
The Ultimate Undecidability Result for the Halpern–Shoham Logic

Jerzy Marcinkowski, Jakub Michaliszyn
Institute of Computer Science

University Of Wrocław
{jma,jmi}@cs.uni.wroc.pl

Abstract—The Halpern–Shoham logic is a modal logic of
time intervals. Some effort has been put in last ten years to clas-
sify fragments of this beautiful logic with respect to decidability
of its satisfiability problem. We complete this classification by
showing — what we believe is quite an unexpected result — that
the logic of subintervals, the fragment of the Halpern–Shoham
logic where only the operator “during”, or D, is allowed, is
undecidable over discrete structures. This is surprising as this,
apparently very simple, logic is decidable over dense orders [4]
and its reflexive variant is known to be decidable over discrete
structures [12]. Our result subsumes a lot of previous negative
results for the discrete case, like the undecidability for ABE
[9], BD [11], ADB, AĀD, and so on [2], [5].

I. INTRODUCTION

In classical temporal logic, structures are defined by
assigning properties (propositional variables) to time points
(time is an ordering, discrete or dense). However, not all phe-
nomena can be well described by such logics. Sometimes,
we need to talk about actions (processes) that take some time
and we would like to be able to say that one such action
takes place, for example, during or after another.

The Halpern–Shoham logic [9], which is the subject of
this paper, is one of the modal logics of time intervals.
Judging by the number of papers published, and by the
amount of work devoted to the research on it, this logic
is probably the most influential time interval logic. But
historically it was not the first one. Actually, the earliest
papers about intervals in context of modal logic were written
by philosophers , e.g., [8]. In computer science, the earliest
attempts to formalize time intervals were process logic [16],
[17] and interval temporal logic [14]. Relations between
intervals in linear orders from an algebraic point of view
were first studied systematically by Allen [1].

The Halpern–Shoham logic is a modal temporal logic,
where the elements of a model are no longer — like in
classical temporal logics — points in time, but rather pairs
of points in time. Any such pair — call it [p, q], where q is
equal to or later than p — can be viewed as a (closed) time
interval, that is, the set of all time points between p and q.
HS logic does not assume anything about order — it can be
discrete or continuous, linear or branching, complete or not.

Halpern and Shoham introduce six modal operators acting
on intervals. Their operators are “begins” B, “during” D,
“ends” E, “meets” A, “later” L, “overlaps” O and the six

inverses of those operators: B̄, D̄, Ē, Ā, L̄, Ō. It is easy to
see that the set of operators is redundant. For example, A,B
and E can define D (B and E suffice for that – a prefix
of my suffix is my infix) and L (here A is enough –“later”
means “meets an interval that meets”). The operator O can
be expressed using E and B̄.

In their paper, Halpern and Shoham show that (satisfia-
bility of formulae of) their logic is undecidable. Their proof
requires logic with three operators (B,E and A are explicitly
used in the formulae and, as we mentioned above, once B,E
and A are allowed, D and L come for free) so they state a
question about decidable fragments of their logic.

Considerable effort has been put since then to set-
tle this question. First, it was shown [10] that the
BE fragment is undecidable. Recently, negative re-
sults were also given for the classes BĒ, B̄Ē, B̄E,
AĀD, ĀDB̄, ĀDB, ĀD̄B̄, ĀD̄B [2], [5], and BD [11].
Another elegant negative result was that OŌ is undecidable
over discrete orders [3].

On the positive side, it was shown that some small
fragments, like BB̄ or EĒ, are decidable and easy to
translate into standard, point-based modal logic [7]. The
fragment using only A and Ā is harder and its decidability
was only recently shown [5], [6]. Obviously, this last result
implies decidability of LL̄ as L is expressible by A. Another
fragment known to be decidable is ABB̄L̄ [15].

A very simple, interesting fragment of the Halpern and
Shoham logic of unknown status was the fragment with
the single operator D (“during”), which we call here the
logic of subintervals. Since D does not seem to have much
expressive power (a natural language account of a D-formula
would be “each morning I spend a while thinking of you”
or “each nice period of my life contains an unpleasant
fragment”), logic of subintervals was widely believed to
be decidable. A number of decidability results concerning
variants of this logic has been published. For example, it
was shown in [4], [13] that satisfiability of formulae of
logic of subintervals is decidable over dense structures. In
[12] decidability is proved for the (slightly less expressive)
“reflexive D”. The results in [18] imply that D (as well
as some richer fragments of the HS logic) is decidable if
we allow models in which not all the intervals defined by
the ordering are elements of the Kripke structure. On the
negative side, no nontrivial lower bound was known for

satisfiability of this logic.
In this paper, we show that satisfiability of formulae

from the D fragment is undecidable over the class of finite
orderings as well as over the class of all discrete orderings.
Our result subsumes the negative results for the discrete
case for ABE [9], BD [11] and ADB, AĀD [2], [5]. The
logic of subintervals for finite orderings is so simple that
we are tempted to write that it is one of the simplest known
undecidable logics.

A. Main theorems and an overview of the proofs

Our contribution consists of the proofs of the following
two theorems:

Theorem 1: The satisfiability problem for the formulae of
the logic of subintervals, over models which are suborders
of the order ⟨ℤ,≤⟩, is undecidable.

Since truth value of a formula is defined with respect to a
model and an initial interval in this model (see Preliminar-
ies), and since the only allowed operator is D, which means
that the truth value of a formula in a given interval depends
only on the labeling of this interval and its subintervals,
Theorem 1 can be restated as: The satisfiability problem for
the formulae of the logic of subintervals, over finite models
is undecidable, and it is this version that will be proved in
Section III.

Theorem 2: The satisfiability problem for the formulae
of the logic of subintervals, over all discrete models, is
undecidable.

