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Abstract—We consider the satisfiability and finite satisfiability
problems for extensions of the two-variable fragment of first-
order logic in which an equivalence closure operator can be
applied to a fixed number of binary predicates. We show
that the satisfiability problem for two-variable, first-order logic
with equivalence closure applied to two binary predicates is in
2NEXPTIME, and we obtain a matching lower bound by showing
that the satisfiability problem for two-variable first-order logic
in the presence of two equivalence relations is 2NEXPTIME-
hard. The logics in question lack the finite model property;
however, we show that the same complexity bounds hold for
the corresponding finite satisfiability problems. We further show
that the satisfiability (=finite satisfiability) problem for the two-
variable fragment of first-order logic with equivalence closure
applied to a single binary predicate is NEXPTIME-complete.

Index Terms—computational complexity, decidability.

I. INTRODUCTION

We investigate extensions of the two-variable fragment
of first-order logic in which certain distinguished binary
predicates are declared to be equivalences, or in which an
operation of ‘equivalence closure’ can be applied to these
predicates. (The equivalence closure of a binary relation is
the smallest equivalence that includes it.) Denoting the two-
variable fragment of first-order logic by FO2, let EQ2

k be the
extension of FO2 in which k distinguished binary predicates
are interpreted as equivalences; and let EC2

k be the extension
of FO2 in which we can take the equivalence closure of
any of k distinguished binary predicates. (The logic EC2

k is
strictly more expressive than EQ2

k, because it can define ‘non-
local’ relations such as undirected reachability.) We determine
the computational complexity of the satisfiability and finite
satisfiability problems for EQ2

k and EC2
k.

As is well-known, FO2 enjoys the finite model prop-
erty [14], and its satisfiability (= finite satisfiability) problem
is NEXPTIME-complete [3]. It was shown in [10] that EQ2

1

also has the finite model property, with satisfiability again
NEXPTIME-complete. However, the same paper showed that
the finite model property fails for EQ2

2, and that its satisfiability
problem is in 3-NEXPTIME. An identical upper bound for
the finite satisfiability problem was later obtained in [12].
The best currently known corresponding lower bound for
these problems is 2-EXPTIME hard, obtained from the less
expressive two-variable guarded fragment with equivalence

relations [8]. It was further shown in [10] that the satisfiability
and finite satisfiability problems for EQ2

3 are undecidable.
In this paper, we show: (i) EC2

1 retains the finite model
property, and its satisfiability problem remains in NEXPTIME;
(ii) the satisfiability and finite satisfiability problems for EC2

2

are both in 2-NEXPTIME; (iii) the satisfiability and finite
satisfiability problems for EQ2

2 are both 2-NEXPTIME-hard.
This settles, for all k ≥ 1, the complexity of satisfiability and
finite satisfiability for both EC2

k and EQ2
k: all these problems

are NEXPTIME-complete if k = 1, 2-NEXPTIME-complete if
k = 2, and undecidable if k ≥ 3. Thus, we close a previously
existing gap for EQ2

2, and extend the complexity bounds for
EQ2

k to the more expressive logic EC2
k, for k = 1, 2.

The most significant of these new results is the upper com-
plexity bound of 2-NEXPTIME for EC2

2. Our strategy involves
a non-deterministic reduction from the (finite) satisfiability
problem for EC2

2 to the problem of determining the existence
of a (finite) edge-coloured bipartite graph subject to constraints
on the numbers of edges of each colour incident to its vertices.
This reduction runs in doubly-exponential time, and produces
a set of constraints doubly-exponential in the size of the given
EC2

2-formula. We then show that this latter problem is in
NPTIME, by non-deterministic reduction to integer program-
ming. Crucial to our argument is a ‘Carathéodory-type’ result
on integer programming due to [2].

The logic FO2 embeds, via the standard translation, multi-
modal propositional logic, whose good algorithmic and model-
theoretic behaviour is characteristically robust both with re-
spect to extensions of its logical syntax (for example, by
fixed point operations) and also with respect to restrictions
on the class of structures over which it is interpreted (for
example, in the form of conditions on the modal accessibility
relations). This computational pliability has led to numerous
applications in various areas of computer science, including
verification of software and hardware, distributed systems,
knowledge representation and artificial intelligence.

In respect of robustness under syntactic extensions, FO2

appears, by contrast, less attractive: with the notable exception
of the counting extension [5], [16], [17], most of its syntactic
extensions are undecidable [4], [6]. In respect of restrictions
on the structures over which it is interpreted, however, the
behaviour of FO2 is more mixed, and to some extent less



well-understood. The most salient such restrictions are those
featuring (i) linear orders, (ii) transitive relations and (iii)
equivalences. In the presence of a single linear order, the
satisfiability and finite satisfiability problems for FO2 remain
NEXPTIME-complete [15]. For two linear orders, EXPSPACE-
completeness of finite satisfiability is shown, subject to certain
restrictions on signatures, in [18]. (The case of unrestricted sig-
natures, and decidability of the general satisfiability problem
are currently open.) For three linear orders, both satisfiability
and finite satisfiability are undecidable [15], [9]. Turning to
transitive relations, the satisfiability problem for FO2 in the
presence of a single transitive relation has recently been
shown to be in 2-NEXPTIME [20]. (The corresponding finite
satisfiability problem is still open.) In the presence of two
transitive relations, however, both problems are known to
be undecidable—indeed this is so even for one transitive
and one equivalence relation [12]. Restricting attention to
interpretations involving equivalences yields the logics EQ2

k,
discussed in this paper.

Closely related to these logics are extensions of FO2 in
which the operations of transitive closure or equivalence
closure can be applied to one or more binary predicates.
Decidable fragments of first-order logic augmented with an
operation of transitive closure are actually rare. One case is
the logic ∃∀(DTC+[E]), which has an exponential-size model
property [7]. Another is the logic obtained by extending the
two-variable guarded fragment [1] with a transitive closure
operator applied to binary symbols appearing only in guards;
the satisfiability problem for this logic is in 2-NEXPTIME [13].
Adding equivalence closure operators to FO2 yields the logics
EC2

k, discussed in this paper.
The paper is organized as follows. In Sec. II, we define

the logics EC2
k, in which the distinguished binary predi-

cates r1, . . . , rk are paired with the corresponding predicates
r#

1 , . . . , r
#

k , representing their respective equivalence closures.
We establish a ‘Scott-type’ normal form for EC2

2, allowing
us to restrict the nesting of quantifiers to depth two, and we
recall a small substructure property for FO2 [10], allowing us
to replace an arbitrary substructure in a model of some FO2-
formula ϕ with one whose size is exponentially bounded in the
size of ϕ’s signature. Sec. III shows how the normal form of
Sec. II can be transformed into so-called reduced normal form,
producing a syntactically simpler formula at the cost of an
exponential increase in size. In Sec. IV, we prove a technical
lemma on models of reduced normal-form EC2

2-formulas, used
in the upper complexity bound for EC2

2 obtained in Sec. VI.
As a by-product, we obtain the finite model property for
EC2

1 along with a NEXPTIME-bound on the complexity of
satisfiability. In Sec. V, we define two problems concerning
bipartite graphs with coloured edges: the graph existence
problem and finite graph existence problem. We show that both
problems are in NPTIME, by non-deterministic polynomial-
time reduction to integer programming. (This is the most
labour-intensive part of the entire proof.) Sec. VI is then able
to establish that the (finite) satisfiability problem for EC2

2 is
in 2-NEXPTIME via a non-deterministic doubly exponential-

time reduction to the (finite) graph existence problem. Sec. VII
shows, using the familiar apparatus of tiling systems, that
the satisfiability and finite satisfiability problems for EQ2

2 are
2-NEXPTIME-hard. These matching bounds establish the 2-
NEXPTIME-completeness of satisfiability and finite satisfia-
bility for both EC2

2 and EQ2
2.

