Offsety | operatory Minkowskiego
W przyspieszaniu
obliczen globalnego modelu
oSwietlenia.

Andrzej Lukaszewski
praca doktorska

promotor: Prof. dr hab. Leszek Pacholski

Instytut Informatyki
Uniwersytet Wroctawski

Wroctaw, 2001

Offsets and Minkowski operators
for speeding up
global illumination methods.

Andrzej Lukaszewski
Ph.D. Thesis

supervisor: Prof. dr hab. Leszek Pacholski

Institute of Computer Science
University of Wroctaw

Wroctaw, 2001

Acknowledgements

First of all, | would like to thank Prof. Leszek Pacholski fois support in doing
research on computer graphics. | am obliged to him for happne in writing the
thesis and for his help in establishing international cotstahat made this research
possible and influenced my work.

| would like to thank Prof. Hans—Peter Seidel from Max Plahedtitit fur Infor-
matik in Saarbrticken for collaboration and the time of warlhis group when | put
together the most part of this thesis. | also want to exprgsthamks to all members
of his research group for many valuable discussions anditdeeatmosphere during
my stay there.

Wroctaw, October 2001.

This work has been partly supported by
— Uniwersity of Wroclaw research grant nr 2203/W/IN/97i198 997—-X11.1998)
— KBN research grantnr 7 T11C 023 20 (11.2001-X11.2001)
— Marie Curie Fellowship for stay in MPI in Saarbricken @D01-VII1.2001)

Contents

1

Introduction 9

1.1 Contributionsofthisthesis 11

1.2 Organizationofthisthesis 21

1.3 Ray tracers and Monte Carlomethods 2 1
1.3.1 Whittedraytracer 13
1.3.2 Stochasticraytracing. 14
1.3.3 Photontracingand photonmaps 16
1.3.4 Bidirectional pathtracing. 16

1.4 Accelerationtechniques 8 1

15 Shadows e 19

Preliminaries 22

2.1 Beézier curves, surfacesandvolumes 22
2.1.1 Bézieroperations 26
2.1.2 Regular surfaces and normal vectors 8 2
2.1.3 Rational Béziersurfaces 29

2.2 Minkowski operators andoffsets 30
2.2.1 Minkowskioperators 30
222 Soldoffsets 30
2.2.3 Offsetscurvesandsurfaces 32

3 Exploiting ray coherence 35
3.1 Rayswithonecommonorigin 35
3.2 Rayswith coherentorigins 38

4 Fast penumbra method 40
4.1 Overview of the algorithm 40
4.2 Multiplelightsources 42
4.3 Howtoexpand? 43
4.4 Offsets versus Minkowskiexpansion 44
4.5 Optimizations 46
4.6 Umbradetection. 48
4.7 Performanceresults 50

5 Intersection methods 59
5.1 Maintheorem 60
5.2 TheAlgorithm 62

5.2.1 Calculationof™ 63
5.2.2 Subdivision and convex hull checking 3 6
5.2.3 Classification of solutions 64
5.3 Complexityanalysis., 64
5.4 Experimentalresults 65
6 Conclusions 69

Chapter 1
Introduction

“Somehow it seems to fill my head with ideas —
only I don’t know exactly what they are !”

Lewis Carroll — Through The Looking Glass

Computer graphics began with a need to visualize huge amafigtata and with the
need to provide convenient interface between the humanhencbimputer. In the sev-
enties the hidden surface removal algorithms were devdlopgether with the first
local shading models [45]. These algorithms improved thegldimensional impres-
sion of generated images. Instead of wireframe images ipwasible to visualize the
scenes with correct visibility and simple simulation ofiigoropagation.

Through the years the quality of images was getting bettere &f the goals of
computer graphics became synthesis of images as closditg asgpossible. The first
step to calculate the real global illumination was the ragitrg algorithm proposed
in 1981 by T. Whitted [54]. In some setups of scenes the effeere so satisfying
that the term photo—realistic image synthesis was credtadeant that synthesized
images would be indistinguishable from real photographswéver, it was computa-
tionally quite expensive, therefore a lot of research wasedbrough the next decades
to accelerate the calculations. Better algorithms wereld@ed and computational
power of computers has been increased through the yeanenilyyusing ray tracing
algorithm we are able to synthesize images of huge scenesstiag of millions of
triangles relatively fast.

There has been also a lot of research in the area of algoriihcedculate phys-
ically correct simulation of light propagation. To get ploaly correct solution we

9

have to solve the global illumination equation which ddsesitransfer of light energy
at each point. Two groups of methods have been developedve @ global illu-
mination equation: Monte Carlo methods (for an overviewSeetion 1.3) and finite
element methods. Monte Carlo methods are stochastic methatlare based on the
ray tracing algorithm. They sample the space of light pathgdt an approximate
solution. They share the same ideas of tracing rays with tathinethod mentioned
above. On the other hand the finite element methods also yseuée often to deter-
mine mutual visibility what is necessary for the calculataf so called form factors
between patches. As we see ray tracing is important whemeyavant to calculate
illumination and to synthesize realistic images.

Monte Carlo ray tracing methods are the most popular andsee loth in public
domain graphics packages and in commercial products ustebyovie industry. A
single frame of a cinema movie constists of abolft pixels and is rendered from a
scene which also consists of millions of objects. Therefbeecost of production of
a movie is very high. Movie companies often use so calledesnd farms. They
consists of thousands of computers which are just used folereng. Therefore even
a small reduction of the cost of calculations can give suttistbsavings.

In computer graphics we use the term interactive image sgighwvhen several
frames per second can be generated. The real time imageesigith defined by
human perception capabilities. For film and television déads the real time usually
denotes 25-60 generated frames per second.

Monte Carlo methods are quite flexible and it is usually duedio get better im-
ages just by tracing more rays. They are also easily scaldbd¢ us consider an
application where interactive or real time image genenasaequired. Any accelera-
tion will allow us to generate more frames per second or lgiritgamore rays we can
visualize the effects which would otherwise be visuallysmg. With every speedup
of the basic method we will get more exact illumination st

In ray tracing literature there has been many ideas how tlw#xjpherence of rays
and objects in the scene to reduce the cost of calculatioagprésent the summary of
results in Section 1.4. Most of the methods for ray tracingeration were developed
in the eighties. They usually exploit coherence in objeatsmnd construct geometric
structures which allow fast determination of the first objatby a ray. Usage of the
coherence is essential for the method and in the common ¢asemplex scenes is
necessary. It would be far too expensive to find interseatith every object. The
advances in this field together with growing computatioreal@r of computers made

10

it possible to get to the point where the image synthesis eaddme almost in the
real time. However, synthesis of photo—realistic imageseko reality in real time is
still a challenge. To handle it, simplifying assumption#l bave to be made or limits
on the scene complexity have to be imposed. Calculating dhgptete illumination
for a non trivial scene requires lots of computations if welude all the effects e. g.,
multiple reflections (both specular and diffuse), and sadidows caused by non-point
light sources. We are getting closer to the point when theajldlumination can be
calculated at interactive rates.

Shadow ray tests if the ray from the light to the given pointas obstructed by an
obstacle. We are interested in generalized shadow raysseTdre any rays between
two points (none has to belong to the light source) that fdabtei light along the ray
is not obstructed by an obstacle. They are widely used ibiNityi checking, and it is
the most time consuming part of many algorithms for imagetssis. Monte Carlo
methods which calculate global illumination are based @nr#ty tracing principles,
and use shadow rays extensively. Shadow rays are also @ppls®me of the finite
element methods to calculate form factors where visibilag to be determined.

We propose a novel technique which exploits the ray coherena new way. It
works for generalized shadow rays. It is independent okatasacceleration methods
based on object coherence. Therefore it can be used togéathéhem and can give a
significant reduction of costs.

Our method allows in some cases to answer visibility queryafgroup of rays
in the cost of tracing one shadow ray. Therefore in some daséminates the need
of separate checks for different rays. Instead of tracingradle of rays we test just
one ray in a modified scene and if the test succeeds we knovalihiaie rays from
this bundle are not obstructed. Our method is based on tiffgedperation and its
generalization using Minkowski operators.

This technique does not exclude using some recent metheesl lman studies of
visual perception which guide the calculations into impottregions and avoid calcu-
lating effects which are not perceived by humans.

1.1 Contributions of this thesis

In this thesis we present a new technique for speeding uesdy.tThe general scheme
is presented together with formal proof of correctness iafér 3. In Chapter 4 we

11

give results of experiments in case of stochastically sathatea light sources.

Chapter 5 gives a new algorithm for intersecting an offsea oétional surface
with a ray. It is substantially faster than the one previgusiown. This algorithm
is usefull not only in the context of the technique presente@hapter 3. It also
makes possible to directly visualize offsets using rayitigenethod and can be used
in collison detection.

Parts of this work have already been published in [37, 36].

1.2 Organization of this thesis

This thesis is organized as follows. Chapter 1 gives an dloictdon and provides an
overview of existing ray tracing and global illumination ke Carlo methods. Spe-
cial attention is given to the acceleration techniques dradiew generation. Chapter
2 introduces terminology. We also give definitions of offsgf and Minkowski op-
erators. Chapter 3 presents lemmas which establish foondaif our new methods
for acceleration of ray tracing algorithms. These resudisaffsetting and Minkowski
operators. We state the lemmas which give the theoreticidgoaund and guarantee
the correctness of our method. Chapter 4 describes the th&ahsoft shadows and
gives results of experiments.

Chapter 5 presents a technique of finding intersections ay avith an offset of a
rational surface. It is useful both for direct offset sudatsualization and for acceler-
ation technique given in Chapter 4.

1.3 Ray tracers and Monte Carlo methods

Ray tracing is a powerful rendering technique which simaddight propagation. The
basic algorithm is simple and can be easily extended. It isemgeneral than other
methods for global illumination. The algorithm can handiiéedent types of objects
and enables implementation of different light effects.

Ray tracing is often considered as an expensive methodn bati it is not true. It
can be used for hidden surface removal. When used in complasoaments which
contain many objects the ray tracing outperformasuffer algorithm which is classi-
caly used for hidden surface removal. It is also quite prargior interactive and real

12

time applications, where a time limit for rendering an imagegiven, and computa-
tional resources are limited. Due to scalability of ray iingave can cast as many rays
as we want and we calculate the best approximate illuminaoution we can get.
Therefore depending on computational power and time dailae can get anything
between an exact global illumination of a scene and a simdien surface removal

with a simple constant shading.

1.3.1 Whitted ray tracer

view point

A

' point light sources

\ |
virtual screen

shaded point

Figure 1.1: Ray tracing principle

The classical Whitted ray tracer [54] computes color of egisiel in the image
by tracing a primary ray from the eye into the scene to find tharest object visi-
ble (this method is called ray casting). On the first intetisedt calculates outgoing
light along the eye ray using given reflectance model. It amponents of direct
incoming light from light sources and the light incomingrdthe direction of perfect
specular reflection. In case of transparent materials wersddomponent for the light

13

incoming from direction determined by diffraction. Thetlaso factors are computed
recursively by the same method of ray tracing to determiedight incoming along

the ray. For direct components so called shadow rays areditacthe light sources to
determine whether the point is not obstructed by any obestalthe situation is illus-

trated on Figure 1.1. As it has been already noticed by Whittest of the calculation
time is spend on tracing the rays i. e., finding the nearestsattion of the ray with
the scene. History and an overview of the ray tracing algors can be found in [14].

