A Family of Approximation Algorithms for the Maximum Duo-Preservation String Mapping Problem

Bartłomiej Dudek¹ Paweł Gawrychowski^{1,2} Piotr Ostropolski-Nalewaja¹

¹University of Wrocław

²University of Haifa

July 13, 2017

Minimum Common String Partition

Input: two strings X, Y, where Y is a permutation of X. Output: partition of X into the least number of pieces that can be rearranged (without reversing) and concatenated to obtain Y.

$$X$$
: xyzabcbxy

$$Y:$$
 abbcxyzxy

Minimum Common String Partition

Input: two strings X, Y, where Y is a permutation of X. Output: partition of X into the least number of pieces that can be rearranged (without reversing) and concatenated to obtain Y.

$$X: \quad \boxed{x \ y \ z} \boxed{a \ b} \boxed{c} \boxed{b} \boxed{x \ y}$$

$$Y:$$
 a b b c x y z x y

Hardness of MCSP

Goldstein, Kolman, Zheng ['04]

MCSP is APX-hard.

Cormode, Muthukrishnan ['07]

Almost linear-time $O(\log n \cdot \log^* n)$ -approximation algorithm.

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 3/16

Hardness of MCSP

Goldstein, Kolman, Zheng ['04]

MCSP is APX-hard.

Cormode, Muthukrishnan ['07]

Almost linear-time $O(\log n \cdot \log^* n)$ -approximation algorithm.

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 3/16

Maximum Duo-Preservation String Mapping Problem

Complementary problem: maximize number of **duos** – consecutive letters not split apart.

$$X: \quad \boxed{ \mathbf{x} \ \mathbf{y} \ \mathbf{z} } \boxed{ \mathbf{a} \ \mathbf{b} } \boxed{ \mathbf{c} } \boxed{ \mathbf{b} } \boxed{ \mathbf{x} \ \mathbf{y} }$$

$$Y: \quad |\mathbf{a} \ \mathbf{b}| |\mathbf{c}| |\mathbf{x} \ \mathbf{y} \ \mathbf{z}| |\mathbf{x} \ \mathbf{y}|$$

$$|X| = \#duos + \#pieces$$

Easier? No:

Boria, Kurpisz, Leppänen, Mastrolilli ['14]:

Maximum Duo-Preservation String Mapping Problem

Complementary problem: maximize number of **duos** – consecutive letters not split apart.

$$Y:$$
 a b b c x y z x y

Preserved duos: xy, yz, ab, xy

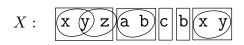
$$|X| = \#duos + \#pieces$$

Easier? No:

Boria, Kurpisz, Leppänen, Mastrolilli ['14]: MPSM is APX-hard.

Maximum Duo-Preservation String Mapping Problem

Complementary problem: maximize number of **duos** – consecutive letters not split apart.



$$Y:$$
 a b b c x y z x y

Preserved duos: xy, yz, ab, xy

$$|X| = \#duos + \#pieces$$

Easier? No:

Boria, Kurpisz, Leppänen, Mastrolilli ['14]:

MPSM is APX-hard.

Results for MPSM

Authors	year	ratio
Boria et al.	'14	4
Boria et al.	'16	3.5
Brubach	'16	3.25
Xu et al.	'17	2.917
DGO-N	'17	$2+\varepsilon$

Boria, Kurpisz, Leppänen, Mastrolilli ['14]: It is NP-hard to approximate MPSM within 1.00042 $-\varepsilon$ for every $\varepsilon>0$.

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 5 / 16

Results for MPSM

Authors	year	ratio
Boria et al.	'14	4
Boria et al.	'16	3.5
Brubach	'16	3.25
Xu et al.	'17	2.917
DGO-N	'17	$2+\varepsilon$
	•	

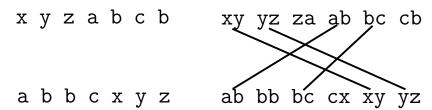
Boria, Kurpisz, Leppänen, Mastrolilli ['14]:

It is NP-hard to approximate MPSM within 1.00042 $-\varepsilon$ for every $\varepsilon>0$.

