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—— Abstract

We consider the satisfiability problem for modal logic over classes of structures definable by
universal first-order formulas with three variables. We exhibit a simple formula for which the
problem is undecidable. This improves an earlier result in which nine variables were used. We also
show that for classes defined by three-variable, universal Horn formulas the problem is decidable.
This subsumes decidability results for many natural modal logics, including T, B, K4, S4, S5.
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1 Introduction

Modal logic for almost a hundred year has been an important topic in many academic
disciplines, including philosophy, mathematics, linguistics, and computer science. Currently
it seems to be most intensively investigated by computer scientists. Among numerous
branches in which modal logic, sometimes in disguise, finds applications, are hardware and
software verification, cryptography and knowledge representation.

Modal logic was introduced by philosophers to study modes of truth. The idea was to
extend propositional logic by some new constructions, of which two most important were Q¢
and Oy, originally read as ¢ is possible and ¢ is necessary, respectively. A typical question
was, given a set of axioms A, corresponding usually to some intuitively acceptable aspects of
truth, what is the logic defined by A, i.e. which formulas are provable from A in a Hilbert-like
system.

One of the most important steps in the history of modal logic was inventing a formal
semantics based on the notion of the so-called Kripke structures. Basically, a Kripke
structure is a directed graph, called a frame, together with a valuation of propositional
variables. Vertices of this graph are called worlds. For each world truth values of all
propositional variables can be defined independently. In this semantics, Q0 means ¢ is true
in some world connected to the current world; and Oy, equivalent to =0—p, means ¢ is true
in all worlds connected to the current world.

It appeared that there is a beautiful connection between syntactic and semantic approaches
to modal logic [12]: logics defined by axioms can be equivalently defined by restricting classes
of frames. E.g., the axiom QQP — OP (if it is possible that P is possible, then P is possible),
is valid precisely in the class of transitive frames; the axiom P — OP (if P is true, then P
is possible) — in the class of reflexive frames, P — OOP (if P is true, then it is necessary
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that P is possible) — in the class of symmetric frames, and the axiom QP — OOP (if P is
possible, then it is necessary that P is possible) — in the class of Euclidean frames.

Thus we may think that every modal formula ¢ defines a class of frames, namely the
class of those frames in which ¢ is valid. A formula ¢ is valid in a frame K if for any possible
truth-assignment of propositional variables to the worlds of K, ¢ is true at every world.
While this definition involves quantification over sets of worlds, many important classes of
frames, in particular all the classes we mentioned above, can be defined by simple first-order
formulas. For a given first-order sentence ® over the signature consisting of a single binary
symbol R we define g to be the set of those frames which satisfy .

In this paper we are interested in the satisfiability problem for modal logic over classes
of frames definable by universal first-order formulas. The first result in this area was that
there exists a universal first-order formula with equality ®, such that the global satisfiability
problem for modal logic over K¢ is undecidable [6]. By global satisfiability we mean the
problem of determining if there exists a Kripke structure such that a given modal formula ¢
is true at every world of this structure. That result has been recently improved in [8] in two
aspects: by removing equality and globalness. Namely, the authors exhibited a formula @’
without equality, such that the standard, local, satisfiability problem for modal logic over
Ko is undecidable.

The formula from [8] uses nine variables. A natural question arises, how many variables are
necessary to obtain undecidability. Note that transitive, reflexive, symmetric, or equivalence
frames are definable by formulas with just three variables. The satisfiability problem for
modal logic over those classes is known to be decidable [9]. It appears however that there
exists a universal first-order formula without equality with only three variables defining the
class of frames over which satisfiability problem for modal logic is undecidable. Exhibiting
such a formula is the first contribution of our paper.

» Theorem 1. There exists a three-variable universal formula T7, without equality, such that
the local satisfiability problem for modal logic over Kr: is undecidable.

Our formula, despite the fact that it uses much smaller number of variables, is also simpler
than the formula from [8]. Actually, if we only want to show the undecidability of global
satisfiability then we can use a formula I which is just a single, universally quantified clause
consisting of six literals.