Classical ray tracing method has some severe drawbackslldmeation model
is simplified by the restricted choice of light paths and ksloot calculate multiple re-
flections correctly except for perfect specular reflectiarise method is also restricted
to the point light sources without spatial extend which esusharp shadows. It is not
well suited for scenes with diffuse objects and diffuse tigburces. As an example
so called effect of color bleeding which is based on lightsfar between two diffuse
surfaces can not be simulated by Whitted ray tracer.

To calculate global illumination exactly it would be necassfor each point to
collect and integrate information about incoming lightrfrall directions not only
from the few directons used in the Whitted algorithm. Mong&l€ methods estimate
illumination function tracing finite number of rays selettiea some random way de-
pending on the method. The history and the review of MontédoGaethods together
with further references can be found in [51]. We will sket@réhthe most common
examples.

1.3.2 Stochastic ray tracing

Stochastitray tracing introduced by R. Cook in 1984 [5] is a method whiestead of
one ray per reflection, refraction or light source, a bundlilmodom rays is generated.
It is illustrated on Figure 1.2. At each intersection polmstmethod generates many
rays for which it is called recursively. At the cost of tragia large number of rays it
calculates effects which would be otherwise missing in asital solution.

To implement spatial light sources and soft shadows we agiidally sample the
light sources. For each point to be shaded, a certain nunfbeys is “fired” to-
wards each of the light sources. The target points on thaseidf a light source are

ormerly called distributed ray tracing, but this notiomdae misleading suggesting parallel pro-
cessing in distributed environments

14

spherical light source view point

A

N

\ [

[N \\ \ I

A
shadpw rays

\ Il

.l

V) I

Vo I
oL :
VU prim

U

VL
L
<. S
,:'l e s, \A\ “‘ \\ I "I'
Yz reflected.ray§ RN

.. “‘\\I.,"

virtual screen

T

shéﬁéd point

Figure 1.2: Stochastic ray tracing

15

distributed randomly implementing some kind of Monte Canltegration method to
estimate the correct size of the visible solid angle.

To get correct multiple reflections we replace one spegutaflected ray with mul-
tiple reflected rays which are usually generated using itapee sampling according
to the chosen local reflectance model described by the BRDE&tiin (bidirectional
reflectance distribution function).

1.3.3 Photon tracing and photon maps

The classical ray tracing as well as the stochastic methsctitbed above trace rays in
the direction reverse to the direction of light propagatikvms simpler to realize since
the rays are traced backwards taking into account what islsgthe observer.

Photon tracing method [26] uses the idea to trace light grafan in its physically
correct direction. Some kind of importance sampling hasstased to guide the rays
to the visible regions of interest. Photon tracing method stadied by Pattanaik in
[41, 42, 43]. Photons are shot from the light sources andraced into the scene.
This is the phase of shooting. Then photons are stored incérgeswhere they are
reflected or absorbed. Based on this information the gldhahination solution is
calculated by density estimation methods [49]. To estiniatemination in the given
point we collect information about photons and energy frone@hbourhood of this
point. If we collect more photons from a larger region we gstreoth solution but
it is biased e. g., sharp shadows can become fuzzy. On thelwhd taking a small
neighbourhood results in bigger level of noise due to steiihiaature of the algorithm.

One of the methods is the photon maps developed by Jensen P2Bjtons are
stored in the spatial kd-tree structure. This data strecaliows to efficiently collect
neighboring photons.

1.3.4 Bidirectional path tracing

The method explored by E. Lafortune et al. [32, 33] traces fegm both directions as
it is shown on Figure 1.3. It constructs paths of photons fligit sources and at the
same time traces rays from the observer. It connects theks @ad calculates light
transports what gives global illumination solution. Thistinod is expensive but it is
more flexible than others. The other methods which trace @tiespeither only from

16

spherical light source view point

primary ray
virtual screen

eye path

Figure 1.3: Bidirectional path tracing

17

the observer or only from light sources are special casegloEbtional path tracing.
Vertices of these two paths are connected by shadow ray$ $kacow ray is traced
checking mutual visiblity of its end points. A very big nuntzé shadow rays is one
of the factors responsible for the cost of this method. It fawe have the light path
with n vertices and the eye path of with vertices then we have to check thg*
shadow rays.

1.4 Acceleration techniques

Any method based on ray tracing principle has to be efficisrghooting rays and
finding their intersections. Therefore the algorithms fivgdintersections for different
types of objects should be efficient and have to be well tudiiciency was always
a critical issue for ray tracing. Therefore many acceleraézhniques have been de-
veloped. They are presented in the book [14] with detailéeremces. Here we will
shortly recall these techniques.

Typical scenes consists of small objects and it is very drlgbthat for a small
object a given ray does not hit it. Therefore one of the firsaglwas to enclose the
groups of objects and more complex objects in so called bogneblumes. These
are objects like spheres or boxes for which fast ray int¢i@@algorithms exist. Now,
the ray can be tested against such a bounding volume, andfahly ray hits the
bounding volume the ray intersection with the objects iasfte bounding volume has
to be calculated.

The obvious extension is to enclose several bounding vadume bigger one
creating a hierarchy of bounding volumes. This can give aia@gant reduction of
the number of intersection tests and it is necessary forescetth a huge number of
objects. Such hierarchies are also called acceleratiootates and are constructed on
the base of data structures like octrees [15], BSP-tredsof2«d-trees. They have to
be optimized so that finding the objects which the ray canmi@tity intersect is fast.
Therefore in construction of acceleration stuctures ckffié heuristics are used. The
comparison of different methods can be found in [18].

Uniform and nonuniform grids are also used to acceleratéreayng (e. g., [13]).
They divide space into rectangular regions in which thermfation about all objects
intersecting the region is kept. The ray traverses the grdifar each grid element
the objects kept there are checked whether they intersecath In this method only
objects in visited grid elements are checked.

18

The methods mentioned above use object space coherenaeg tddierence of
rays is less common. The few examples of this technique aréght buffer method
developed by Haines and Greenberg [17] for shadow rays ardytcoherence method
of Ohta and Megawa [39]. These methods reduce the cost butt@ompletly remove
the need to trace each ray. Another approach in this cordekeiuse of generalized
rays, like cone tracing [2] or beam tracing [20]. Howevencsi more complex geo-
metric entities like cones or general pyramids are usedgeth@gethods often apply to
quite restricted set of primitive objects and they requrecsal intersection algorithms.
Therefore they are not widely used.

Currently the best algorithms together with carefully desdd implementations
make it possible to render the images interactively [52].

1.5 Shadows

Realistic shadow generation plays an important role whedyming computer gen-
erated images. The human observer is accustomed to seenshiadan illuminated

scene in the real world, so shadows should be present in autengenerated image.
If there are no shadows, or only sharp shadows where theyhaggpuopriate, the im-
age is perceived as artificial. Moreover, shadows enharepditeption of the third
dimension in the two—dimensional image [53].

The computation of shadows is a very expensive task for eeadering algorithm.
Many simple rendering programs model light sources as madlieal points without
any three-dimensional extension. Such light sources cshesp shadows, because the
shadow calculation reflects a step function: a point to belay®d is either in shade or
in light (as long as we do not consider indirect illuminattbrough diffuse or specular
reflection on surfaces).

In real environments, however, the transition from illuated to non-illuminated
regions is smooth. A point is in shade respective to a cetigim source when an
obstacle totally occludes the light source. In other wortlany ray starting at the
point and going towards the light source intersects an apagtface before it reaches
the surface of the light source. Conversely, a point is ihtliggspective to a certain
light source when the light source is entirely visible frdme point. Penumbra occurs
when an obstacle partially occludes the light source, atigwonly a subset of the
rays to reach the light source. Adding penumbras or sodaldt shadows makes

19

the problem of shadow generation more complex. A surveyftdreint techniques is
given e. g. in [56].

Stochastic ray tracing is very easy to implement and dediireages of very high
quality. However, it is computationally expensive. Forleatersection point found
in the scene, a large number of rays is sent towards all lmlices. If we sample the
visible solid angle of a light source witthrays per point without any enhancement,
the run time to trace the shadow rays is rougtliimes larger than the run time in
ordinary ray tracing that generates sharp shadows. To\aegmod image quality, the
value ofd should depend on the size of the light source; value$ of 50 are often
necessary. Several approaches are available to speedamastio ray tracing. The
most important are the shadow buffer and importance samplin

The shadow buffer, as introduced in [17] and extended in [44jery importantin
stochastic ray tracing for penumbra. Because we send $eagsdrom the same point
to the same light source an object cached in the buffer i$ylilceserve as occluding
object for many rays. However, the shadow buffer does noibéxduch a large im-
provement as one might expect at the first sight. Many raypéaumbra calculation
pass close to the objects but they do not hit the objects. fiaeéaosv buffer is best to
speed up tracing rays that actually hit objects. Thus, riyugeaking, only half of the
rays sent out in a penumbra can profit from the shadow bufi@r.pBints outside of
any shadow region, there is no advantage of the shadow buffer

Another method which uses importance sampling to reducentimeber of rays
sent out per point is presented in [31]. In this method ragsaly traced in “im-
portant directions” that provide the main information resagy for adequate shading.
However, one has to take care that the samples are generafeztlp to estimate the
appropriate solid angle as seen from the point and to avalthgdoo much noise to
the image. The number of rays sent out can depend on the cistéthe light source,
their contributions to the illumination of the point, anchs® other parameters which
depend on the geometry. For instance, the angle betweentimahvector of a planar
light source and the direction of the shadow rays can havenpadt on the number of
sample rays sent towards that light source.

Two other ideas to speed up tracing rays towards linear oraplight sources are
described in [47, 3], see [55] for overview. To decrease theunt of work to be done,
the candidate list of objects possibly intersected by tlaletv rays is confined to the
objects actually intersecting the cone from the point taitbe area light source. The
candidate list is generated dynamically. The approach eaebn as a special form of

20

cone tracing [2] with shadow caching. An objectis discandbdn it does not intersect
the light cone and it is put into the cache if it does.

Shadow photon map [24] is yet another method to calculatéastsefficiently in
the context of photon tracing. The generation of soft shadowmage based rendering
has been studied by [1] and [28]. There has been also some wndnable real time
generation of soft shadows using graphical hardware e2f,,19]. Although they
often use similar ideas these solutions are out of scopaswirk.

The method similar to ours has been later proposed indepéndy S.Parker et
al. [40]. It uses some approximation of the soft shadow awbtef slower but exact
calculation. Their test for penumbra region detection $s lgeneral and more costly
to implement than ours since it requires the intersectigorithms for all the objects
to return also the minimal distance from the ray when it dagshit the object which
is not required in our solution.

21

Chapter 2
Preliminaries

“It always happens, said the Gnat.”

Lewis Carroll — Through The Looking Glass

We denote the set of real numbersibyWe will use the notatio®(p, ¢) for the set of
points of the ray segment which starts at the ppiatR? and ends at the poigtc R3.
For a given ray segmeiit(p, ¢) we can define it in parametric form

R(t)=p+tlg—p) for te]|0,1] (2.1)

The distance between two pointsand ¢ we will write asd(p, q). The closed ball
centered at the poirdt and with radiusi will be denoted byB(C, d).