An overview of the proofs. One possible source of
undecidability, and the one we are making use of, is the
interaction of regularity and measurement. Consider the
following example proposition:

Proposition 1: The problem:
For a given regular language L ⊆ Σ∗ and a given set

B ⊆ Σ2, do there exist a natural number n and a word
w ∈ L such that ∣w∣ (the length of w) is greater than n and
for each sub-word avb of w (where a, b ∈ Σ), if the length
of avb is n, then ⟨a, b⟩ ∈ B?

is undecidable.

The proposition is obvious – if we can make sure that
any two symbols in the word, which are at distance n, are a
“correct pair”, then we can easily encode a Turing machine.

In Sections III-B and III-C, we show how is it possible,
in the logic of subintervals, to encode any regular language.

But encoding the measurement is not that simple. The
logic of subintervals is not able – as far as we know –
to measure the length of each sub-word of w. We need to
mark each endpoint of the measured interval by a symbol
that does not occur inside this interval. This means that
we can only afford a bounded number of measurements
taking place at the same time. Imagine we had four identical
hourglasses, which we are free to turn at any moment while

reading consecutive symbols of the word. This would not
be enough to directly encode a Turing machine, but still
enough for undecidability. In Section III-A we describe a
class of regular languages (one regular language for each
Minsky machine) for which the possibility of such four
simultaneous measurements leads to an undecidable non-
emptiness problem. This property is stated in Lemma 1
which is a counterpart of Proposition 1.

In Section III-D, we define our measuring tool, which we
call a cloud, and in Section III-E, which completes the proof
of Theorem 1, we show how to use it. Actually, the idea here
is very simple: how much you see is a monotonic function
of how high you are.

In the proof of Theorem 1, the measuring device, the
cloud, is existentially quantified. Its role is identical with
the role of the number n in Proposition 1. “They” provide
it, together with the word w, and we only check that all the
specification conditions are met. This approach would not
work in the situation of Theorem 2. The reason for that is
that the logic of subintervals gives no means (that we are
aware of) to specify the requirement that all the intervals of
the cloud are finite (i.e., contain a finite number of elements
of the order). Or – using other words – that time periods
measured by the hourglasses are finite. This could lead to
pathologies that we do not even want to think about. Instead,
in Section IV, we build our own hourglass which we call the
parabola. It is not as good as the cloud – its size increases
from time to time. But a closer look at Lemma 1 shows
that we can live with it. And, unlike the cloud, the parabola
does not suffer from the possible pathologies of discrete
orderings.

II. PRELIMINARIES

Orderings. Originally, Halpern–Shoham logic was defined
for any order that satisfy the “linear interval property”, i.e.
for each a, c1, c2, b if a ≤ c1, a ≤ c2, c1 ≤ b, and c2 ≤ b,
then c1 ≤ c2 or c2 ≤ c1. In such orderings, when we restrict
our attention to the operators that look only “inside” of an
initial interval, such as D, the reachable part of the ordering
is totally ordered. For that reason in the rest of this paper
we consider only the total orderings.

As in [9], we say that a total order ⟨D,≤⟩ is discrete
if each element is either minimal (maximal) or has a
predecessor (successor); in other words for all a, b ∈ D if
a < b, then there exist points a′, b′ such that a < a′, b′ < b
and there exists no c with a < c < a′ or b′ < c < b.

Semantics of the D fragment of logic HS (logic of subin-
tervals). Let ⟨D,≤⟩ be a discrete ordered set 1. An interval
over D is a pair [a, b], with a, b ∈ D and a ≤ b. A labeling
is a function
 : I(D) → P(Var), where I(D) is the set of
all intervals over D and Var is a finite set of propositional

1To keep the notation light, we will identify the order ⟨D,≤⟩ with its
set D

variables. A structure of the form M = ⟨I(D),
⟩ is called a
model.

We say that an interval [a, b] is a leaf iff it has no
subintervals (i.e., a = b).

The truth values of formulae are determined by the
following (natural) semantic rules:

1) For all v ∈ Var, we have M, [a, b] ∣= v iff v ∈
([a, b]).
2) M, [a, b] ∣= ¬' iff M, [a, b] ∕∣= '.
3) M, [a, b] ∣= '1 ∧ '2 iff M, [a, b] ∣= '1 and M, [a, b] ∣=

'2.
4) M, [a, b] ∣= ⟨D⟩' iff there exists an interval [a′, b′] such

that M, [a′, b′] ∣= ', a ≤ a′, b′ ≤ b, and [a, b] ∕= [a′, b′].

Boolean connectives ∨,⇒,⇔ are introduced in the stan-
dard way. We abbreviate ¬⟨D⟩¬' by [D]' and ' ∧ [D]'
by [G]'.

Note that we use the proper subinterval relation D (the
prefixes and suffixes are treat as subintervals), but our
technique works also in the strict case, where instead of
[a, b] ∕= [a′, b′] we assume that a ∕= a′ and b ∕= b′

— see Section V. On the other hand, if we remove the
condition [a, b] ∕= [a′, b′], then the problem is known to be
decidable[12].

A formula ' is said to be satisfiable in a class of
orderings D if there exist a structure D ∈ D, a labeling

, and an interval [a, b], called the initial interval, such that
⟨I(D),
⟩, [a, b] ∣= '. A formula is satisfiable in a given
ordering D if it is satisfiable in {D}.

III. PROOF OF THEOREM 1

In Section III we only consider finite orderings.
Our representation. We imagine the Kripke structure of
intervals of a finite ordering as a directed acyclic graph,
where intervals are vertices and each interval [a, b] of length
greater than 0 has two successors: [a + 1, b] and [a, b − 1].
Each level of this representation contains intervals of the
same length (see Fig. 1).