II. PRELIMINARIES

A. The Logics

We denote by FO2 the two-variable fragment of first-order
logic (with equality), restricting attention to signatures of
unary and binary predicates. By EC2

k, we understand the set of
FO2-formulas over any signature τ = τ0 ∪ {r1, r2, . . . , rk} ∪
{r#

1 , r
#

2 , . . . , r
#

k }, where r1, r2, . . . , rk and r#

1 , r
#

2 , . . . , r
#

k are
distinguished binary predicates. In the sequel, any signature
τ is assumed to be of the above form (for some appropriate
value of k). The semantics for EC2

k are as for FO2, subject to
the restriction that r#

i is always interpreted as the equivalence
closure of ri. More precisely: we consider only structures A
in which, for all i (1 ≤ i ≤ k) (r#

i )A is the smallest reflex-
ive, symmetric and transitive relation including rAi . Where a
structure is clear from context, we may equivocate between
predicates and their extensions, writing, for example, ri and
r#

i in place of the technically correct rAi and (r#

i )A.
Let A be a structure over τ . We say that there is an ri-

edge between a and a′ ∈ A if A |= ri[a, a
′] or A |= ri[a

′, a].
Distinct elements a, a′ ∈ A are ri-connected if there exists a
sequence a = a0, a1, . . . , ak−1, ak = a′ in A such that for all
j (0 ≤ j < k) there is an ri-edge between aj and aj+1. Such a
sequence is called an ri-path from a to a′. Thus, A |= r#

i [a, a′]
if and only if a and a′ are ri-connected. A subset B of A
is called ri-connected if every pair of distinct elements of
B is ri-connected. Maximal ri-connected subsets of A are
equivalence classes of r#

i , and are called r#

i -classes. We also
say that elements a, a′ ∈ A are in free position in A if they are
not ri-connected, for any i ∈ {1, . . . , k}. Similarly, subsets B
and B′ of A are in free position in A if every two elements
b ∈ B and b′ ∈ B′ are in free position in A.

We mostly work with the logic EC2
2. In any structure A,

the relation r#

1 ∩ r
#

2 is also an equivalence, and we refer to its
equivalence classes, simply, as intersections. Thus, an intersec-
tion is a maximal set that is both r1- and r2-connected. When
discussing induced substructures, a subtlety arises regarding
the interpretation of the closure operations. If B ⊆ A, we take
it that, in the structure B induced on B, the interpretation
of r#

i is given by simple restriction: (r#

i )B = (r#

i )A ∩ B2.
This means that, while (r#

i )B is certainly an equivalence
including rBi , it may not be the smallest, since, for some
a, a′ ∈ B, an ri-path connecting a and a′ in A may contain
elements which are not members of B. (Such a situation may
arise even when B is an intersection.) To reduce notational
clutter, we use the (possibly decorated) letter A to denote
‘full’ structures in which we are guaranteed that (r#

i )A is the
equivalence closure of rAi . For structures denoted by other
letters, B, C, . . . (again, possibly decorated), no such guarantee
applies. Typically, but not always, these latter structures will



be induced substructures. Since we frequently work with
structures induced by intersections in the sequel, the following
terminology will be useful. If τ = τ0 ∪ {r1, r2} ∪ {r#

1 , r
#

2 },
we say that a τ -structure I is a pre-intersection if for i = 1, 2,
and for all a, a′ ∈ I we have I |= r#

i [a, a′] (but we do not
require (r#

i )I to be the equivalence closure of rIi ). Obviously,
if I is an intersection of A, then the induced substructure I is
a pre-intersection. By the type of a pre-intersection, we mean
its isomorphism type.

B. Normal Form, Types and Notation

In the sequel, we take the (possibly decorated) letter p to
range over unary predicates, and the (possibly decorated) letter
θ to range over quantifier-free (but not necessarily equality-
free) formulas. If ϕ is any formula, we write ¬0ϕ for ϕ and
¬1ϕ for ¬ϕ. A normal form EC2

2-formula is a sentence

ϕ = χ ∧ ψ00 ∧ ψ01 ∧ ψ10 ∧ ψ11, (1)

where χ is of the form ∀x∀y.θ and, for s, t ∈ {0, 1}, ψst is a
conjunction

∧
i∈I ∀x(pi(x) → ∃y(¬sr#

1 (x, y) ∧ ¬tr#

2 (x, y) ∧
θi)) (with index set I depending on s and t).

Lemma 1: Let ϕ be an EC2
2-formula over a signature τ . We

can compute, in polynomial time, a normal-form EC2
2-formula

ϕ′ over a signature τ ′ such that ϕ and ϕ′ are satisfiable over
the same domains, and τ ′ consists of τ together with some
additional unary predicates.

Proof sketch: We employ the technique of re-naming
subformulas familiar from [19], noting that any formula ∃y.θ
is equivalent to

∨
s,t∈{0,1} ∃y(¬sr#

1 (x, y)∧¬tr#

2 (x, y)∧θ).

An (atomic) 1-type (over a given signature) is a maximal
satisfiable set of atoms or negated atoms with free variable x.
Similarly, an (atomic) 2-type is a maximal satisfiable set of
atoms and negated atoms with free variables x, y. Note that
the numbers of 1-types and 2-types are bounded exponentially
in the size of the signature. We often identify a type with the
conjunction of all its elements.

For a given τ -structure A, we denote by tpA(a) the 1-
type realized by a, i.e. the 1-type α such that A |= α[a].
Similarly, for distinct a, b ∈ A, we denote by tpA(a, b) the
2-type realized by the pair a, b, i.e. the 2-type β such that
A |= β[a, b]. We denote by α[A] the set of all 1-types realized
in A, and by β[A] the set of all 2-types realized in A. For
S ⊆ A, we denote by α[S] the set of all 1-types realized
in S, and similarly for β[S]. For S1, S2 ⊆ A, we denote by
β[S1, S2] the set of all 2-types tpA(a1, a2) with ai ∈ Si; we
write β[a, S2] in preference to β[{a}, S2].

C. A Small Substructure Property for FO2

In [11] it was proved that, for any structure A with substruc-
ture B, one may replace B by an ‘equivalent’ structure B′

of bounded size, in such a way as to preserve the truth of all
FO2-formulas in Scott normal form. (This construction does
not in general preserve truth of normal-form EC2

2-formulas.)
Below, we present a precise statement of this lemma, restricted
to substructures consisting of realizations of a single 1-type.

Lemma 2: Let A be a τ -structure, let B be a subset of A
such that α[B] = {α} for some 1-type α, and let C = A\B.
Then there is a τ -structure A′ with universe A′ = B′ ∪̇C for
some set B′ of size bounded by 3|β[A]|3, such that:

(i) A′�C = A�C;
(ii) α[B′] = α[B], whence α[A′] = α[A];

(iii) β[B′] = β[B] and β[B′, C] = β[B,C], whence
β[A′] = β[A];

(iv) for each b′ ∈ B′ there is some b ∈ B with β[b′, A′] ⊇
β[b, A];

(v) for each a ∈ C: β[a,B′] ⊇ β[a,B].
(vi) for each b′ ∈ B′ we have β[b′, B′] = β[B].

Property (vi) and the bound on the size of B′ are not explicitly
given in the original statement of the lemma in [11]; they are,
however, guaranteed by the construction in its proof.

III. REDUCED NORMAL FORM

A reduced normal form EC2
2-formula is a sentence

ϕ = χ ∧ ψ00 ∧ ψ01 ∧ ψ10 ∧ ω, (2)

where χ and the ψst are as in (1), and ω is a conjunction∧
i∈I ∃x.pi(x) for some index set I .