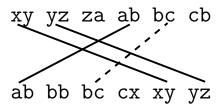
Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 5 / 16

Graph representation

Bipartite graph with nodes – duos in both strings:

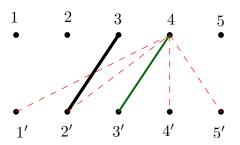


Maximum consecutive bipartite matching:



Maximum Consecutive Bipartite Matching

When we take the edge (2',3) to the matching:



Definitions

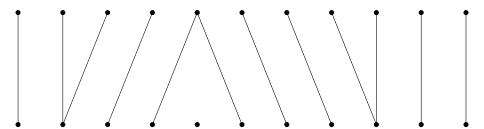
Streak:

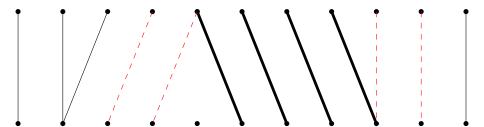
Conflicting edges

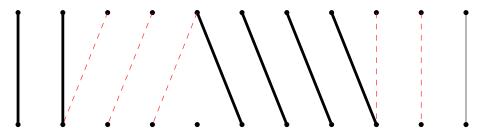
Definitions

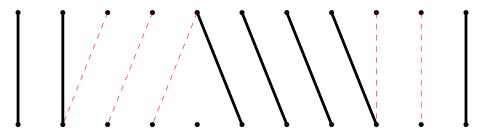
Streak:

Conflicting edges:

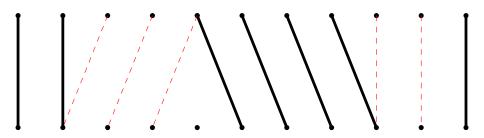








As long as possible take the longest possible streak from G.



If we stop the algorithm when streaks contain less than k edges:

Lemma

There are $(2 + \frac{2}{k}) \cdot |GREEDY|$ edges from optimal solution conflicting with GREEDY.

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 9/1

Lemma

Streaks of length at least k: $(2 + \frac{2}{k})$ -approximation.

Streaks smaller than k need another phase:

- k = 1 The greedy algorithm alone yields 4-approximation.
- k = 2 Maximum matching for the remaining edges yields 3-approximation.
- k = 3 Local search technique used by Boria et al. yields 2.67-approximation.

Lemma

Streaks of length at least k: $(2 + \frac{2}{k})$ -approximation.

Streaks smaller than k need another phase:

- k = 1 The greedy algorithm alone yields 4-approximation.
- k = 2 Maximum matching for the remaining edges yields 3-approximation.
- k = 3 Local search technique used by Boria et al. yields 2.67-approximation.

Lemma

Streaks of length at least k: $(2 + \frac{2}{k})$ -approximation.

Streaks smaller than k need another phase:

- k = 1 The greedy algorithm alone yields 4-approximation.
- k = 2 Maximum matching for the remaining edges yields 3-approximation.
- k = 3 Local search technique used by Boria et al. yields 2.67-approximation.

Lemma

Streaks of length at least k: $(2 + \frac{2}{k})$ -approximation.

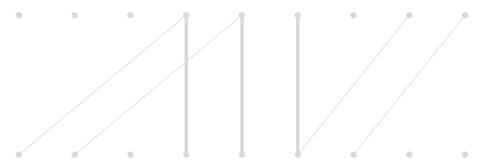
Streaks smaller than k need another phase:

- k = 1 The greedy algorithm alone yields 4-approximation.
- k = 2 Maximum matching for the remaining edges yields 3-approximation.
- k = 3 Local search technique used by Boria et al. yields 2.67-approximation.

$(2 + \varepsilon)$ -approximation

BOUNDEDSIZEIMPROVEMENTS(t)

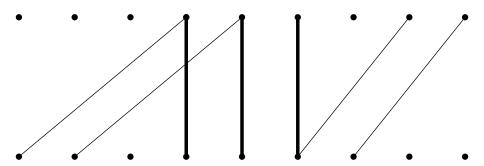
- try every subset E_{add} , E_{del} of at most t edges
- if $|E_{del}| < |E_{add}|$, try $ALG \setminus E_{del} \cup E_{add}$



$(2 + \varepsilon)$ -approximation

BOUNDEDSIZEIMPROVEMENTS(t)

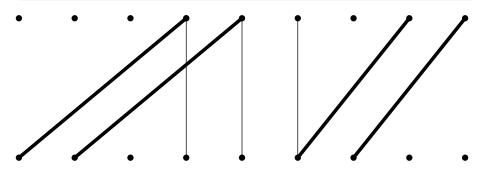
- try every subset E_{add} , E_{del} of at most t edges
- if $|E_{del}| < |E_{add}|$, try $ALG \setminus E_{del} \cup E_{add}$



$(2 + \varepsilon)$ -approximation

BOUNDEDSIZEIMPROVEMENTS(t)

- try every subset E_{add} , E_{del} of at most t edges
- if $|E_{del}| < |E_{add}|$, try $ALG \setminus E_{del} \cup E_{add}$



Final algorithm

- **1** run Greedy for $k = \left\lceil \frac{2}{\varepsilon} \right\rceil$
- ② run BoundedSizeImprovements($\lceil \frac{4}{\varepsilon} \rceil + 1$).