We emphasize that our result is optimal with respect to the number of variables. Indeed,
if @ is an arbitrary (not necessarily universal) first-order sentence with two variables, then
the satisfiability problem for modal logic over g can be reduced to the satisfiability problem
for the two-variable fragment of first-order logic, FO?, using the standard translation of
modal logic into FO?. The latter problem is known to be decidable [10, 4]. For details about
the standard translation see e.g. [2].

Decidable classes of frames we mentioned earlier can be defined by three-variable first-
order sentences even if we further restrict the language to universal Horn formulas, UHF.
Universal Horn formulas were considered in [7], where a dichotomy result was proved, that
the satisfiability problem for modal logic over the class of structures defined by an UHF
formula (with an arbitrary number of variables) is either in NP or PSPACE-hard. In the same
paper decidability is shown for a rich subclass of UHF, including in particular all formulas
which imply reflexivity. However, the problem remained open for formulas involving variants
of transitivity. The authors of [7] conjecture that the problem is decidable, and in PSPACE
for all universal Horn formulas. Our second contribution is confirming this conjecture for the
case of formulas with at most three-variables, UHF3.
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» Theorem 2. Let ® be a UHF? sentence. Then the local and the global satisfiability problems
for modal logic over K are decidable.

This theorem extends the decidability results for the classes we mentioned earlier in this
introduction, in particular for modal logics T, B, K4, S4, S5. It also works for some interesting
classes of frames, for which, up to our knowledge, decidability has not been established so
far. An example is the class defined by Vzyz(zRy A yRz — zRx).

We provide a full classification of UHF? sentences, with respect to the complexity of
satisfiability of modal logic over the classes of frames they define. It appears, that except for
the trivial case of inconsistent formulas for which the problem is in P, local satisfiability is
either NP-complete or PSPACE-complete, and global satisfiability is NP-complete, PSPACE-
complete, or EXPTIME-complete.

2 Preliminaries

As we work with both first-order logic and modal logic we help the reader by distinguishing
them in our notation: we denote first-order formulas with Greek capital letters, and modal
formulas with Greek small letters. We assume that the reader is familiar with first-order and
propositional logic.

Modal logic extends propositional logic with the operator ¢ and its dual [J. Formulas
of modal logic are interpreted in Kripke structures, which are triples of the form (W, R, 7),
where W is a set of worlds, (W, R) is a directed graph called a frame, and 7 is a function
that assigns to each world a set of propositional variables which are true at this world. We
say that a structure (W, R, ) is based on the frame (W, R).

The semantics of modal logic if defined recursively. A modal formula ¢ is (locally) satisfied
in a world w of a model M = (W, R, ), denoted as M, w = ¢ if (i) ¢ is a variable and
v € m(w), (i) p = p1 Ve and M, w = 1 or M, w = ¢, (i) ¢ = —¢’ and M, w = ¢,
or (iv) ¢ = O¢’ and there exists a world v € W such that (w,v) € R and M, v = ¢'. We
abbreviate =0—¢ by Op. By || we denote the length of ¢ measured as the total number of
occurrences of propositional variables. We say that a formula ¢ is globally satisfied in 90,
denoted as M = o, if for all worlds w of M, we have M, w = .

For a given class of frames K, we say that a formula ¢ is locally (resp. globally) K-
satisfiable if there exists a frame K € I, a structure 9 based on K, and a world w € W
such that M, w |= ¢ (resp. M |= ¢). We define the local (resp. global) satisfiability problem
KC-SAT (resp. global K-SAT) as follows. For a given modal formula, is this formula locally
(resp. globally) K-satisfiable?

For a given formula ¢, a Kripke structure 91, and a world w € W we define the type of w
(with respect to ¢) in M as tpyy (w) = { : M, w |= ¢ and ¥ is subformula of p}. We write
tpom(w) if the formula is clear from the context. Note that |tpy, (w)| < |¢|.