We will denote the derivative of a functiof(t) by 9, f(¢) and partial derivatives
in the same way e. g., for functiof(u, v) we have partial derivatives,g(u,v) and

aUg(u7 /U) '

2.1 Bézier curves, surfaces and volumes

For representing three—dimensional objects we can usatpesilike spheres, cones
or cylinders or we can use simple point, line and face reptasens like polygo-
nal meshes. However, these representatons are not penfechboth surfaces, more
complex than sphere or plane. Parametric surfaces are husedand they are widely
applied in computer aided design.

22

Bézier representation is fundamental for piecewise patyiaband rational para-
metric curves and surfaces. It was developed in late sixtesise in automobile
industry independently by Pierre Bézier at Renault and hyl Ba Casteljau at Cit-
roen. They also presented the main properties of thesetsbj€bere are also other
representations of curves ansd surfaces e. g., B—splie¢a;-&plines, NURBS, Coon
patches. We shall limit our research to rational Bézierau@$ which are general
enough and very flexibile. They are also the most numericaéiple ones as it was
recently proved. More details about parametric curves amidaes can be found in
books [7] and [22].

In this section we define Bézier curves and surfaces usingdhen of Bernstein
polynomials and we will recall their basic properties. Walshse the notion of para-
metric curves for the functions having one dimensional danradependently of the
dimension of the function range. The functions with two dnsienal parameter do-
main we will call parametric surfaces and the functions hgthree dimensional do-
main we will call parametric volumes. We will also considee surfaces and volumes
which have one-dimensonal range i. e., their values areaiotin R* but numbers
on the lineR!.

Definition 2.1 (Bernstein Polynomials) For a given integerm there aren + 1 Bern-
stein polynomials; ,,(t), fori = 0, 1, .. .n, defined by :

B;a(t) = (T;)ti(l — gyni (2.2)
Property 2.2 For Bernstein polynomials the following properties hold.
Bon(t) + Bin(t)+ ...+ By,(t) =1 (2.3)
B;n(t) >0 for ¢t € [0,1] (2.4)
Bin(t) =tB;—1n-1(t) + (1 =) B; -1 (1) (2.5)
0B n(t) =n(Bi—1n-1(t) + Bin-1(t)) (2.6)

Definition 2.3 (Bézier Curve) Let us consider a set of control poidts; : i = 0,1,...n}
in k—dimensional spacR”. We defindBézier curve of degree by :

C(u) = iBm(U)P@', for we|0,1]. (2.7)
i=0

23

Definition 2.4 (Bézier Surface) Let us consider a matrix of control poir{s’;; : i =
0,1,...m, j = 0,1,...n} in k—dimensional spacR*. We defineBézier surface of
degreg(m, n) as follows:

m n

S(u,v) = Z Z Bim(uw)Bj,(v)P;y, for wu,vel0,1]. (2.8)

i=0 j=0

We extend the definitions of Bézier curves and surfaces éztharameters and we
present here the new notion of Bézier volumes.

Definition 2.5 (Bézier Volume) Let us consider a set of control poin{$;;;, : i =
0,1,...m, j = 0,1,...n, h = 0,1,...p} in k—dimensional spac®&*. We define
Bézier volume of degreeén, n, p) as follows:

m n

V(w,0,t) =Y > Bim(u)Bja(v)Bup(t) Py, for u,v,t€[0,1]. (2.9)

i=0 j=0 h=0

Now, we will recall some fundamental properties of Bézierves and surfaces
which also extend to Bézier volumes. Let us start with thevermull property which
gives simple means to determine the location of the objecmMEquations (2.3) and
(2.4) for Bernstein polynomials we have immediately théoiwing.

Property 2.6 (Convex Hull Property) Bézier curve or surface is included in the con-
vex hull of the set of its control points.

To refine the geometry of the curve we want to have the subdivialgorithm.
That is we want to split the parametric Bézier curve into twecps also represented
as the Bézier curves. The algorithm invented by de Castadjthe most fundamental
and surprisingly simple. Due to its geometric nature it ig/wetuitive and numerically
stable. We can derive it from definition of Bézier curve anojferties 2.2. It constructs
the control points of the new curves and is illustrated inuFeg2.2.

Property 2.7 (De Casteljau Algorithm for Curves) Consider Bézier curv€'(t) based
on points{P; : : = 0,1,...,n}. We define auxiliary points using midpoint calcula-
tions as follows

Py = B (2.10)
1
Py = (Pt Pigo), for j>0 (2.11)

24

Figure 2.1: Convex hull property

Than the Bézier curveS,(t) and C(t) based respectively on control poin$} ; :
i=0,1,...,n}and{P,,_; : i =0,1,...,n} compose the original curve (for< 0.5
we have’(t) = C}(2t) and fort > 0.5 we haveC'(t) = C4(2t—1)) Therefore we have
subdivided the original curve into two curves of the sameabkegThey correspond to
parameter interval$0, 0.5] and [0.5, 1] of the curveC ().

Figure 2.2: De Casteljau subdivision algoritm

The subdivision algorithm for a Bézier curve of degneequires@ midpoint

calculations. The cost of one midpoint calculation depemasdratically on the di-
mension of control points.

De Casteljau subdivision algorithm extends to surfacessahanes. For a surface
based on point$P;; : i = 0,1,...m, j = 0,1,...n} we split its parameter domain

25

0, 1] x [0, 1] into four subdomain§), 0.5] x [0, 0.5], [0, 0.5] x [0.5, 0], [0.5, 0] x [0, 0.5]

and [0.5,0] x [0.5,0]. Using de Casteljau algorithm for curves we obtain the con-
trol points of new Bézier surfaces corresponding to the alvaitten domains of the
original surface.

We use de Casteljau algorithm for curves to divide for, eaeh0,1,...,m the
curve based on poin{s®;; : j = 0,1,...,n} into two curves. This defines subdivision
of the surface along one parameter direction. We obtainedsets of control points
which define two new Bézier surfaces. Repeating this praedduboth these surfaces
along the other direction will give us as a result subdinsabthe original surface into
four Bézier surfaces. The cost of the subdivision of the gilegregm, n) surface is
equal to the cost ol + 1 subdivisions of degree curves an®(n + 1) subdivisions
of degreen curves what gives the total cost of:

n(n+1)
2

m(m+1) _ 1(m+ D(n+ 1)(n + 2m)

(m+1) 5 5

+2(n+1)

If m # n the cost depends on the choice of the first split direction.

Using similar procedure we can divide a Bézier volume alcacheparameter di-
rection into two subvolumes defined by the control pointsaotgd by de Casteljau
algorithm from the original control points of the Bézier upie. Dividing in this way
a volume along all three parameter directions we obtaintaigbvolumes.

2.1.1 Bézier operations

We will show how to calculate control points of objects oh&l by simple arithmetic
operations on Bézier volumes.

Fact 2.8 (Addition and difference of Bézier volumes)Let F'(u,v,t) and G(u, v, t)

be Bézier volumes of degré¢e:, n, p) defined by pointg;;, and G;;, respectively.
ThenF (u,v,t)+ G(u,v,t) and F(u, v, t) — G(u, v, t) are Bézier volumes of the same
degree(m, n, p) defined by point$;;, + G;;, and F};, — G5, respectively.

Fact 2.9 (Multiplication of Bézier volume by a number) Let F(u,v,t) be a Bézier

volume of degreém, n, p) defined by pointg’;;, and letd € R. Thend - F(u,v,t) is
a Bézier volume of the same degfee n, p) defined by pointd - F;j,.

26

Proposition 2.10 (Multiplication of Bézier surfaces) Let F'(u, v) andG(u, v) be Bézier
surfaces of degre@n, n) defined by point$;; andG,; respectively. The#l (u,v) :=
F(u,v) - G(u,v) is a Bézier volume of degréem, 2n) defined by point#/,, :

oy @O0

e () G

FiiGr (2.12)

Proof. Using Definition 2.4 of Bézier surface we have

Fu,0)G(u,v) = <Z ZBi,m(U)Bj,n(v)Ej> (ZZBi,m(U)Bj,n(v)Gij>

i=0 j=0 i=0 j=0
_ et at el LAY k(] _ g)2m—(itk)
SYS S () ())uta -
1=0 7=0 ¢=0 j=0

= Z ‘ Z ' ((Z:n)Jr(n%;) ((]n)+(nl)) Bi ik om(w)Bjii20(0) EjGry

0
We will be also interested in taking square of Bézier volurhdegree(m,n, 1). We
can represent such a Bézier voluiiéu, v, t) as the sum of Bézier surfaces of degree
(m,n) as follows.

F(u,v,t) = (1 —1t)- So(u,v) +t-Si(u,v)
In that case to calculaté (u,v,t) = F(u,v,t)*> we can write

Flu,0,t)? = ((1—1)So(u,v) +(S1(u,v))* =

= (]- - t)QSO(uv U)SO(uv U) + (]' - t)t ' SO(uv U)Sl(ua U) + t2Sl(u7 U)Sl(uv U)
From the above equation we can see the following correspmedef control points:
control points of the surfacs, - S, are the pointdi;;,, control points of the surface

2.8y - 5, are the pointdd,;; and control points of the surfacy - .S; are the points
H,js. Therefore we have the following corollary.

Corollary 2.11 (Square of Bézier volume of degreém, n, 1)) Let F'(u,v,t) be the
Bézier volume of degréen, n, 1) defined by point$};,. ThenH (u,v,t) = F(u,v,t)?

27

is a Bézier volume of degréem, 2n, 2) defined by control point#,..; as follows.

H.o = Z Z ' :])J:Eln)) FijoFko
H.s1 = 2'AZ Zs 27&?) (5)2,5? FijoFn

)
ma - ¥ ¥ OO0

From Equation 2.6 we can compute the derivative of a Bézierecu

8t <Z Bi,n z) Z Bz n— 1 H—l - P) (213)
1=0

Thus we have the following fact.

Fact 2.12 (Partial derivatives of Bézier volumes)if F'(u,v) is a Bézier volume of
degree(m, n, p) based on points’;; thend, F'(u,v,t) is a Bézier volume of degree
(m—1,n,p) based on the pointB;;;, = m(P,41 1 — P;jx) ando, F'(u, v, t) is a Bézier
volume of degreém,n — 1, p) based on the points;;;, = n(P, j11.x — Pijk)-

2.1.2 Regular surfaces and normal vectors

The normal vector is a vector of unit length which is orthogjolo the surface in a
given point. We shall give a formula defining it for regularfaces. Therefore let us
start with a definition.

Definition 2.13 (Regular Surface) A parametric surface&(u, v) is regular in its do-
main if for each point(u,v) of the domain the partial derivatives,S(u,v) and
0,S(u, v) are not equal to zero and are not collinear.

For a regular parametric surfadgu, v) we can define normal vector as follows. The
partial derivatives of the surfacg(u, v) in v andv directions are the vectors tangent
to the surface. Therefore by the definition of the vector pobddenoted here by)
we have:

28

Definition 2.14 (Normal Vector) For a regular parametric surface
S(u,v) : [0,1] x [0,1] — R?

the vector
n(u,v) = 0,5 (u,v) x 9,5(u,v)

is unnormalized orthogonal vector to the surface in the gipeint. We define the
normal vector to the surface in a poifit, v) as:

) — n(u,v)
M) = o

2.1.3 Rational Bézier surfaces

Definition 2.15 (Rational Bézier Surface) We definéA rational Bézier surface of de-
gree(m, n) is a parametric surface defined by:

(2.14)

where X (u,v), Y(u,v), Z(u,v), W(u,v) are Bézier surfaces of degrée,, n) with
the one—dimensional range.