Lemma 3: Given any EC2
2-formula ϕ over a signature τ ,

we can compute, in exponential time, an EC2
2-formula ϕ′ in

reduced normal form over a signature τ ′, such that: (i) |τ ′| is
bounded polynomially in |ϕ|; and (ii) ϕ and ϕ′ are satisfiable
over the same domains of cardinality greater than f(|ϕ|) for
a fixed exponential function f .

This section is devoted to proving Lemma 3. We first fix a
normal-form EC2

2-sentence, ϕ, as in (1), over a signature τ .
Write ψ11 =

∧
i∈I ∀x(pi(x) → ∃y(¬r#

1 (x, y) ∧ ¬r#

2 (x, y) ∧
θi(x, y))) where I = {1, . . . ,m}. The following terminology
will be useful. If A |= ϕ and a ∈ A, then any element b ∈ A
such that A |= ¬r#

1 [a, b] ∧ ¬r#

2 [a, b] ∧ θi[a, b] is called an ith
free witness for a (in A). Such an ith free witness certainly
exists if A |= pi[a].

Lemma 4: Suppose A |= ϕ. Then there is a τ -structure
A′ |= ϕ over the same domain, A, with the following
property: there exists B ⊆ A, of cardinality at most Z =
2m(m+ 2)(3m+ 5)(1 +m+m2)2|τ | such that, if any a ∈ A
has an ith free witness (for any 1 ≤ i ≤ m), then a has an ith
free witness in B.

Proof: If α ∈ α[A], let Aα be the set of elements of
A realizing the 1-type α in A. Our strategy is to define, for
each α ∈ α[A], a subset Bα ⊆ Aα of cardinality at most
2m(m+ 2)(3m+ 5), and to show that, for every ` ≤ m and
every a ∈ A, if a has ` distinct free witnesses in Aα, then a
is in free position with respect to at least ` elements of Bα.

Fixing α, denote by si the restriction of r#

i to Aα. Thus,
s1, s2 and s1 ∩ s2 are equivalence relations on Aα: in the
remainder of this proof, we refer to the equivalence classes
of s1 ∩ s2 as intersections, since no confusion will result. We
call an si-class comprising more than one intersection an si-
clique; we call an intersection which is both an s1-class and



an s2-class a loner; and we use the term unit to refer to either
an s1-clique or an s2-clique or a loner. Thus, the collection
of units forms a cover of Aα. Evidently: an s1- and an s2-
clique have at most one intersection in common; no two si-
cliques have any intersections in common; and no si clique
includes any loner. If a ∈ A is r#

i -related to any element in
an intersection, I , then it is r#

i -related to every element in I:
we simply say that a is r#

i -related to I . The following facts
are again obvious: if a is r#

i -related to any intersection in an
si-clique, then a is r#

i -related to every intersection in that si-
clique; if distinct units C and C ′ are either si-cliques or loners,
then a cannot be simultaneously r#

i -related to an intersection
in C and also to an intersection in C ′; and a is r#

1 -related
to at most one intersection in any s2-clique, whence there is
at least one intersection in that s2-clique to which a is not
r#

1 -related (and similarly with indices exchanged).
To define Bα, select 2(m + 2) distinct units in A. (If A

has fewer units, select them all). Each selected unit C thus
contains at most 2(m + 2) intersections belonging to any
other selected unit: select all of these intersections, and, in
addition, select (m+ 1) further intersections in C if possible.
(If this is not possible, then C contains fewer than 3m + 5
intersections in total, so select them all). Finally, in any
selected intersection I , select up to m elements. (If I contains
fewer than m elements, select them all). The set Bα of selected
elements in selected intersections in selected units satisfies
|Bα| ≤ 2m(m+ 2)(3m+ 5).

We must show that, for every a ∈ A, if a has ` ≤ m
distinct free witnesses in Aα, then a is in free position with
respect to at least ` elements of Bα. Observe first that, if Aα
has 2(m + 2) or more units, then—switching the indices 1
and 2 in the sequel if necessary—there are m + 2 selected
s1-cliques or loners. Now fix a ∈ A. At least m+ 1 of these
m+ 2 selected units are such that a is not r#

1 -related to them,
and at least m of these m+1 are not loners to which a is r#

2 -
related. Each of these m remaining units therefore contains at
least one intersection to which a is in free position. And since
distinct s1-cliques are disjoint, we may choose one element
from each, thus obtaining m ≥ ` elements of Bα in free
position with respect to a. Henceforth, then, we assume that
Aα has fewer than 2(m + 2) units; and therefore that all
units are selected. Again, fix a ∈ A, and suppose first that
a ∈ A has free witnesses in some non-selected intersection.
Then that intersection lies in a unit, C, containing at least
m + 1 selected intersections not belonging to any other unit.
Without loss of generality, suppose C is an s1-clique. Then a
cannot be r#

1 -related to any intersection in C, and can be r#

2 -
related to at most one intersection in C, whence we may find
at least m selected intersections in C standing in free position
to a. Since distinct intersections are disjoint, we may choose
one element from each of these intersections, again obtaining
m ≥ ` elements of Bα in free position with respect to a.
On the other hand, if all of a’s free witnesses lie in selected
intersections, then we can obviously replace any non-selected
free witness by one of the m selected elements in the same
intersection, thus obtaining ` elements of Bα in free position

with respect to a.
By carrying out this procedure for every 1-type α, we obtain

a collection of at most 2m(m + 2)(3m + 5)|α[A]| potential
free witnesses. Call this set B1; let B2 be a set containing
the required free witnesses for all elements of B1; let B3 be
a set containing the required free witnesses for all elements
of B2; and let B = B1 ∪ B2 ∪ B3. Thus, |B| ≤ Z. We now
change the binary predicates of A to obtain a structure A′ as
follows. Fix any a ∈ A \ (B1 ∪B2). For all i (1 ≤ i ≤ m), if
a has an ith free witness, then pick one such witness; and let
the (distinct) elements obtained in this way be, in some order,
b1, . . . , b`. Now let b′1, . . . , b

′
` be distinct elements of B1 in

free position with respect to a, with tpA
′
[b′h] = tpA[bh] for all

h (1 ≤ h ≤ `). By construction of B1, this is clearly possible.
Now set tpA

′
[a, b′h] = tpA[a, bh] for all h (1 ≤ h ≤ `). In this

way, all elements of B1∪B2 retain their former i-witnesses in
B, while all elements of B \(B1∪B2) acquire (possibly new)
i-witnesses in B1 ⊆ B. Furthermore β[A′] ⊆ β[A]. It follows
that we have A′ |= ϕ, so that A′ and B are as required.
Now we can carry out the main task of this section:

Proof of Lemma 3: Let ϕ be as in (1), and τ the
signature of ϕ. As before, we write ψ11 =

∧
I ∀x(pi(x) →

∃y(¬r#

1 (x, y)∧¬r#

2 (x, y)∧θi(x, y))), where I = {1, . . . ,m}.
We proceed to eliminate the conjuncts of ψ11. Let Z be as in
Lemma 4, and write z = dlog(Z + 1)e (so that z is bounded
by a fixed polynomial function of |ϕ|). Now take mz new
unary predicates pi,1, . . . , pi,z (1 ≤ i ≤ m), and a further z
unary predicates q1, . . . , qz . For all j (0 ≤ j ≤ Z), denote
by p̄i,j(x) the formula ¬j[1]pi,1(x)∧ · · · ∧¬j[z]pi,z(x), where
j[h] is the hth digit in the z-bit representation of j; define q̄j
similarly. As an aid to intuition, when j < Z, read p̄i,j(x) as
“the ith free witness for x (if it exists) is the jth element of
a special set” and read q̄j(x) as “x is the jth element of the
special set”; read q̄Z(x) as “x is not in the special set”. The
following sentence states that, for all i (1 ≤ i ≤ m), every
element satisfies p̄i,j(x) for some j (0 ≤ j < Z):

χa = ∀x
m∧
i=1

Z−1∨
j=0

pi,j(x).

