
Offsety i operatory Minkowskiego

w przyspieszaniu

obliczeń globalnego modelu

oświetlenia.

Andrzej Łukaszewski

praca doktorska

promotor: Prof. dr hab. Leszek Pacholski

Instytut Informatyki

Uniwersytet Wrocławski

Wrocław, 2001

Offsets and Minkowski operators

for speeding up

global illumination methods.

Andrzej Łukaszewski

Ph.D. Thesis

supervisor: Prof. dr hab. Leszek Pacholski

Institute of Computer Science

University of Wrocław

Wrocław, 2001

Acknowledgements

First of all, I would like to thank Prof. Leszek Pacholski forhis support in doing

research on computer graphics. I am obliged to him for helpping me in writing the

thesis and for his help in establishing international contacts that made this research

possible and influenced my work.

I would like to thank Prof. Hans–Peter Seidel from Max PlanckInstitüt für Infor-

matik in Saarbrücken for collaboration and the time of work in his group when I put

together the most part of this thesis. I also want to express my thanks to all members

of his research group for many valuable discussions and the nice atmosphere during

my stay there.

Wrocław, October 2001.

This work has been partly supported by

– Uniwersity of Wroclaw research grant nr 2203/W/IN/97i98 (I.1997–XII.1998)

– KBN research grant nr 7 T11C 023 20 (II.2001–XII.2001)

– Marie Curie Fellowship for stay in MPI in Saarbrücken (III.2001–VIII.2001)

Contents

1 Introduction 9

1.1 Contributions of this thesis .11

1.2 Organization of this thesis . 12

1.3 Ray tracers and Monte Carlo methods 12

1.3.1 Whitted ray tracer . 13

1.3.2 Stochastic ray tracing . 14

1.3.3 Photon tracing and photon maps 16

1.3.4 Bidirectional path tracing . 16

1.4 Acceleration techniques . 18

1.5 Shadows . 19

2 Preliminaries 22

2.1 Bézier curves, surfaces and volumes 22

2.1.1 Bézier operations . 26

2.1.2 Regular surfaces and normal vectors 28

2.1.3 Rational Bézier surfaces . 29

2.2 Minkowski operators and offsets .30

2.2.1 Minkowski operators . 30

2.2.2 Solid offsets . 30

2.2.3 Offsets curves and surfaces 32

7

3 Exploiting ray coherence 35

3.1 Rays with one common origin . 35

3.2 Rays with coherent origins . 38

4 Fast penumbra method 40

4.1 Overview of the algorithm . 40

4.2 Multiple light sources . 42

4.3 How to expand ? . 43

4.4 Offsets versus Minkowski expansion 44

4.5 Optimizations . 46

4.6 Umbra detection . 48

4.7 Performance results . 50

5 Intersection methods 59

5.1 Main theorem . 60

5.2 The Algorithm . 62

5.2.1 Calculation ofF . 63

5.2.2 Subdivision and convex hull checking 63

5.2.3 Classification of solutions 64

5.3 Complexity analysis . 64

5.4 Experimental results . 65

6 Conclusions 69

8

Chapter 1

Introduction

“Somehow it seems to fill my head with ideas —

only I don’t know exactly what they are !”

Lewis Carroll — Through The Looking Glass

Computer graphics began with a need to visualize huge amounts of data and with the

need to provide convenient interface between the human and the computer. In the sev-

enties the hidden surface removal algorithms were developed together with the first

local shading models [45]. These algorithms improved the three dimensional impres-

sion of generated images. Instead of wireframe images it waspossible to visualize the

scenes with correct visibility and simple simulation of light propagation.

Through the years the quality of images was getting better. One of the goals of

computer graphics became synthesis of images as close to reality as possible. The first

step to calculate the real global illumination was the ray tracing algorithm proposed

in 1981 by T. Whitted [54]. In some setups of scenes the effects were so satisfying

that the term photo–realistic image synthesis was created.It meant that synthesized

images would be indistinguishable from real photographs. However, it was computa-

tionally quite expensive, therefore a lot of research was done through the next decades

to accelerate the calculations. Better algorithms were developed and computational

power of computers has been increased through the years. Currently, using ray tracing

algorithm we are able to synthesize images of huge scenes consisting of millions of

triangles relatively fast.