The set of universal Horn formulas with three variables without equality, UHF?, is defined
as the set of those ® which are of the form Vzyz.®; AP A. . .AD;, where each ®; is a Horn clause.
A Horn clause is a disjunction of literals of which at most one is positive. We usually present
Horn clauses as implications. For example, the formula Vzyz.(x RyAyRz = xRz)A(xRx = 1)
defines the set of transitive and irreflexive frames. We often skip the quantifiers and represent
such formulas as sets of clauses, e.g.: {tRy A yRz = xRz, xRz = L1}. We assume without
loss of generality that each Horn clause is of the form ¥ = 1, ¥ = zRx, or ¥ = zRy.
We define W(vy,vy,v3) as the instantiation of ¥ with x = vy, y = v, and z = v3, e.g.
(xRy AN yRz)(a,b,c) = aRb A bRc. We denote by ®P the set of the clauses of ® containing a
positive literal, i.e. all clauses of ® except those of the form ¥ = 1.
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Figure 1 The structure ®y. Its universe is N x N. forced by T and 7.

Reflexive arrows are omitted for clarity.

3  Undecidability

In this section we work with signatures consisting of a single binary symbol R, and a number
of unary symbols, including P;;, for 0 < 7,5 < 2. Structures over such signatures can be
naturally viewed as Kripke structures in which R is the accessibility relation, and unary
relations describe valuations of propositional variables. To simplify our notation we assume
that subscripts in P;; are always taken modulo 3, e.g. if ¢ = 2,7 = 2, then P;;, ;41 denotes
Poo.
Let
I' =Vazyz.—xRyV yRxV ~zRzV zRx V yRz V zRy.

First, we prove that global Kp-SAT is undecidable. Then we use the trick from [8] and show
that also local Kr/-SAT is undecidable, for I being a modification of ', using still only three
variables.

3.1 General idea

Note that I' can be rewritten as Vzyz.(zRy A —yRx A xRz A —=zRx) — (yRz V zRy), i.e. it
says, that if there are one-way connections from a world = to worlds ¥, z, then there is also a
connection (not necessarily one-way) between y and z. The structure ®y illustrated in Fig. 1
(we assume that this structure is reflexive) is a model of I'. Note that it is important that
some connections are two-way. In &y we can define the horizontal adjacency relation by the
following formula with free variables z,y: \/, j(Pijx A Pit1,;y A xRy). Analogously, we define
the vertical adjacency: \/l-j(Pij:E A P; i1y A zRy). Gy can be now viewed as an expansion
of the standard grid on N x N.

To get the undecidability we construct a modal formula 7, capturing some properties
of By, such that any model 9t = 7 from Kr locally looks like a grid. Namely, 7 says that
every element satisfying P;; has three R-successors: one in P;; j, one in P; j 11, and one in
Pit1,+1, and forbids connections from P11 41 to P jy1, Piy1;, and P;;. If we consider
now any element a in a model, we see that 7 enforces the existence of its horizontal successor
ap, its vertical successor a, and its upper-right diagonal successor a4 (see Fig. 2). By 7, the
connections to these successors are one-way, so we need, by I', connections between a; and
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aq, and a, and aq. Again, by 7, these connections has to go from ay to ag, and from a, to
aq, SO aq is indeed a horizontal successor of a,, and a vertical successor of ay,.

Below we present a more detailed proof covering also the case of finite satisfiability,
i.e. satisfiability in the class of finite models. The technique we employ is quite standard. It
is similar e.g. to the technique used in [11].

3.2 Domino systems
In the proof we use some well known results on domino systems.

» Definition 3. A domino system is a tuple D = (D, Dy, Dy), where D is a set of domino
pieces and Dy, Dy C D x D are binary relations specifying admissible horizontal and vertical
adjacencies. We say that D tiles N x N if there exists a function ¢ : N x N — D such that
Vi,j € N we have (¢(i,5),t(i + 1,7)) € Dy and (¢(4,7),t(,5 + 1)) € Dy. Similarly, D tiles
Zy X Zy, for k,1 € N, if there exists ¢ : Zy x Z; — D such that (¢(4,7),¢(i+1 mod k,5)) € Dy
and (t(4,7),t(i,j + 1 mod 1)) € Dy.

The following lemma comes from [1, 5].
» Lemma 4. The following problems are undecidable:

(i) For a given domino system D determine if D tiles N x N.
(i) For a given domino system D determine if there exists k € N such that D tiles Zy, X Zy.

