇒ 〈D〉(p ∧ e) ∧ 〈D〉(p ∧ ¬e)) (we use an
auxiliary variable e in the same way as for cloud);

(iv) [G]((mre({x}) ∨mre({x′}))⇒ ¬p) ∧ [G](p⇒ 〈D〉(x ∨ x′));

(v) [G](pE ⇒ mre({x}) ∨mre({x′}));

(vi) [G](p⇒ [D]([D]¬x ∨ [D]¬x′));

(vii) [G]((mle({y}) ∧ 〈D〉(p ∧mle{y}) ∧ [D][D]¬p)⇒ 〈D〉pE ∧ [D][D]¬pE) for each
y ∈ {x, x′};

(viii) [G](〈D〉pE ∧ [D][D]¬pE ∧ ¬(mle({x}) ∨mre({x′}))⇒ p);

(ix) [G](p⇒ [D]¬p) (it works as for cloud).

Figure 11.2.: A place where the parabola from Figure 11.1 is lifted, zoomed in.

It turns out that we can simply put Φd
length = Φlength. Now we can finish the proof

of Theorem 9.2 defining

Ψd = Φd
orient ∧ ΦLdA

∧ Φd
par ∧ Φd

length
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12. More results

12.1. Superinterval relation

Our theorems hold also for D̄ instead of D. But the changes to the proof need to be
significant. Consider, for example, formulae [D]〈D〉> and [D̄]〈D̄〉>. The first one is
not satisfied in the discrete case, but the second one is satisfied over, e.g., N.

Another important difference between the models for the logic with D and for
the logic with D̄ is that in linear discrete orders all intervals have either 0 or 2
subintervals with the maximal size, while an interval may have only one superinterval
with the minimal size (e.g. over the naturals, the interval [1, 5] has only one such
superinterval — [1, 6]).

In other words, the leaves are not always well-defined in case of D̄. There can be
no interval that satisfies [D̄]> in a model, and even if there is such interval, then it
is the only one. Therefore we have to pay more attention while encoding a regular
language.

To handle it, we use a cloud to define pseudo-leaves — a set of intervals on the
same level that satisfies a special variable leaf . Once we defined leaves, we guarantee
that nothing wrong happens above the leaves, i.e. [D̄](leaf ⇒ [D̄]

∧
v∈Var ¬v).

The idea is that having pseudo-leaves, we can simply adopt the formula from the
proof of Theorem 2 to prove undecidability, replacing D by D̄ and λi by λ′i, where
λ′i = 〈Di〉leaf ∧ ¬〈Di+1〉leaf .

As the successor (predecessor) function is well defined in discrete linear orders for
all points except for the maximal (minimal, resp.) one, it should be clear what we
mean by c + k (c − k, resp.), where c is a point and k is a natural number — it is
just a successor (predecessor, resp.) function iterated k times. Now we are going
to write a formula Φs

leaves that is satisfied only in models with pseudo-leaves. More
precisely, M, [a, b] |= Φs

leaves iff there exists a superinterval [c, d] of [a, b] such that:

(i) M, [c, d] |= L ∧ leaf ∧ ¬le

(ii) For each even k ∈ Z such that [c+ k, d+ k] is in the model, M, [c+ k, d+ k] |=
leaf ∧ ¬le

(iii) For each odd k ∈ Z such that [c+ k, d+ k] is in the model, M, [c+ k, d+ k] |=
leaf ∧ le

So all the leaves are at the same level at least in some fragment of the model that
contains an interval which labeled with L (so the place where a word from a regular
language starts) and is long enough to contain the infinite world.
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12. More results

The technical aspects of Φs
leaves are not surprising — there are almost the same

as for cloud. Note that the last property is a little bit stronger, as explained before
(below [G]ϕ stands for ϕ ∧ [D̄]ϕ).

• 〈D̄〉(leaf ∧ L)

• [G](〈D̄〉leaf ⇒ 〈D̄〉(leaf ∧ le) ∧ 〈D̄〉(leaf ∧ ¬le))

• [G](leaf ⇒ [D̄]
∧
v∈Var ¬v)

Now, for a given automaton A, we define Φs
orient (Φs

LdA
, Φs

par, Φs
length) as Φd

orient

(ΦLdA
, Φd

par, Φd
length, resp.) by replacing every occurrence of D by D̄ and every

occurrence of λi by λ′i. Let Ψs = Φs
leaves ∧Φs

orient ∧Φs
LdA
∧Φs

par ∧Φs
length. It is easy to

check that the formula Ψs is satisfiable if and only if A started from the initial state
q0 and empty counters, runs forever. We conclude this discussion with the following
theorem.