The following sentence states that, for any pair of elements
satisfying, respectively, p̄i,j and q̄j , the second is an ith free
witness for the first (if such a free witness exists):

χb = ∀x∀y
m∧
i=1

Z−1∧
j=0

((pi(x) ∧ pi,j(x) ∧ qj(y))→

(¬r#

1 (x, y) ∧ ¬r#

2 (x, y) ∧ θi)).

Let χ′ = χa ∧ χb ∧ χ. Observe that all quantification in χ′ is
universal. Finally, the following sentence states that, for all j
(0 ≤ j < Z), there is an element satisfying q̄j(x):

ω =
∧Z−1
j=0 ∃xq̄j(x).

Note that |χ′| and |ω| are bounded by an exponential function
of |ϕ|. We claim that ϕ and ϕ′ = χ′ ∧ ψ00 ∧ ψ01 ∧ ψ10 ∧ ω
are satisfiable over the same domains of cardinality at least Z.



On the one hand, ϕ′ evidently entails ψ11, and hence ϕ. On
the other hand, suppose A |= ϕ, with |A| ≥ Z. Let A′ and
the set B have the properties guaranteed by Lemma 4, and
let {b0, . . . , bZ−1} include B. We expand A′ to a structure
A′′ interpreting the predicates pi,h and qh as follows: for all i
(1 ≤ i ≤ m) and a ∈ A, if the ith free witness for a exists and
is equal to bj , ensure A′′ |= p̄i,j [a]; for all j (0 ≤ j ≤ Z− 1),
ensure A′′ |= q̄j [bj ]; for all a 6∈ {b0, . . . , bZ−1}, ensure A′′ |=
q̄Z [a]. It is then easy to see that A′′ |= χ′ ∧ ω.

IV. SMALL INTERSECTION PROPERTY FOR EC2
2

In this section we prove the following strengthening of
Lemma 14 from [11].

Lemma 5: Let ϕ be a satisfiable EC2
2-sentence in normal or

in reduced normal form, over a signature τ . Then there exists
a model of ϕ in which the size of each intersection is bounded
by K(|τ |), for some exponential function K.

We begin by showing how to bound the size of an intersec-
tion consisting of realizations of a single 1-type.

Lemma 6: Let A be a τ -structure, B ⊆ A be a maximal r1-
and r2-connected set such that α[B] = {α} is a singleton, D1,
D2 be the respective r#

1 - and r#

2 -class of B, and C = A \B.
Then there is a τ -structure A′′ with universe A′′ = B′′ ∪̇C
for some set B′′ of realizations of α with |B′′| ≤ 45|β[A]|6,
such that:

(i) A′′�C = A�C;
(ii) α[B′′] = {α} = α[B], whence α[A′′] = α[A];

(iii) β[B′′] = β[B] and β[B′′, C] = β[B,C], whence
β[A′′] = β[A];

(iv) for each b′′ ∈ B′′, there is some b ∈ B with β[b′′, A′′] ⊇
β[b, A];

(v) for each a ∈ C, β[a,B′′] ⊇ β[a,B];
(vi) B′′ ∪ (D1 \ B) is an r#

1 -class and B′′ ∪ (D2 \ B) an
r#

2 -class.
Proof: If |B| = 1, then we simply put B′′ = B and we

are done. Otherwise, our first step is a simple application of
Lemma 2. Let p1, p2 be fresh unary predicates. Let Ā be the
expansion of A obtained by setting p1, p2 true for all elements
of D1, resp. D2. Let the result of the application of Lemma
2 to Ā and the substructure induced by B be a structure Ā′,
in which B′ is the replacement of B. By A′ we denote the
restriction of Ā′ to the original signature, i.e. the structure
obtained from Ā′ by dropping the interpretations of p1 and
p2. Thus, A′ is a structure with universe C ∪ B′ and |B′| is
exponentially bounded in the signature.

After applying Lemma 2, r#

i might no longer be the
symmetric transitive closure of ri in A′, and we need to repair
this defect. To do so, we employ an additional combinatorial
construction, yielding a structure A′′ whose universe is C∪̇B′′.
The restrictions of the structures A, A′, and A′′ to C are equal.

Let D′i = (Di\B)∪B′ and D′′i = (Di\B)∪B′′ (i = 1, 2).
The main goal of the construction of A′′ is to make B′′ r1-
and r2-connected, which will also make D′′1 r1-connected, and
D′′i r2-connected. We consider three cases.

B1 D′1 D1

B′ B

B2

S1
1 S2

1 S3
1 S1

1\B′ S2
1\B′ S3

1\B′

D′′1

a11

a21

a31

a11

a21

a31

a121 a231

b231

b121

Figure 1. Making D′′
1 r1-connected in Case 2, by means of B1. Note that

D′
1 \B′ = D1 \B.

Case 1: There is a pair of distinct elements s, t ∈ B such that
A |= r1[s, t], and there is a pair of distinct elements u,w ∈ B
such that A |= r2[u,w].

We build B′′ from five pairwise disjoint sets B0, . . . , B4.
In A′′, we define the substructures Bi as copies of B′ and
the substructures induced by C ∪ Bi we make isomorphic to
A′. It remains to set connections among Bi’s. For every pair
of elements b1 ∈ Bi, b2 ∈ Bi+1(mod5) set tpA′′

(b1, b2) :=
tpA(s, t). For every pair of elements b1 ∈ Bi, b2 ∈ Bi+2(mod5)

set tpA′′
(b1, b2) := tpA(u,w). Note that this fully defines A′′.

Case 2: For every pair of distinct elements s, t ∈ B we have
A |= ¬r1[s, t] ∧ ¬r2[s, t].

Let {Ski }k∈Ii (i = 1, 2) be the partition of D′i in A′ into
maximal ri-connected subsets. Observe that each Ski contains
at least one element from B′. Indeed, Ski \B′ is a subset of Di,
from which there are no ri-edges to Di \(B∪(Ski \B′)) in A,
since otherwise, such an edge would be retained in A′ and Ski
would not be maximal. Thus, since Di is ri-connected in A,
there must be an element a ∈ Ski \B′, with an ri-edge to some
b ∈ B in A. Now, property (v) of Lemma 2 guarantees that
there exists b′ ∈ B′ with tpA′

(a, b′) = tpA(a, b), so b′ has an
ri-edge to a, and thus b′ ∈ Ski . This observation implies that
the number of ri-connected subsets of D′i in A′ is bounded
by |B′|, i.e. exponentially in the signature (i = 1, 2). We say
that Ski and Sli are connected by B in A if and only if there
are aki ∈ Ski \ B′, ali ∈ Sli \ B′ and akli ∈ B, such that
aki , akli , ali is an ri-path in A (Fig. 1). We build B′′ from
B′ and two new sets B1 and B2 of additional realizations
of α. We define A′′�C ∪ B′ to be equal to A′. For Ski and
Sli connected by B, we add a fresh element bkli to Bi. For
every c ∈ C, and i = 1, 2, we set tpA′′

(bkli , c) := tpA(akli , c).
The 2-types between bkli and B′ are set in such a way that
β[akli , B] ⊆ β[bkli , B

′]; by part (vi) of Lemma 2 we always
have enough elements in B′ to secure this property. The 2-
types inside B1∪B2 are not relevant and can be set as arbitrary
2-types used in B.