3.3 Grid definition

We capture some properties of &y by a modal formula 7.

T=7 A /\ (Tf; A 7'5),
0<i,j<2

where 79 says that each element satisfies one of P, TZ% ensure that all elements have
appropriate horizontal, vertical and upper-right diagonal successors, and 75’ forbid reversing
the horizontal, vertical and upper-right diagonal arrows.

74 = Pij = (OPit1,) A OPij1 A OPi1 j1),

O
7ij =P = O(=Pic1j A-Pij1 AoPicyjo1).

Note that 7'5‘ allow for reflexive edges.

3.4 Domino encoding

We encode an instance of the domino problem by a modal formula in a standard way. For a
given domino system D = (D, Dy, Dy) we define

AP =Xon N\ AN
0<i,j<2

For every d € D we use a fresh propositional letter P;. Ay says that each world contains

H

a domino piece, \;; and )\1‘-; say that pairs of elements satisfying horizontal and vertical

adjacency relations respect Dy and Dy, respectively.

)\g = /\ ((PiAPyj) = O(Pig1,; — \/ Py)),
deD &':(d,d" Dy



Kieronski, Michaliszyn, Otop

A= N(PanPy) = 0P =\ Pa))
deD d’':(d,d")eDy
The following lemma establishes the undecidability of the global satisfiability and the
global finite satisfiability problems for modal logic over Kr.

» Lemma 5. Let D be a domino system.

(i) D tiles N x N iff there exists MM € Kr such that 9 = 7 A AP.
(ii) D tiles some Zy, X Zy, iff there exists a finite M € Kr such that M =7 A AP,

Proof. As in the case of symbols P;;, when referring to 7'5 or 75

;; we assume that subscripts

are taken modulo 3.

Part (i), = Let ¢ be a tiling of N x N. We construct 9t by expanding &y in such a way
that for every i,j € N the element (i, j) satisfies P,(; ;). It is readily checked that 91 is as
required.

Part (i), <= We explain how to construct a function f : N x N — M, such that for every
i, €No(a) M= Pi(f(i,5)), (b)) M= f6,)Rf(+1,7), (c) Mg f(i,j)Rf(E,5+1).
First we show how to define f on N x {0}. Let f(0,0) = ¢ for an arbitrary element ¢ of
M satisfying Pyp. Such ¢ exists owing to 7y and Tg. Assume that for some i > 0 we have
defined f(i—1,0) = a, and let a;, be an R-successor of a satisfying P;y. Such ay, exists owing
to 7'?_170. Define f(i,0) = an.
Assume now that f is defined for N x [0,...,j — 1] for some j > 0. We extend this

definition to N x {j}. Let f(0,j — 1) = a. By the inductive assumption a satisfies Py ;_1.
Choose a, to be an R-successor of a satisfying Fy;. Such a, exists by T&_l. Set f(0,7) = ay.

Assume that we have defined f(i — 1,5 — 1) = a, f(i — 1,j) = ay, and f(i,j — 1) = ay.
By the inductive assumptions M = Py ;_1(a) A Pi_y j(a,) A P; j_1(an) A aRap, A aRa,.

Choose a4 to be an R-successor of a satisfying P;;. Such aq exists by T;ilyjil. By 7'5], ap,
a, and ag cannot be connected to a, so I' enforces R-connections between a; and ag4, and
between a, and ag4. Since T{? forbids connection from aq4 to aj, and from ag4 to a,, it has to
be that M = ap Rag A a, Rag. This finishes definition of f with the desired properties.

We define a tiling ¢ : N x N by setting t(4, j) = d for such d that f(i,j) satisfies Py (there
is at least one such d owing to \g). Properties (a), (b), (c) of f and the formulas )\g, )\};
imply that ¢ is a correct tiling.

Part (ii) = Let [ = 3k for some k € Z. We define &; to be the quotient of &y by the
relation =~ (i,7) & (i',7') iff i =4’ mod 1 and j = j’ mod 1. B; can be seen as an expansion
of the standard grid on Z; x Z; torus. It is readily checked that for every k € N we have
B3, ET and &3, 7.