There has been also a lot of research in the area of algorithmsto calculate phys-

ically correct simulation of light propagation. To get physically correct solution we

9

have to solve the global illumination equation which describes transfer of light energy

at each point. Two groups of methods have been developed to solve the global illu-

mination equation: Monte Carlo methods (for an overview seeSection 1.3) and finite

element methods. Monte Carlo methods are stochastic methods that are based on the

ray tracing algorithm. They sample the space of light paths to get an approximate

solution. They share the same ideas of tracing rays with Whitted method mentioned

above. On the other hand the finite element methods also use rays quite often to deter-

mine mutual visibility what is necessary for the calculation of so called form factors

between patches. As we see ray tracing is important wheneverwe want to calculate

illumination and to synthesize realistic images.

Monte Carlo ray tracing methods are the most popular and are used both in public

domain graphics packages and in commercial products used bythe movie industry. A

single frame of a cinema movie constists of about107 pixels and is rendered from a

scene which also consists of millions of objects. Thereforethe cost of production of

a movie is very high. Movie companies often use so called rendering farms. They

consists of thousands of computers which are just used for rendering. Therefore even

a small reduction of the cost of calculations can give substantial savings.

In computer graphics we use the term interactive image synthesis when several

frames per second can be generated. The real time image synthesis is defined by

human perception capabilities. For film and television standards the real time usually

denotes 25–60 generated frames per second.

Monte Carlo methods are quite flexible and it is usually possible to get better im-

ages just by tracing more rays. They are also easily scalable. Let us consider an

application where interactive or real time image generation is required. Any accelera-

tion will allow us to generate more frames per second or by tracing more rays we can

visualize the effects which would otherwise be visually missing. With every speedup

of the basic method we will get more exact illumination solution.

In ray tracing literature there has been many ideas how to exploit coherence of rays

and objects in the scene to reduce the cost of calculations. We present the summary of

results in Section 1.4. Most of the methods for ray tracing acceleration were developed

in the eighties. They usually exploit coherence in object space and construct geometric

structures which allow fast determination of the first object hit by a ray. Usage of the

coherence is essential for the method and in the common case of complex scenes is

necessary. It would be far too expensive to find intersectionwith every object. The

advances in this field together with growing computational power of computers made

10

it possible to get to the point where the image synthesis can be done almost in the

real time. However, synthesis of photo–realistic images close to reality in real time is

still a challenge. To handle it, simplifying assumptions still have to be made or limits

on the scene complexity have to be imposed. Calculating the complete illumination

for a non trivial scene requires lots of computations if we include all the effects e. g.,

multiple reflections (both specular and diffuse), and soft shadows caused by non-point

light sources. We are getting closer to the point when the global illumination can be

calculated at interactive rates.

Shadow ray tests if the ray from the light to the given point isnot obstructed by an

obstacle. We are interested in generalized shadow rays. These are any rays between

two points (none has to belong to the light source) that test if the light along the ray

is not obstructed by an obstacle. They are widely used in visibility checking, and it is

the most time consuming part of many algorithms for image synthesis. Monte Carlo

methods which calculate global illumination are based on the ray tracing principles,

and use shadow rays extensively. Shadow rays are also applied in some of the finite

element methods to calculate form factors where visibilityhas to be determined.

We propose a novel technique which exploits the ray coherence in a new way. It

works for generalized shadow rays. It is independent of classical acceleration methods

based on object coherence. Therefore it can be used togetherwith them and can give a

significant reduction of costs.

Our method allows in some cases to answer visibility query for a group of rays

in the cost of tracing one shadow ray. Therefore in some casesit eliminates the need

of separate checks for different rays. Instead of tracing a bundle of rays we test just

one ray in a modified scene and if the test succeeds we know thatall the rays from

this bundle are not obstructed. Our method is based on offsetting operation and its

generalization using Minkowski operators.

This technique does not exclude using some recent methods based on studies of

visual perception which guide the calculations into important regions and avoid calcu-

lating effects which are not perceived by humans.

1.1 Contributions of this thesis

In this thesis we present a new technique for speeding up ray tests. The general scheme

is presented together with formal proof of correctness in Chapter 3. In Chapter 4 we

11

give results of experiments in case of stochastically sampled area light sources.

Chapter 5 gives a new algorithm for intersecting an offset ofa rational surface

with a ray. It is substantially faster than the one previously known. This algorithm

is usefull not only in the context of the technique presentedin Chapter 3. It also

makes possible to directly visualize offsets using ray tracing method and can be used

in collison detection.

Parts of this work have already been published in [37, 36].