Figure 1. Our representation of order ⟨{a, a+ 1, . . . , b},≤⟩.

A. The Regular Language LA
In this section, for a given two-counter finite automaton

(Minsky machine) A we will define a regular language LA.
There is nothing about the logic of subintervals in this
section – we are just preparing an undecidable problem
which will be handy to encode.

Let Q be the set of states of A, and let Q′ = {q′ : q ∈ Q}.
Define B = {f, fr, s, sr, x} and B′ = {b′ : b ∈ B}

The alphabet Σ of LA will consist of all the elements of
Q∪Q′ (jointly called states) and of all the subsets (possibly
empty) of B and of B′. Talking about the subsets of B and
B′, we will not respect types, saying for example “fr occurs
in the the word v” rather than “there is a symbol in v that
contains fr”.

Symbols (of Σ containing) f and f ′ (s and s′) will be
called first (resp., second) counters. Symbols fr and f ′r
(sr and s′r) will be called first (resp., second) shadows (or
shadows of the first/the second counter). Symbols x and x′

will be called X-symbols.
The language LA consists of the words w over Σ that

satisfy the following seven conditions:
C1. The first symbol of w is the initial state q0 of A and

the last symbol of w is either q or q′, where q is one
of the final states of A.

By a configuration, we will mean a maximal sub-word2

of w, whose first element is a state (called the state of the
configuration) and which contains exactly one state (so that
w is split into disjoint configurations). A configuration will
be called even if its state is from Q and odd if it is from
Q′.
C2. Odd and even configurations alternate in w. All the

non-state symbols occurring in even configurations are
subsets of B and all the non-state symbols occurring
in odd configurations are subsets of B′.

C3. Each configuration, except for the last one (which only
consists of a state) contains exactly one first counter
and exactly one second counter.

We want a word from LA to encode a sequence of
configurations of A which, once an additional distance
constraint is satisfied (see Lemma 1), will be a correct
accepting computation of A. So, except for a state of A,
in each configuration, we need to remember the values of
the two counters. We define the value of the first counter of
a configuration as the number of symbols (strictly) between
the state of the configuration and its first counter. The same
applies to the second counter.
Example. A configuration with the state q, the first counter
set to 3, and the second counter set to 4 can be stored as a
word q∅∅∅{f, fr, sr}{s}∅∅{x}∅∅∅ (the meaning of fr, sr,
and x will be defined later).

2By a sub-word, we mean a sequence of consecutive elements of a word,
an infix (or prefix or suffix.

Using this language, we can state:
C4. In the first configuration, the value of both the counters

is zero.
Which can also be read as: The second symbol of w

contains f and s.
Now the role of shadows is going to be revealed:

C5. There are no shadows in the first and the last configu-
ration. Each configuration, except for the first and the
last, contains exactly one first shadow and exactly one
second shadow.

In reading the next condition, it is good to have in mind
that the position of a shadow in a given configuration,
relative to the state of the configuration, will be enforced,
by the distance constraints of Lemma 1, to be the same as
the position of the corresponding counter in the previous
configuration.

Since the format of an instruction of A is:

If in state q
the first counter
equals/does not equal 0 and
the second counter
equals/does not equal 0
then change the state to q1 and
decrease/increase/keep unchanged
the first counter and
decrease/increase/keep unchanged
the second counter.

it is clear what we mean, saying that configuration C in
word w matches the assumption of the instruction I .
C6. If C and C1 are consecutive configurations in w, and

C matches the assumption of an instruction I , then:
– If I changes the state into q1, then the state of C1

is q1.
– If I orders the first (second) counter to remain

unchanged, then the first (resp., second) counter in
C1 coincides with the first (resp., second) shadow
in C1.

– If I orders the first (second) counter to be de-
creased, then the first (resp., second) counter in
C1 is the immediate predecessor of the first (resp.,
second) shadow in C1.

– If I orders the first (second) counter to be in-
creased, then the first (resp., second) counter in
C1 is the immediate successor of the first (resp.,
second) shadow in C1.

One remaining condition is the following:
C7. There is exactly one x in each even configuration. All

the counters and shadows of the same configuration
are to the left of x. There are exactly 3 empty symbols
between each x and the following state symbol. The
same holds for odd configurations and x′.

This completes the definition of the language LA. It is
clear that it is regular – each of the seven conditions above
can be checked by a very small finite automaton. Before we
formulate Lemma 1, which will be our main tool, we need
one more definition:

Definition 1: Let w ∈ LA and let cvd be a sub-word of
w, (where c, d ∈ Σ). We will call cvd an interesting infix if
there is exactly one X symbol in v and one of the following
conditions holds:

1) c and d are states;
2) c is a first counter and d is a shadow of the first counter;
3) c is a second counter and d is a shadow of the second

counter.

Notice that the condition that there is exactly one X
symbol in v is a way of saying that positions of c and d
belong to two consecutive configurations.

Lemma 1: The following two conditions are equivalent:
(i) Two-counter automaton A, starting from the initial

state q0 and empty counters, accepts.
(ii) There exists a word w ∈ LA and a natural number n

such that the length of all the interesting infixes of w
is n.

Proof: For the ⇒ direction consider an accepting
computation of A and take n as any number greater than
all the numbers that appear on the two counters of A
during this computation plus 6 (this is for X-symbols, states,
empty symbols and the counters). For the ⇐ direction,
notice that the distance constraint from (ii) implies that the
distance between a state and the subsequent first (second)
shadow equals the value of the first (resp., second) counter
in the previous configuration. Together with condition 5,
defining LA, this implies that the subsequent configurations
in w ∈ LA can indeed be seen as subsequent configurations
in the valid computation of A.