If D tiles Zy, x Zy, then it also tiles Zgg X Z3y. Let t be a tiling of Zszy X Zgy,. We construct

9N by expanding ®3;, in such a way that for every i,j € Zsy the element (3, j) satisfies Py(; ;.

Again, checking that 91 is as required is straightforward.

Part (ii) <= We want to define for some k,! € Z a function f : Zj x Z; — M satistying:
(a) ME P (f(i,7), b)MEFfEHRFE+1 mod k,5), (c)ME f(i,7)Rf(4,5+ 1 mod1).

We define f as a partial function on N x N and then restrict it to an appropriate domain.

We first define f on N x {0}, exactly as in the proof of Part (i), <. Since 9 is finite this
time, it has to be that f(k,0) = f(k’,0) for some k > k’. To simplify the presentation we
assume k' = 0, but this assumption is not relevant. Observe that for i € [0,k) we have
M E= f(4,0)Rf(i+1 mod k,0). We extend the definition of f to [0, k) x N inductively. Assume
that f is defined on [0, k) x {0,...,j —1}. We define it on [0, k) x {j}. For each i € [0,k) we
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find an element @, in M such that 9 = P41 j(a%) A f(i,j — 1)Ral,. Such a) exists owing
to Ti?j_l. We set f(i+1 mod k,j) = a’. Now I' and formulas of the type 75 enforce for all
i €[0,k) that M = f(i,j — D)RF(i,5), and DM = £(i, ) RF(i + 1 mod k, j).

Finiteness of 9t implies now that for some [ > I’ we have f[[0,k) x {I} = f1][0,k) x {I'}.
Again for simplicity we assume that I’ = 0. Observe that at this moment f is as desired on
Zy, x Z;. We define a tiling t : Zy, x Z; by setting t(,j) = d for such d that f(i,j) satisfies
P, (there is at least one such d owing to Ag). Properties (a), (b), (¢) of f and the formulas
)\g and /\1‘; imply that t is a correct tiling of Zj x Z;. This implies that there exists also a
correct tiling of Z, X Z,, for m = ged(k,1).

<

3.5 Local satisfiability

Observe that our proof of the undecidability of global satisfiability over Kr works for the
subclass of reflexive models. This allows us to use the trick from [8] to cover also the case
of local satisfiability. We enforce by a modal formula the existence of an irreflexive world
and, by a first-order formula, we make it connected to all reflexive worlds. Such a universal
world can be then used to reach all relevant elements in the model. The class of structures is
defined by a formula I, which says that each world with an incoming edge is reflexive and
has an incoming edge from all irreflexive worlds, and enforces I" for all reflexive worlds:

I =Vryz.((xRy A ~zRz) — (yRy A zRy))A
((xRx NyRy A zRz) — (maRy V yRx vV —~zRz V zRx V yRz V zRy)).

In the modal formula we use a fresh symbol Py to distinguish an irreflexive world. Now,
for a given domino system D we can show that Py A O-Py A OT AO(7 A AP) is locally
(finitely) satisfiable over Kr/ iff D covers N x N (some Zj X Zj). This proves Theorem 1.

See subsection 5.6 of [8] for details of the outlined trick.

4 Decidability

In this section, we prove Theorem 2. The general idea of the proof is standard: we are going
to show that for every UHF3 formula ® and every modal formula ¢, if ¢ is Kg-satisfiable
then it is also Kg-satisfiable in a “nice” model.

We start from an arbitrary model 9t = ¢ based on a frame from K¢ and unravel it into
a model My whose frame is a tree with the degree of its nodes bounded by |¢|. Clearly the
frame of 9y is not necessarily a member of g. In the next step we add to My the edges
implied by the Horn clauses of ®. This is performed in countably many stages, until the
least fixed point is reached. We observe that the resulting structure, 9., is still a model of
©, and its frame belongs to K.

Then we show that every model which can be obtained in the described way falls into one
of the four classes, which we call the class of semi-trees, transitive-trees, clique-unions, and
tripartitions.! Moreover, for a given UHF? formula ® there exists a single class of models,
such that every Kg-satisfiable modal formula ¢ has a model from this class.