Theorem 12.1. The satisfiability problem for the formulae of the logic of superin-
tervals, over all discrete models, is undecidable.

12.2. Global satisfiability

The global satisfiability problem is defined as follows. For a given formula ϕ, does
there exist a structure D such that every point of D satisfies ϕ? The question about
the global satisfiability of formulae has been studied in literature, e.g., in [11] or
[17]. For a basic modal logic the global satisfiability problem is ExpTime-complete,
while the classical (local) satisfiability problem is PSpace-complete.

We show that the global satisfiability problem is very easy for D, a little bit more
complicated for D̄ (but still in NP), but becomes undecidable as soon as we allow
both D and D̄.

We start with the following proposition.

Proposition 12.2. The global satisfiability problem for the logic of subintervals is
NP-complete.

Proof. Let ϕ be a formula and M = 〈I(D), γ〉 a model of ϕ such that for all w ∈ I(D)
we have M, w |= ϕ. Let i ∈ D. We define M′ = 〈I({i}), γ′〉 where γ′([i, i]) = γ([i, i]).
It is easy to see that M′, w |= ϕ.

Therefore in this case we have a single-interval model property, and checking for
the existence such a model can be done in NP. The NP lower bound comes from a
trivial reduction from SAT.

Now we prove that if we have both D and D̄, then the global satisfiability problem
is much harder.

Proposition 12.3. The global satisfiability problem for the fragment DD̄ of the
Halpern–Shoham logic is undecidable.
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12.2. Global satisfiability

Proof. For a given two-counter automaton A, let Ψd be a formula defined in section
11. Let u be a fresh variable. Define

Ψg = (u⇒ Ψd) ∧ (¬u⇒ 〈D〉〈D̄〉u ∨ 〈D̄〉〈D〉u)

Clearly, any model M that globally satisfies Ψg contains an interval w labeled by
u and M, w |= Ψd. For the other direction, if we have a model M and an interval w
such that M, w |= Ψd, then we can create a model M′ from M by labeling w by u
and all other intervals by ¬u. Then M′ globally satisfies Ψg.

Both proofs are almost straightforward. Now we prove less obvious proposition
about D̄.

Proposition 12.4. The global satisfiability problem for the logic of superintervals
is NP-complete.

Proof. Let ϕ be a formula and M = 〈I(D), γ〉 a model of ϕ such that for all w ∈ I(D)
we have M, w |= ϕ. If there is a maximal interval in I(D), then we simply proceeder
like for D and obtain a single-point model.

Suppose that there is no maximal interval in I(D). We define a modal type of an
interval w, denoted by mtw, as a set of subformulae of ϕ of the form 〈D̄〉ϕ′ satisfied
in w. Note that if w is a superinterval of w′, then mtw ⊆ mtw′ . Therefore there
exists an interval [a0, b0] such that for all superintervals v′ of v we have mtv = mtv′ .

We define a set of intervals T in the following way. For each ψ, which is a
subformula of ϕ, if there exists a superinterval of [a0, b0] that satisfies ψ, then we
put one such interval in T . Observe that the size of is polynomial in the size of ϕ.

Let {t0, t1, . . . , tk−1} be a set T written more explicit and f : I(Z)→ be a function
such that for each w ∈ I(Z) we have f(w) = t|[a,b]| mod k.

We define a structure M′ = 〈I(Z), γ′〉, where γ′([a, b]) = γ(f([a, b])). We claim
that M′ is a model of ϕ.

We prove by the induction of the structure of ϕ, that for all ψ, which is a subfor-
mula of ϕ, and all w we have M′, w |= ψ iff M, f(w) |= ψ.

Let [a′, b′] be an interval of M′.

• If ψ is a propositional variable p, then M, f([a′, b′]) |= ψ iff p ∈ γ(f([a′, b′])) =
γ′([a′, b′]) iff M′, [a′, b′] |= ψ.

• The cases when ψ = ¬ψ′ or ψ = ψ′ ∨ ψ′′ are straightforward.