Since the halting problem for two-counter automata is
undecidable, the proof of Theorem 1 will be completed once
we write, for a given automaton A, a formula Ψ of the
language of the logic of subintervals which is satisfiable (in
a finite model) if and only if condition (ii) from Lemma
1 holds. Actually, what the formula Ψ is going to say is,
more or less, that the word written (with the use of the
labeling function
) in the leaves of the model is a word w
as described in Lemma 1, condition (ii).

In the following subsections, we are going to write for-
mulae Φorient, ΦLA

, Φcloud, and Φlength such that Φorient ∧
ΦLA

∧ Φcloud ∧ Φlength will be the formula Ψ we want.

B. Orientation

As we said, we want to write a formula saying that the
word written in the leaves of the model is the w described
in Lemma 1, condition (ii).

The first problem we need to overcome is the symmetry of
D – the operator does not see a difference between past and
future, or between left and right, so how can we distinguish
between the beginning of w and its end? We deal with
this problem by introducing five variables L,R, s0, s1, s2
and writing a formula Φorient which will be satisfied by
an interval [a, b] if [a, a] is the only subinterval of [a, b]
that satisfies L and [b, b] is the only subinterval of [a, b]
that satisfies R, or [b, b] is the only subinterval of [a, b] that
satisfies L and [a, a] is the only subinterval of [a, b] that
satisfies R, and all the following conditions hold:

∙ any interval that satisfies L or R satisfies also one of
s0, s1, or s2;

∙ each leaf is labeled either with s0 or with s1 or with
s2;

∙ each interval labeled with s0 or with s1 or with s2 is
a leaf;

∙ if c, d, e are three consecutive leaves of [a, b] and if
si holds in c, sj holds in d and sk holds in e then
{i, j, k} = {0, 1, 2};

∙ the initial interval has the length at least 3.

If [a, b] ∣= Φorient, then the leaf of [a, b] where L holds
(resp., where R holds) will be called the left (resp., the right)
end of [a, b].

Let exactly one of(X) =
⋁
x∈X(x ∧

⋀
x′∈X∖{x} ¬x′)

be a formula saying (which is not hard to guess) that exactly
one variable from the set X is true in the current interval.
Φorient is the conjunction of the following formulae:

(i) ⟨D⟩⟨D⟩⟨D⟩⊤

(ii) [G](([D]⊥ ⇒ exactly one of({s0, s1, s2})) ∧ (s0 ∨
s1 ∨ s2 ⇒ [D]⊥))

(iii) [G](⟨D⟩⟨D⟩⊤ ⇒ ⟨D⟩s0 ∧ ⟨D⟩s1 ∧ ⟨D⟩s2)

(iv) [G](L ∨R⇒ s0 ∨ s1 ∨ s2)

(v) ⟨D⟩R ∧ ⟨D⟩L

(vi) [G](L⇒ ¬R)

(vii)
⋁
i∈{0,1,2}(⟨D⟩(L ∧ si) ∧ [D]([D][D]⊥ ∧ ⟨D⟩L ⇒
¬⟨D⟩s(i−1) mod 3))

(viii)
⋁
i∈{0,1,2}(⟨D⟩(R ∧ si) ∧ [D]([D][D]⊥ ∧ ⟨D⟩R ⇒
¬⟨D⟩s(i+1) mod 3))

Formulae (i), (ii), (iii), and (iv) express the property defined
by the conjunction of the five items above (notice, that [D]⊥
means that the current interval is a leaf).

Formula (v) says that there exists an interval labeled with
R and an interval labeled with L.

Formula (vi) states that no interval satisfies both L and
R.

Formula (vii) guarantees that no interval containing ex-
actly 2 leaves, which is a superinterval of an interval
labeled with L and si, can contain a subinterval labeled
with s(i−1) mod 3. It implies that an interval labeled with
L can only have one superinterval containing exactly 2
leaves — if there were two, then their common superinterval
containing 3 leaves would not have a subinterval labeled
with s(i−1) mod 3, thus contradicting (iii).

Finally, formula (viii) works like (vii) but for R.

Figure 2. Two possible models that satisfy the formulae from Section
III-B.

In the rest of paper, we restrict our attention to models
satisfying formula Φorient, and treat the leaf labeled with L
as the leftmost element of the model.

Notice that everything we did above can be applied not
only to the whole model, but also to any subinterval of the
model. We will say that set U marks the left endpoint of
interval [c, d] if some u ∈ U holds in [c, c] and no u′ ∈
U holds in any other subinterval of [c, d]. Analogously we
define what it means that a set marks the right endpoint of
an interval. What we proved in this section is:

Lemma 2: There exists a formula mle(U) (and mre(U))
which is true in interval [a, b] if and only if U marks the
left (resp. the right) end of [a, b].

Notice that we only know how to express the fact that
u ∈ U is valid in the left end of [a, b] if u does not occur
anywhere else in this interval.

C. Encoding a Finite Automaton

In this section, we show how to make sure that consecutive
leaves of the model, read from L to R, are labeled with
variables that represent a word of a given regular language.

Lemma 3: Let A = ⟨Σ,Q, q0,ℱ , �⟩, where q0 ∈ Q, ℱ ⊆
Q, � ⊆ Q×Σ×Q be a finite–state automaton. There exists
a formula A of the D fragment of Halpern–Shoham logic
over alphabet Q ∪ Σ that is satisfiable (with respect to the
valuation of the variables from Q) if and only if the word,
over the alphabet Σ written in the leaves of the model, read
from L to R, belongs to the language accepted by A.

Proof: It is enough to write a conjunction of the
following properties.

1) In every leaf, exactly one letter from Σ is satisfied (so
there is indeed a word, written in the leaves). Moreover,
the letters from Σ are true at leaves only.

