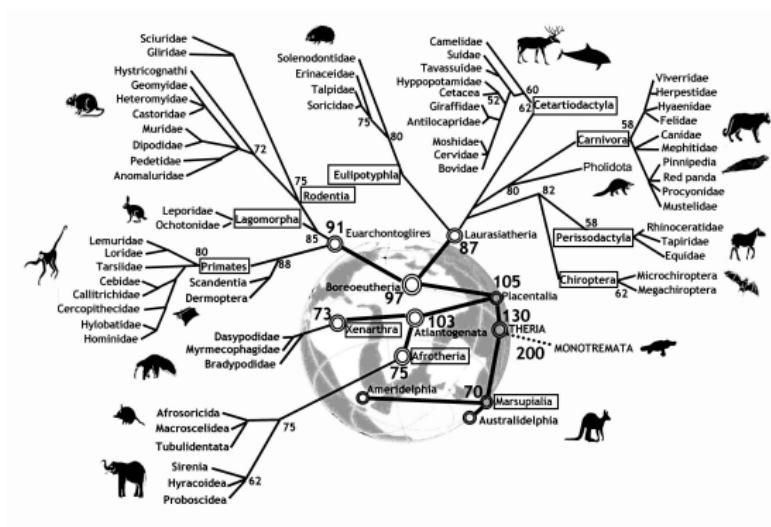


Computing Quartet Distance Is Equivalent to Counting 4-Cycles

Bartłomiej Dudek¹ Paweł Gawrychowski¹

¹University of Wrocław

Trees are everywhere... especially in biology



Trees are everywhere... especially in biology

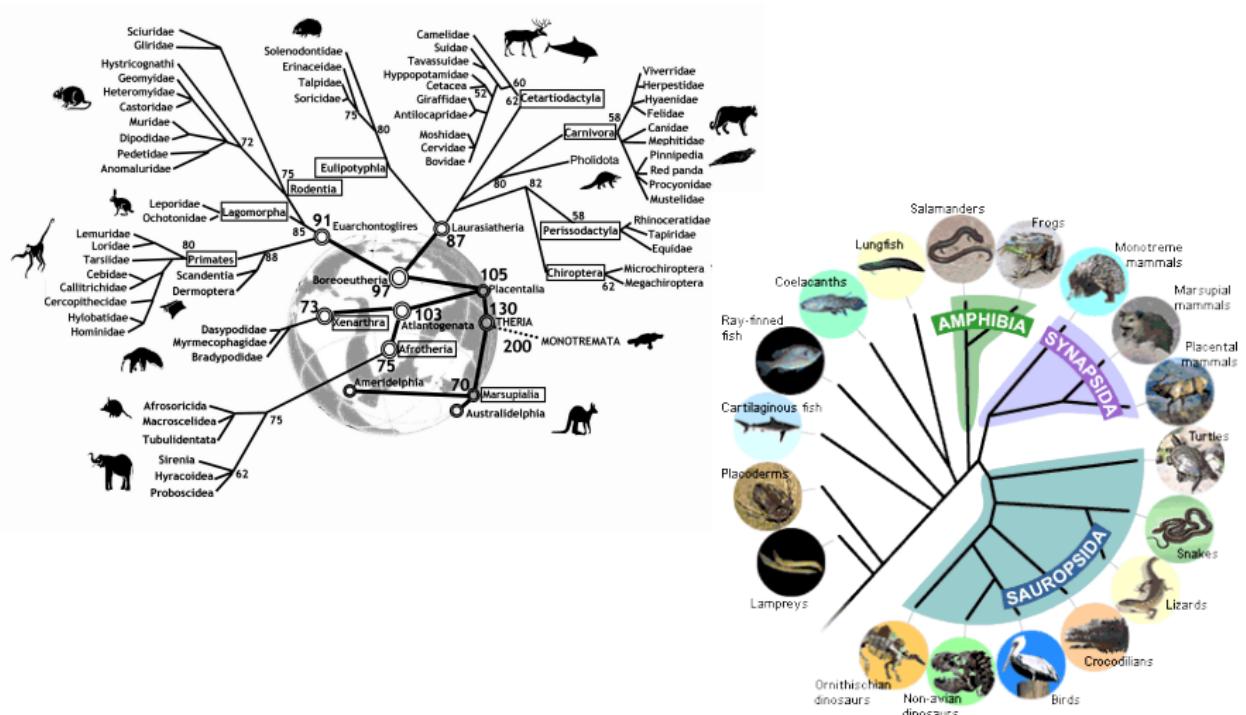
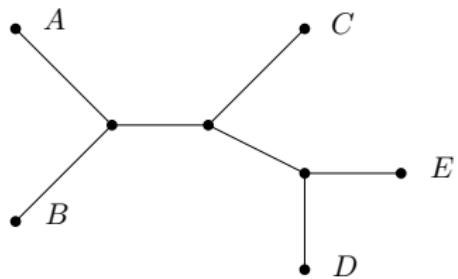
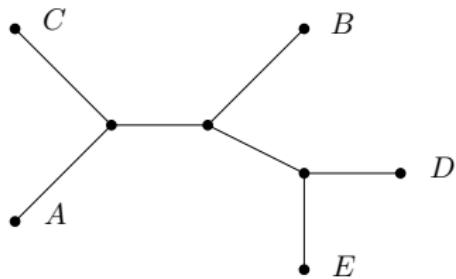


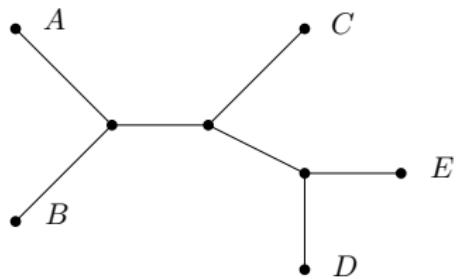
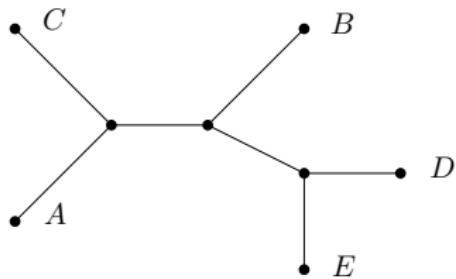
Figure sources: Wikipedia and
California Museum of Paleontology's Understanding Evolution

But how to compare them?