To calculate the normal vector of a parametric surface itifScsent to have well rep-
resentated unnormalized vector orthogonal to the surfiaée.constructed by means
of partial derivatives and vector product. Following Boefs®e [4]) we represent it as
a polynomial Bézier surface(u, v) of degreg3m — 1,3n — 1) with vector values

n(u,v) = (ng(u, v), ny,(u,v),n.(u,v))

ne = (Y 0,Z—0,Y0,Z)W+(0,Y Z—Y8,Z)0,W +(Y,Z—0,Y Z)d,W
ny = (0uZ20,X —0,20,X)W+(0,ZX — Z0, X)0,W + (20X —0,Z X)0, W
n. = (0,X0,Y —3,X0,Y)W+(0,XY —X3,Y)0, W +(X,Y —8,XY)9, W

To shorten the formulas above we have skiped function passeand we have
written X for X (u,v), Y for Y (u, v), and so on. Using equations above we can repre-
sentn(u,v) as a Bézier surface by calculating its control points.

29

2.2 Minkowski operators and offsets

2.2.1 Minkowski operators

We shall study regions that consists of points that are ¢tmga/en objects or included
in these objects. For this purpose we shall define expanammhshrinking of objects
using Minkowski operators. In our method we shall apply éh@serations for original
objects casting shadows in a geometric scene.

Minkowski operators (e.g., [29]) provide a convenient wayekpress arithmetic
operations on sets.

Definition 2.16 (Minkowski Sum and Difference) For two subsetsi and B of R”,
Minkowski sumanddifferenceare defined as:

AeB = {a+b:a€cA be B} , (2.15)
AcoB = {a—b:a€A be B} . (2.16)

We shall use also scaling of a set by a scalar. We shall calkkiMinkowski scaling.

Definition 2.17 (Minkowski Scaling) For a subset4 of R* and a realc, Minkowski
scalingis defined as:

c-A = {c-a:a€A} (2.17)

We shall use the notion of a star convex set, which is a weagesfithe notion of
a convex set.

Definition 2.18 (Star Convex Set)We say that a subset of R” is star-convexwith
respect to a point € A if for any pointp € A the segmenk(c, p) is included in
A, i.e., if each point ofA can be connected to the pointcalled a center o4, by a
segment included iA.

2.2.2 Solid offsets

Solid offsetting of sets is an expansion operation (see89, 4t is a special case of
using Minkowski operators.

30

Definition 2.19 (Solid offset) Let B(p, d) denote the ball with the centerof radius
d. The solid offset of the sét with the distance > 0 is defined by:

04Q)=Q o B(0,d) = Q & B(0,d) . (2.18)

We can use eithep or @ since the ballB(0, d) is symmetric with respect to the point
0. The idea is illustrated in Figure 2.3. The notion of a sofidet can also be defined
as follows.

Original object

- /

Figure 2.3: Solid offsetting operation

Proposition 2.20 (Solid Offset) For an object and a distancel, a solid d-offset
04(Q) consists of the points that are not farther thafrom @), i. e.,

04(Q)={p : FqcQ:d(p,q) <d} . (2.19)

The solid offsets define the operation of expanding objétescan also use similar
method to define shrinking of objects. Létdenote the set complement 4f

A={r:1¢ A} (2.20)

We define negative solid offset as follows.

Definition 2.21 (Negative solid offset)Let B(p, d) denote the ball with the center
of radiusd. The negative solid offset of the ggwith the distance > 0 is defined by:

Us(Q) = Q © B(0,d) (2.21)

31

2.2.3 Offsets curves and surfaces

In the context of extending parametric surfaces by solisktfing we shall define offset
surfaces. They are surfaces on the the boundary of the sifdiet @f a parametric
surface. The idea of offséta/as already introduced by Leibniz [30] for curves. Offsets
are are important tools in robotics, computer aided geaoa¢tdesign, geometrical
optic and tolerance analysis (see [48]).

In machine milling the path of the cutter lies on the offsethaf surface. Therefore
calculation and interrogation of offsets is used in mang@sain numerical controled
machine milling. Another application is configuration spapproach used in robotics.
To realize collision avoidance we use the model of the robanked to the point,
extending obstacles by offseting instead.

Definition 2.22 (Offset Curve) For a planar curveC'(t) with the well defined nor-
malized orthogonal vectaN (¢) we define the offset curve at the distadaes:

Ca(t) = C(t) +d - N(t) (2.22)

It is a displacement of the original curve in the directiortloé normal vector.

Figures 2.4 and 2.5 show examples of offset curves to pacabotl quadratic
curves.

Definition 2.23 (Offset Surface) For a regular progenitor surfacé&(u, v) we define
the offset surface at the distanéas:

Sa(u,v) = S(u,v) +d- N(u,v) (2.23)

It is a displacement of the original surface in the directafrthe normal vector.

Chapter 15 of the book [22] gives the basic properties ofetéfs The survey of
main properties of offset curves can be also found in [10] [ddd. The results on
approximation of offsets are presented in [6, 23, 9].

The offsets are much more complicated than the originalesior surfaces and
usually do not belong to the same class as their progenibdise(s of cubic curves
are not cubic in general). Generally, even for simple poigiad curves and surfaces

lalso called parallel curves and surfaces

32

16 T T T T

T
original parabola
.) offset with d= 0.5 -------
1.4 offset with d=1.0 -------- E

R offset with d=-0.5 -

12+ \ . i

0.8 |-

06

0.2

0.2 F .

-1.5 -1 -0.5 0 0.5 1 15

Figure 2.4: Offsets to parabola

their offsets are not rational and they are inherently moraplex than the progenitor
surfaces. As it can be seen on Figures 2.4 and 2.5 even folesgih@pes offset curves
have self—intersections. The same concerns offset sgtfédeappens when an offset
distance is greater than the curvature radius of the cursartece.

There are classes of rational surfaces with rational affs&h example of such a
subclass of rational Bézier surfaces which have rationaldB®ffsets has been intro-
duced in [46]. If we restrict ourself to such a class of sugfathe shapes of offsets
are more simple and the cost of offseting operation becamaBes. However, in that
case we can use only a small class of surfaces.

One of the basic algorithmic problems is finding intersetid an offset with a
ray segment. It is used in collision detection in robotiesmachine milling, and for
rendering an offset. An intersection algorithm of an offeé polynomial Bézier
surface with a ray was presented in [50]. It was also usedstmalize offsets using the
ray tracing method. The algorithm presented in chapterdbds® [37]) is substantially
faster and works for rational surfaces as well.

33

T T
original quadratic curve
offset with d=0.25 -------
offset with d=0.50 --------
offset with d=-0.25 -
. offset with d=-0.50 —-
1.5 | ' !

I

Figure 2.5: Offsets to quadratic curve

34

Chapter 3

Exploiting ray coherence

“It's my own invention.”

Lewis Carroll — Through The Looking Glass

Spatial coherence of objects is commonly used in acceberatructures to make the
ray tracing algorythm efficient. It is less common in ray ingcto exploit also spatial
coherence of rays (see Section 1.4). Methods which use tie@ace of rays limit the
number of objects against which a ray has to be tested butithapt remove the need
for separate ray tests. The cost of calculation of intersests therefore reduced but
each ray is tested for an intersection with a scene. Althdliglacceleration structures
are used and the ray is not tested against many objects #iedst is significant.

The lemmas here present the general background how to dhedcksibility of a
group of coherent ray segments in the cost of tracing a simaglsegment. Therefore
by tracing the single ray segment, in the cost reduced by Esgical acceleration
methods, we get the answer for the whole group of rays. Usadgleeomethod is
somehow limited to testing only visibility along the ray tatut calculation of first
intersection. However, it can be used with most of other lacaBon methods like
grids, octrees, BSP-trees, kd—trees or hierarchical bagrmbxes (see [14]) to further
reduce their time requirements.

3.1 Rays with one common origin

Recall that there are three kinds of rays. Primary rays haginan the eye of the
observer. Reflected rays have origin at any point in the saadeeither hit arbitrary

35

point in the scene or go to infinity. Shadow rays originatehim point we are shading
and have the other end points in light sources.

After reflection the rays loose coherence therefore we armterested in reflected
rays. The other cases worth examinination are as follows.

Shadow rays For non—point light sources we stochastically sample thegpprox-
imate the visibility angle. Therefore we have the family ay$ with common
point which we are shading. The other ends of rays belongetight source so
they are spatially coherent.

Primary rays We have the group of rays with the same origin and which carebe g
erated coherently. However, the usage of the method herlellwedimited since
in most of the cases rays intersect the scene. Therefonegdfsthe bundle of
rays is not obstructed is less efficient. It will not elimiadhe need for separate
ray intersection tests and the calculation of hit points oshof the cases. An-
other weak point is that we do not know the ends of ray segmergdvance,
although we can construct them on the base of the boundingbiire scene.
There are also specialized methods for speeding up theitiratdrsection.

We propose the method in the case of rays with common origiis Based on
following lemma which is illustrated in Figure 3.1. When wepdy it to speed up
stochastic sampling of area light sources thelsetll denote the light.

Lemma 3.1 Let L be a set star-convex with respect to a pairt L. If aray R(c, p)
does not intersedd © (L © {c}) then for each € L the ray R(l, p) is not occluded
(shadowed) by).

Proof. (by contradiction) LetC' = |J,., R(z,p) denote the visibility cone of the
set L as seen from poinp. If there would be a rayk(l, p) obstructed by then
C' N @ # 0 but since the sek is star-convex respective to the poinive haveC' C
R(c,p) ® (L& {c}). Thus, we havéR(c,p) ® (L © {c})) N Q # O which means that
there are points € R(c,p), [€ L, andq € @ such that + (I — ¢) = ¢q. But this is
equivalentta = g — (I — ¢) which means thak(c,p) N (Q & (L & {c})) # 0. Hence,
the ray does intersect the expanded object.

g

36

L — light source

solid offset of

the obstacle solid offset of

the ray segment

S — surface

Figure 3.1: Not-in-shade condition for spheres.

37

Let us assume that the sktis a ball of radiusi. With the notion of solid offsets,
we obtain that the bundle of ray segments startingand having the other endpointin
L is not obstructed by an obje€tif the ray R(c, p) does not intersect the solid offset

0a(Q)

3.2 Rays with coherent origins

We can use the same framework as for rays with common origiexploiting coher-
ence of general shadow rays. That is, for those ray segniaita/e only test whether
they are occluded or not. In bidirectional path tracing rodtive get large number
of shadow rays between two paths. This method is feasibleahdase. However,
we have to cache the shadow rays and group them for testingislassume that we
have the set of rays with origins in the ballsand B of radiusd. Then we can also
guarantee that none of the rays is occludedby the ray R(p, q) does not intersect
Q) increased by), offsetting. The following lemma is illustrated by Figure3.

solid offset of -, S
the obstacle /

solid offset of
the ray segment R(p,q)

Figure 3.2: Bundle of coherent rays.

38

Lemma 3.2 Letp, ¢ € R3, and letd € R, d > 0. If the ray R(p, q) does not intersect
@ © B(0,d) then for eachr € B(p,d), and eachs € B(q,d) the raysR(r, s) do not
intersectq).