2) Each leaf is labeled with exactly one variable from Q.
Moreover, the variable from Q are true at leaves only.

3) For each interval whose length is 1, if this interval
contains an interval labeled with si, with a ∈ Σ,
and with q ∈ Q, and another interval labeled with
s(i+1) mod 3 and with q′ ∈ Q, then ⟨q, a, q′⟩ ∈ �
(notice that we rely here on the assumption that Φorient

holds in the model).
4) The interval labeled with R is labeled with such q ∈ Q

and a ∈ Σ such that ⟨q, a, q′⟩ ∈ � for some q′ ∈ ℱ .
5) The interval labeled with L is labeled with q0.

Clearly, a model satisfies properties 1-5 if and only if its
leaves are labeled with an accepting run of A on the word
over Σ written in its leaves. The formulae of the D fragment
of Halpern–Shoham logic expressing properties 1-5 are not
hard to write:

1) [G](([D]⊥ ⇒ exactly one of(Σ)) ∧ (
⋁

Σ⇒ [D]⊥))

2) [G](([D]⊥ ⇒ exactly one of(Q))∧ (
⋁
Q ⇒ [D]⊥))

3) [G]([D][D]⊥ ∧ ⟨D⟩si ∧ ⟨D⟩si+1 mod 3 ⇒⋁
⟨q,a,q′⟩∈�⟨D⟩(si ∧ q ∧ a) ∧ ⟨D⟩(si+1 mod 3 ∧ q′)),

for each i ∈ {0, 1, 2}

4) [G](R⇒
⋁
⟨q,a,q′⟩∈�,q′∈ℱ (q ∧ a))

5) [G](L⇒ q0)

Now, let A be a finite automaton recognizing language
LA from Section III-A. We put ΦLA

= A.

D. A Cloud

We still need to make sure that there exists n such that
each configuration (but the last one) has length n − 1 and
that each interesting infix has length exactly n. Let us start
with:

Definition 2: Let M = ⟨I(D),
⟩ be a model and p a
propositional variable. We call p a cloud if there exists k ∈ ℕ
such that p ∈
([a, b]) if and only if the length of [a, b] is
exactly k.

So one can view a cloud as a set of all intervals of some
fixed length. Notice, that if the current interval has length k
then exactly k + 1 leaves are reachable from this segment
with the operator D.

We want to write a formula in the language of the D
fragment of Halpern-Shoham logic saying that p is a cloud.
In order to do that, we use an additional variable e. The idea
is that an interval [a, a+ n] satisfies e iff [a+ 1, a+ n+ 1]
does not.

Let Φcloud be the conjunction of the following formulae.

Figure 3. An example of a cloud.

1) ⟨D⟩(p∧ ⟨D⟩L) — there exists an interval that satisfies
p and this interval contains the leftmost element of the
model.

2) [G](p ⇒ [D]¬p) — intervals labeled with p cannot
contain intervals labeled with p.

3) [G](⟨D⟩p⇒ ⟨D⟩(p∧e)∧⟨D⟩(p∧¬e)) — each interval
that contains an interval labeled with p actually contains
at least two such intervals — one labeled with e and
one with ¬e.

Lemma 4: If M, [aM, bM] ∣= Φcloud, where aM and bM
are endpoints of M, then p is a cloud.

Proof: We will prove that if an interval [x, y] is labeled
with p, then also [x+1, y+1] is labeled with p. A symmetric
proof shows that the same holds for [x − 1, y − 1], so all
the intervals of length equal to m, where m is the length of
[x, y], are labeled with p.

This will imply that no other intervals can be labeled with
p and p is indeed a cloud. This is because each such interval
either has a length greater than m, and thus contains an
interval of length m, and as such labeled with p, or has a
length smaller than m, and is contained in an interval labeled
by p, in both cases contradicting 2.

Consider an interval [x, y] labeled with p. Interval [x, y+
1] contains an interval labeled with p, so it has to contain two
different intervals labeled with p – one labeled with e and
the other one with ¬e. Suppose, without loss of generality,
that [x, y] is the one labeled with e, and let us call the second
one [u, t]. If t < y + 1, then [u, t] is a subinterval of [x, y]
and is labeled with p, a contradiction. So t = y + 1.

Let us assume that u > x+ 1. The interval [u− 1, y+ 1]
must contain two different intervals labeled with p. One of
them is [u, y + 1], and it cannot contain another interval
labeled with p, so the other one must be [u−1, y] or one of
its subintervals. But then it is a subinterval of [x, y] (because
u − 1 > x + 1 − 1 = x) which also is labeled with p, but
this leads to a contradiction. So u = x+ 1.

E. Using a cloud.

Let us now concentrate on models which satisfy Φorient∧
ΦLA

∧ Φcloud. Since Φcloud is satisfied, then p is a cloud.
Let n denote the number of leaves contained in the intervals
that form the cloud. Since ΦLA

is satisfied, we know that the
word written in the leaves of the model must belong to LA.
What remains to be done is writing a formula Φlength that

would guarantee that the distance constraints from Lemma
1 are satisfied in this word.

The following lemma is just a restatement of Definition
1 in the language of the last paragraph of Section III-A:

Lemma 5: Let w ∈ LA and let v be a sub-word of w.
Then v is an interesting infix if it contains exactly one X-
symbol and one of the following conditions holds:
∙ one of the endpoints of v is marked with a state from
Q and the other endpoint is marked with a state from
Q′;

∙ the left endpoint of v is marked with f (f ′, s, s′) and
the right endpoint is marked with f ′r (fr, s′r, sr, resp.).