• If ψ = 〈D〉ψ′ and M′, [a′, b′] |= ψ, then there exists a superinterval [c′, d′] of
[a′, b′] such that M′, [c′, d′] |= ψ′. By the inductive assumption, M, f([c′, d′]) |=
ψ′. The intervals f([c′, d′]) is a subinterval of [a0, b0], and therefore mt[a0,b0]

contains ψ. Since mt[a0,b0] = mtf([a′,b′]), we have M, f([a′, b′]) |= ψ.

If ψ = 〈D〉ψ′ and M, f([a′, b′]) |= ψ, then there exists an superinterval [a, b]
of f([a′, b′]) such that M, [a, b] |= ψ′. ψ′ is a subformula o ϕ, so there is an
interval [c, d] ∈ T that satisfies ψ′. Let [c′, d′] be a superinterval of [a′, b′] such
that f([c′, d′]) = [c, d]. By the inductive assumptions, [c′, d′] satisfies ψ′ and
therefore M′, [a′, b′] |= ψ.
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12. More results

The existence of a model of the form 〈I(Z), γ′〉 can be checked in NP. The algo-
rithm simply guesses a modal type of all intervals in the model and a set T , and
then simply verify that the modal type is consistent with the types in T .

12.3. Strict D

The strict D, denoted as D⊂, is defined as follows.

M, [a, b] |= 〈D⊂〉ϕ iff there exist an interval [a′, b′] such that M, [a′, b′] |= ϕ and
a < a′ ≤ b′ < b.

Our undecidability result holds also for D⊂, there are just some minor technical
details to handle. Here we will only describe how we label the leaves with a special
variable l in that case — the remaining modifications are similar and are left to the
reader.

In the D case, the labeling of leaves is easy — the formula λ0 does it. But in the
D⊂ case, a similar formula would label also the intervals of length 1. To avoid it, we
use auxiliary variables a, b, c, A,B and the conjunction of the following properties:

(i) Each interval of length at most one is labeled with exactly one of a, b, c, A,B.

(ii) No interval of length greater than 1 is labeled by a, b, c, A, or B.

(iii) Each interval of length at least 2 contains an interval labeled with a, b, or c.

(iv) Each interval of length at least 4 contains intervals with all five auxiliary sym-
bols.

Condition (iii) guarantees that the intervals of length 0 are cannot be labeled with
A or B. Observe that the intervals of length 4 contain exactly 2 strict subintervals
of length 1 and exactly 3 strict subintervals of length 0, and due to (iv) those 5
intervals have to contain 5 auxiliary symbols, so the intervals of length 1 have to be
labeled with A and B. Figure 12.1 contains an example of such labeling.

The formulae expressing properties (i)-(iv) are easy to express using D⊂. Finally,
we can define λ′′0 = a ∨ b ∨ c.

12.4. Arbitrary orderings

The question whether the D fragment is decidable over the class of all (total) or-
derings is still open. However, our technique can be used to proof the following
proposition.

Proposition 12.5. The satisfiability problem for the formulae of the DD̄ fragment
of Halpern–Shoham logic over the class of all total orderings is undecidable.
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12.4. Arbitrary orderings

Figure 12.1.: A labeling of leaves in the strict case.

Proof. For the strict D case, consider the formula ϕ defined as follows

[G]([D⊂]⊥ ⇒ 〈D̄⊂〉([D][D]⊥)).

This formula is satisfiable in orderings such that for each reachable interval [a, a]
there exist b, c such that b < a < c and the interval [b, c] contains at most 4 points
(including a, b, c). It implies that a has both predecessor and successor. Therefore
the reachable part of the ordering is discrete.

Now we would like to say that all discrete orderings satisfy ϕ, no matter which
initial interval we choose. It is not entirely true — the formula is not satisfied if
the interval [x, x] is reachable, where x is the maximal or the minimal point. But
this is the case only if the interval [x, x] is initial, so we can simply fix that: let
ϕ′ = ϕ ∨ ([D⊂]⊥ ∧ [D̄⊂]⊥).

Now we can use the formula Ψd∧ϕ′ (where Ψd is the formula from the proof of the
undecidability of the D fragment in the discrete case) to proof the undecidability.

The proper D case can be solved in the same way, however the proof is much more
technical.

The proof bases on the fact that we allow the intervals of the form [a, a]. The
question of what happens if we exclude such intervals remains open.
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