Proof. (by contradiction) Assume that rdy(r, s) is obstructed by). Then since
R(r,s) C R(p,q) ® B(0,d)

we have

(R(p,q® B(0,d))NQ # 0.
This is equivalent to

R(p,q) N (Q & B(0,d)) # 0,
which contradicts the assumption of the lemma.

g

Using this lemma we can trace at once the whole bundle of réyyshshave both
the starting and ending points coherent and included inetse balls of a given
radius. To check that none of the rays is obstructed by arcbjérom the scene we
test just one ray in extended scene, only if the test fails the have to do the normal
tests for each ray, or try the test once again for a smalledlbuof rays. If the test
succeeds we are oftentimes faster, where is the number of rays in a bundle, since
the cost in most of the cases is the same.

39

Chapter 4

Fast penumbra method

“He did his very best to make
The billows smooth and bright —
And this was odd, because it was

The middle of the night”

Lewis Carroll — Through The Looking Glass

We present a fast method to generate penumbras which avomxessary calcula-
tions. It is based on stochastic ray tracing (see Sectior)l.3here are no severe
restrictions on the shape of the objects or the light sourtésvever, certain types
of objects and light sources will allow faster renderingdsn The main idea is to
detect possible regions where penumbra occurs and to cahBrexpensive process
of stochastic sampling of spatial light sources to thoséoresy Lemma 3.1 gives a
condition, such that if it holds for a point we are shadingntfive know that the light

source is fully visible. Therefore we can skip tracing shvadays and directly calcu-

late illumination at this point.

4.1 Overview of the algorithm

We shall first describe our algorithm in a world of spheres. idlel both the light
sources and the objects as simple spheres. Figure 4.1 shegena where a light
sourcel casts a shadow on the surfagdecause the light is occluded by the object
@. The umbra and the penumbra compose the entire shadow. $teddea of the al-
gorithm to speed up penumbra calculation is very simple. ¥fed penumbra regions

40

and employ expensive calculations only when it is necessHrg detection is based
on the following observation. If we shrink the light sourEeo a point and, at the
same timée , increase the occluding objegtby the radius of_, then the true shadow
volume is a subset of the approximate shadow volume. Thisrdépneither on the
radius ofL nor on the distance betweédnand(@ or L andS.

Lemma 3.1 gives the theoretical background for the genexsé.c Description
of the expansion is given by Minkowski operators. Lemma 3sb guarantees that
the algorithm can work with objects and light sources oftaaloy shape and renders
correct images.

L - light source

\
v S - surface

-

umbra

\ penumbra
shadow

confined region

Figure 4.1: Shadow classification.

Once we have confined the shadow, we can employ analyticatismodstochastic

Lt is worth mentioning that the approach of using Minkowsgeeators on the objects of the ge-
ometric data set is also known in motion planning as a “coméition space approach” [29]. There,
C-obstaclesare defined that confine the areas which cannot be reached dayter point of a robot.
Motion planning is performed in many stages of the algorithmty with this center point, so not the
entire possibly complex robot must be considered in largasof the environment.

41

ray tracing to sample the solid angle under which the lightrse is visible. Outside
of the confined region we can skip this step since we know Healight source is fully
visible. The following discussion is restricted to stodimgy tracing which is used
in our implementation.

For the ray tests which confine the region of penumbra we rezdgecial scene
with extended objects. Therefore we perform ray tracingimdifferent data sets. The
“geometric” data set contains the environment as usuafstiedow” data set contains
the shrunken light sources and the increased objects. Wendet in the shadow data
set whether a given point belongs to a shadow region or net, shadow rays are
initially traced in the shadow data set. If the point is irhligwe apply the appropriate
illumination model. If the point is found to be in shade, warsstochastic ray tracing
in the geometric data set. As a further optimization, we ctaienbra regions with a
similar approach confining further the penumbra region Gession 4.6).

Because there are two data sets, the memory requiremetts afgorithm are at
most twice as high as those of the the underlying ray tradogrghm without the soft
shadow enhancement. However, in the second set we only biatere the bounding
volumes and the data structure used to accelerate raydrégiil, octree, or whatso-
ever). An intersection test in case of a bounding volumeitetite shadow data set
can be performed with an expanded object using its origieahgetrical description.
The next section describes this concept in more detail.U3&on of the details of the
algorithm follows.

4.2 Multiple light sources

Our method can handle multiple light sources. We createdoh spatial light source
the additional scene in which we perform the test for giveadsiwv rays. We can
also create just one expanded scene for all shadow ray &g tinto account the
biggest expansion. If the light sources are of the similze saking only one scene is
as efficient as multiple ones and is less memory consuming.

As itis shown in Figure 4.2 we can use only the biggest exjpanshich is marked
with dotted circles. In our implementation when more thaa light source is present,
we increase all objects by the maximum amount required ballight sources. We
use just one additional shadow scene.

42

Light B

Light A

expansions

shaded point

Figure 4.2: Multiple lights.

4.3 How to expand ?

Minkowski operators and offsets are hard or costly to evalua the general case.
However, the not-in-shade condition is the base for mangsde calculate bounding
boxes or approximations of expanded objects.

Lemma 3.1 allows us to trace the collection of coherent raybe cost of one
intersection since the scene with increased objects caonrstracted during the pre-
processing stage. For spheres the offsetting operatiasisrjcreasing its radius but
for other objects it can be expensive and can give more conapbliects. However, we
can always take a simpler object which includes our expamedor to do increas-
ing of just the bounding objects. Implementations can usgpleoof methods. In the
second modified scene with expanded objects we can crelage eit

e Only bounding boxes of expanded objects and acceleratrontstes for ray
tracing. Then If the bounding box is hit we do calculationiiginal scene.
This is quite universal and easy to implement.

e The exact expanded objects or larger ones with their bogratxes and accel-
eration structures. If we construct exact expansion asngiveeemma 3.1 our

43

test will succeed in more cases. We can also construct lasgemded object.
If the test fails and there is an intersection we have to ddestg in the original
scene to guarantee the same results or to use other apptexmathods.

For expanded objects the intersection test should not Ingfis@ntly more expensive
than the intersection test for original object. There isadérof between complexity of
expanded objects and the condition to have the smalleshsiqrapossible (given by
Lemma 3.1). Complexity of object gives us complexity of nsextion test and smaller
expansion causes our test to suceed in more cases.

4.4 Offsets versus Minkowski expansion

If the light source is a ball with given radiusthen the solid offset is the required
expansion of the obstaclg. With the notion of solid offsets, we obtain: a pojnt

is not in shade of an objec} respective to a light sourcB(c, d) if the ray R(c, p)
does not intersect the solid offséY; (). Solid offsets are useful for several reasons.
First, they are easy to evaluate for spheres since offsetpltdres are spheres with
bigger radius. Second, for other simple geometric objekésdylinders and cones if
we extend them by incresing their parameters the solid toff6éhe original object

is included in such an extended object.. Third, there areialmed algorithms for
calculating offsets of parametric surfaces which can be.use

There are situations where it is better to use solid offsetd/tnkowski operators
provide more effective algorithm for arbitrary shaped tigburces. The advantage of
Minkowski operators compared to solid offsets becomes cld®n we look at non-
spherical light sources.

Example 4.1 Let L be a linear light source lying parallel to the axis Situation is
illustrated in Figure 4.3. We want to test wheter the obj@aan obscure any shadow
ray from the pointp to the light sourcel.. We can see with the help of Minkowski
operators that extended objects as required are boundedéyotiginal bounding
boxes extended only in dimensioraccording to the size of the light source and a
chosen central point.

If we enclose a linear or planar light source in a bounding eph we can also
contruct the test for penumbra region using solid offsgttidowever, in that case the
approximate shadow volume is unnecessary large. We haxpameé all the bounding
boxes of the objects in shadow scene equally in all direstion

44

L — light source

\ expanded
boundary of \ P Q

expanded r(c,p)\\

shaded point in the scene

Figure 4.3: Linear light source causes smaller extendegttbj

45

4.5 Optimizations

Lemma 3.1 is a good criterion to detect possible shadow nsgiblowever, there are
points in full light which we do not detect. It follows frometfact that the visibility
cone of rays from the light seen from poinp is smaller than the set of rays that meet
criteria from the Lemma. We can further confine the possihbdsw regions if we
construct the shadow data set with smaller offsets (or va#thesl sets and Minkowski
operators). The idea is illustrated in Fig. 4.4. We starhwjtherical light sources and

offsets and will present obvious generalizations.

.~ ~ =~ L - light source
N\

original offset

decreased offset

Figure 4.4: Radius optimization.

As we see in Fig. 4.4, instead of taking the solid offset ofecb) at distance
d(c, 1) for a shadow intersection test, we can use the offset atrdists s, ¢) but for
the test for these points. We can define in that case thetratisvhich we can shrink

the offset distance:

46

(4.1)

with simple geometry we can see that it is equivalent to:

A9 _dlpg) . dlp,g) 4.2)

d(c,l) d(p,l) d(p,q)+d(q.1)
Since the operation of offsetting is global and should nqtethel on the points, we
have to choose the maximum valuetofor all pointsp € S, € L, andg € Q.
Using this ratio we can take smaller expansion still detecthe region containing
both umbra and penumbra. We will defifyg,, which would be valid for all possible
points combinations.

_ d(p q) ,
tmax - maX{d(p,q)%d(q,l) : pES, ZGL, QGQ} S
max{d(p,q): p€ S, ¢ € Q}
max{d(p,q): p€ S, g € Q} +min{d(q,l): ¢€Q, l € L}

(4.3)

Using notation from Section 2.2 for the scaling of the 4diy a real numbet as
t - A, we can formulate the following result.

Lemma 4.2 Let L be a star-convex set respective to a paireé L and lett,,,, be
defined by Equation 4.3 (faf, L and Q). If the ray R(c, p) does not intersect the set

Q © tmaz - (L O {c}) (4.4)

then the poinp is not in shade of) respective td..

In the definition oft,,,.. the pointsp, ¢ belong to the scene, and the pdiig from
the light source. Therefore we can calculgtg, for the entire scene using the diam-
eter of the scene (maximal distance between pgirgadg) and the closest distance
from the light source to the scene (minimal distance betws®ntsq and/) . The
improvement compared to Lemma 3.1 is significant if the disteto the light source
is not too small compared to the diameter of the scene.

To get even better results we calculgig, for each pair of an obstacle and a light
source and use it in expansion operation for the given olestatthe case of several
light sources even if we use only one additional scenerytfadew rays it is also better
to calculate separatg,,, values. Value of,,,. is a lower bound for the shrinking ratio
and even if we do not compute this optimal shrinking ratio acle case, we can use
any valuet with 1 >t > ¢,,,45.

47

4.6 Umbra detection

The previous discussion allowed us to distinguish betwhenegion in full light and
the region in shadow. However, there might exist a totallgdstwed umbra region
where we need not to use stochastic ray tracing. We recdlttibaset complement is
denoted asl. In the following lemma we have the condition detecting uantagion.

Lemma 4.3 Let L be a star-convex set with respect to a peimt L. If the ray R(c, p)
intersects © (L © {c}) then a pointy is in the umbra of) with respect to the light
sourceL.

Proof. If the R(c, p) intersects) © (L © {c}) (see Fig. 4.5 for an illustration) then
there exists a point € R(c,p) such that- ¢ Q © (L © {c}). This is equivalent that
forall g ¢ @ and for alll € L holdsr # g — (I — ¢). Using simple transformations,
we obtain for ally ¢ @ and for alll € L we havej # r + (I — ¢). This means that the
set{r} @ (L & {c}) is totally included in the sep. But this is nothing else but the set
L translated by — c. It is star—convex respective to the pointence for an arbitrary
pointl € L the rayR(p,[) intersects it (the st} @ (L & {c})). Since it is included
in) the ray intersects obje€ what means that the poiptis totally shadowed and
thatp is in the umbra region.