Case 3: There exists a pair of distinct elements s, t ∈ B such
that A |= r1[s, t], but for all pairs of distinct elements u, v ∈



B, we have A |= ¬r2[u, v]. (Or symmetrically, exchanging r1

and r2.)
This construction is a combination of the previous two. We

build B′′ from three disjoint sets B0, B1, B
2 of realizations of

α. The role of the sets B0 and B1 is similar to the role of the
sets B0, . . . , B4 from Case 1, while the role of B2 is similar
to the role of B2 from the Case 2.

In A′′ we define the substructures Bi as copies of B′ and
we make the substructures induced by C ∪ Bi (i = 1, 2)
isomorphic to A′. For every pair of elements b1 ∈ B0, b2 ∈ B1

we set tpA′′
(b1, b2) := tpA(s, t).

Let {Sk2 }k∈I be the partition of D′2 in A′ into maximal r2-
connected subsets. As in Case 2, each Sk2 contains at least
one element from B′. This implies that the number of r2-
connected subsets of D′2 is again bounded by |B′|. Recall that
Sk2 and Sl2 are connected by B if there are ak2 ∈ Ski \ B′,
al2 ∈ Sl2 \ B′ and akl2 ∈ B, such that ak2 , akl2 , al2 is an r2-
path in A. Now, if Sk2 and Sl2 are connected by B then we
add a fresh element bkl2 to B2, and set its 1-type to α. For
every c ∈ C, we set tpA′′

(bkl2 , c) := tpA(akl2 , c). The 2-types
between bkl2 and Bi (i = 0, 1) are set in such a way that
β[akl2 , B] ⊆ β[bkl2 , Bi]. The 2-types inside B2 are not relevant
and can be set as arbitrary 2-types used in B.

Finally, for every pair of elements b1 ∈ B2, b2 ∈ B0 ∪ B1

we set tpA′′
(b1, b2) := tpA(s, t). This makes B2 r1-connected

to the remaining part of D′′1 .

Now we argue that A′′ and B′′ are as required. It should
be clear that properties (i)-(v) are fulfilled and that the size
of B′′ is not greater than 5|B′|2, which, by the bound on B′

from Lemma 2 is not greater than 45|β[A]|6. Now we show
that property (vi) also holds.

Case 1: First, note that B′′ is both r1- and r2-connected. We
show that, for any i and s ∈ Di\B there is an ri-path between
s and some element t′′ ∈ B. As Di is ri-connected there must
be a path in A from s to some t ∈ B. Let s = s0, . . . , sk = t
be such a path, with sj 6∈ B for all j < k. Obviously, s0 and
sk−1 are ri-connected in A′′ as both are in C. We show that
sk−1 is connected to some element in B′′. Indeed, property
(v) of Lemma 2 guarantees that there is an ri-edge between
sk−1 and some element t′ of 1-type α∪ {p1(x), p2(x)} in Ā,
and property (i) of the same lemma guarantees that there are
no such elements outside B′. By our construction, in A′′ there
is also an edge between sk−1 and t′′ - the copy of t′ in B0.
Therefore, D′′i is ri-connected for i ∈ {1, 2}. By property (iii)
of Lemma 2, there are no ri-connections from B′ to elements
that do not satisfy pi (i.e. elements from C\Di), and therefore
D′′i is a maximal ri-connected set.

Case 2: It should be clear that C∪B′∪Bi is ri-connected, for
i = 1, 2. To see that B2 is r1-connected to the remaining part
of B′′, note that each element of B2 has at least one r1-edge
to C (as we copied its 2-types from A and there where no
r1-edges inside B). Analogously for B1 and r2-edges.

Case 3: Here the proof is just a combination of the arguments
from the previous cases.

Proof of Lemma 5: We first argue that the structure
obtained as an application of Lemma 6 satisfies the same
normal form formulas over τ as the original structure. Let
ϕ = χ ∧ ψ00 ∧ ψ01 ∧ ψ10 ∧ ψ11 be a formula in normal form
over τ , A |= ϕ, B ⊆ A be a maximal r1- and r2-connected
set such that α[B] = {α} is a singleton set, C = A \B, and
A′′ with universe A′′ = B′′ ∪̇C be a result of application of
Lemma 6 to A.

Observe that formula χ is satisfied in A′′ thanks to property
(iii) of Lemma 6. For any c ∈ C, properties (i) and (v)
guarantee that c has all required witnesses. For any b ∈ B′′,
the same thing is guaranteed by property (iv).

Now, to find a small replacement of a whole intersection,
we apply Lemma 6 iteratively to all 1-types realized in
this intersection. Property (vi) guarantees that the obtained
substructure is a maximal r1- and r2-connected set, so indeed
it is an intersection in the new model.

The proof of the Löwenheim-Skolem theorem (every satis-
fiable formula is satisfiable in a countable model) can easily
be extended to EC2; thus we may restrict our attention to
countable structures. Let I1, I2, . . . be a (possibly infinite)
sequence of all intersections in a A, A0 = A and Aj+1 be
the structure Aj modified by replacing intersection Ij+1 by
its small replacement I ′j+1 as described above. We define the
limit structure A∞ with the universe I ′1 ∪ I ′2, . . . such that for
all k < l the connections between I ′k and I ′l are defined in the
same way as in Al. It is easy to see that A∞ satisfies ϕ and
all intersections in A∞ are bounded exponentially in |τ |.

The described construction works also for formulas in
reduced normal form because the conjunct ω is satisfied due
to property (ii) of Lemma 6.

A Note on EC2
1

We can now easily get the following exponential classes
property for EC2

1.

Lemma 7: Let ϕ be a satisfiable (reduced) normal form EC2
1

formula. Then ϕ is satisfiable in a model in which all r#

1 -
classes are bounded exponentially.

Proof: Apply Lemma 6 to ϕ ∧ ∀x∀y.r2(x, y).
Lemma 7 generalizes the small classes property for FO2 with
one equivalence relation from [11]. We can now repeat the
construction from [11] (p. 11, Few classes) to show:

Theorem 8: Let ϕ be a satisfiable EC2
1 formula. Then ϕ

is satisfiable in a model of at most exponential size. Thus
the satisfiability problem (= finite satisfiability problem) is
NEXPTIME-complete.

V. THE GRAPH EXISTENCE PROBLEM

Let A be any countable EC2
2-structure over some fixed

signature, all of whose intersections are subject to some fixed
size bound. (Hence, there is a finite collection of isomorphism
types of intersections that A can possibly realize.) Let U be
the set of r#

1 -classes and V the set of r#

2 -classes occurring in
A. Since an r#

1 -class u ∈ U may share at most one intersection
with any r#

2 -class v ∈ V , we may regard U and V as the sets



of vertices of a (possibly infinite) bipartite graph by taking
(u, v) to be an edge just in case u and v share an intersection.
Furthermore, we may consider the edge (u, v) to be coloured
by the isomorphism type of the intersection in question. (We
count intersections which are both r#

1 -classes and r#

2 -classes—
‘loners’, in the terminology of the proof of Lemma 4—twice:
once as an element of U and once as an element of V .
Thus, U and V remain disjoint, even when A contains loners.)
In this section, we define two problems concerning bipartite
graphs with coloured edges, and show (Thm. 9) that they are
NPTIME-complete. We use this fact in Sec. VI to establish our
upper complexity bounds for EC2

2. In the sequel, we denote
by N∗ the set N∪{ℵ0}. We interpret the arithmetic operations
+ and · as well as the ordering < over N∗ as expected.