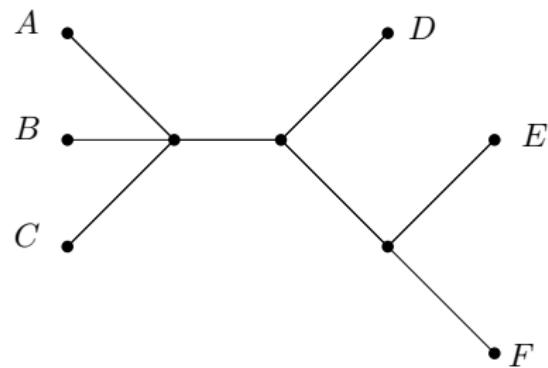
Consider subtrees induced by all possible 4 leaves.

But how to compare them?

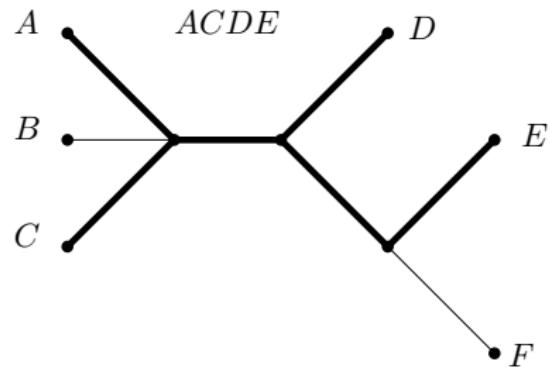


Consider subtrees induced by all possible 4 leaves.

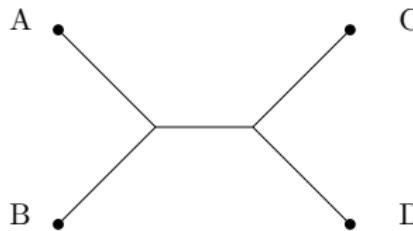
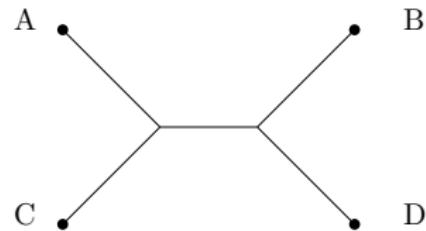
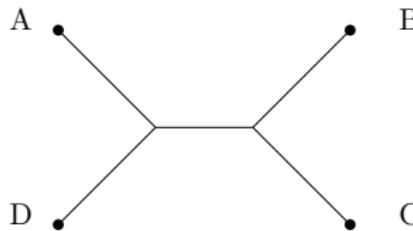
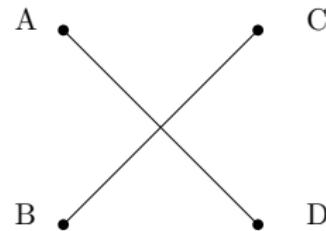
Possible topologies on 4 leaves



Possible topologies on 4 leaves



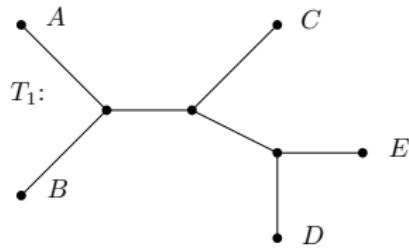
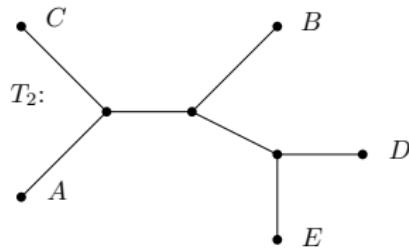
Possible topologies on 4 leaves



Quartet distance

Input: two trees with the same set of leaves

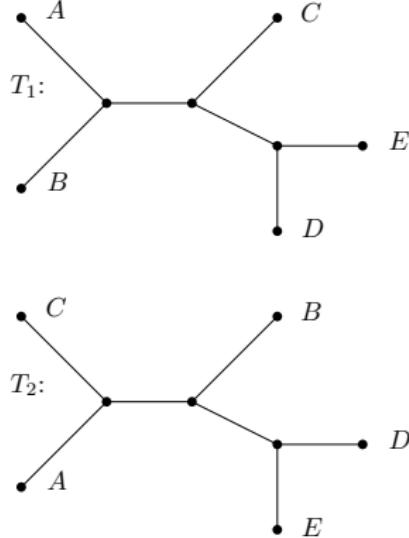
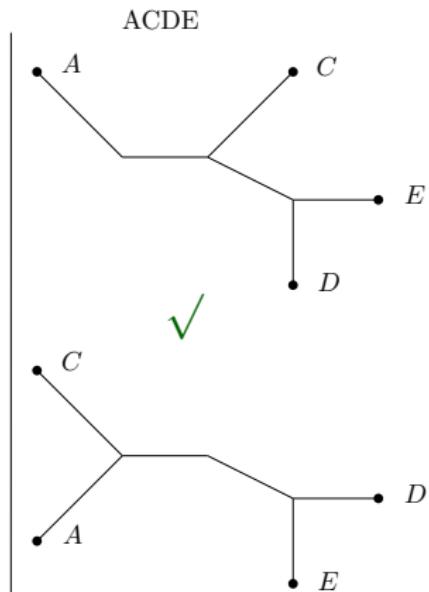
Output: number of quartets of leaves inducing different topologies