U

We can reformulate the condition given in Lemma 4.3 in thegbease of spher-
ical light sources using negative solid offsets which weztrekd in Section 2.2. The
same optimization considerations for the distance as us8&édtion 4.5 apply, so we
may use the bigger set as well:

@@ tmaz (L e {C}> . (45)

The umbra detection is done after having detected an olgssilgy casting shadow
which is a good candidate to pass the test. Making the fuilitea whole third data
set holding only the shrunken objects requires more memuhynzore time. The gain
is not sufficient since most of the tests fail. The experiraéiaive shown that in almost
all cases testing all the objects for umbra is slower thatmigenly one object which
passed the penumbra detection test already.

48

/¢ L—light source
I

L translated by r—c

/ negative
; solid offset

obstacle Q

shaded surface

Figure 4.5: Umbra and negative solid offset.

49

4.7 Performance results

Our algorithm can be incorporated into any ray tracing kierBasically, it does not
matter which classical acceleration method to enhanceulRegrids, octree, hierar-
chies of bounding boxes, or combinations of these can be \igedhave incorporated
our algorithm into RAYO ray tracer by A. Formella which is tpiefficient. The ray
tracer is based on an algorithm with modified BSP tree andepti@versal (for details
see [12]).

Cylinders| Balls4 | Rings| Molecule| Bust
a) | simple ray tracing 091 5.42| 1.83 1.34| 3.15
b) | stochastic ray tracing 12.05| 64.21| 32.35 8.25| 37.47
fast penumbra
c) | standard 6.10| 43.48| 15.11 5.66| 32.46
d) | optimized detection 5.72| 26.81| 10.54 5.02| 24.02
e) | with umbra detection 5.22| 25.39| 11.04 4.95

Table 4.1: Run times in seconds for different images andrilgos.

Remarks: a) Traditional ray tracing which produces sharp shadows.
b) Penumbra with classical stochastic ray tracirg.Our method with
shadow data setd) Optimized method with reduced extended objects ac-
cording to the,,,,, ratio.) Additional umbra detection. (We still did not
implement inner offsets for meshes.)

We compare the run times of the new method to the run timesadiftional ray
tracing without penumbra and classical stochastic rayrigadviore details are added
as remarks in Table 4.1. We present several examples of geonata sets: a simple
scene withcylindersand spheres (Fig. 4.9), a complmolecule(Fig. 4.10) trans-
formed from the Brookhaven Protein Data Bankwst(Fig. 4.11) modeled as a mesh
of triangles, and the fractdlalls (Fig. 4.12) and theings (Fig. 4.13) from the SPD-
benchmark [16]. The computations were done on a Sun Spaiise 4000, 168
MHz, 1.125 GByte RAM and the presented datas reflect real tifrte ray tracing
loop without preprocessing. The test have been done beimpgke siser so that the

50

real time has been essentially equal to the user time.

Table 4.2 describes parameters of our test scenes togeitiethe numbers of
traced rays for images. The resolution for the tests has $etdn128 x 128 pixel. For
larger images, the run times scale almost linearly with #selution. The numbet of
distributed rays was always set to 32. We enhanced the gra¢ishadow rays with a
shadow buffer. For each node of the ray tree a queue of up tobjexts is buffered.
A miss in the buffer enforces a delete of the last elementargtieue, a hit of an object
initiates an insertion as the first element of the queue.

In Table 4.2 for each method and each test scene we have tHeenofigenerated
shadow rays and the average numbers of intersection tastaype geometric and
shadow sceneries. The average numbers of intersectiomaypeiith objects in both
sceneries are quite low due to the well selected acceleratractures. The follow-
ing trade-off can be observed. Our fast method significamitiuces the number of
shadow rays to be traced. On the other hand, the number of@ateon tests per ray is
increased. The difference is larger if we use optimizedetszd offsets. The umbra
detection may not always pay-off, e. g., in the rings exanipeause the inner offset
objects become too small. Additionally, we observed thatlighht cache hit rate has
slightly improved for the more complex data sets.

Table 4.3 shows the memory requirements of the differentempntations. As
long as the scene description is small (simple scene) thié@ul memory required
for the fast penumbra calculation is negligible. For thgéarscenes at most twice as
much memory is required.

The speedup which is obtained with the new method dependeeogdometry,
especially on the size of the light sources and on the sizeeVisible penumbras.
Table 4.4 summarizes the run times for the balls3 data sbt8&2® objects. The size of
the light sources was increased for the benchmark accotdithg sizes of the spheres
being present in the data set. Stochastic ray tracing wasrperd withd = 32. The
speedup for the fast method ranges from 1.76 to 7.83 depgodithe size of the light
sources: the smaller the light sources, the better the wepnent in run time. The
method well adapts to the size of the penumbra. If it is srhaite is less calculations
and speed-up factor is bigger. If penumbra region is quitgeléhe calculations are
necessary anyway. Using only stochastic method the costtim dases is the same
I.e., unnecessary large.

In Fig. 4.6—4.8 we compare the run time of classical stooheasy tracing with the
run time of the version of the improved penumbra calculafmptimized decreased

51

offsets according to Lemma 4.2). The figures show the depwedaf run times on
the number! of stochastic rays per point. As it can be seen the dependsnimese to
linear for all scenes and for both methods. Comparing theeslof the lines we obtain
for larged that the speedup for the simple scene is 2.1, for the molescelee 2.7 and
for the bust scene 1.8, respectively.

140

120

100

80

60

real time in seconds

40

20

our fast method —-— .
classical stochastic -+--

20

40 60 80 100 120
number of distributed rays per point

Figure 4.6: Run time dependance on the number of shadow mys p
shaded point in the simple scene with cylinders.

52

140

120

100

80

60

real time in seconds

40

20

our fast method —+—
classical stochastic -+--

40 60 80 100
number of distributed rays per point

Figure 4.7: Run time dependance on the number
shaded point in the molecule scene.

140

120

100

80

60

real time in seconds

40

20

shadow mys p

our fast method —-—
classical stochastic -+--

20

40 60 80 100
number of distributed rays per point

120

Figure 4.8: Run time dependance on the number of shadow mys p
shaded point in the bust scene.

53

Figure 4.9: Penumbra in a simple scene.

Figure 4.10: Penumbra for a compact molecule.

54

Figure 4.11: Penumbra in the bust scene.

Figure 4.12: Penumbra in the balls scene.

55

Figure 4.13: Penumbra in the rings scene.

Figure 4.14: Penumbra in the scene with rational surface.

56

Cylinders| Balls4 Rings| Molecule Bust
objects 11 7383 62 1685| 98506
spherical light sources 2 3 3 2 1
reflected rays 20167 10976 2962 7303 0
a) | # shadow rays 31592 51719| 47415 4260| 32136
#1geom 0.85 1.74 1.40 0.99 0.94
b) | # shadow rays 1027757| 1397529| 1459345| 105153| 496704
#1geom 1.30 2.36 1.22 1.80 2.13
c) | # shadow rays 324911| 430300 367355 34615| 196667
#1geom 1.87 2.43 3.31 3.94 2.87
Linadow 1.13 2.32 1.72 2.27 4.62
d) | # shadow rays 289054 215151 215155 26800| 135324
Lyeom 2.01 4.03 4.39 4.53 4.00
Lihadow 1.08 0.85 1.39 1.79 2.05
e) | # shadow rays 287481 213120| 215155 26691
#1geom 1.77 3.16 4.39 4.29
Lihadow 1.08 0.85 1.39 1.79

Table 4.2: Characteristics of the example scenes.

Remarks: In all scenes the number of primary rays was equal to 16384.

The numberd,.,,, and/,,qq.., denote the number of intersection tests per

ray in the geometry data set and in the shadow data set, tesgbecFor

the description of the different methods see remarks ineraudl.

57

Cylinders| Balls4 | Rings | Molecule Bust
b) | simple ray tracing 44 | 3064 82 670| 58181
C) | stochastic ray tracing 45| 3070 83 693 | 58181
fast penumbra
d) | standard 48 | 5535| 114 1265| 110176
d) | optimized detection 48 | 5991| 117 1296| 110197
e) | with umbra detection 49| 5990| 117 1296

Table 4.3: Memory requirements in KByte for different imaged algorithms.

Remarks: The numbers reflect dynamically allocated memory. In addi-

tional to the given values, a frame buffer of 50 KByte wasadled. For

the description of the different methods see remarks ineTaudl.

fast| class.| speedup
Balls3 3.29
a) 5.63| 44.13 7.83
b) 9.88| 44.33 4.48
C) 17.10| 45.30 2.64
d) 27.21| 48.10 1.76

Table 4.4: Run times for the Balls3 data set for differen¢siaf the light sources.

Remarks: The sizes of the light sources were set to the sizes of theesphe

(a) smallest spherd) largest sphere). The first line shows the run time

for simple ray tracing with no penumbra.

58

Chapter 5

Intersection methods

“It can't go straight, you know, if you pin it all on one side,”

Lewis Carroll — Through The Looking Glass

We are interested in finding intersection of expanded objedh a ray. For rational
surfaces it is not a trivial task. In our algorithm we will pent these surfaces in Bézier
form as they have been defined in Section 2.1. We will alsohesaation of the Bézier
volumes defined there. For a rational surf&ce, v) of degreg(m, n) we want to find
all intersections of its offset at given distantand a ray in parametric formR(¢).

Recall thatS,(u,v) denotes an offset of a surfacdu, v) at a distancel. The
algorithm works as follows. Our goal is to solve R¥ the geometrical intersection
problem:

Sa(u,v) = R(t) (5.1)

In the first step we will transform the problem 5.1 into thelgem of solving the
following array of equations:

F(u,v,t) =0
OuF(u,v,t) =0 (5.2)
OpF(u,v,t) =0
whereF (u, v, t) will be defined in Corollary 5.3 as a polynomial of deg(ee, 2n, 2).

The solutions of the equation array 5.2 include all solgiofthe Equation 5.1 but the
reverse is not true. Formulations 5.1 and 5.2 are not eqnval

59

Offset surfaceS,(u, v) in its definition contains the normal vectdi(u,v). The
normal vector of a polynomial surface is not in general eaional function of the
parameters, andv since to calculate it we use the square root (see SectioR)2.1.
Therefore we significantly simplify the equations elimingtthe square root which is
not present in formulation 5.2.

In the second step we will solve the array of equations 5.2dybalivision method
which is described in Section 5.2.2. The solutions of theesysh.2 can belong either
to the positive offset,(u, v) or to the negative on®_,;(u, v). In the last step of the
algorithm we will choose the right ones.