Let ∆ be a finite, non-empty set. A ∆-graph is a triple
H = (U, V,E∆), where U and V are countable (possibly
finite) disjoint sets, and E∆ is a collection of pairwise disjoint
subsets Eδ ⊆ U ×V , indexed by δ ∈ ∆. We call the elements
of W = U ∪ V vertices, and the elements of Eδ , δ-edges. It
helps to think of E∆ as the result of ‘colouring’ an underlying
set of edges E =

⋃
δ∈∆Eδ using the ‘palette’ ∆. We call a

pair of edges e, e′ ∈ E skew if e and e′ share no vertex. For
u ∈ U and v ∈ V , we define the functions ordHu : ∆ → N∗
and ordHv : ∆→ N∗ by

ordHu (δ) = |{v ∈ V : (u, v) ∈ Eδ}|
ordHv (δ) = |{u ∈ U : (u, v) ∈ Eδ}|.

Thus, for any vertex w, ordHw (δ) (pronounced: “the δ-order of
w”) counts the number of δ-edges incident to w. For M ≥
0, we define bncM = min(n,M), and if f is any function
with range N∗, we denote by bfcM the composition b·cM ◦ f
(i.e., bfcM is the result of applying f and ‘capping’ at M ).

We now define the problem GE (“graph existence”). A GE-
instance is a sextuple P = (∆,∆0,M, F,G,X), where ∆ is
a finite, non-empty set, ∆0 ⊆ ∆, M is a positive integer, F
and G are sets of functions ∆ → [0,M ], and X ⊆ ∆2 is a
symmetric binary relation on ∆. A solution of P is a ∆-graph
H = (U, V,E∆), such that:

(G1) for all δ ∈ ∆0, Eδ is non-empty;
(G2) for all u ∈ U , bordHu cM ∈ F ;
(G3) for all v ∈ V , bordHv cM ∈ G;
(G4) for all e ∈ Eδ and e′ ∈ Eδ′ , if e and e′ are skew,

then (δ, δ′) ∈ X .
The problem GE is as follows: given a GE-instance P ,
determine whether P has a solution. Call a ∆-graph H =
(U, V,E∆) finite if U ∪ V is finite. The problem finite GE is
as follows: given a GE-instance P , determine whether P has
a finite solution. The main result of this section is:

Theorem 9: GE and finite GE are NPTIME-complete.
Proof outline: The difficulty is to show membership in

NPTIME. We present a non-deterministic, polynomial time
procedure which, given any instance P of GE, produces an in-
teger programming problem E . The variables of E represent—
simplifying somewhat—the numbers of vertices with given
order-functions. That is, for each f ∈ F and g ∈ G, E features

variables xf and yg . We ensure that, if H = (U, V,E∆) is a
solution of P , then setting xf to be the number of vertices
u ∈ U with bordHu cM = f , and yg the number of vertices
v ∈ V with bordHv cM = g yields a solution of E over N∗.
Conversely, if E has a solution over N∗, we can construct a
solution H = (U, V,E∆) of P in which the number of vertices
u ∈ U with bordHu cM = f is given by the value of xf , and the
number of vertices v ∈ V with bordHv cM = g by the value of
yg . We prove an analogous result for finite solutions of P and
solutions of E over N. The theorem follows from the fact that
integer programming, and also its variant in which solutions
are sought over N∗, are in NPTIME.
It is shown in [2, Theorem 1] that a Carathéodory-type
result holds for integer programming: if E features m linear
equations and inequalities whose coefficients (each) have at
most k bits, and E has a solution over N , then E has a
solution in which the number of non-zero values is bounded
by a polynomial function of m and k regardless of the number
of variables or the total size of E . (The proof extends easily
to solutions over N∗.) Because of this, the proof of Thm. 9
yields the following corollary, which we put to use in Sec. VI.

Corollary 10: If (∆,∆0,M, F ′, G′, X) is a positive in-
stance of (finite) GE, then there exist subsets F ⊆ F ′, G ⊆ G′,
both of cardinality bounded by a polynomial function h0 of
|∆| and M , such that (∆,∆0,M, F,G,X) is also a positive
instance of (finite) GE.

VI. UPPER BOUND FOR EC2
2

The purpose of this section is to establish that the satis-
fiability and finite satisfiability problems for EC2

2 are both
in 2-NEXPTIME. We proceed by transforming a reduced
normal-form EC2

2-formula ϕ, non-deterministically, into a GE-
instance, P , and showing that ϕ is (finitely) satisfiable if and
only if this transformation can be carried out in such a way
that P is a positive instance of (finite) GE. Any solution of P
is a bipartite graph in which the left-hand vertices represent
r#

1 -classes, the right-hand vertices represent r#

2 -classes and
the edges represent intersections; incidence of an edge on a
vertex represents inclusion of the corresponding intersection
in the corresponding r#

1 - or r#

2 -class. The main work in this
reduction is performed in Sec. VI-B; Sec. VI-A is devoted
to establishing technical results allowing us to manipulate
structures built from collections of intersections.

We introduce some additional notation. Let ∆ be a set of
types of pre-intersections, and f : ∆ → N∗ a function not
uniformly 0 on ∆. For each δ ∈ ∆, take f(δ) fresh sets
Dδ,0, Dδ,1, . . . all having the same cardinality as any pre-
intersection of type δ; and let D =

⋃
{Dδ,i | δ ∈ ∆, 0 ≤ i <

f(δ)}. We write D ≈ JfK1 to indicate that D is a structure
on D satisfying the following properties: (i) D is a single r#

1 -
class, with r#

1 the equivalence closure of r1; (ii) no elements
from different sets Dδ,i are related by r2; (iii) for all δ ∈ ∆
and all i < f(δ), D�Dδ,i is a pre-intersection of type δ. The
notation D ≈ JfK2 is defined symmetrically, with r1 and r2



exchanged. Obviously, f does not determine D; on the other
hand, it does determine how many pre-intersections of type δ
there are in D—namely, f(δ).

A. Approximating Classes
Fix a reduced normal-form EC2

2-formula ϕ = χ ∧ ψ00 ∧
ψ01 ∧ ψ10 ∧ ω over signature τ . We take ϕ1 to denote
χ ∧ ψ00 ∧ ψ01, and ϕ2 to denote χ ∧ ψ00 ∧ ψ10. Thus, ϕ1

incorporates the universal requirements of ϕ, as well as its
existential requirements in respect of the relation r#

1 ; similarly,
mutatis mutandis, for ϕ2. We employ the exponential function
K : N → N of Lemma 5. In addition, we take N : N → N
to be a doubly exponential function such that N(|τ |) bounds
number of isomorphism types of τ -structures consisting of
two pre-intersections of size at most K(|τ |). We define the
function L(n) = 45(N(n))6, corresponding to the size bound
obtained in Lemma 6. We prove two simple facts regarding
the r#

i -classes in a model of ϕ. The first allows us to add
pre-intersections to an existing r#

1 - or r#

2 -class.

Lemma 11: Let ∆ be a finite set of isomorphism types of
pre-intersections. Let f and f ′ be functions ∆ → N∗, such
that, for all δ ∈ ∆, f(δ) ≤ 1 implies f ′(δ) = f(δ), and
f(δ) ≥ 2 implies f ′(δ) ≥ f(δ). For i ∈ {1, 2}, if D ≈ JfKi
is such that D |= ϕi, then there exists D′ ≈ Jf ′Ki such that
D′ |= ϕi.