Quartet distance

Input: two trees with the same set of leaves

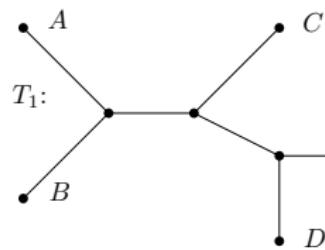
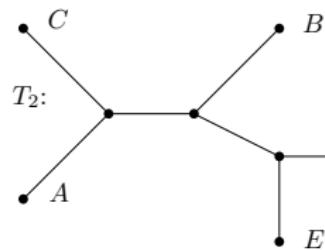
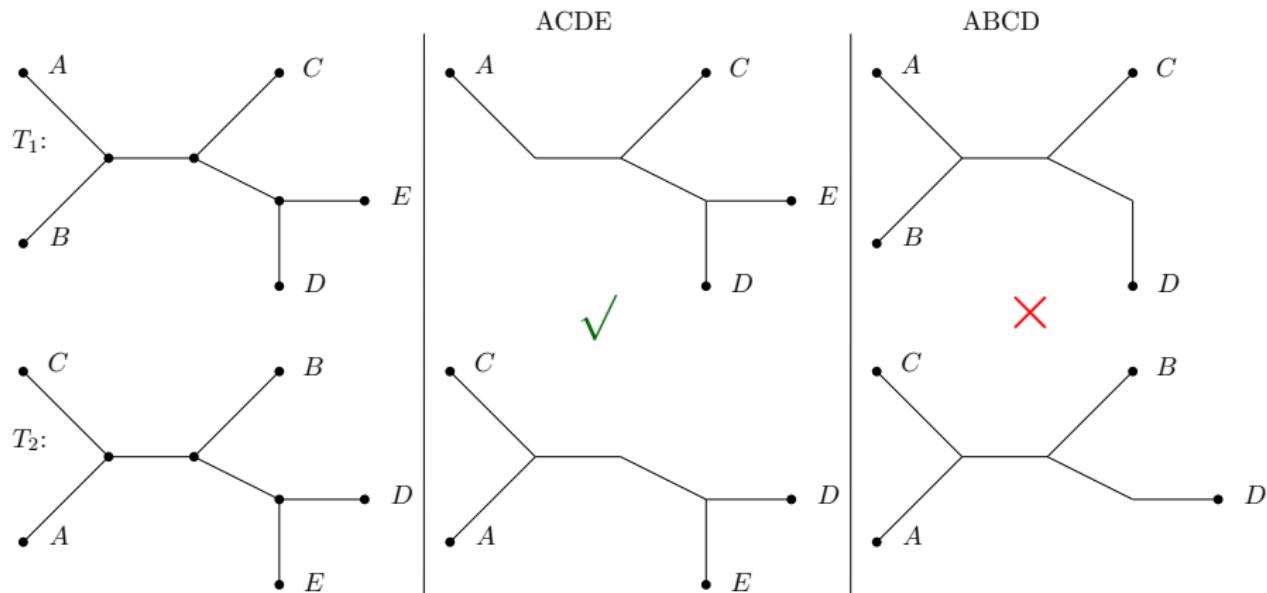
Output: number of quartets of leaves inducing different topologies



Quartet distance

Input: two trees with the same set of leaves

Output: number of quartets of leaves inducing different topologies



History of quartet distance

Year	Authors	Runtime	Arbitrary degree
	Folklore	$\mathcal{O}(n^4)$	✓
1993	Steel and Penny	$\mathcal{O}(n^3)$	✗
2000	Bryant et al.	$\mathcal{O}(n^2)$	✗
2001	Brodal et al.	$\mathcal{O}(n \log^2 n)$	✗
2004	Brodal et al.	$\mathcal{O}(n \log n)$	✗
2007	Stissing et al.	$\mathcal{O}(d^9 n \log n)$	✓
2011	Nielsen et al.	$\mathcal{O}(n^{2.688})$	✓
2013	Brodal et al.	$\mathcal{O}(dn \log n)$	✓

Can we do better?

	$\mathcal{O}(n^{1.48})$	✓
	$\mathcal{O}(d^{0.77} n)$	✓

Can we do even better?

	no $\mathcal{O}(n^{4/3-\varepsilon})$ (probably)	✓
--	---	---

History of quartet distance

Year	Authors	Runtime	Arbitrary degree
	Folklore	$\mathcal{O}(n^4)$	✓
1993	Steel and Penny	$\mathcal{O}(n^3)$	✗
2000	Bryant et al.	$\mathcal{O}(n^2)$	✗
2001	Brodal et al.	$\mathcal{O}(n \log^2 n)$	✗
2004	Brodal et al.	$\mathcal{O}(n \log n)$	✗
2007	Stissing et al.	$\mathcal{O}(d^9 n \log n)$	✓
2011	Nielsen et al.	$\mathcal{O}(n^{2.688})$	✓
2013	Brodal et al.	$\mathcal{O}(dn \log n)$	✓

Can we do better?

	$\mathcal{O}(n^{1.48})$	✓
	$\mathcal{O}(d^{0.77} n)$	✓

Can we do even better?

	no $\mathcal{O}(n^{4/3-\varepsilon})$ (probably)	✓
--	---	---

History of quartet distance

Year	Authors	Runtime	Arbitrary degree
	Folklore	$\mathcal{O}(n^4)$	✓
1993	Steel and Penny	$\mathcal{O}(n^3)$	✗
2000	Bryant et al.	$\mathcal{O}(n^2)$	✗
2001	Brodal et al.	$\mathcal{O}(n \log^2 n)$	✗
2004	Brodal et al.	$\mathcal{O}(n \log n)$	✗
2007	Stissing et al.	$\mathcal{O}(d^9 n \log n)$	✓
2011	Nielsen et al.	$\mathcal{O}(n^{2.688})$	✓
2013	Brodal et al.	$\mathcal{O}(dn \log n)$	✓

Can we do better?