Using the formulae mle and mre from Section III-B, it
is straightforward to translate the conditions of the lemma
into a formula interesting saying that the current interval
is interesting:

[G]((mle(Q) ∧ mre(Q′) ∨ (mle(Q′) ∧ mre(Q)) ⇒
interesting)

∧ [G](mle({l ∈ Σ∣f ∈ l}) ∧ mre({l ∈ Σ∣f ′r ∈ l}) ⇒
interesting)

∧ [G](mle({l ∈ Σ∣f ′ ∈ l}) ∧ mre({l ∈ Σ∣fr ∈ l}) ⇒
interesting)

∧ [G](mle({l ∈ Σ∣s ∈ l}) ∧ mre({l ∈ Σ∣s′r ∈ l})) ⇒
interesting)

∧ [G](mle({l ∈ Σ∣s′ ∈ l}) ∧ mre({l ∈ Σ∣sr ∈ l}) ⇒
interesting)

Note that the part about containing exactly one X-symbol
comes for free here from the definition of the language and
the properties of mle and mre. Now, we are ready to write
Φlength. It is the conjunction of the formula above and the
following one:

[G](interesting ⇒ p),
which means that if what you see is exactly an interesting

interval, then you are exactly on the level of the cloud.
This ends the proof of Theorem 1.

IV. PROOF OF THEOREM 2

The idea of the proof of Theorem 2 is exactly the same as
of Theorem 1. But, because of the possible pathologies of
discrete orders, almost all the details of the proof will now
be much more complicated.

A. Damage assessment

Let us see which of the constructions form Section III can
be saved in the new context.

Orientation In the new situation we still can, as we did in
Section III-B, write formulae enforcing that the model has its
left endpoint, marked with L, and its right endpoint, marked
with R. But the trick with labeling each three consecutive
elements with s0, s1 and s2, which we used to define
direction inside the model will, in the discrete case, orient
only the locally finite fragments of the model (i.e., those
maximal sets C of elements of the ordering such that, for

each a, b ∈ C the interval [a, b] contains only finitely many
elements).

On the other hand, if the model is infinite, then the left
endpoint has its successor, which has a successor, etc. so
that we have a copy of the ordered set of natural number as
an initial fragment of the model. We will identify elements
of this fragment with natural numbers. If formula Φorient is
satisfied, then the set of natural numbers is oriented as in
Section III-B.

It also turns out that we can actually force the model to
be infinite. To do that, take a new variable nat, and write a
formula Φnat saying that:
∙ nat only holds at leaves;
∙ L implies nat;
∙ if an interval contains two leaves, and in some of those

two leaves nat holds, then it holds in all of them;
∙ there is an leaf where nat does not hold.
Let now Φdorient be the formula Φorient∧Φnat. From now

on, we assume that all the models under consideration satisfy
Φdorient.

The regular language LdA and the finite automaton. In the
finite satisfiability case, the set of satisfiable formulae was
recursively enumerable. Now it is co-re. This means that we
now need, for a given Minsky machine A, to write a formula
Ψd, of the logic of subintervals, which will be satisfiable if
and only if A does not accept. We can assume that A has
only one final (accepting) state qf and that the machine runs
forever if this state is not reached. So the formula we are
going to write in this chapter should be satisfiable if and
only if the machine A runs forever and never reaches qf .

Since we still want to represent the computation of A as
a word written in atoms of the model (to be more precise, in
the atoms that are natural numbers), we must be ready to deal
with an infinite word. The method the transition function of
an automaton is encoded in Section III-C still works, so we
can encode any automaton on infinite words with a ”safety
accepting condition”, which means that it accepts a word if
no forbidden state is entered during a run. Let LdA be the
language of infinite words satisfying conditions [C1] – [C7]
from Section III-A (with the obvious exception of the parts
of conditions [C1], [C3] and [C5] which concern the final
configuration) and additionally
C8. The sixth symbol of w is its first X-symbol.

Clearly, LdA can be recognized by an automaton with
safety accepting condition. So we can write a formula ΦLd

A

which will be satisfied in a model if and only if the word
written in atoms being natural numbers belongs to LdA.
Notice that ΦLd

A
will be satisfied also by some words which

only consist of finitely many configurations (last of them
ending with infinitely many empty symbols). This cannot
be prevented by a safety automaton, and we will need to
find another way to forbid such words.

Lemma 1. The last remark leads to one change in Lemma

1. Another change will result from the fact that, in the new
context we do not have the cloud anymore – the method it
was defined does not translate to discrete orderings. So we
no longer will be able to make sure that all the interesting
infixes have the same length. But it turns out that we do not
really need that much.

Definition 3: We say that an infinite word w is nice if for
each pair v, u of interesting infixes such that v begins earlier
than u, if k is the number of X-symbols between the left
endpoint of v and the left endpoint of u then ∣v∣+ k = ∣u∣.

The following version of Lemma 1 is easy to prove:

Lemma 6: The following two conditions are equivalent:
(i) Two-counter automaton A, started from the initial state

q0 and empty counters, runs forever.
(ii) There exists a nice word w ∈ LdA with infinitely many

X-symbols in w.

Notice that if there are two interesting infixes of a nice
word, whose left ends are in the same configuration, then
their lengths are equal. This is exactly what we need to
be sure that the values of counters in each configuration
are correctly reflected by the positions of shadows of the
counters in the following configuration.

The second consequence of the fact that a word is nice
is that the length of a subsequent configuration is always
one plus the length of the previous one. This means that,
if the first configuration was long enough to contain the
values of the counters, then each configuration will be long
enough, regardless of the possible unbounded growth of
those values. And it follows from condition [C8] that the
first configuration is long enough.

Having the idea on mind, proving Lemma 6 is straight-
forward.

B. The parabola

Let us remind that we identify the initial fragment of the
model with the set ℕ.