5.1 Maintheorem

Lemma 5.1 Let C(¢) denote a parametric curve such that its derivatiy€’(¢) does
not vanish in the neighborhood of the poffitt,), and let P be a point such that
P # C(ty). and let us define by the dot product the square distanceitmgtt) :=<
C(t) — P,C(t) — P) >. Then the vecto€'(t,) — P is orthogonal to the curvé’(t) at
the pointC'(ty) iff 0, f (to) = 0.
Proof. Using the following rule for calculating the derivative tiet dot product:

Oy < A(t), B(t) >=< 0;A(t), B(t) > + < A(t), 0, B(t) >
we obtain:

8tf(t0) =0 < C(to) — P, C(to) —P>=2< C(to) — P, 8tC(t0) >

U

Theorem 5.2 Let S(u, v) denote a regular parametric surface, [B{t) be a curve and
d a positive real. Let the functiofi(u, v, t) be defined by:

flu,v,t) = [[S(u,v) = R(t)|]* - d*
Then the system of equations:

f(ug,v0,t9) =0
Ouf (uo,vo,t0) =0 (2) (5.3)
6vf(u07 Vo, tO) =0

60

is equivalent to the following alternative of two equations

R(to) = S_d(UQ, UQ) or R(to) = Sd(UQ, UQ).

Proof. If R(ty) = Si(ug,vp), for ¢ = —d or i = +d then the distance from the
point R(t,) to the point on the surfacg(u, vy) is equal tad and the first of Equations
5.3 holds. From the definition of the offset it follows thagthectorS (ug, vo) — R(to)

is orthogonal to any curve on the surface at the pSinty, v,) and in particular to the
curvesS(t,vg) andS(ug,t). Lemma 5.1 applied to these curves gives the last two of
Equations 5.3.

To prove the reverse implication assume that the last twogoiakons 5.3 hold.
By Lemma 5.1 the vecto$ (ug, vg) — R(to) is orthogonal to linearly independent vec-
tors 0,5 (ug, vo) and 9,5 (ug, vo). This means that the poimk(t,) lies on the line
orthogonal to the surface at the poititug, vo). From the first of Equations 5.3 it
follows that the distance of the point&(t,) and S(ug, vo) is equal tod. Therefore
R(to) = S_q(ug, vo) Or R(to) = Sya(ug, vo).

U

Corollary 5.3 Let S(u, v) be a regular rational Bézier surface ik* defined by

u.v) = X(u,v) Y(u,v) Z(u,v)
S(u,v) <W(u,v)’W(u,v)’W(ujv))

whereX (u, v),Y (u,v), Z(u,v), W (u, v) are polynomial functions such thlt (u, v) >
0. LetR(t) = (x(t),y(t), 2(t)) be a curve iMR3, d > 0 a real number and let

F(u,v,t) = (X —aW)2 + (Y —yW)* 4+ (Z — 2W)* — d°*W?

Then the following system of equations:

F(ug,vo,t0) =0 (5.4)
OuF (1o, vo,t0) =0 (5.5)
Oy F(ug,vo,tg) =0 (5.6)

is equivalent to the alternative of two equations:

R(to) = S_d(UQ, UQ) or R(to) = Sd(UQ, UQ).

61

5.2 The Algorithm

Now we shall present a pseudocode of the algorithm basedeonegults given in
Section 5.1.

Input:

A Surface S(u,v) represented by a (m,n)-nmesh of points in R3
An O fset distance d
A Paranetric ray R(t)= Ry+tV where R,V € R3

Output:

Set of paraneters (u,v,t) of intersection point

The Algorithm:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

F = Cal cul at eVol unmeFunction(S,d, R) ;
PushVol une(F) ;
whi |l e StackNot Enpty() do begin
F : = PopVol une();
(* Check if 0 inside F, 0,F and O0,F *)
i f ZeroslnsideHull (F) then
if (Small Enough(F)) then
(* CGenerate and classify solution *)
Gener at eSol uti on(F)
el se begin
(* Split in one of directions u,v,t sequentially *)
SplitBezier(F, Fi, F);
PushVol une(F1) ;
PushVol une(F) ;
end

end

62

5.2.1 Calculation of !

First we reparameterize the r&)(¢) by scaling the vectoV’ such that all solutions of
our intersection problem 5.1 lie on the ray segment conngétp and R, + V. Now
for R(t) we are interested in the parameter rafige|.

In the line (1) of the algorithm we construct Bézier volumpresentaton for the
function F which was defined in Corollary 5.3. Control points/oin the Bézier form
can be calculated by simple arithmetic on control pointsciwlwas defined in Section
2.1.1. Thus, we have Bézier volumadefined by its control points and we can start the
subdivision algorithm described below. In line (2) of thgaithm we push original
Bézier volume on stack.

5.2.2 Subdivision and convex hull checking

Subdvision algorithm is a common way to solve intersectioobfems for Bézier
curves and surfaces. It is based on de Casteljau subdiasgonithm (see Property
2.6) and convex hull property (see Property 2.7).

To solve the problem 5.2 we use the subdivision algorithm. rédairsively split
the Bézier volume each time into smaller volumes and usimgesohull property we
check if these small volumes can possibly contain solutiofisat is we test if the
convex hull of the set of control points of a Bézier voluthg,, contains the point
(0,0,0). We remove the volumes which can not contain solutions okgquation. We
proceed until we run out of volumes which possibly contailuisons or until the split
volume is small enough. In that second case we generatesohitthe Equation 5.2.

We subdivide the Bézier volume sequentially in directions, v andt. To make
each step of the the algorithm less expensive we use thexbmieroperty to check
the “min—max” bounding box ofF’, 9, F, 0, F') instead of checking exact convex hull.
That is we check each coordinate of the functiofu, v, t) independently if convex
hull of given coordinate of control points contaifisin our case we have to check if
there are control points with different signs for the fuonté’ and for its two patrtial
derivatives.

By the Fact 2.12 the partial derivativésF andd,F’ of F' are easy to calculate
using the control points of’. Therefore in our algorithm we calculate the control
points of g, F' andd, F' online in each step when checking the convex hull property.

63

Thus we simplified the problem to the subdivision algorittonthe one functionf’
with modified convex hull checking.

The major cost of the subdivision algorithm is the cost oftspg the volume by
de Casteljau algorithm. If we do not calculate exact conwdkthen the time required
for convex hull checking is neglible.

5.2.3 Classification of solutions

We are solving the array of equations 5.2 and from CorollaBw#e know that we get
solutions for both offsets at distancéand—d. If we want to consider only one offset
Sa(u,v) then we have to classify the solutions we have obtained.eSinc solution
contains all parameters which describe our situation cetafyl we have what follows.
The solution(u, v, t) corresponds to an offséy(u, v) if

Sign(d) = Sign(< N(u,v), R(t) — S(u,v) >).

5.3 Complexity analysis

The time for calulating the control points of Bézier volufieean be neglected. Solv-
ing the equation system is the most time consuming part dlti@ithm. The number

of steps in the subdivision algorithm is a function of desiaecuracy and belongs to

the clasg)(log(1/¢)).

The cost of one step of the subdivision algorithm is the cost® subdivision of
the Bézier surface or volume using de Casteljau algorithm cs# represent this cost
as the number of elementary operations of midpoint calcuriat The surface is split
into four subsurfaces and the volume is split into eight slilowes. This guarantee
that the parameter intervals will be smaller by half tharobefthe subdivision. De
Casteljau algorithm for curves of degreeisesn(n + 1)/2 midpoint calculations.

In Table 5.1 we present the comparison of numbers of ap@tgpeiementary op-
erations for each subdivision step for our algorithm ancth All these algorithms
use the subdivision algorithm but in each algorithm thematdation of the problem
is different therefore in each of them different objectslaggng subdivided.

New Algorithm is the algorithm presented here
— subdivides volume of degréén, 2n, 2)

64

VP Polynomial is the algorithm given by E. Vafiadou and N. Patrikalakis i@][5
— subdivides two surfaces of degrée — 2, 5n — 2)

VP Rational is a simple extension &fP Polynomial for the rational case
— subdivides two surface8n — 2, 8n — 2)

Number of midpoint calculationsn =2 | n=3 | n=14
New Algorithm | 6n%(6n + 4) 384| 1188| 2688
VP Polynomial | (5n — 2)?(15n — 3) 1728| 7098| 18468
VP Rational (8n — 2)%(24n — 3) 8820| 33396| 83700

Table 5.1: Numbers of midpoint calculations in each stefmefsubdivision algorithm
for a surface of degreg:, n).

As it can be seen from the Table 5.1, for the Bézier surfaceggfees: 2, 3, 4 the
subdivision phase for the new algorithm is 4—7 times fastepblynomial surfaces
and 22-31 times faster for rational ones. Moreover for sedaof higher degree the
speed up is bigger.

5.4 Experimental results

The algorithm invented by Vafiadou and Patrikalakis [50] besn tested on a graphic
workstation running at 20MHz. The results of these testgaen for the comparison
purpose with our method in Table 5.2. We have implementedéeiealgorithm in “C”
programming language.To measure the performance we editich simple ray tracer
which generated test rays. The tests of the new algorithra haen carried out on a
slow 486DX2 66MHz microprocessor based computer runniegltinux operating
system. The effeciency of numerical calculations of thi€hn@e is comparable to the
efficiency of 20MHz Sun workstations. We have also integtdie code into RAYO

ray tracer written by A. Formella [12], which was used for geation of presented
images.

The test results have been obtained for intersection wythganerated by a simple
ray tracer implemented for this purpose. Thus for one sarfaany rays have been
generated and the running times of the algorithm findingraérsections have been

65

Surface description Degree| VP results New algorithm

Sweep of parabolg (1,2) | 2.7,1.5 0.03
Sweep ofr* (1,4) | 10.4,6.7,10.5 0.07

Table 5.2: Intersection times in seconds of the Vafiadou#dsdkis algorithm for few
given test rays and average times of our new algorithm.

Surface description Degree| d | Hit % | Aver. | Max.
Sweep of parabolg (1,2) | 0.5| 31.3| 0.03| 0.16
Sweep ofr* (1,4) | 05| 30.0| 0.07| 0.38
Rational Hill (2,2) | 0.2| 25.0| 0.06| 0.82

Table 5.3: Performance of the new algorithm (times in sespnd

obtained. Table 5.3 shows the average as well as the maximunmng times in sec-

onds (for accuracy of the algorithm set upt6001). The information how many rays
hit the offset is also presented there since the algorithms faster when there is no
intersection.

Following figures demonstrate images generated using théCRAy tracer and
our intersection algorithm. The Figure 5.1 shows a sweemathmla with two offsets
at the distanced = —0.5 (below) andd = 0.7 (above). The Figure 5.2 shows two
surfaces of degre@, 2) : the polynomial one (left) and the rational one (right) with
the central weight stretched 10 (other control points have weighj. Next pictures
show offsets of these surfaces with- —0.2 (fig.5.3,5.4).

66

Figure 5.1: Offsets of sweep of parabolalat —0.5 (below) andd = 0.7 (above)

Figure 5.2: Polynomial and rational hills

67

Figure 5.3: Offsets of polynomial and rational hills with= —0.2

Figure 5.4: Offsets of polynomial and rational hills with= —0.2

68

Chapter 6

Conclusions

“That’s all, said Humpty Dumpty.’
Lewis Carroll — Through The Looking Glass

We have presented a new method to speed up tracing of geeerahadow rays which
is based on tracing the group of rays in the cost of tracinggus ray. The method
is based on Minkowski operators and solid offsets. We haweqat formally that if
we use this method we will get the same results as without liis Guarantees the
correctness of the results obtained.

We have constructed the a algorithm to speed up calculafigermumbra. The
main idea is to detect the shadow regions such that stochagtiracing is confined
to the penumbra. We have used the notion of Minkowski opesatiod solid offsets to
provide the means to handle a variety of differently shapgut kources and objects.
We have shown that the method works correctly and that ingisdlg renders the same
images as stochastic ray tracing.