	$\mathcal{O}(n^{1.48})$	✓
	$\mathcal{O}(d^{0.77} n)$	✓

Can we do even better?

	no $\mathcal{O}(n^{4/3-\varepsilon})$ (probably)	✓
--	---	---

History of quartet distance

Year	Authors	Runtime	Arbitrary degree
	Folklore	$\mathcal{O}(n^4)$	✓
1993	Steel and Penny	$\mathcal{O}(n^3)$	✗
2000	Bryant et al.	$\mathcal{O}(n^2)$	✗
2001	Brodal et al.	$\mathcal{O}(n \log^2 n)$	✗
2004	Brodal et al.	$\mathcal{O}(n \log n)$	✗
2007	Stissing et al.	$\mathcal{O}(d^9 n \log n)$	✓
2011	Nielsen et al.	$\mathcal{O}(n^{2.688})$	✓
2013	Brodal et al.	$\mathcal{O}(dn \log n)$	✓

Can we do better?

	$\mathcal{O}(n^{1.48})$	✓
	$\mathcal{O}(d^{0.77} n)$	✓

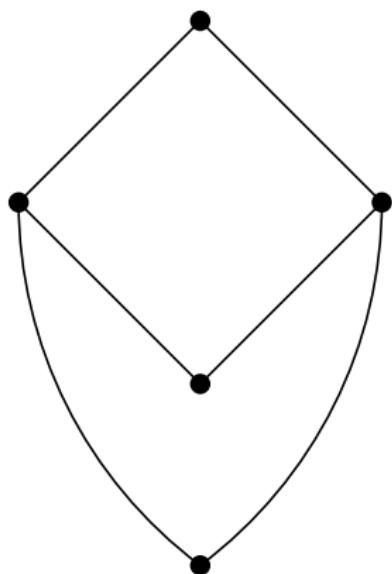
Can we do even better?

	no $\mathcal{O}(n^{4/3-\varepsilon})$ (probably)	✓
--	---	---

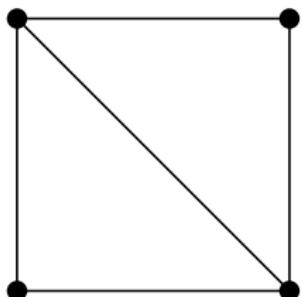
Counting 4-cycles

Input: simple, undirected graph

Output: number of simple cycles of length 4



3



1

History of $2k$ -cycles

Year	Authors	Runtime	Variant
	Folklore	$\mathcal{O}(n^3)$	
1997	Alon et al.	$\mathcal{O}(n^\omega)$	count 4-cycles
		$\mathcal{O}(m^{4/3})$	find a 4-cycle
1997	Yuster and Zwick	$\mathcal{O}(n^2)$	find a $2k$ -cycle
2015	Vassilevska Williams et al.	$\mathcal{O}(m^{1.48})$	count 4-cycles
2017	Dahlgaard et al.	$\mathcal{O}(m^{2k/(k+1)})$	find a $2k$ -cycle

Conjecture [Yuster and Zwick, J. Discr. Math.'97]

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(n^{2-\varepsilon})$ time.

Conjecture [Dahlgaard et al., STOC'17]

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(m^{4/3-\varepsilon})$ time.

History of $2k$ -cycles

Year	Authors	Runtime	Variant
	Folklore	$\mathcal{O}(n^3)$	
1997	Alon et al.	$\mathcal{O}(n^\omega)$	count 4-cycles
		$\mathcal{O}(m^{4/3})$	find a 4-cycle
1997	Yuster and Zwick	$\mathcal{O}(n^2)$	find a $2k$ -cycle
2015	Vassilevska Williams et al.	$\mathcal{O}(m^{1.48})$	count 4-cycles
2017	Dahlgaard et al.	$\mathcal{O}(m^{2k/(k+1)})$	find a $2k$ -cycle

Conjecture [Yuster and Zwick, J. Discr. Math.'97]

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(n^{2-\varepsilon})$ time.

Conjecture [Dahlgaard et al., STOC'17]

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(m^{4/3-\varepsilon})$ time.

History of $2k$ -cycles

Year	Authors	Runtime	Variant
	Folklore	$\mathcal{O}(n^3)$	
1997	Alon et al.	$\mathcal{O}(n^\omega)$	count 4-cycles
1997	Yuster and Zwick	$\mathcal{O}(m^{4/3})$	find a 4-cycle
2015	Vassilevska Williams et al.	$\mathcal{O}(m^{1.48})$	find a $2k$ -cycle
2017	Dahlgaard et al.	$\mathcal{O}(m^{2k/(k+1)})$	count 4-cycles
			find a $2k$ -cycle

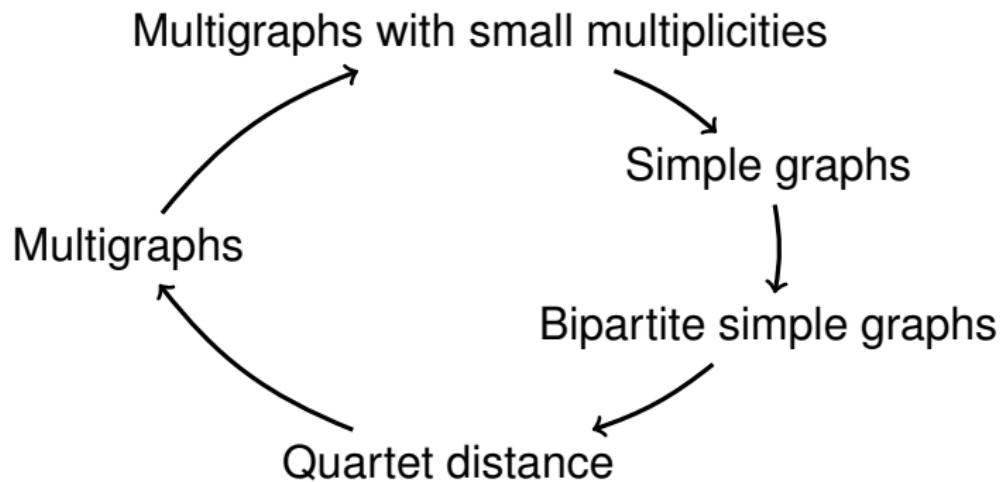
Conjecture [Yuster and Zwick, J. Discr. Math.'97]

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(n^{2-\varepsilon})$ time.