Definition 4: Let M = ⟨I(D),
⟩ be a model and p, x, x′

be a triple of variables. We call the triple p, x, x′ the
parabola if:

(i) only leaves are labeled with x or with x′, the leaf [6, 6]
is labeled with x;

(ii) [1, 10] is labeled with p;

(iii) if [i, j] is labeled with p and [i, i] is not labeled with
an X-symbol, then [i+ 1, j + 1] is labeled with p;

(iv) if [i, j] is labeled with p and [i, i] is labeled with an
X-symbol, then [i+ 1, j + 2] is labeled with p;

(v) if [i, j] is labeled with p and x (resp., x′) marks the
left endpoint of [i, j], then x′ (resp., x) marks the right
endpoint of [i+ 1, j + 1] (see Figure 4);

Figure 4. A fragment of the parabola.

(vi) no other interval whose left endpoint is a natural
number are labeled with p.

Notice that the x, x′ from the parabola coincide with
the X-symbols from Σ, which means that if p, x, x′ is the
parabola then there are infinitely many X-symbols in w, and,
in consequence, w consists of infinitely many configurations
— a property that could not be enforced by a safety
automaton alone.

Lemma 7: Let M = ⟨I(D),
⟩ be a model and p, x, x′

be the parabola in M. Let w ∈ LdA be the infinite word
of symbols written in the natural numbers of M. Then the
following two conditions are equivalent:

(i) w is nice;
(ii) each interesting infix of w is (as an interval) labeled

with p.

Proof: Condition [C8] implies that the tenth symbol of
w is a state symbol, and consequently, that [1, 10] is the first
interesting infix of w, and condition (ii) from the definition
of the parabola implies that it is labeled by p.

Notice that conditions (iii) and (iv) from the definition of
parabola guarantee that if [i, j] is labeled with p, then there
exists an intervals labeled with p that begins in i+1 and has
the length greater by one than [i, j] if there is an X-symbol
in [i, i] and has the same length as [i, j] otherwise. It implies
that the length of intervals labeled with p is increased by one
with each X-symbol, so the length of two intervals labeled
with p whose left ends are separated by k X-symbols differs
by k — exactly as in the definition of a nice word.

In view of the last lemma, there are just two things that
remain to be done. We need to write a formula Φdpar saying
that p, x, x′ is the parabola and write a formula Φdlength,
saying that each interesting infix of w is labeled with p.
Once we have them, we can finish the proof of Theorem 2
defining Ψd as:

Φdorient ∧ ΦLd
A
∧ Φdpar ∧ Φdlength

Formula Φdlength is easy to write.
[G](interesting ⇒ p) ∧ [G](⟨D⟩p ⇒

⋁
q∈Q⟨D⟩q ∧⋁

q′∈Q′⟨D⟩q′)

The idea behind the formula Φdpar is simple — we use
an auxiliary variable pE to mark each interval [x, y] such
that [x − 1, y − 1] is labeled with p and [x, x] is labeled
with an X-symbol, then we use pE to guarantee that the
interval [x, y + 1] is labeled with p. Those properties can
be expressed using the same tricks as in the finite case, but
now the resulting formula is a little bit more complicated
(see the full version of the paper for details).

V. OTHER RESULTS

The trivial observation is that out technique still works if
we exclude intervals of the form [a, a]. It also easy to see
that it works if we allow the partial orders that match the
definition from [9]. Two cases are more interesting — when
we use strict D and when we use a superinterval relation
D̄.

A. Strict D

The strict D, denoted as D⊂, is defined as follows.
M, [a, b] ∣= ⟨D⊂⟩' iff there exist an interval [a′, b′] such

that M, [a′, b′] ∣= ' and a < a′ ≤ b′ < b.
Our result holds also for D⊂, there are just some minor

technical details to handle. Here we will only describe how
we label the leaves with a special variable l in that case —
the remaining modifications are similar and are left to the
reader.

In the D case, the labeling of leaves is easy — the
formula [G]([D]⊥ ⇔ l) does it. But in the D⊂ case, a
similar formula would label also the intervals of length 1.
To avoid it, we use auxiliary variables a, b, c, A,B and the
conjunction of the following properties:

(i) Each interval of length at most 1 is labeled with exactly
one of a, b, c, A,B.

(ii) No interval of length greater than 1 is labeled by
a, b, c, A, or B.

(iii) Each interval of length at least 2 contains an interval
labeled with a, b, or c.

(iv) Each interval of length at least 4 contains intervals with
all five auxiliary symbols.

Condition (iii) guarantees that the intervals of length 0 are
cannot be labeled with A or B. Observe that the intervals
of length 4 contain exactly 2 strict subintervals of length 1
and exactly 3 strict subintervals of length 0, and due to (iv)
those 5 intervals have to contain 5 auxiliary symbols, so the
intervals of length 1 have to be labeled with A and B.

The formulae expressing properties (i)-(iv) are easy to
express using D⊂. Now, we can conclude the formula with
conjunct [G](l⇔ a ∨ b ∨ c).

B. Superinterval relation

Our theorems hold also for D̄ instead of D. But the
changes to the proof need to be more significant. Consider,
for example, formulae [D]⟨D⟩⊤ and [D̄]⟨D̄⟩⊤. The first one
is not satisfied in the discrete case, but the second one is

satisfied over, e.g., ℕ. In other words, the leaves are not
always well-defined in case of D̄ and we have to pay more
attention while encoding a regular language.

To handle it, we use a cloud to define pseudo-leaves
— a set of intervals on the same level that satisfies a
special variable leaf . Once we defined leaves, we guar-
antee that nothing wrong happens above the leaves, i.e.
[D̄](leaf ⇒ [D̄]

⋀
v∈Var∖{leaf} ¬v). Finally, we can simply

use the formula from the proof of Theorem 2, replacing D
by D̄, [D]⊥ by leaf and so on, to proof undecidability.
Again, details will be presented in the full paper.