Theorem

Combining the greedy algorithm with local improvements yields a $(2+\varepsilon)$ -approximation for MCBM in $n^{O(1/\varepsilon)}$ time, for any $\varepsilon>0$.

Final algorithm

- **1** run Greedy for $k = \left\lceil \frac{2}{\varepsilon} \right\rceil$
- ② run BoundedSizeImprovements($\left\lceil \frac{4}{\varepsilon} \right\rceil + 1$).

Theorem

Combining the greedy algorithm with local improvements yields a $(2 + \varepsilon)$ -approximation for MCBM in $n^{O(1/\varepsilon)}$ time, for any $\varepsilon > 0$.

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 12 / 16

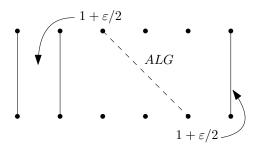
Final algorithm

- **1** Tun Greedy for $k = \left\lceil \frac{2}{\varepsilon} \right\rceil$
- ② run BoundedSizeImprovements($\lceil \frac{4}{\varepsilon} \rceil + 1$).

Theorem

Combining the greedy algorithm with local improvements yields a $(2 + \varepsilon)$ -approximation for MCBM in $n^{O(1/\varepsilon)}$ time, for any $\varepsilon > 0$.

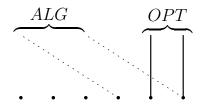
Proof: assign $2 + \varepsilon$ credits to every edge from *ALG*



Dudek et al. $2 + \varepsilon$ for MPSM

Credit distribution scheme

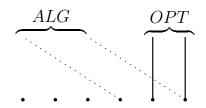
Often it is clear how to distribute the credit:



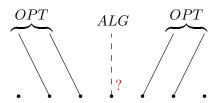
Sometimes not:

Credit distribution scheme

Often it is clear how to distribute the credit:



Sometimes not:



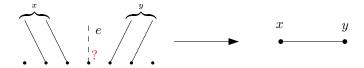
Balance of a streak

Balance: number of credits distributed to a streak minus its size.

Lemma

Balance of every streak is at least -2.

New graph with nodes – streaks of OPT:



Lemma

Every connected component of the new graph has overall balance at least -1.

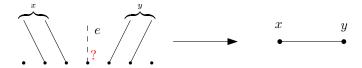
Balance of a streak

Balance: number of credits distributed to a streak minus its size.

Lemma

Balance of every streak is at least -1.

New graph with nodes – streaks of OPT:



Lemma

Every connected component of the new graph has overall balance at least -1.

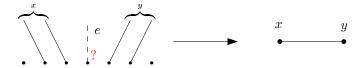
Balance of a streak

Balance: number of credits distributed to a streak minus its size.

Lemma

Balance of every streak is at least -1.

New graph with nodes – streaks of OPT:



Lemma

Every connected component of the new graph has overall balance at least -1.

Components with balance -1

Large components

- more than $4/\varepsilon$ credits transfered,
- unused $\varepsilon/4$ part from every credit,
- enough to cover 1 missing credit.

Small components

- not greater than t,
- conflict with less than t edeges from ALG,
- BOUNDEDSIZEIMPROVEMENTS(t) can improve the solution.

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 15 / 16

Components with balance -1

Large components

- more than $4/\varepsilon$ credits transfered,
- unused $\varepsilon/4$ part from every credit,
- enough to cover 1 missing credit.

Small components

- not greater than t,
- conflict with less than t edeges from ALG,
- BOUNDEDSIZEIMPROVEMENTS(t) can improve the solution.

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 15 / 16

Open problems

- What are the actual bounds for the problem?
 - ▶ lower bound: 1.00042ε
 - upper bound: $2 + \varepsilon$
- Is k-MPSM significantly easier than MPSM?

Xu, Chen, Luo, Lin ['17]:

A $(1.4 + \varepsilon)$ -approximation algorithm for the 2-MPSM.

Questions?

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 16 / 16

Open problems

- What are the actual bounds for the problem?
 - ▶ lower bound: 1.00042ε
 - upper bound: $2 + \varepsilon$
- Is k-MPSM significantly easier than MPSM?

Xu, Chen, Luo, Lin ['17]:

A $(1.4 + \varepsilon)$ -approximation algorithm for the 2-MPSM.

Questions?

Open problems

- What are the actual bounds for the problem?
 - ▶ lower bound: 1.00042ε
 - upper bound: $2 + \varepsilon$
- Is k-MPSM significantly easier than MPSM?

Xu, Chen, Luo, Lin ['17]:

A $(1.4 + \varepsilon)$ -approximation algorithm for the 2-MPSM.

Questions?

Dudek et al. $2 + \varepsilon$ for MPSM July 13, 2017 16 / 16