Conjecture [Dahlgaard et al., STOC'17]

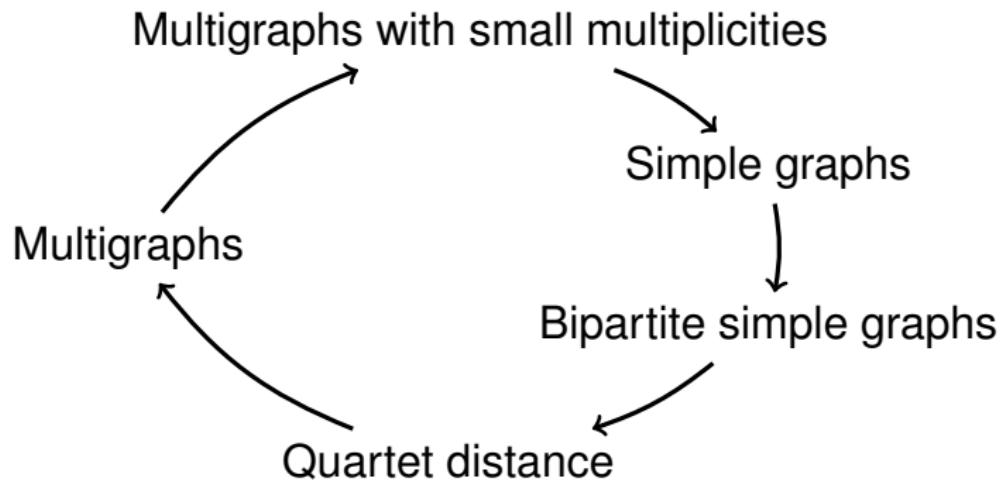
For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(m^{4/3-\varepsilon})$ time.

Our contribution



(*) All reductions are up to polylogarithmic factors.

Our contribution



(*) All reductions are up to polylogarithmic factors.

Warm-up: $\#\diamond(\text{simple graphs}) \implies \#\boxtimes(\text{bipartite})$

Input: simple graph G

Output: bipartite G' such that $\#\diamond(G)$ can be obtained from $\#\boxtimes(G')$

A node $v \rightarrow$ two nodes $v^{(1)}, v^{(2)}$.

An edge $\{u, v\} \rightarrow$ two edges $\{u^{(1)}, v^{(2)}\}, \{u^{(2)}, v^{(1)}\}$.

$$\#\diamond(G) = \frac{1}{2} \#\boxtimes(G')$$

Warm-up: $\#\diamond(\text{simple graphs}) \implies \#\boxtimes(\text{bipartite})$

Input: simple graph G

Output: bipartite G' such that $\#\diamond(G)$ can be obtained from $\#\boxtimes(G')$

A node $v \rightarrow$ two nodes $v^{(1)}, v^{(2)}$.

An edge $\{u, v\} \rightarrow$ two edges $\{u^{(1)}, v^{(2)}\}, \{u^{(2)}, v^{(1)}\}$.

$$\#\diamond(G) = \frac{1}{2} \#\boxtimes(G')$$

Warm-up: $\#\diamond(\text{simple graphs}) \implies \#\boxtimes(\text{bipartite})$

Input: simple graph G

Output: bipartite G' such that $\#\diamond(G)$ can be obtained from $\#\boxtimes(G')$

A node $v \rightarrow$ two nodes $v^{(1)}, v^{(2)}$.

An edge $\{u, v\} \rightarrow$ two edges $\{u^{(1)}, v^{(2)}\}, \{u^{(2)}, v^{(1)}\}$.

$$\#\diamond(G) = \frac{1}{2} \#\boxtimes(G')$$

Counting 4-edge subgraphs of a bipartite graph

How many quadruples of edges form \nwarrow ?

$$\#\nwarrow = \sum_{v \in V_1} \binom{\deg(v)}{4}$$

Some shapes are more involved to count:

$$\#\equiv = \frac{1}{4} \left((m-3)(\#\equiv) - (\#\underline{\swarrow}) - 2(\#\underline{\leq}) - 2(\#\underline{\geq}) \right)$$

Counting 4-edge subgraphs of a bipartite graph

How many quadruples of edges form \nwarrow ?

$$\# \nwarrow = \sum_{v \in V_1} \binom{\deg(v)}{4}$$

Some shapes are more involved to count:

$$\# \equiv = \frac{1}{4} \left((m-3)(\# \equiv) - (\# \not\leq) - 2(\# \leq) - 2(\# \geq) \right)$$

Two types of 4-edge shapes

Shapes counted in linear time: $\swarrow, \nwarrow, \underline{\swarrow}$ and $\underline{\nwarrow}$

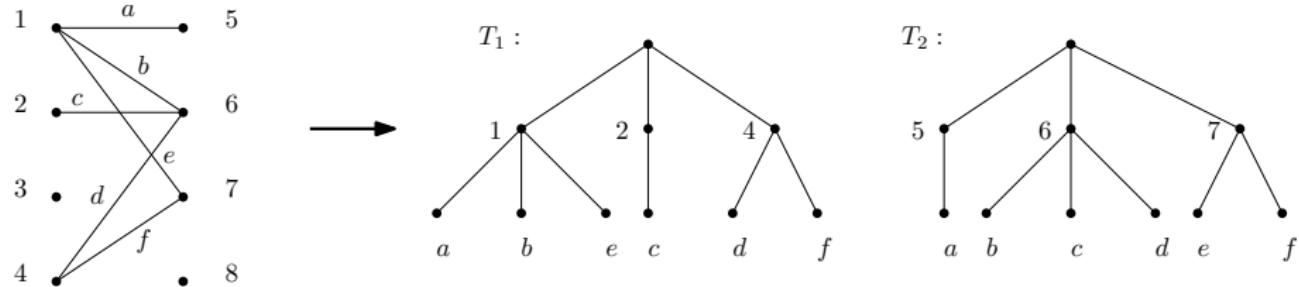
$$\#\swarrow = \sum_{(u,v) \in E} \binom{d(u)-1}{2} (d(v) - 1)$$