Proof: We prove the result for i = 1; the case i = 2
follows by symmetry. Consider first the case where, for some
δ ∈ ∆, f ′(δ) = f(δ)+1, with f ′(δ′) = f(δ′) for all δ′ 6= δ. By
assumption, f(δ) ≥ 2. We show how to add to D a single pre-
intersection of type δ to obtain a model D′ |= ϕ1. Let I1, I2
be pre-intersections in D of type δ; and let D′ extend D by
a new pre-intersection I of type δ. For every pre-intersection
I ′ of D, I ′ 6= I1, set the connection between I and I ′, i.e.
the 2-types realized by pairs of elements from, respectively,
I and I ′, isomorphically to the connection between I1 and
I ′. This ensures all the required witnesses for I inside D′,
and, as I1 has to be r1-connected to the remaining part of D,
this also makes D′ r1-connected. Complete D′ by setting the
connection between I and I1 isomorphically to the connection
between I1 and I2. Note that all 2-types in D′ are also realized
in D, so D′ |= χ. Observe that, in this construction, D ⊆ D′.

Consider now the case where, for some δ ∈ ∆, f ′(δ) >
f(δ) ≥ 2, with f ′(δ′) = f(δ′) for all δ′ 6= δ. If f ′(δ) is finite,
iterating the above procedure f ′(δ) − f(δ) times yields the
required D′. If f ′(δ) = ℵ0, we define a sequence D1 ⊆ D2 ⊆
· · · of models of ϕ1 with increasing numbers of copies of pre-
intersections of type δ, and set D′ =

⋃
iDi. The statement of

the lemma is then obtained by applying the above construction
successively for all δ ∈ ∆.

In the next lemma we show that, from a local point of
view, every class can be ‘approximated’ by a class in which
the number of realizations of each pre-intersection type is
bounded doubly exponentially in τ . (In fact, exponentially
many realizations of each type suffice; however, a doubly
exponential bound makes for a simpler proof.) This lemma
is a counterpart of Lemma 16 from [11].

Lemma 12: Let ∆ be the set of all types of pre-intersections
of size bounded by K(|τ |). Let f be a function ∆→ N∗, and
let f ′ = bfcL(|τ |). For i ∈ {1, 2}, if D ≈ JfKi is such that
D |= ϕi, then there exists D′ ≈ Jf ′Ki such that D′ |= ϕi.

Proof: Again, we prove the result for i = 1; the case
i = 2 follows by symmetry. We translate D into a structure F
whose universe is the set of all pre-intersections of D, atomic
1-types in D represent isomorphism types of pre-intersections,
and atomic 2-types represent connections among them. The
signature σ of F contains a binary symbol r′1, corresponding to
r1 from τ , a dummy binary symbol r′2 and some sets of unary
and binary predicates bounded logarithmically in N(|τ |). We
build F in such a way that:
• I1, I2 have the same 1-type in F if and only if I1 and I2

are isomorphic in D;
• pairs of pre-intersections I1, I2 and I ′1, I

′
2 have the same

2-types in F if and only if D�(I1 ∪ I2) is isomorphic to
D�(I ′1 ∪ I ′2);

• F |= r′1(I1, I2) if and only if there exist a1 ∈ I1, a2 ∈ I2
such that D |= r1(a1, a2);

• r′2 is the universal relation: F |= r′2[I1, I2] for all I1, I2 ∈
F .

Note that F is r′1-connected, and thus forms a single r′1
#-class,

and, as r′2
# is universal, F is actually an intersection. Note

also that |β[F]|, i.e. the number of 2-types in F, is bounded
by N(|τ |).

Let α be a 1-type realized in F. Let Fα be the set of
realizations of α. If |Fα| > 45|β[F]|6 then apply Lemma 6,
taking A := F, B := Fα, D1 := D2 := F . Repeat this step
for all 1-types of F. Let F′ be the structure thus obtained.

Since, by Lemma 6 (ii) and (iii), no new 1-types or 2-
types can appear in F′, it has a natural translation back into
a structure D′′, with elements of F′ corresponding to pre-
intersections in D′′. Thus, each isomorphism type δ is realized
in D′′ at most 45|β[F]|6 ≤ L(|τ |) times. If δ is realized fewer
than min(f(δ), L(|τ |)) times in D′′, then we can use Lemma
11 to add an appropriate number of realizations of δ to D′′ to
obtain a model D′ |= ϕ1 with D′ ≈ Jf ′K1.

B. The (Finite) Satisfiability Problem for EC2
2 and (Finite) GE

Let ϕ, ϕ1, ϕ2, τ and the function L be as in Sec. VI-A.
(Recall: ϕ = χ ∧ ψ00 ∧ ψ01 ∧ ψ01 ∧ ω, ϕ1 = χ ∧ ψ00 ∧
ψ01 and ϕ2 = χ ∧ ψ00 ∧ ψ10.) We now explain how to
transform ϕ non-deterministically into a GE-instance P =
(∆,∆0,M, F,G,X). We show that ϕ is (finitely) satisfiable if
and only if this transformation has a run in which the resulting
tuple P is a positive instance of the problem (finite) GE.

We first define the components ∆, M , and X of P . Let ∆
be the set of isomorphism types of pre-intersections over the
signature τ satisfying χ∧ψ00, and of size at most K(|τ |). Let
M = max(L(|τ |), 2), and let X be the set of pairs (δ, δ′) ∈
∆2 for which there exists a model D |= χ consisting of exactly
one pre-intersection of type δ and another of type δ′, each
forming its own r#

1 -class and its own r#

2 -class. Thus, |∆|, M
and |X| are all bounded by a doubly exponential function of
|τ |.



The remaining components of P , namely, ∆0, F and G, will
be guessed. The following terminology and notation will prove
useful. Say that a set of pre-intersection types ∆′ ⊆ ∆ certifies
ω if, for every conjunct ωi = ∃x.pi(x) of ω we can find δ in
∆′ such that pi is instantiated in any structure consisting of
a single pre-intersection of type δ. Now let F ∗ be the set of
functions f : ∆ → [0,M ] for which there exists a structure
D ≈ JfK1 such that D |= ϕ1. Similarly, let G∗ be the set of
functions g : ∆ → [0,M ] for which there exists a structure
D ≈ JgK2 such that D |= ϕ2. (Note that |F ∗| and |G∗| are
bounded by a triply exponential function of |ϕ|.)

Lemma 13: Let ϕ, ∆, F ∗, G∗, X be as defined above,
and let h0 be the polynomial guaranteed by Corollary 10.
Then ϕ is (finitely) satisfiable if and only if there exist
∆0 ⊆ ∆ certifying ω, and collections of functions F ⊆ F ∗,
G ⊆ G∗, both of cardinality bounded by h0(|∆|,M), such
that P = (∆,∆0,M, F,G,X) is a positive instance of the
problem (finite) GE.