1.2 Organization of this thesis

This thesis is organized as follows. Chapter 1 gives an introduction and provides an

overview of existing ray tracing and global illumination Monte Carlo methods. Spe-

cial attention is given to the acceleration techniques and shadow generation. Chapter

2 introduces terminology. We also give definitions of offsetting and Minkowski op-

erators. Chapter 3 presents lemmas which establish foundations of our new methods

for acceleration of ray tracing algorithms. These results use offsetting and Minkowski

operators. We state the lemmas which give the theoretical background and guarantee

the correctness of our method. Chapter 4 describes the method for soft shadows and

gives results of experiments.

Chapter 5 presents a technique of finding intersections of a ray with an offset of a

rational surface. It is useful both for direct offset surface visualization and for acceler-

ation technique given in Chapter 4.

1.3 Ray tracers and Monte Carlo methods

Ray tracing is a powerful rendering technique which simulates light propagation. The

basic algorithm is simple and can be easily extended. It is more general than other

methods for global illumination. The algorithm can handle different types of objects

and enables implementation of different light effects.

Ray tracing is often considered as an expensive method, but in fact it is not true. It

can be used for hidden surface removal. When used in complex environments which

contain many objects the ray tracing outperformsz-buffer algorithm which is classi-

caly used for hidden surface removal. It is also quite promising for interactive and real

12

time applications, where a time limit for rendering an imageis given, and computa-

tional resources are limited. Due to scalability of ray tracing we can cast as many rays

as we want and we calculate the best approximate illumination solution we can get.

Therefore depending on computational power and time available we can get anything

between an exact global illumination of a scene and a simple hidden surface removal

with a simple constant shading.

1.3.1 Whitted ray tracer

view point

virtual screen

reflected rays

shaded point

shadow rays

point light sources

primary ray

Figure 1.1: Ray tracing principle

The classical Whitted ray tracer [54] computes color of eachpixel in the image

by tracing a primary ray from the eye into the scene to find the nearest object visi-

ble (this method is called ray casting). On the first intersection it calculates outgoing

light along the eye ray using given reflectance model. It addscomponents of direct

incoming light from light sources and the light incoming along the direction of perfect

specular reflection. In case of transparent materials we addthe component for the light

13

incoming from direction determined by diffraction. The last two factors are computed

recursively by the same method of ray tracing to determine the light incoming along

the ray. For direct components so called shadow rays are traced to the light sources to

determine whether the point is not obstructed by any obstacle. The situation is illus-

trated on Figure 1.1. As it has been already noticed by Whitted most of the calculation

time is spend on tracing the rays i. e., finding the nearest intersection of the ray with

the scene. History and an overview of the ray tracing algorithms can be found in [14].

Classical ray tracing method has some severe drawbacks. Theillumination model

is simplified by the restricted choice of light paths and it does not calculate multiple re-

flections correctly except for perfect specular reflections. The method is also restricted

to the point light sources without spatial extend which causes sharp shadows. It is not

well suited for scenes with diffuse objects and diffuse light sources. As an example

so called effect of color bleeding which is based on light transfer between two diffuse

surfaces can not be simulated by Whitted ray tracer.

To calculate global illumination exactly it would be necessary for each point to

collect and integrate information about incoming light from all directions not only

from the few directons used in the Whitted algorithm. Monte Carlo methods estimate

illumination function tracing finite number of rays selected in some random way de-

pending on the method. The history and the review of Monte Carlo methods together

with further references can be found in [51]. We will sketch here the most common

examples.

1.3.2 Stochastic ray tracing

Stochastic1 ray tracing introduced by R. Cook in 1984 [5] is a method whereinstead of

one ray per reflection, refraction or light source, a bundle of random rays is generated.

It is illustrated on Figure 1.2. At each intersection point this method generates many

rays for which it is called recursively. At the cost of tracing a large number of rays it

calculates effects which would be otherwise missing in a classical solution.

To implement spatial light sources and soft shadows we stochastically sample the

light sources. For each point to be shaded, a certain number of rays is “fired” to-

wards each of the light sources. The target points on the surface of a light source are
1formerly called distributed ray tracing, but this notion can be misleading suggesting parallel pro-

cessing in distributed environments

14

view point

virtual screen

reflected rays

shaded point

shadow rays

spherical light source

primary ray

Figure 1.2: Stochastic ray tracing

15

distributed randomly implementing some kind of Monte Carlointegration method to

estimate the correct size of the visible solid angle.

