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9.8 Chaos and Strange Attractors: The Lorenz Equations

In principle, the methods described in this chapter for second order autonomous systems
can also be applied to higher order systems as well. In practice, there are several
difficulties that arise in trying to do this. One problem is that there is simply a greater
number of possible cases that can occur, and the number increases with the order of the
system (and the dimension of the phase space). Another is the difficulty of graphing
trajectories accurately in a phase space of higher than two dimensions; even in three
dimensions it may not be easy to construct a clear and understandable plot of the
trajectories, and it becomes more difficult as the number of variables increases. Finally,
and this has only been clearly realized in the last few years, there are different and very
complex phenomena that can occur, and do frequently occur, in systems of third and
higher order that are not present in second order systems. Our goal in this section is to
provide a brief introduction to some of these phenomena by discussing one particular
third order autonomous system that has been intensively studied in recent years. In
some respects the presentation here is similar to the treatment of the logistic difference
equation i9.

An important problem in meteorology, and in other applications of fluid dynamics,
concerns the motion of a layer of fluid, such as the earth’s atmosphere, that is warmer
at the bottom than at the top; see Figure 9.8.1. If the vertical temperature difference
AT is small, then there is a linear variation of temperature with altitude, but no
significant motion of the fluid layer. However, AT is large enough, then the warmer
air rises, displacing the cooler air above it, and a steady convective motion results. If
the temperature difference increases further, then eventually the steady convective flow
breaks up and a more complex and turbulent motion ensues.

While investigating this phenomenon, Edward N. LoFenas led (by a process too
involved to describe here) to the nonlinear autonomous third order system

dx/dt = o(—=x+Y),
dy/dt =rx —y — xz, (8]
dz/dt = —bz + xy.

Equations (1) are now commonly referred to as the Lorenz eql@'@bserve that the
second and third equations involve quadratic nonlinearities. However, except for being
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FIGURE 9.8.1 A layer of fluid heated from below.

"Edward N. Lorenz (1917-), American meteorologist, received his Ph.D. from the Massachusetts Institute of
Technology in 1948 and has been associated with that institution throughout his scientific career. The Lorenz
equations were first studied by him in a famous paper published in 1963 dealing with the stability of fluid flows
in the atmosphere.

A very thorough treatment of the Lorenz equations appears in the bdok by Sparrow listed in the references at the
end of the chapter.
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a third order system, superficially the Lorenz equations appear no more complicated
than the competing species or predator—prey equations discugsed in Seclions 9.4 and
. The variables in » is related to the intensity of the fluid motion, while the
variablesy andz are related to the temperature variations in the horizontal and vertical
directions. The Lorenz equations also involve three parametersandb, all of which
are real and positive. The parameterandb depend on the material and geometrical
properties of the fluid layer. For the earth’s atmosphere reasonable values of these
parameters are = 10 andb = 8/3; they will be assigned these values in much of
what follows in this section. The parameteron the other hand, is proportional to
the temperature differene®T, and our purpose is to investigate how the nature of the
solutions ) changes with

The first step in analyzing the Lorenz equations is to locate the critical points by
solving the algebraic system

oX—oy=0,
rx—y—xz=0, 2)
—bz+xy=0.

From the first equation we haye= x. Then, eliminatingy from the second and third
equations, we obtain

Xr—1-2 =0, 3
—bz+x%2=0. (4)

One way to satisfy Eq. (3) is to chooge= 0. Then it follows thaty = 0 and, from
Eq. (4),z = 0. Alternatively, we can satisfy Eq. (3) by choosing: r — 1. Then Eq. (4)
requires thatx = ++/b(r — 1) and theny = +./b(r — 1) also. Observe that these
expressions fox andy are real only when > 1. Thus (0, 0, 0), which we will denote
by P,, is a critical point for all values of, and it is the only critical point for < 1.
However, wherr > 1, there are also two other critical points, namélyb(r — 1),
Vb —1),r —1) and(—+/b(r — 1), —/b(r — 1),r — 1). We will denote the latter
two points byP, andP;, respectively. Note that all three critical points coincide when
r = 1. Asr increases through the value 1, the critical pdtat the originbifurcates
and the critical point$, and P; come into existence.