Proof: ⇒ By Lemma 5, let A |= ϕ be a model with
intersections bounded by K(|τ |). Let E be the set of intersec-
tions in A. For each conjunct ωi of ω choose one element of
E satisfying ωi. Let ∆0 be the set of isomorphism types of
the chosen intersections. Clearly ∆0 certifies ω. We show that
the GE-instance P∗ = (∆,∆0,M, F ∗, G∗, X) is positive. (Of
course: F ∗ and G∗ do not satisfy the cardinality bounds of the
lemma.) Let U be the set of r#

1 -classes in A, and V the set
of r#

2 -classes. (As before, any ‘loner’ contributes one element
of U and a distinct element of V .) Since each intersection is
contained in exactly one r#

1 -class and exactly one r#

2 -class,
and indeed is determined by those classes, we may regard
the intersections in E as edges in a bipartite graph (U, V,E).
Denoting by Eδ the set of intersections in E having any type
δ ∈ ∆, we obtain a ∆-graph H = (U, V, {Eδ}∆). We show
that H is a solution of P∗ by checking properties (G1)–(G4).
Property (G1) is obvious. For (G2), we show that, for each
D ∈ U , bordHDcM ∈ F ∗. Since A |= ϕ, and D is an r#

1 -
class in A, D |= ϕ1; moreover, by definition, D ≈ JordHDK1.
Setting f = ordHD and f ′ = bfcM , Lemma 12 then states that
there exists a model D′ |= ϕ1 such that D′ ≈ Jf ′K1. Thus
by the definition of F ∗, bordHDcM ∈ F ∗ as required. Property
(G3) follows symmetrically. For property (G4), consider any
pair (I, I ′) of skew edges in H , I ∈ Eδ , I ′ ∈ Eδ′ . Observe
that the structure A�(I ∪ I ′) consists of two pre-intersections
of types δ, δ′, each forming its own r#

1 - and r#

2 -class. Thus
(δ, δ′) is a member of X . Applying Corollary 10, we may find
F ⊆ F ∗ and G ⊆ G∗, of size bounded by h0(|∆|,M), such
that P = (∆,∆0,M, F,G,X) is positive.
⇐ Assume now that there exist ∆0 certifying ω, F ⊆ F ∗

and G ⊆ G∗, such that P = (∆,∆0,M, F,G,X) is positive.
Let H = (U, V, {Eδ}∆) be an edge-coloured bipartite graph
which is a solution of P . Thus, H satisfies (G1)–(G4). We
show how to construct a model A |= ϕ from the graph H .
Intersections of A correspond to the edges of H: for each
δ ∈ ∆ and each e ∈ Eδ , we put into A a pre-intersection Ie
of type δ. Property (G1) ensures that A |= ω; and the fact that

all intersections have types from ∆ ensures that A |= ψ00.
Consider now any vertex u ∈ U . Let J be the set of all

pre-intersections corresponding to the edges incident to u. Our
task is to compose from them an r#

1 -class Du satisfying ϕ1.
First, writing f for ordHu and f ′ for bfcM , we form from
some subset of J a class D ≈ Jf ′K1 such that D |= ϕ1. This
is possible by (G2) and the construction of F ∗. For each of
the remaining intersections from J of type δ, note that the
number of intersections of type δ realized in D is bigger than
M ≥ 2 and thus the preconditions of Lemma 11 are fulfilled.
Thus all the remaining intersections of J can be joined to
D using Lemma 11, forming a desired Du. We repeat this
construction for all vertices in U . This ensures that A |= ψ01.
It also makes every pre-intersection r1-connected.

Similarly, from any vertex v ∈ V , we form a r#

2 -class con-
sisting of all pre-intersections corresponding to edges incident
on v, using (G3) and the construction of G. This step ensures
that A |= ψ10 and makes every pre-intersection r2-connected.
Thus, all pre-intersections become both r1- and r2-connected;
moreover, no two pre-intersections can be connected to each
other by both r1 and r2 (because no two edges of H can
have common vertices in both U and V ); hence, every pre-
intersection becomes an intersection of A, as required.

At this point, we have specified the 2-type in A of any pair
of elements not in free position. To complete the definition
of A, consider a pair of intersections Ie, Ie′ which are in free
position, i.e. are not members of the same r#

1 -class or r#

2 -
class. But then the edges e and e′ are skew in H . Assume
that e ∈ Eδ and e′ ∈ Eδ′ , so that Ie and Ie′ have respective
isomorphism types δ and δ′. By (G4), (δ, δ′) ∈ X . By the
definition of X , there is a structure D |= χ consisting of
exactly one intersection of type δ and another of type δ′,
each forming its own r#

1 -class and its own r#

2 -class. We make
A�Ie ∪ Ie′ isomorphic to D. Finally, we point out that each
pair of intersections in A has been connected by copying the
connections between a pair of intersections from a structure
which satisfied χ. This ensures that A |= χ.

C. Main Theorem

Theorem 14: The satisfiability and finite satisfiability prob-
lems for EC2

2 are in 2-NEXPTIME.
Proof: Let ϕ ∈ EC2

2 be given. By Lemma 3, we may
assume that ϕ = χ ∧ ψ00 ∧ ψ01 ∧ ψ10 ∧ ω is in reduced
normal form, since satisfiability of ϕ over models of at most
exponential size can be tested in doubly exponential time. We
continue to write ϕ1 for χ∧ψ00∧ψ01, and ϕ2 for χ∧ψ00∧ψ10.
Let M , ∆, F ∗, G∗ and X be as in Sec. VI-B. To determine
the (finite) satisfiability of ϕ′, execute the following procedure.
Non-deterministically guess a subset ∆0 ⊆ ∆, and sets of
functions F and G of type ∆ → [0,M ], such that |F | and
|G| are bounded by h0(|∆|,M), where h0 is the polynomial
guaranteed by Corollary 10. Check, in deterministic doubly
exponential time, that ∆0 certifies ω, and fail if not. For
each f ∈ F , guess a structure D ≈ JfK1, and check that
D |= ϕ1, failing if not; and similarly, for each g ∈ G, guess
a structure D ≈ JgK2, and check that D |= ϕ2, failing if
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Figure 2. A doubly-exponential toroidal grid of intersections: light grey
squares indicate r1-classes, and dark grey squares, r2-classes.

not. This non-deterministic process runs in doubly exponential
time, and has a successful run just in case F ⊆ F ∗ and
G ⊆ G∗. Let P be the GE-instance (∆,∆0,M, F,G,X); thus
the size of P is bounded doubly exponentially in |τ |. Check
the existence of a (finite) solution of P using the NPTIME-
algorithm guaranteed by Thm. 9, and report the result. This
non-deterministic procedure runs in time bounded by a doubly
exponential function of |ϕ|. By Lemma 13, it has a successful
run if and only if ϕ is (finitely) satisfiable.

VII. LOWER BOUND FOR FO2 WITH TWO EQUIVALENCES

In this section we show that the satisfiability and finite
satisfiability problems for EQ2

2, the two variable first-order
logic in which two distinguished predicates, r1 and r2, are
required to denote equivalences, are both 2-NEXPTIME-hard.
It follows that the satisfiability and finite satisfiability problems
for both EQ2

2 and EC2
2 are 2-NEXPTIME-complete.

Theorem 15: The satisfiability and finite satisfiability prob-
lems for EQ2

2 are 2-NEXPTIME-hard.
Proof Sketch: We proceed to reduce the doubly-exponen-

tial tiling problem to the satisfiability and finite satisfiability
problems for EQ2

2. The crux of the proof is a succinct ax-
iomatization of a toroidal grid structure of doubly exponential
size by means of an EQ2

2-formula ϕ. The nodes of this grid
are intersections of some r1-class and some r2-class; we can
easily write ϕ so as to ensure that each such intersection
contains 2n elements. By regarding these elements as indices
of binary digits, we can endow each intersection with a pair
of (x, y)-coordinates in the range [0, 22n − 1]. By adding
further conjuncts to ϕ, we can ensure that each intersection
has a vertical and a horizontal successor, with appropriate
coordinates, joined by r1 and r2 in the pattern shown in Fig. 2.
This ensures that for each pair of coordinates there exists a
corresponding intersection. To guarantee that there is at most
one such intersection it is sufficient to say explicitly that there
is at most one intersection having coordinates (22n−1, 22n−1)
and to prevent two intersections from having a common
horizontal or a common vertical successor. To enforce the

latter condition we write a conjunct which says that if two
elements are joined by one of the equivalence relations and
if the parities of their (x, y)-coordinates agree, then they are
also joined by the other equivalence relation, and hence are
members of the same intersection. Having established a grid,
encoding an instance of the tiling problem can be done in a
standard fashion.
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