Finally, we argue that for a given modal formula ¢, checking if it has a model from one
of our four classes is decidable. If ¢ is Kg-satisfiable in a clique-union or in a tripartition it

1 We choose such names for simplicity. In fact, in transitive trees transitivity may fail near the end of a
path, and clique-unions may have heads and tails. See Definition 7.
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can be shown that it is also Ke-satisfiable in a clique-union or a tripartition of polynomially
bounded size, so we can simply guess such a small model and verify it; if ¢ is Kg-satisfiable
in a semi-tree or in a transitive-tree then we use some adaptations of the standard techniques
for satisfiability of modal logics over the class of all frames, and over the class of transitive
frames, respectively.

4.1 Minimal tree-based models

We say that an edge (w1, ws) is a consequence of ® in (W, R) if for some ws € W and
Uy = Uy € ® we have R | Uy (w1, ws,w3), and ¥s(wy, ws, ws) = wyRws. We define the
consequence operator as follows.

Consg w(R) = RU {(wy,ws) : (w1, ws) is a consequence of ® in (W, R)}

We are going to use this operator in stages, starting from a tree and adding edges required
by ®. We define the closure operator as the least fixed-point of Cons:

CLOSUREs w(R) = CONSfp,w(R)

i>0
For a tree 7 = (W, R), we now define the minimal T-based model of ® as €5(T) =
(W, Closureg w(R)). Note that €5(7) is the smallest model of ®P containing all edges

from R.

» Lemma 6. Let ¢ be a modal formula and let ® € UHF3. If ¢ is Kg-satisfiable, then there
exists a tree T in which the degree of its nodes is bounded by |p|, such that ¢ has a model
based on the frame €q(T).

Proof. Let 9 = (W, R, 7) , ugp € W be such that 9t = ® and M, up | ».

We construct My = (Wy, Ro, o) by an unraveling of 9t as follows. Wy is a subset of the
set of finite sequences of elements of W. We define Wy and Ry inductively. Initially, we put
(ug) € Wy. Assume that (ug,...,ux) € Wy. Let Othq, ..., O1hs be all the formulas of the form

O1p from tpgm(’u,k‘). There exist “11€+1_7 ... uf ., € W, such that for every i € {1, G
have M |= ug Rup, ; and ¢; € tpgm(u}_cﬂ). For each such i we put (uo,...,ux,u; ) into Wo
and add ((uo, ..., ux), (uo, ..., ug, up 1)) to Ro. We define my as mo((uo, - .., ux)) = m(ug).

Observe that Mgy = (Wy, Rp) is a tree in which the degree of the nodes is bounded by |¢|.

Let f: Wy — W be defined as f((uq,...,ux)) = ug. By a straightforward induction the
reader may verify that, for every @ € Wy we have tpon, (@) = tpan(f(%)). This implies that
Mo, (uo) = .

Now, in countably many stages we add to Mg the edges implied by ®. We define a
sequence of frames (M;);>o and models (9M;);~o sharing the same universe Wy and mapping
mo. For K > 0 let Mg = (W, CONS{{;WO (Ro)), Mg = (Mg, mo). Let My be the natural
limit M, = <Q:<1>(M0),7T0>.

We show by induction over K, that for each @y, ds € Wy if Mk |= Uy Riiz, then M

f(@)Rf(dz). Tt follows that for each iy, ds € Wy if My, | @y Rida, then M = f(u1)Rf(dz).

For K = 0 the conclusion is a straightforward consequence of the definition of Miy. Assume
that My satisfies the inductive hypothesis. For each uy, iy € Wy, if My 11 = @y Ris, then
either My |= 1y Ris and by the inductive assumption 9 = f (i) R f (i), or for some u3z € Wy
and Uy = Uy € &, we have My = Uy (uy, us, u3), and VUa(ul, us, us) = u3Rus. In this case,

My = Uy (ul, us, u3) implies by the inductive assumption that 9t = Uy (f(ul), f(uz), f(u3)).

