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Trees are everywhere... especially in biology

Figure sources: Wikipedia and

California Museum of Paleontology’s Understanding Evolution
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But how to compare them?
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Consider subtrees induced by all possible 4 leaves.
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Possible topologies on 4 leaves
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Quartet distance
Input: two trees with the same set of leaves
Output: number of quartets of leaves inducing different topologies
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History of quartet distance
Year Authors Runtime Arbitrary degree

Folklore O(n4)
√

1993 Steel and Penny O(n3) ×
2000 Bryant et al. O(n2) ×
2001 Brodal et al. O(n log2 n) ×
2004 Brodal et al. O(n log n) ×
2007 Stissing et al. O(d9n log n)

√

2011 Nielsen et al. O(n2.688)
√

2013 Brodal et al. O(dn log n)
√

Can we do better?

O(n1.48)
√

O(d0.77n)
√

Can we do even better?

no O(n4/3−ε)
(probably)

√
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Counting 4-cycles

Input: simple, undirected graph
Output: number of simple cycles of length 4

3 1
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History of 2k -cycles
Year Authors Runtime Variant

Folklore O(n3)
1997 Alon et al. O(nω) count 4-cycles

O(m4/3) find a 4-cycle
1997 Yuster and Zwick O(n2) find a 2k -cycle
2015 Vassilevska Williams et al. O(m1.48) count 4-cycles
2017 Dahlgaard et al. O(m2k/(k+1)) find a 2k -cycle

Conjecture [Yuster and Zwick, J. Discr. Math.’97]

For every ε > 0 no algorithm detects 4-cycles in O(n2−ε) time.
=⇒

Conjecture [Dahlgaard et al., STOC’17]

For every ε > 0 no algorithm detects 4-cycles in O(m4/3−ε) time.
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Our contribution

Multigraphs

Multigraphs with small multiplicities

Simple graphs

Bipartite simple graphs

Quartet distance

(*) All reductions are up to polylogarithmic factors.
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Warm-up: #�(simple graphs) =⇒ #∠∠−(bipartite)

Input: simple graph G
Output: bipartite G′ such that #�(G) can be obtained from #∠∠−(G′)

A node v → two nodes v (1), v (2).
An edge {u, v} → two edges {u(1), v (2)}, {u(2), v (1)}.

.

#�(G) = 1
2#∠∠−(G′)

Dudek and Gawrychowski ( University of Wrocław)Quartet Distance ≡ # 4-Cycles 10 / 21



Warm-up: #�(simple graphs) =⇒ #∠∠−(bipartite)

Input: simple graph G
Output: bipartite G′ such that #�(G) can be obtained from #∠∠−(G′)

A node v → two nodes v (1), v (2).
An edge {u, v} → two edges {u(1), v (2)}, {u(2), v (1)}.

u v u(1)

u(2)

v(1)

v(2) .

#�(G) = 1
2#∠∠−(G′)

Dudek and Gawrychowski ( University of Wrocław)Quartet Distance ≡ # 4-Cycles 10 / 21



Warm-up: #�(simple graphs) =⇒ #∠∠−(bipartite)

Input: simple graph G
Output: bipartite G′ such that #�(G) can be obtained from #∠∠−(G′)

A node v → two nodes v (1), v (2).
An edge {u, v} → two edges {u(1), v (2)}, {u(2), v (1)}.

u v u(1)

u(2)

v(1)

v(2) .

#�(G) = 1
2#∠∠−(G′)

Dudek and Gawrychowski ( University of Wrocław)Quartet Distance ≡ # 4-Cycles 10 / 21



Counting 4-edge subgraphs of a bipartite graph

How many quadruples of edges form ∠r\ ?