To get correct multiple reflections we replace one specularly reflected ray with mul-

tiple reflected rays which are usually generated using importance sampling according

to the chosen local reflectance model described by the BRDF function (bidirectional

reflectance distribution function).

1.3.3 Photon tracing and photon maps

The classical ray tracing as well as the stochastic method described above trace rays in

the direction reverse to the direction of light propagation. It is simpler to realize since

the rays are traced backwards taking into account what is seen by the observer.

Photon tracing method [26] uses the idea to trace light propagation in its physically

correct direction. Some kind of importance sampling has to be used to guide the rays

to the visible regions of interest. Photon tracing method was studied by Pattanaik in

[41, 42, 43]. Photons are shot from the light sources and are traced into the scene.

This is the phase of shooting. Then photons are stored in the scene where they are

reflected or absorbed. Based on this information the global illumination solution is

calculated by density estimation methods [49]. To estimateillumination in the given

point we collect information about photons and energy from aneighbourhood of this

point. If we collect more photons from a larger region we get asmooth solution but

it is biased e. g., sharp shadows can become fuzzy. On the other hand taking a small

neighbourhood results in bigger level of noise due to stochastic nature of the algorithm.

One of the methods is the photon maps developed by Jensen [25]. Photons are

stored in the spatial kd-tree structure. This data structure allows to efficiently collect

neighboring photons.

1.3.4 Bidirectional path tracing

The method explored by E. Lafortune et al. [32, 33] traces rays from both directions as

it is shown on Figure 1.3. It constructs paths of photons fromlight sources and at the

same time traces rays from the observer. It connects these paths and calculates light

transports what gives global illumination solution. This method is expensive but it is

more flexible than others. The other methods which trace the paths either only from

16

view point

virtual screen

spherical light source

shadow rays

primary ray

light path

eye path

Figure 1.3: Bidirectional path tracing

17

the observer or only from light sources are special cases of bidirectional path tracing.

Vertices of these two paths are connected by shadow rays. Each shadow ray is traced

checking mutual visiblity of its end points. A very big number of shadow rays is one

of the factors responsible for the cost of this method. In fact if we have the light path

with n vertices and the eye path of withm vertices then we have to check then·m
2

shadow rays.

1.4 Acceleration techniques

Any method based on ray tracing principle has to be efficient in shooting rays and

finding their intersections. Therefore the algorithms finding intersections for different

types of objects should be efficient and have to be well tuned.Efficiency was always

a critical issue for ray tracing. Therefore many acceleraton techniques have been de-

veloped. They are presented in the book [14] with detailed references. Here we will

shortly recall these techniques.

Typical scenes consists of small objects and it is very probable that for a small

object a given ray does not hit it. Therefore one of the first ideas was to enclose the

groups of objects and more complex objects in so called bounding volumes. These

are objects like spheres or boxes for which fast ray intersection algorithms exist. Now,

the ray can be tested against such a bounding volume, and onlyif the ray hits the

bounding volume the ray intersection with the objects inside the bounding volume has

to be calculated.

The obvious extension is to enclose several bounding volumes in a bigger one

creating a hierarchy of bounding volumes. This can give a significant reduction of

the number of intersection tests and it is necessary for scenes with a huge number of

objects. Such hierarchies are also called acceleration structures and are constructed on

the base of data structures like octrees [15], BSP-trees [27] or kd-trees. They have to

be optimized so that finding the objects which the ray can potentially intersect is fast.

Therefore in construction of acceleration stuctures different heuristics are used. The

comparison of different methods can be found in [18].

Uniform and nonuniform grids are also used to accelerate raytracing (e. g., [13]).

They divide space into rectangular regions in which the information about all objects

intersecting the region is kept. The ray traverses the grid and for each grid element

the objects kept there are checked whether they intersect the ray. In this method only

objects in visited grid elements are checked.

18

The methods mentioned above use object space coherence. Using coherence of

rays is less common. The few examples of this technique are the light buffer method

developed by Haines and Greenberg [17] for shadow rays and the ray coherence method

of Ohta and Megawa [39]. These methods reduce the cost but do not completly remove

the need to trace each ray. Another approach in this context is the use of generalized

rays, like cone tracing [2] or beam tracing [20]. However, since more complex geo-

metric entities like cones or general pyramids are used, these methods often apply to

quite restricted set of primitive objects and they require special intersection algorithms.