Since M = Uy = Uy, we have M = f(dy) Rf(uz).
Let Mo = (Wo, Reo, o). The structures My and M., have the same carrier and
Ry C Ro. We show that for each @ € Wy we have tpop__ (@) = tpo,(@). It implies that
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Moo, (ug) £ . Since the labeling of the worlds is the same, it is enough to show that in 9%
and M, each world is connected with the worlds that satisfy the same subformulas. We
show that by induction.

Clearly, for every edge (@, ¥) from Ro \ Ro and a subformula () of ¢, if a world ¢ satisfies
¥ in Mo, then by the inductive assumption we have that ¢ € tpon, (¥) = tpon(f (7)), and
since M |= f(@)Rf (V) we have that Oy € tpop(f (%)) = tpon, (@). See the full version of this
paper for a detailed proof.

Finally, we have to prove that €4(Mjy) | ®. By definition €4(Mj) satisfies every
Uy = ¥y € PP, Suppose that €4 (M) does not satisfy ¥ = L € ®. For some wi, wa, w3 we
have €3 (M) | U (w),ws,ws), but then M = U(f(wy), f(ws), f(ws)). This contradicts the
assumption that M = . <

4.2 Catalogue of models

A well known result shows that every satisfiable modal formula is satisfied in a finite tree.
This tree-model property is crucial for the robust decidability of modal logics. Standard
restrictions of classes of frames lead to similar results, stating that some “nice” models exist
for all satisfiable formulas. For example, every formula satisfiable over transitive structures
has a model which is a transitive tree.

Here we generalize those results. We introduce four classes of models and show that for
each formula ® all formulas satisfiable over K¢ have models in one of those classes.

» Definition 7. We say that a graph (W, R) is
a semi-tree if and only if there exists Ry C R such that (W, Roy) is a tree and R is
contained in the reflexive, symmetric closure of Ry.
a transitive-tree if and only if there exists Ry C R such that (W, Ry) is a tree, R is contained
in the reflexive, transitive closure of Ry, and for each directed path (ug,u1,...,ux) in
(W,R) and each 2 <14 < j < k — 2 we have an edge from u; to u;.
a tripartition if and only if W can be partitioned into three independent sets I, I5, I3
such that for d € I; and e € I; we have that dRe <= j =i+ 1 mod 3.
a clique-union if and only if W can be partitioned into Head, T'ails,Cq,...,Ck, where
C1,...,Cy are disjoint cliques, Heads is a semi-tree of height at most 2, T'ails is a forest
of semi-trees of height at most 2, and there are no edges from C; U...UCy to Head and
from Tails to Head U CL U ... UCy.

» Lemma 8. Let ® € UHF3. One of the following conditions holds:
For each tree T, the structure €4(T) is a semi-tree.
For each tree T, the structure €¢(T) is a transitive tree.

For each tree T, the structure €g

o~ o~~~

)
T) is a tripartition.
)

For each tree T, the structure €4(T) is a cligue-union.

This lemma, together with Lemma 6 imply that for every ® € UHF? modal logic has one
of: semi-tree model property, transitive tree model property, tripartite model property, clique-
union model property over Kg, i.e. every satisfiable formula has a model in one particular
class. The proof of Lemma 8 starts from the analysis of the possible shapes of €4(Z), for
the four-element tree Z consisting of a root a, its two children b,d and a child c of b. It
appears that studying what happens on this simple tree allows to see what can happen on
arbitrary trees. The whole proof goes by a careful analysis of cases. Details are given in the
full version of this paper. Here we only show some examples.
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Figure 3 A closure for ® = {xRz A zRy = yRzx} — three independent sets.

» Example 9. Consider the formula ® = {xRz A zRy = yRx} and the tree 7 = (W, R) at
the left side of Fig. 3. In the middle we present €4(7) — red edges belong to CONSg(R), blue
to CoNs3(R), and yellow to CONsj, (R). Observe that each world from the level 4 of the tree
is connected to all the worlds from the levels i + 1 and ¢ — 2. On the right side of the figure
we redraw the structure in a way underlining the partition into the three independent sets.

ok

Figure 4 A closure for ® = {zxRz A 2Ry = yRy,xRx A xRy A xRz = yRz} — a clique-union
(T'ails = @ in this example).