Next we will determine the local behavior of solutions in the neighborhood of each
critical point. Although much of the following analysis can be carried out for arbitrary
values ofo andb, we will simplify our work by using the values = 10 andb = 8/3.
Near the origin (the critical poin®,) the approximating linear system is

x\' (=10 10 O X
y| = r -1 0 vyl - 5)
(Z) ( Y —8/3) (Z)

The eigenvalues are determined from the equation

—-10—x 10 0
r —1-2 0 = —(8/3+M)[A2+11 —10r —1)] =0. ()
0 0 —8/3— 1
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Therefore
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Note that all three eigenvalues are negativerfar 1; for example, whem = 1/2,

the eigenvalues are, = —8/3, A, = —10.52494,1, = —0.47506. Hence the origin

is asymptotically stable for this range ofoth for the Iineaf approximation (]5) and

for the origina[ system (1). Howeverg changes sign when="Tand is posifive for

r > 1. The valug = 1 corresponds to the initiation of convective flow in the physical
problem described earlier. The origin is unstablerfor 1; all solutions starting near

the origin tend to grow except for those lying precisely in the plane determined by the
eigenvectors associated with andx, [or, for the nonlinel), in a certain
surface tangent to this plane at the origin].

Next let us consider the neighborhood of the critical poiy(/8(r —1)/3,
J/8(r —1)/3,r — 1) forr > 1. If u, v, andw are the perturbations from the crit-
ical point in thex, y, and z directions, respectively, then the approximating linear
system is

u\’ ~10 10 0 u
v | = 1 ~1 ~J8r—=073]|v]|. (8)
w J8r=1/3 J8r —-1)/3 —8/3 w
The eigenvalues of the coefficient matrix of Eq. (8) are determined from the equation
33+ 41024+ 8(r + 101 + 160r — 1) =0, (9)

which is obtained by straightforward algebraic steps that are omitted here. The solutions
of Eq. (9) depend on in the following way:

Forl<r <r, = 13456 there are three negative real eigenvalues.

Forr, <r <r, = 24737 there are one negative real eigenvalue and two complex
eigenvalues with negative real part.

Forr, < r there are one negative real eigenvalue and two complex eigenvalues with
positive real part.

The same results are obtained for the critical pBintThus there are several different
situations.

For0<r < 1theonly critical pointi®, anditis asymptotically stable. All solutions
approach this point (the origin) &s— oo.

For 1<r <r, the critical pointsP, and P, are asymptotically stable ané, is
unstable. All nearby solutions approach one or the other of the p&inand P,
exponentially.

Forr, <r <r, the critical pointsP, and P, are asymptotically stable anf@, is
unstable. All nearby solutions approach one or the other of the pBjraad P;; most
of them spiral inward to the critical point.

Forr, < r all three critical points are unstable. Most solutions néaor P; spiral
away from the critical point.

However, this is by no means the end of the story. Let us consider solutions for
somewhat greater tham. In this caseP, has one positive eigenvalue and each of
P, and P, has a pair of complex eigenvalues with positive real part. A trajectory can
approach any one of the critical points only on certain highly restricted paths. The
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slightest deviation from these paths causes the trajectory to depart from the critical
point. Since none of the critical points is stable, one might expect that most trajectories
will approach infinity for large. However, it can be shown that all solutions remain
bounded as — oco; se¢ Problem[5. In fact, it can be shown that all solutions ultimately
approach a certain limiting set of points that has zero volume. Indeed, this is true not
only forr > r, but for all positive values af .

A plot of computed values of versust for a typical solution withr > r, is shown
in Figure 9.8.2. Note that the solution oscillates back and forth between positive and
negative values in a rather erratic manner. Indeed, the graptvefsust resembles
a random vibration, although the Lorenz equations are entirely deterministic and the
solution is completely determined by the initial conditions. Nevertheless, the solution
also exhibits a certairegularity in that the frequency and amplitude of the oscillations
are essentially constant in time.

The solutions of the Lorenz equations are also extremely sensitive to perturbations in
the initial conditions. Figure 9.8.3 shows the graphs of computed values@fsust
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FIGURE 9.8.2 A plot of x versust for the Lorenz equations (1) with= 28; initial point is

(5,5,5).
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FIGURE 9.8.3 Plots ofx versug for two initially nearby solutions of Lorenz equations with
r = 28; initial point is(5, 5, 5) for dashed curve ang.01, 5, 5) for solid curve.
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for the two solutions whose initial points a8, 5,5) and (5.01, 5,5). The dashed
graph is the same as the on.8.2, while the solid graph starts at a nearby
point. The two solutions remain close urttiis near 10, after which they are quite
different and, indeed, seem to have no relation to each other. It was this property that
particularly attracted the attention of Lorenz in his original study of these equations,
and caused him to conclude that detailed long-range weather predictions are probably
not possible.

The attracting set in this case, although of zero volume, has a rather complicated
structure and is called sirange attractor. The ternjchaoticlhas come into general
use to describe solutions such as those shown in Figures|9.§.2 anfl 9.8.3.