Therefore they are not widely used.

Currently the best algorithms together with carefully designed implementations

make it possible to render the images interactively [52].

1.5 Shadows

Realistic shadow generation plays an important role when producing computer gen-

erated images. The human observer is accustomed to see shadows in an illuminated

scene in the real world, so shadows should be present in a computer generated image.

If there are no shadows, or only sharp shadows where they are unappriopriate, the im-

age is perceived as artificial. Moreover, shadows enhance the perception of the third

dimension in the two–dimensional image [53].

The computation of shadows is a very expensive task for everyrendering algorithm.

Many simple rendering programs model light sources as mathematical points without

any three-dimensional extension. Such light sources causesharp shadows, because the

shadow calculation reflects a step function: a point to be displayed is either in shade or

in light (as long as we do not consider indirect illuminationthrough diffuse or specular

reflection on surfaces).

In real environments, however, the transition from illuminated to non-illuminated

regions is smooth. A point is in shade respective to a certainlight source when an

obstacle totally occludes the light source. In other words,if any ray starting at the

point and going towards the light source intersects an opaque surface before it reaches

the surface of the light source. Conversely, a point is in light respective to a certain

light source when the light source is entirely visible from the point. Penumbra occurs

when an obstacle partially occludes the light source, allowing only a subset of the

rays to reach the light source. Adding penumbras or so-called soft shadows makes

19

the problem of shadow generation more complex. A survey of different techniques is

given e. g. in [56].

Stochastic ray tracing is very easy to implement and delivers images of very high

quality. However, it is computationally expensive. For each intersection point found

in the scene, a large number of rays is sent towards all light sources. If we sample the

visible solid angle of a light source withd rays per point without any enhancement,

the run time to trace the shadow rays is roughlyd times larger than the run time in

ordinary ray tracing that generates sharp shadows. To achieve good image quality, the

value ofd should depend on the size of the light source; values ofd ≥ 50 are often

necessary. Several approaches are available to speed up stochastic ray tracing. The

most important are the shadow buffer and importance sampling.

The shadow buffer, as introduced in [17] and extended in [44], is very important in

stochastic ray tracing for penumbra. Because we send several rays from the same point

to the same light source an object cached in the buffer is likely to serve as occluding

object for many rays. However, the shadow buffer does not exhibit such a large im-

provement as one might expect at the first sight. Many rays forpenumbra calculation

pass close to the objects but they do not hit the objects. The shadow buffer is best to

speed up tracing rays that actually hit objects. Thus, roughly speaking, only half of the

rays sent out in a penumbra can profit from the shadow buffer. For points outside of

any shadow region, there is no advantage of the shadow buffer.

Another method which uses importance sampling to reduce thenumber of rays

sent out per point is presented in [31]. In this method rays are only traced in “im-

portant directions” that provide the main information necessary for adequate shading.

However, one has to take care that the samples are generated properly to estimate the

appropriate solid angle as seen from the point and to avoid adding too much noise to

the image. The number of rays sent out can depend on the distance of the light source,

their contributions to the illumination of the point, and some other parameters which

depend on the geometry. For instance, the angle between the normal vector of a planar

light source and the direction of the shadow rays can have an impact on the number of

sample rays sent towards that light source.

Two other ideas to speed up tracing rays towards linear or planar light sources are

described in [47, 3], see [55] for overview. To decrease the amount of work to be done,

the candidate list of objects possibly intersected by the shadow rays is confined to the

objects actually intersecting the cone from the point toward the area light source. The

candidate list is generated dynamically. The approach can be seen as a special form of

20

cone tracing [2] with shadow caching. An object is discardedwhen it does not intersect

the light cone and it is put into the cache if it does.

Shadow photon map [24] is yet another method to calculate shadows efficiently in

the context of photon tracing. The generation of soft shadows in image based rendering

has been studied by [1] and [28]. There has been also some works to enable real time

generation of soft shadows using graphical hardware e. g., [21, 19]. Although they

often use similar ideas these solutions are out of scope of this work.

The method similar to ours has been later proposed independently by S.Parker et

al. [40]. It uses some approximation of the soft shadow instead of slower but exact

calculation. Their test for penumbra region detection is less general and more costly

to implement than ours since it requires the intersection algorithms for all the objects

to return also the minimal distance from the ray when it does not hit the object which

is not required in our solution.

21

Chapter 2

Preliminaries

“It always happens, said the Gnat.”