C. Arbitrary orderings

The question whether the D fragment is decidable over
the class of all (total) orderings is still open. However, our
technique can be used to proof the following proposition.

Proposition 2: The satisfiability problem for the formulae
of the DD̄ fragment of Halpern–Shoham logic over the class
of all total orderings is undecidable.

Proof: For the strict D case, consider the formula '
defined as follows

[G]([D⊂]⊥ ⇒ ⟨D̄⊂⟩([D][D]⊥)).

This formula is satisfiable in orderings such that for each
reachable interval [a, a] there exist b, c such that b < a < c
and the interval [b, c] contains at most 4 points (including
a, b, c). It implies that a has both predecessor and successor.
Therefore the reachable part of the ordering is discrete.

Now we would like to say that all discrete orderings
satisfy ', no matter which initial interval we choose. It is
not entirely true — the formula is not satisfied if the interval
[x, x] is reachable, where x is the maximal or the minimal
point. But this is the case only if the interval [x, x] is initial,
so we can simply fix that: let '′ = ' ∨ ([D⊂]⊥ ∧ [D̄⊂]⊥).

Now we can use the formula Ψd ∧ '′ (where Ψd is
the formula from the proof of the undecidability of the D
fragment in the discrete case) to proof the undecidability.

The proper D case can be solved in the same way,
however the proof is much more technical.

The proof, however easy, bases on the fact that we allow
the intervals of the form [a, a]. The question of what happens
if we exclude such intervals remains open.

ACKNOWLEDGMENT

This research work was supported by Polish Ministry
of Science and Higher Education research project N N206
371339.

REFERENCES

[1] J. F. Allen, Maintaining knowledge about temporal intervals,
Communications of the ACM 26 (11) (1983) 832-843.

[2] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G.
Sciavicco, Decidable and Undecidable Fragments of Halpern
and Shoham’s Interval Temporal Logic: Towards a Complete
Classification, in: Proc. of 15th Int. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning, Vol.
5330 of LNCS, Springer, 2008, pp. 590-604.

[3] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G.
Sciavicco, Undecidability of the Logic of Overlap Relation
over Discrete Linear Orderings. Proceedings of M4M 6: 6th
Workshop on Methods for Modalities, November 2009.

[4] D. Bresolin, V. Goranko, A. Montanari, P. Sala, Tableau-based
decision procedures for the logics of subinterval structures
over dense orderings. Journal of Logic and Computation, vol.
20, n. 1, 2010, pp. 133-166.

[5] D. Bresolin, V. Goranko, A. Montanari, G. Sciavicco, Propo-
sitional Interval Neighborhood Logics: Expressiveness, De-
cidability, and Undecidable Extensions, Annals of Pure and
Applied Logic, Vol.161(3), 2009, pp. 289-304.

[6] D. Bresolin, A. Montanari, P. Sala, G. Sciavicco, Optimal
Tableaux for Right Propositional Neighborhood Logic over
Linear Orders, in: Proc. of the 11th European Conference on
Logics in AI, Vol. 5293 of LNAI, Springer, 2008, pp. 62-75.

[7] V. Goranko, A. Montanari, and G. Sciavicco, A road map
of interval temporal logics and duration calculi. Journal of
Applied Non-Classical Logics, 14(1-2):9-54, 2004.

[8] C. L. Hamblin, Instants and intervals. Studium Generale,
27:127-134, 1971.

[9] J. Halpern, Y. Shoham, A propositional modal logic of time
intervals, Journal of the ACM 38 (4) (1991) 935-962.

[10] K. Lodaya, Sharpening the undecidability of interval temporal
logic. In Proc. of 6th Asian Computing Science Conference,
volume 1961 of LNCS, pages 290-298. Springer, 2000.

[11] J. Marcinkowski, J. Michaliszyn, and E. Kieronski, B and D
Are Enough to Make the Halpern–Shoham Logic Undecid-
able. In Proc. 37th International Colloquium on Automata,
Languages and Programming, ICALP 2010, Proceedings, Part
II, LNCS 6199, pages 357-368.

[12] A. Montanari, I. Pratt-Hartmann and P. Sala, Decidability of
the Logic of the Reflexive Subinterval Relation over Finite
Linear Orders, Proceedings of the 17th International Sym-
posium on Temporal Representation and Reasoning (TIME),
Paris, France, September 2010, pp. 27-34.

[13] A. Montanari, G. Puppis, P. Sala, A decidable spatial logic
with cone-shaped cardinal directions, in: 18th Annual Confer-
ence of the EACSL, Vol. 5771 of LNCS, 2009, pp. 394-408.

[14] B. C. Moszkowski, Reasoning about Digital Circuits. PhD
thesis, Stanford University, Computer Science Department,
July 1983.

[15] A. Montanari, Gabriele Puppis, and Pietro Sala, Maximal
Decidable Fragments of Halpern and Shoham’s Modal Logic
of Intervals. In Proc. 37th International Colloquium on Au-
tomata, Languages and Programming, ICALP 2010, Proceed-
ings, Part II, LNCS 6199, pages 345-356.

[16] R. Parikh. A decidability result for second order process logic.
In Proc. 19th FOCS, pages 177-183. IEEE, October 1978.

[17] V. R. Pratt. Process logic. In Proc. 6th POPL, pages 93-100.
ACM, January 1979.

[18] T. Schwentick, T. Zeume: Two-Variable Logic with Two
Order Relations – (Extended Abstract). In Proc. 24th Inter-
national Workshop of Computer Science Logic, LNCS 6247,
pages 499-513.