We have described and implemented an improvement of the alagirithm which
uses decreased offsets. The effectiveness of the algodépends on the particular
geometric data set. On average, the presented sample smidde rendered two
times faster compared to the run time of classical stoahaai tracing. However,
if the penumbra regions are small respective to the visiggons in the scene, much
higher speedups can be obtained. The additional memoryeesgents never exceeded
in our experiments a factor of two.

To show that the method works also for different kind of obgese have devel-
oped a new algorithm for rational Bézier surfaces. It findlsnétrsections of the ray

69

segment with an offset of Bézier surface. The geometridadiisision method and the
Bézier reprezentation guarantee that the algorithm issioffinds all solutions) and
is numerically stable. The algorithm is substantially éashan the previously known
one. Because of this, and because of advances in computivey pb computers it is
practical for photorealistic rendering of offset surfac&s an example, the ray traced
images of cubic rational surfaces have been presentedfp/ertersection time in this
case was less than a milisecond on a fast workstation). Hoeitdm can be also ap-
plied to collision detection and to other areas in CAGD, molanning and machine
milling.

The general method of speeding up shadow ray tracing seebes \tery appro-
priate to be incorporated into any ray tracing system. Tdaxfurther possibilities,
cases where the rays are not given in coherent groups shewxdamined. However,
the memory requirements are getting bigger in that casethaard are additinal costs
for accesing special ray caching structures which have tmhstructed.

As we have shown in our experiments for new algorithm in Chiapptadding um-
bra detection did not improved significantly the performankowever, performance
depends on the test scenes. We are not excluding that itevdtdfitable in some spe-
cial cases when the umbra regions are large. Further réspaght also investigate
the calculation of combined convéroundedvolumes that would allow detection of
the umbra more precisely (for instance for CSG-models). §lsi bounded volume
might be calculated for a number of joined objects.

For complex data set, we expect a further improvement ineeng time of new
algorithm from Chapter 4, if an additional space subdivis®employed for the can-
didate objects casting penumbra. If the test for a ray in @lwastene fails, we can
have the list of objects which can potentially obstruct theug of rays. Therefore if
we use some acceleration structures for this list of caneliolajects it will be faster to
trace the rays from this group in this small subset of objects

70

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, arsditent Moll. Ef-
ficient image-based methods for rendering soft shadd®vsceedings of SIG-
GRAPH 2000pages 375-384, July 2000.

John Amanatides. Ray tracing with coneSomputer Graphics (SIGGRAPH
'84 Proceedings)18(3):129-135, July 1984.

Hujun Bao and Qunsheng Peng. Shading models for linedraaga light
sourcesComputers and Graphicd7(2):137-145, 1993.

Wolfgang Boehm, Gerald Farin, and Jurgen Kahmann. Aeynf curve and
surface methods in cag@omputer Aided Geometric Desigh(1):1-60, 1984.

Robert L. Cook, Thomas Porter, and Loren Carpenter. riDisted ray trac-
ing. Computer Graphics (Proceedings of SIGGRAPH, 88)3):137-145, July
1984.

Gerald Farin. Curvature continuity and offsets for getse conics. ACM
Transactions on Graphi¢$(2):89-99, 1989.

Gerald Farin. Curves and Surfaces for Computer Aidedn@®dc Design.
Academic Press, 1990.

Rida T. Farouki. Exact offset procedures for simple d®liComputer Aided
Geometric Desigrn2(4):257-279, 1985.

Rida T. Farouki. The approximation of non-degenerafseatfsurfaces.Com-
puter Aided Geometric DesigB(1):15-43, 1986.

Rida T. Farouki and C. Neff. Algebraic properties ofqeoffset curvesCom-
puter Aided Geometric Desigi:101-128, 1990.

71

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Rida T. Farouki and C. Neff. Analytic properties of péaaffset curvesCom-
puter Aided Geometric Desigii:83—-100, 1990.

Arno Formella and Christian Gill. Ray Tracing: A Quaative Analysis and
a New Practical Algorithm.The Visual Computerl1(9):465-476, December
1995.

Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. ARTAccelerated ray
tracing systemIEEE Computer Graphics and Applicatiqré{4):16—-26, April
1986.

Andrew S. Glassner (editor). An Introduction to Raydirg. Academic Press,
1989.

Andrew S. Glassner. Space subdivision for fast rayitigac IEEE Computer
Graphics and Applicationg}(10):15-22, October 1984.

Eric A. Haines. A proposal for standard graphics enwinentsIEEE Computer
Graphics and Applications/(11):3-5, November 1987.

Eric A. Haines and Donald P. Greenberg. The light bufferay tracer shadow
testing accelerator.IEEE Computer Graphics and Application§(9):6—-16,
September 1986.

Vlastimil Havran. Heuristic Ray Shooting AlgorithmBh.d. thesis, Department
of Computer Science and Engineering, Faculty of Electicajineering, Czech
Technical University in Prague, November 2000.

Wolfgang Heidrich, Stefan Brabec, and Hans-Peter 8eifoft shadow maps
for linear lights. Rendering Techniques 2000: 11th Eurographics Workshop on
Renderingpages 269-280, Springer—Verlag Wien New York, June 2000.

Paul S. Heckbert and Pat Hanrahan. Beam tracing poblgdnects.Computer
Graphics (SIGGRAPH '84 Proceeding4B(3):119-127, July 1984.

Paul S. Heckbert and Michael Herf. Simulating soft shasl with graphics
hardware. Technical Report CMU-CS-97-104, CS Dept., Gaenklellon U.,
January 1997. http://www.cs.cmu.edu/ ph.

Joseph Hoschek and Dieter Lasser. Fundamentals of Gemfsided Geomet-
ric Design. A K Peters, 1993.

72

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Joseph Hoschek. Spline approximation of offset cur@smputer Aided Geo-
metric Design5(1):33—-40, 1988.

Henrik W. Jensen and Niels J. Christensen. Efficierghdering shadows using
the photon mapCompugraphics '95pages 285-291, December 1995.

Henrik Wann Jensen. Global illumination using photoaps. Eurograph-
ics Rendering Workshop 1996ages 21-30, Springer—Verlag Wien New York,
June 1996.

James T. Kajiya. The rendering equati@@omputer Graphics (Proceedings of
SIGGRAPH 86)20(4):143-150, August 1986.

M. Kaplan. Space-tracing: A constant time ray-tra@&GGRAPH '85 State of
the Art in Image Synthesis seminar note3(3):149-158, July 1985.

Brett Keating and Nelson Max. Shadow penumbras for dempbjects by
depth-dependent filtering of multi-layer depth imagesrographics Rendering
Workshop 1999pages 197-212, Springer—\Verlag Wien New York, June 1999.

J.-C. Latombe. Robot Motion Planning. Kluwer AcaderRidblishers, 1991.

G.W. Leibniz. Generalia de natura linearum angulogaetactus et osculi
provocationibus aliisque cognatis et eorum usibus normuflicta Eruditorum
1692.

Mark E. Lee, Richard A. Redner, and Samuel P. UseltoratiSically opti-
mized sampling for distributed ray tracingcomputer Graphics (SIGGRAPH
'85 Proceedings)19(3):61-67, July 1985.

Eric P. Lafortune and Yves D. Willems. Bi—directionatp tracing. Proc. of
CompuGraphicsm (Alvor, Portugapages 145-153, 1993.

Eric P. Lafortune and Yves D. Willems. Reducing the nemif shadow rays in
bidirectional path tracingfWWSCG’95 Conference Proceedingsages 384-392,
University of West Bohemia, February 1995.

Andrzej Lukaszewski. Exploiting Coherence of Shadoawy® AFRIGRAPH
2001 Conference Proceedin(ie be published by ACM SIGGRAPH).

73

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Andrzej Lukaszewski, Andrzej Szczepkowicz. Compudnulation of FIM
images — the convex hull modeNMacuum (Elsevier Science Ltd4(1999),
pages 67-71.

Andrzej Lukaszewski and Arno Formella. Fast penumlalkgwdation in ray
tracing. WSCG’98 Conference Proceedinys). Il, pages 238-245, University
of West Bohemia, February 1998.

Andrzej tukaszewski. Finding ray-offset intersectifor rational Bézier sur-
faces. Technical Report 97/04, Institute of Computer SaetJniversity of
Wroctaw, Poland, May 1997.

Andrzej Lukaszewski. Evolutionary Programming In @naColoring.Badania
Operacyjne i DecyzjeNr. 3/1995 pages 67-74.

Masataka Ohta and Mamoru Maekawa. Ray coherence timeane constant
time ray tracing algorithm Computer Graphics 1987 (Proceedings of CG In-
ternational '87) pages 303—-314. Springer—Verlag, 1987.

Steven Parker, Peter Shirley, and Brian Smits. Singla@e soft shadows.
Technical Report UUCS-98-019, Computer Science Depattrokmversity of
Utah, October 1998. http://www.cs.utah.e¢cles/papers/coneShadow.

Sumant N. Pattanaik. Computational methods for gldhahination and visu-
alisation of complex 3d environments. published by Birlgtitute of Technol-
ogy & Science, Computer Science Department, February 1993.

Sumant N. Pattanaik and S. P. Mudur. Computation of gldlumination by
monte carlo simulation of the particle model of ligittird Eurographics Work-
shop on Renderingages 71-83, May 1992.

Sumant N. Pattanaik and S. P. Mudur. The potential eguaind importance in
illumination computationsComputer Graphics Foruni2(2):131-136, 1993.

Andrew Pearce and David Jevans. Exploiting shadow restee in ray tracing.
Proceedings of Graphics Interface '9gages 109-116, June 1991.

Bui-T. Phong. lllumination for computer generatedtpres. Communications
of the ACM 18(6):311-317, June 1975.

74

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Helmut Pottmann. Rational curves and surfaces witlomat offsets.Computer
Aided Geometric Desigri2:175-192, 1995.

Pierre Poulin and John Amanatides. Shading and shadpwith linear light
sources Eurographics '90 pages 377-386. North—Holland, September 1990.

Jerek. Rossignac and A.A.G. Requicha. Offseting dperain solid modelling.
Computer Aided Geometric Desig81129-148, 1986.

B. Silverman. Density Estimation for Statistics andt®analysis. Chapman
and Hall, Ltd. London, 1985.

Maria-E. Vafiadou and Nicholas M. Patrikalakis. Integation of offsets of
polynomial surface patcheBurographics '91 pages 247—-259. North—Holland,
September 1991.

Eric Veach. Robust Monte Carlo Methods For Light Trasr$@imulationPh.d.
thesis Stanford University, 1997.

Ingo Wald, Philipp Slusallek, Carsten Benthin, and MexWagner. Interactive
rendering with coherent ray tracinGomputer Graphics Forun20(3), 2001.

Leonard Wanger. The effect of shadow quality on the @gtion of spatial rela-
tionships in computer generated imagé&ymputer Graphics (1992 Symposium
on Interactive 3D GraphicsP5(2):39—-42, March 1992.

Turner Whitted. An improved illumination model for sthed display.Commu-
nications of the ACM23(6):343—-349, June 1980.

Andrew Woo. Efficient shadow computations in ray tracinEEE Computer
Graphics and Applicationsl 3(5):78—-83, September 1993.

Andrew Woo, Pierre Poulin, and Alain Fournier. A survefyshadow algo-
rithms. IEEE Computer Graphics and Applicatign0(6):13—-32, November
1990.

75