Lewis Carroll — Through The Looking Glass

We denote the set of real numbers byR. We will use the notationR(p, q) for the set of

points of the ray segment which starts at the pointp ∈ R
3 and ends at the pointq ∈ R

3.

For a given ray segmentR(p, q) we can define it in parametric form

R(t) = p + t(q − p) for t ∈ [0, 1] (2.1)

The distance between two pointsp andq we will write asd(p, q). The closed ball

centered at the pointC and with radiusd will be denoted byB(C, d).

We will denote the derivative of a functionf(t) by ∂tf(t) and partial derivatives

in the same way e. g., for functiong(u, v) we have partial derivatives∂ug(u, v) and

∂vg(u, v).

2.1 Bézier curves, surfaces and volumes

For representing three–dimensional objects we can use primitives like spheres, cones

or cylinders or we can use simple point, line and face representations like polygo-

nal meshes. However, these representatons are not perfect for smooth surfaces, more

complex than sphere or plane. Parametric surfaces are used there and they are widely

applied in computer aided design.

22

Bézier representation is fundamental for piecewise polynomial and rational para-

metric curves and surfaces. It was developed in late sixtiesfor use in automobile

industry independently by Pierre Bézier at Renault and by Paul de Casteljau at Cit-

roen. They also presented the main properties of these objects. There are also other

representations of curves ansd surfaces e. g., B–splines, Beta–splines, NURBS, Coon

patches. We shall limit our research to rational Bézier surfaces which are general

enough and very flexibile. They are also the most numericallystable ones as it was

recently proved. More details about parametric curves and surfaces can be found in

books [7] and [22].

In this section we define Bézier curves and surfaces using thenotion of Bernstein

polynomials and we will recall their basic properties. We shall use the notion of para-

metric curves for the functions having one dimensional domain independently of the

dimension of the function range. The functions with two dimensional parameter do-

main we will call parametric surfaces and the functions having three dimensional do-

main we will call parametric volumes. We will also consider the surfaces and volumes

which have one–dimensonal range i. e., their values are not points inR
k but numbers

on the lineR
1.

Definition 2.1 (Bernstein Polynomials)For a given integern there aren + 1 Bern-

stein polynomialsBi,n(t), for i = 0, 1, . . .n, defined by :

Bi,n(t) =

(

n

i

)

ti(1 − t)n−i (2.2)

Property 2.2 For Bernstein polynomials the following properties hold.

B0,n(t) + B1,n(t) + . . . + Bn,n(t) = 1 (2.3)

Bi,n(t) ≥ 0 for t ∈ [0, 1] (2.4)

Bi,n(t) = tBi−1,n−1(t) + (1 − t)Bi,n−1(t) (2.5)

∂tBi,n(t) = n (Bi−1,n−1(t) + Bi,n−1(t)) (2.6)

Definition 2.3 (Bézier Curve) Let us consider a set of control points{Pi : i = 0, 1, . . . n}

in k–dimensional spaceRk. We defineBézier curve of degreen by :

C(u) =

n
∑

i=0

Bi,n(u)Pi, for u ∈ [0, 1]. (2.7)

23

Definition 2.4 (Bézier Surface) Let us consider a matrix of control points{Pij : i =

0, 1, . . .m, j = 0, 1, . . . n} in k–dimensional spaceRk. We defineBézier surface of

degree(m, n) as follows:

S(u, v) =

m
∑

i=0

n
∑

j=0

Bi,m(u)Bj,n(v)Pij, for u, v ∈ [0, 1]. (2.8)

We extend the definitions of Bézier curves and surfaces to three parameters and we

present here the new notion of Bézier volumes.

Definition 2.5 (Bézier Volume) Let us consider a set of control points{Pijh : i =

0, 1, . . .m, j = 0, 1, . . . n, h = 0, 1, . . . p} in k–dimensional spaceRk. We define

Bézier volume of degree(m, n, p) as follows:

V (u, v, t) =

m
∑

i=0

n
∑

j=0

p
∑

h=0

Bi,m(u)Bj,n(v)Bh,p(t)Pijh, for u, v, t ∈ [0, 1]. (2.9)

Now, we will recall some fundamental properties of Bézier curves and surfaces

which also extend to Bézier volumes. Let us start with the convex hull property which

gives simple means to determine the location of the object. From Equations (2.3) and

(2.4) for Bernstein polynomials we have immediately the following.