» Example 10. Consider the formula ® = {p1,¢2}, where 1 = zRz A zRy = yRy and
w2 = xRz N xRy N xRz = yRz, and the tree at the left side of Fig. 4. The formula ¢
enforces the following property: each world that has a predecessor that has a predecessor is
reflexive. The formula (o makes the relation R Euclidean except for the non-reflexive worlds.
As you can see at the right side of the figure, the fragment on which R is Euclidean collapses
into a clique.

» Example 11. Consider the formula ® = {¢1, @2}, where p; = Ry A yRz = yRx and
w2 = xRy A yRx = xRz, and the tree at the left side of Fig. 5. The formula ¢; enforces R
to be symmetric, except for the edges that go to the worlds with no successors. The formula
o enforces connections from each world symmetrically connected to some other world to all
other worlds. As you can see at the right side of the figure, all worlds except for the leaves of
the tree form a clique.

4.3 Decidability procedures and complexity

In this subsection we sketch procedures deciding satisfiability of modal logics over classes
definable by UHF3, and discuss the complexity. We exclude from our considerations formulas
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Figure 5 A closure for ® = {x Ry A yRz = yRx, xRy A yRx = xRz} — a clique with tails.

allowing only for paths of lenght bounded by a constant, e.g. xRy A yRz — 1. Clearly, the
satisfiability problem over classes of frames defined by such formulas is NP-complete.

Tripartitions and clique unions. It appears that in these two cases we can prove the
following polynomial model property.

» Lemma 12. For a given UHF? formula ® and a modal formula ¢ if ¢ has a model in Ko
which is a tripartition or a clique union then it has a finite model of the same kind of size
polynomially bounded by |p|.

Consider first the case of tripartitions. For every subformula {1 of ¢, and every class of
the partition I;, if ¢ is true at some elements of I;, then we mark one such element. We also
mark an element satisfying ¢. We remove all unmarked elements. Since for a pair of classes
of the partition they are either not connected or connected universally this procedure does
not affect types of elements, so they still satisfy the same subformulas of .

The case of clique-unions is slightly more complicated. Recall that models from this class
except cliques may also contain heads and tails, which cause that sometimes for a subformula
O of p we need more than one element satisfying ¢ in a clique. However, the number of
such elements may be bounded polynomially in |¢|. Similarly, we can also bound the number
of cliques and tails. Technical details can be found in the full version of this paper.

In both cases the outlined arguments work for both local and global satisfiability. The
decision procedure is to guess for a given formula ¢ a model of polynomial size and verify
it. This establishes NP-upper bound. The matching lower bound follows from a trivial
reduction from the boolean satisfiability problem.

Semi-trees. Here we can use standard approaches to satisfiability of modal logic over the
class of all frames. In the case of local satisfiability we can bound the depth of tree-models
and the degree of their nodes linearly in |¢| and then check the existence of such models in
a depth-first search manner in PSPACE. (see e.g. [9]?). The lower bound comes from the
standard reduction of QBF (see also [9]).

In the case of global satisfiability we can enforce models of depth exponential with respect
to the length of the formula. The existence of models can be checked by an alternating
procedure which first guesses the type of the root, then guesses types of its children, and
universally repeats the procedure for the children. This algorithm works in alternating
polynomial space, and thus the problem is in EXPTIME. A matching lower bound can be
obtained as in [3].

2 Please note that while the cited result does not consider reflexivity and symmetry, there are only some
minor changes needed to cover these cases.
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Transitive trees. This case can be treated similarly to the case of satisfiability over the

class of transitive frames, i.e. the case of logic K4 (see [9]). There are slight differences

because in our case transitivity may fail at the last two elements of a path, however this

detail does not cause real problems. We can also simply enforce infinite models (consider
e.g. the class of irreflexive, transitive models and a modal formula T A QT AOOT), so the
length of paths cannot be bounded. However, we can bound polynomially the number of

types on a path, which allows to show PSPACE-completeness in local case.

Theorem 2 follows from the discussion above. The complexity results are summarized in

Table 1.
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