# ∠r\ =
∑
v∈V1

(
deg(v)

4

)

Some shapes are more involved to count:

# == =
1
4

(
(m − 3)(# ≡)− (# ∠r−)− 2(# =

<)− 2(# =
<)

)
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Two types of 4-edge shapes

Shapes counted in linear time: ∠r\ , >∠,∠r− and >
<

# >
∠ =

∑
(u,v)∈E

(d(u)−1
2

)
(d(v)− 1)

Shapes equivalent to 4-cycles: <<,<
<,∠r−,=

<

# <
< = . . .− 2(# ∠∠−)

# == = . . . + 1(# ∠∠−)
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#∠∠−(bipartite graphs) =⇒ quartet distance

T1 : T2 :
1

2

3

a

b
c

d

e

f a b e c d f a b c d e f

421 5 6 7

4

5

6

7

8

(
# of leaves

4

)
−QD(T1,T2) = (# ∠r\ )+(# ∠r\)+(# ∠r−)+(# ∠r−)+(# ==)+(# >

<)
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#∠∠−(bipartite graphs) =⇒ quartet distance

Theorem
Counting 4-cycles in a graph with m edges can be reduced in linear
time to computing the quartet distance between two trees on O(m)
leaves.

Conjecture [Dahlgaard et al. STOC’17]

For every ε > 0 no algorithm detects 4-cycles in O(m4/3−ε) time.

=⇒

Conjecture

For any ε > 0, there is no O(n4/3−ε) algorithm for quartet distance.
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Quartet distance =⇒ (# ==)(multigraphs)

Shared 〉−〈 : O(n log n) algorithm by Brodal et al. [SODA’13].

Shared×: consider all pairs (c1, c2) of central nodes

1 2

34

1′ 2′

3′
4′

c1 c2

1

2

3

4

1′

2′

3′

4′

a
b c

a
b

c

2

1

and count 4-matchings ==.
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Counting shared stars (×)
Problems:

Cannot have Θ(n2) subproblems
Need to control the size of subproblems

Techniques:
1 top tree (hierarchical) decomposition
2 heavy-light decomposition
3 extended LCA
4 orthogonal range queries
5 ...

Theorem
Counting all shared stars =⇒ many instances of (# ==) in multigraphs
of total size Õ(n).
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Counting 4-cycles in multigraphs

small multiplicities (≤ c)

arbitrary multiplicities (≤ U)

simple graphs

1

35

2

30

=⇒
=⇒

c = 501125
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#�(multigraphs) =⇒ #�(small multiplicities)

How to group the cycles?

How many 4-cycles have multiedges with multiplicities 3,5,8 and 10?

Colorful cycles
For every coloring of edges K : E → {1,2,3,4,⊥} into 4 colors, we
can compute fK (a,b, c,d) in O(1) black-box calls to counting 4-cycles
in multigraphs with small multiplicities.

Naïve application: check all possible U4 multisets of multiplicities.
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Using powers of 2

Aim: O(log4 U) groups.

Check all multisets of powers of 2.

24 4

323

8

16

4

321

2

No edge contains two chosen powers of 2 =⇒ colorful cycles.
√

What if there is more than one chosen power of 2 in one edge? ×
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Using powers of 2

Aim: O(log4 U) groups.

Check all multisets of powers of 2.
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No edge contains two chosen powers of 2 =⇒ colorful cycles.
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Smarter grouping of cycles

Choose:
1 multiset of weights W = {p1,p2,p3,p4}
2 for every i : set Mi such that pi ∈ Mi and Mi = BIN(MULT(e)) ∩W

8

2

4

1
2

4
4

8

W : 1 4 8 8

1, 4 4 8 4, 8

Sets Mi are the new colors =⇒ colorful cycles.
√
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Summary

Theorem
An O(nδ)-time algortithm for quartet distance gives O(mδ)-time
algorithm for counting 4-cycles in simple graphs.

implies probably no O(n4/3−ε)-time algorithm for QD

Theorem
Counting 4-cycles in simple graphs in O(mδ) time gives Õ(nδ)-time
algorithm for quartet distance.

implies an O(n1.48)-time algorithm for QD

Questions?
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