To determine how and when the strange attractor is created it is illuminating to
investigate solutions for smaller values mf Forr = 21 solutions starting at three
different initial points are shown in Figure 9.8.4. For the initial poit8, 0) the
solution begins to converge to the pof almost at once; see Figure 9.8.4or the
second initial poin{5, 5, 5) there is a fairly short interval of transient behavior, after
which the solution converges 1,; see Figure 9.8l However, as shown in Figure
9.8.4, for the third initial point(5, 5, 10) there is a much longer interval of transient
chaotic behavior before the solution eventually convergeR,tAs r increases, the
duration of the chaotic transient behavior also increases. Whemn, = 24.06, the
chaotic transients appear to continue indefinitely and the strange attractor comes into
being.

One can also show the trajectories of the Lorenz equations in the three-dimensional
phase space, or at least projections of them in various planes. Figures 9|8.5 arhd 9.8.6
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FIGURE 9.84 Plots ofx versugt for three solutions of Lorenz equations with= 21.
(a) Initial point is (3, 8, 0). b) Initial pointis (5, 5, 5). €) Initial point is (5, 5, 10).
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FIGURE 9.8.5 Projections of a trajectory of the Lorenz equations (with 28) in the
xy-plane.

FIGURE 9.8.6 Projections of a trajectory of the Lorenz equations (wita 28) in the
xz-plane.

show projections in they- and xz-planes, respectively, of the trajectory starting at
(5,5, 5). Observe that the graphs in these figures appear to cross over themselves
repeatedly, but this cannot be true for the actual trajectories in three-dimensional space
because of the general uniqueness theorem. The apparent crossings are due wholly to
the two-dimensional character of the figures.

The sensitivity of solutions to perturbations of the initial data also has implications
for numerical computations, such as those reported here. Different step sizes, different
numerical algorithms, or even the execution of the same algorithm on different machines
will introduce small differences in the computed solution, which eventually lead to
large deviations. For example, the exact sequence of positive and negative loops in
the calculated solution depends strongly on the precise numerical algorithm and its
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implementation, as well as on the initial conditions. However, the general appearance
of the solution and the structure of the attracting set is independent of all these factors.

Solutions of the Lorenz equations for other parameter ranges exhibit other interesting
types of behavior. For example, for certain valuesgifeater than,, intermittent bursts
of chaotic behavior separate long intervals of apparently steady periodic oscillation.
For other ranges of, solutions show the period-doubling property that we saw in
for the logistic difference equation. Some of these features are taken up in
the problems.

Since about 1975 the Lorenz equations and other higher order autonomous systems
have been studied intensively, and this is one of the most active areas of current
mathematical research. Chaotic behavior of solutions appears to be much more common
than was suspected at first, and many questions remain unanswered. Some of these are
mathematical in nature, while others relate to the physical applications or interpretations
of solutions.

PROBLEM S Problems 1 through 3 ask you to fill in some of the details of the analysis of the Lorenz equations
—_—  n the text.

1. (a) Show that the eigenvalues of the linear system (5), valid near the origin, are given by
Eq. (7).
b) Determine the corresponding eigenvectors.
ﬁmlgemwmrs of the system (5) in the case whede
> 2. (a) Show that the linear approximation valid near the critical pBjns given by Eq. (8).
(b) Show that the eigenvalues of the system (8) satisfy Eq. (9).
| (c) Forr =28 solve Eq. (9) and thereby determine the eigenvalues of the system (8)|
> 3. (a) By solving Eq. (9) numerically show that the real part of the complex roots changes
sigh wherr = 24.737.
(b) Show that a cubic polynomiat® + Ax? + Bx + C has one real zero and two pure
imaginary zeros only iAB = C.
(c) By applying the result of part (b) to Eq. (9) show that the real part of the complex roots
changes sign whem= 470/19.
4. Usethe Liapunov functio¥ (x, y, z) = x2 4 o'y? + o'Z* to show that the origin is a globally
asymptotically stable critical point for the Lorenz equations (&) 1.
5. Consider the ellipsoid

VX, y,2) =rx>+o0y’+o0(z—-2r)2=c>0.

(a) CalculatedV /dt along trajectories of the Lorenz equations (1).

(b) Determine a sufficient condition @so that every trajectory crossivgx, y, z) = cis
directed inward.

(c) Evaluate the condition found in part (b) for the case- 10,b = 8/3,r = 28.

In each of Problems 6 through 10 carry out the indicated investigations of the Lorenz equations.

» 6. Forr = 28 plotx versust for the cases shown in Figures 9.8.2 and 9.8.3. Do your graphs
agree with those shown in the figures? Recall the discussion of numerical computation in
the text.

p 7. Forr = 28 plot the projections in they- and xz-planes, respectively, of the trajectory
starting at the point5, 5, 5). Do the graphs agree with those in Figures 9.8.5 and 9.8.6?

> 8. (a) Forr =21 plot x versust for the solutions starting at the initial point8, 8, 0),
(5,5,5), and(5, 5, 10). Use at interval of at least G< t < 30. Compare your graphs with
those in Figure 9.8.4.
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