Shapes equivalent to 4-cycles: $\swarrow, \nwarrow, \underline{\swarrow}, \equiv$

$$\#\swarrow = \dots - 2(\#\boxtimes)$$

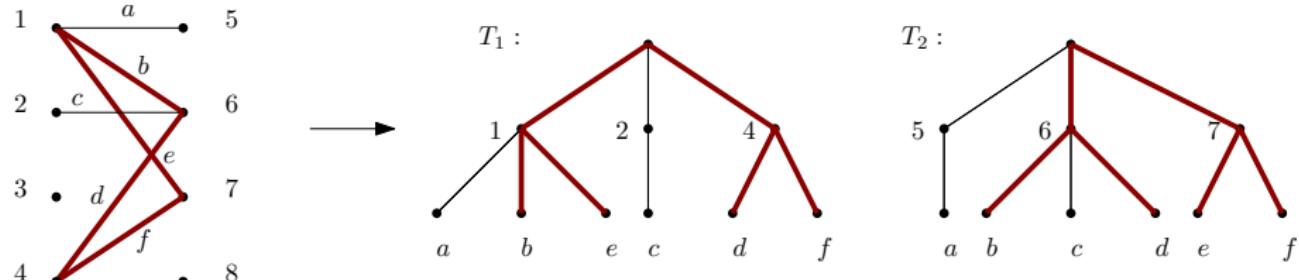
$$\#\equiv = \dots + 1(\#\boxtimes)$$

\bowtie (bipartite graphs) \implies quartet distance



$$\binom{\text{\# of leaves}}{4} - \text{QD}(T_1, T_2) = (\# \swarrow) + (\# \nearrow) + (\# \underline{\swarrow}) + (\# \underline{\nearrow}) + (\# \equiv) + (\# \underline{\geq})$$

$\#\boxtimes$ (bipartite graphs) \implies quartet distance



$$QD(T_1, T_2) = \dots + (\# \boxtimes)$$

$\#\boxtimes$ (bipartite graphs) \implies quartet distance

Theorem

Counting 4-cycles in a graph with m edges can be reduced in linear time to computing the quartet distance between two trees on $\mathcal{O}(m)$ leaves.

Conjecture [Dahlgaard et al. STOC'17]

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(m^{4/3-\varepsilon})$ time.

Conjecture

For any $\varepsilon > 0$, there is no $\mathcal{O}(n^{4/3-\varepsilon})$ algorithm for quartet distance.

$\#\boxtimes$ (bipartite graphs) \implies quartet distance

Theorem

Counting 4-cycles in a graph with m edges can be reduced in linear time to computing the quartet distance between two trees on $\mathcal{O}(m)$ leaves.

Conjecture [Dahlgaard et al. STOC'17]

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(m^{4/3-\varepsilon})$ time.

Conjecture

For any $\varepsilon > 0$, there is no $\mathcal{O}(n^{4/3-\varepsilon})$ algorithm for quartet distance.

$\#\boxtimes$ (bipartite graphs) \implies quartet distance

Theorem

Counting 4-cycles in a graph with m edges can be reduced in linear time to computing the quartet distance between two trees on $\mathcal{O}(m)$ leaves.

Conjecture [Dahlgaard et al. STOC'17]

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(m^{4/3-\varepsilon})$ time.

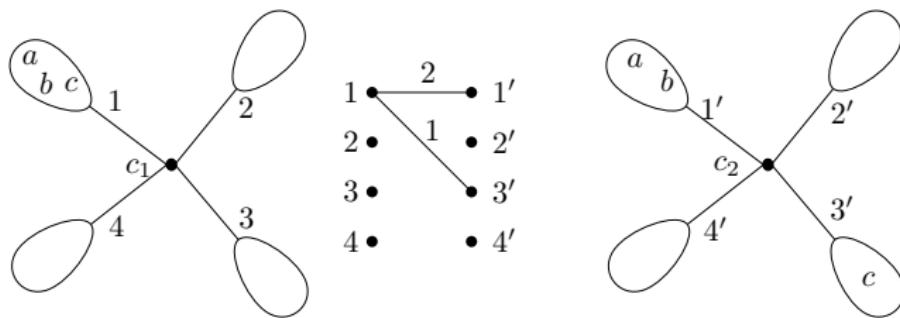
Conjecture

For any $\varepsilon > 0$, there is no $\mathcal{O}(n^{4/3-\varepsilon})$ algorithm for quartet distance.

Quartet distance $\implies (\# \equiv)$ (multigraphs)

Shared \curvearrowleft : $\mathcal{O}(n \log n)$ algorithm by Brodal et al. [SODA'13].

Shared \times : consider all pairs (c_1, c_2) of central nodes



and count 4-matchings \equiv .

Counting shared stars (X)

Problems:

- Cannot have $\Theta(n^2)$ subproblems
- Need to control the size of subproblems

Techniques:

- 1 top tree (hierarchical) decomposition
- 2 heavy-light decomposition
- 3 extended LCA
- 4 orthogonal range queries
- 5 ...

Theorem

Counting all shared stars \Rightarrow many instances of $(\# \equiv)$ in multigraphs of total size $\tilde{O}(n)$.

Counting shared stars (X)

Problems:

- Cannot have $\Theta(n^2)$ subproblems
- Need to control the size of subproblems

Techniques:

- 1 top tree (hierarchical) decomposition
- 2 heavy-light decomposition
- 3 extended LCA
- 4 orthogonal range queries
- 5 ...

Theorem

Counting all shared stars \Rightarrow many instances of ($\# \equiv$) in multigraphs of total size $\tilde{O}(n)$.

Counting shared stars (X)

Problems:

- Cannot have $\Theta(n^2)$ subproblems
- Need to control the size of subproblems

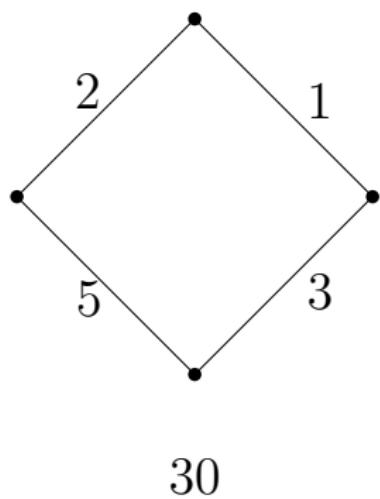
Techniques:

- 1 top tree (hierarchical) decomposition
- 2 heavy-light decomposition
- 3 extended LCA
- 4 orthogonal range queries
- 5 ...

Theorem

Counting all shared stars \implies many instances of $(\# \equiv)$ in multigraphs of total size $\tilde{O}(n)$.

Counting 4-cycles in multigraphs



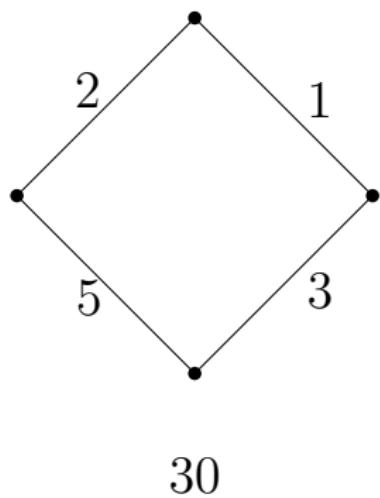
arbitrary multiplicities ($\leq U$)

small multiplicities ($\leq c$)

simple graphs

$$c = 501^{125}$$

Counting 4-cycles in multigraphs



arbitrary multiplicities ($\leq U$)

small multiplicities ($\leq c$)

simple graphs

$$c = 501^{125}$$

$$\#\diamond(\text{multigraphs}) \implies \#\diamond(\text{small multiplicities})$$

How to group the cycles?

How many 4-cycles have multiedges with multiplicities 3, 5, 8 and 10?

Colorful cycles

For every coloring of edges $K : E \rightarrow \{1, 2, 3, 4, \perp\}$ into 4 colors, we can compute $f_K(a, b, c, d)$ in $\mathcal{O}(1)$ black-box calls to counting 4-cycles in multigraphs with small multiplicities.

Naïve application: check all possible U^4 multisets of multiplicities.

$$\#\diamond(\text{multigraphs}) \implies \#\diamond(\text{small multiplicities})$$

How to group the cycles?

How many 4-cycles have multiedges with multiplicities 3, 5, 8 and 10?

Colorful cycles

For every coloring of edges $K : E \rightarrow \{1, 2, 3, 4, \perp\}$ into 4 colors, we can compute $f_K(a, b, c, d)$ in $\mathcal{O}(1)$ black-box calls to counting 4-cycles in multigraphs with small multiplicities.

Naïve application: check all possible U^4 multisets of multiplicities.

$$\#\diamond(\text{multigraphs}) \implies \#\diamond(\text{small multiplicities})$$

How to group the cycles?

How many 4-cycles have multiedges with multiplicities 3, 5, 8 and 10?

Colorful cycles

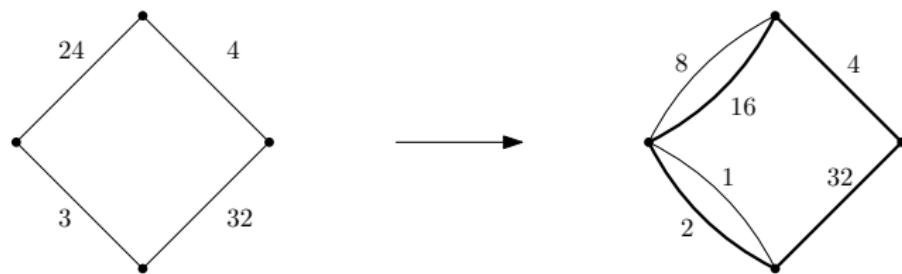
For every coloring of edges $K : E \rightarrow \{1, 2, 3, 4, \perp\}$ into 4 colors, we can compute $f_K(a, b, c, d)$ in $\mathcal{O}(1)$ black-box calls to counting 4-cycles in multigraphs with small multiplicities.

Naïve application: check all possible U^4 multisets of multiplicities.

Using powers of 2

Aim: $\mathcal{O}(\log^4 U)$ groups.

Check all multisets of powers of 2.



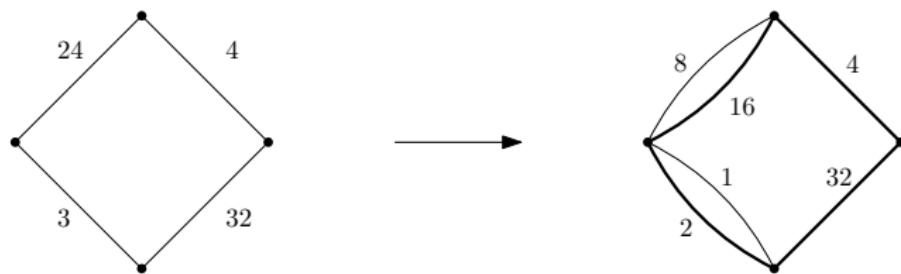
No edge contains two chosen powers of 2 \implies colorful cycles. ✓

What if there is more than one chosen power of 2 in one edge? ✗

Using powers of 2

Aim: $\mathcal{O}(\log^4 U)$ groups.

Check all multisets of powers of 2.



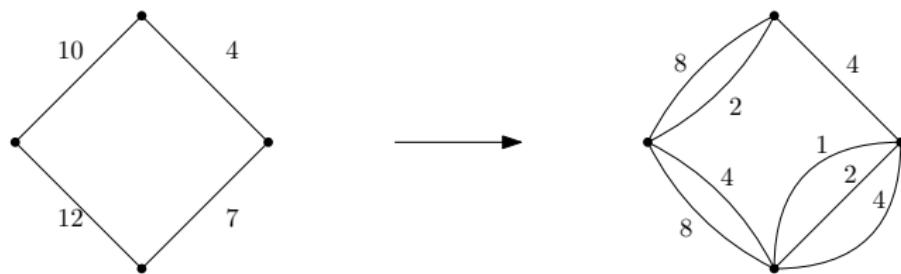
No edge contains two chosen powers of 2 \implies colorful cycles. ✓

What if there is more than one chosen power of 2 in one edge? ✗

Using powers of 2

Aim: $\mathcal{O}(\log^4 U)$ groups.

Check all multisets of powers of 2.



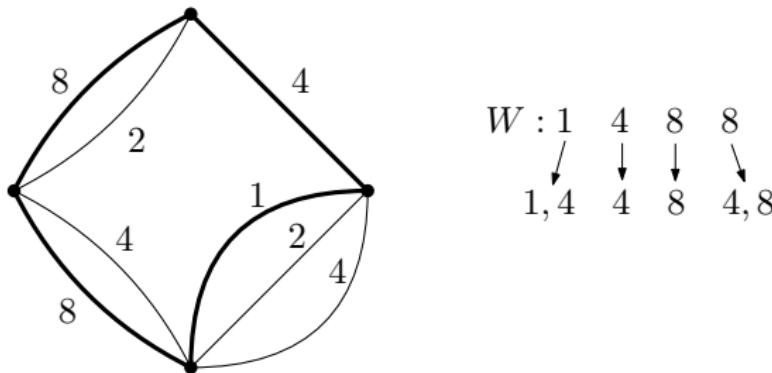
No edge contains two chosen powers of 2 \implies colorful cycles. ✓

What if there is more than one chosen power of 2 in one edge? ✗

Smarter grouping of cycles

Choose:

- ① multiset of weights $W = \{p_1, p_2, p_3, p_4\}$
- ② for every i : set M_i such that $p_i \in M_i$ and $M_i = \text{BIN}(\text{MULT}(e)) \cap W$

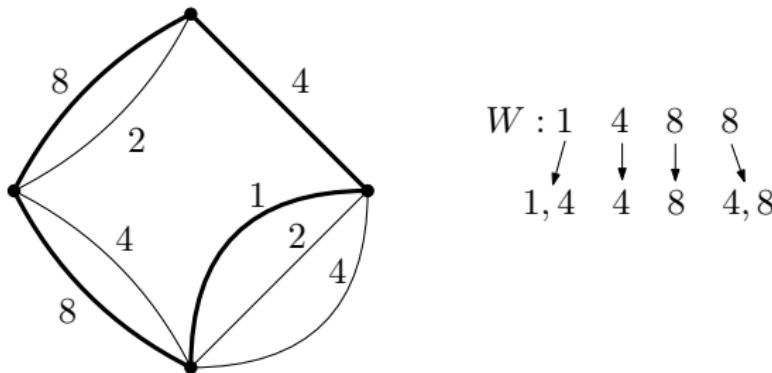


Sets M_i are the new colors \implies colorful cycles. ✓

Smarter grouping of cycles

Choose:

- ① multiset of weights $W = \{p_1, p_2, p_3, p_4\}$
- ② for every i : set M_i such that $p_i \in M_i$ and $M_i = \text{BIN}(\text{MULT}(e)) \cap W$



Sets M_i are the new colors \Rightarrow colorful cycles. ✓

Summary

Theorem

An $\mathcal{O}(n^\delta)$ -time algorithm for quartet distance gives $\mathcal{O}(m^\delta)$ -time algorithm for counting 4-cycles in simple graphs.

implies probably no $\mathcal{O}(n^{4/3-\varepsilon})$ -time algorithm for QD

Theorem

Counting 4-cycles in simple graphs in $\mathcal{O}(m^\delta)$ time gives $\tilde{\mathcal{O}}(n^\delta)$ -time algorithm for quartet distance.

implies an $\mathcal{O}(n^{1.48})$ -time algorithm for QD

Questions?

Summary

Theorem

An $\mathcal{O}(n^\delta)$ -time algorithm for quartet distance gives $\mathcal{O}(m^\delta)$ -time algorithm for counting 4-cycles in simple graphs.

implies probably no $\mathcal{O}(n^{4/3-\varepsilon})$ -time algorithm for QD

Theorem

Counting 4-cycles in simple graphs in $\mathcal{O}(m^\delta)$ time gives $\tilde{\mathcal{O}}(n^\delta)$ -time algorithm for quartet distance.

implies an $\mathcal{O}(n^{1.48})$ -time algorithm for QD

Questions?

Summary

Theorem

An $\mathcal{O}(n^\delta)$ -time algorithm for quartet distance gives $\mathcal{O}(m^\delta)$ -time algorithm for counting 4-cycles in simple graphs.

implies probably no $\mathcal{O}(n^{4/3-\varepsilon})$ -time algorithm for QD

Theorem

Counting 4-cycles in simple graphs in $\mathcal{O}(m^\delta)$ time gives $\tilde{\mathcal{O}}(n^\delta)$ -time algorithm for quartet distance.

implies an $\mathcal{O}(n^{1.48})$ -time algorithm for QD

Questions?

Summary

Theorem

An $\mathcal{O}(n^\delta)$ -time algorithm for quartet distance gives $\mathcal{O}(m^\delta)$ -time algorithm for counting 4-cycles in simple graphs.

implies probably no $\mathcal{O}(n^{4/3-\varepsilon})$ -time algorithm for QD

Theorem

Counting 4-cycles in simple graphs in $\mathcal{O}(m^\delta)$ time gives $\tilde{\mathcal{O}}(n^\delta)$ -time algorithm for quartet distance.

implies an $\mathcal{O}(n^{1.48})$ -time algorithm for QD

Questions?

Summary

Theorem

An $\mathcal{O}(n^\delta)$ -time algorithm for quartet distance gives $\mathcal{O}(m^\delta)$ -time algorithm for counting 4-cycles in simple graphs.

implies probably no $\mathcal{O}(n^{4/3-\varepsilon})$ -time algorithm for QD

Theorem

Counting 4-cycles in simple graphs in $\mathcal{O}(m^\delta)$ time gives $\tilde{\mathcal{O}}(n^\delta)$ -time algorithm for quartet distance.

implies an $\mathcal{O}(n^{1.48})$ -time algorithm for QD

Questions?