Property 2.6 (Convex Hull Property) Bézier curve or surface is included in the con-

vex hull of the set of its control points.

To refine the geometry of the curve we want to have the subdivision algorithm.

That is we want to split the parametric Bézier curve into two pieces also represented

as the Bézier curves. The algorithm invented by de Casteljauis the most fundamental

and surprisingly simple. Due to its geometric nature it is very intuitive and numerically

stable. We can derive it from definition of Bézier curve and Properties 2.2. It constructs

the control points of the new curves and is illustrated in Figure 2.2.

Property 2.7 (De Casteljau Algorithm for Curves) Consider Bézier curveC(t) based

on points{Pi : i = 0, 1, . . . , n}. We define auxiliary points using midpoint calcula-

tions as follows

Pi,0 = Pi (2.10)

Pi,j =
1

2
(Pi,j−1 + Pi+1,j−1) , for j > 0 (2.11)

24

P

P

P

P

0

1

2

3

C(t)

Figure 2.1: Convex hull property

Than the Bézier curvesC1(t) and C2(t) based respectively on control points{P0,i :

i = 0, 1, . . . , n} and{Pi,n−i : i = 0, 1, . . . , n} compose the original curve (fort ≤ 0.5

we haveC(t) = C1(2t) and fort ≥ 0.5 we haveC(t) = C1(2t−1)) Therefore we have

subdivided the original curve into two curves of the same degree. They correspond to

parameter intervals[0, 0.5] and [0.5, 1] of the curveC(t).

P

P

1

2

P

P

P

PP

0,1

1,1

2,1

1,2

0,2
0,3P

0P
P3 = P

 = P
0,0

3,0

C (t)
C (t)1

2

Figure 2.2: De Casteljau subdivision algoritm

The subdivision algorithm for a Bézier curve of degreen requiresn(n+1)
2

midpoint

calculations. The cost of one midpoint calculation dependsquadratically on the di-

mension of control points.

De Casteljau subdivision algorithm extends to surfaces andvolumes. For a surface

based on points{Pij : i = 0, 1, . . .m, j = 0, 1, . . . n} we split its parameter domain

25

[0, 1]× [0, 1] into four subdomains[0, 0.5]× [0, 0.5], [0, 0.5]× [0.5, 0], [0.5, 0]× [0, 0.5]

and [0.5, 0] × [0.5, 0]. Using de Casteljau algorithm for curves we obtain the con-

trol points of new Bézier surfaces corresponding to the above written domains of the

original surface.

We use de Casteljau algorithm for curves to divide for, eachi = 0, 1, . . . , m the

curve based on points{Pij : j = 0, 1, . . . , n} into two curves. This defines subdivision

of the surface along one parameter direction. We obtained two sets of control points

which define two new Bézier surfaces. Repeating this procedure for both these surfaces

along the other direction will give us as a result subdivision of the original surface into

four Bézier surfaces. The cost of the subdivision of the given degree(m, n) surface is

equal to the cost ofm + 1 subdivisions of degreen curves and2(n + 1) subdivisions

of degreem curves what gives the total cost of:

(m + 1)
n(n + 1)

2
+ 2(n + 1)

m(m + 1)

2
=

1

2
(m + 1)(n + 1)(n + 2m)

If m 6= n the cost depends on the choice of the first split direction.

Using similar procedure we can divide a Bézier volume along each parameter di-

rection into two subvolumes defined by the control points obtained by de Casteljau

algorithm from the original control points of the Bézier volume. Dividing in this way

a volume along all three parameter directions we obtain eight subvolumes.

2.1.1 Bézier operations

We will show how to calculate control points of objects obtained by simple arithmetic

operations on Bézier volumes.

Fact 2.8 (Addition and difference of Bézier volumes)Let F (u, v, t) and G(u, v, t)

be Bézier volumes of degree(m, n, p) defined by pointsFijh and Gijh respectively.

ThenF (u, v, t)+G(u, v, t) andF (u, v, t)−G(u, v, t) are Bézier volumes of the same

degree(m, n, p) defined by pointsFijh + Gijh andFijh − Gijh respectively.

Fact 2.9 (Multiplication of Bézier volume by a number) Let F (u, v, t) be a Bézier

volume of degree(m, n, p) defined by pointsFijh and letd ∈ R. Thend · F (u, v, t) is

a Bézier volume of the same degree(m, n, p) defined by pointsd · Fijh.

26

Proposition 2.10 (Multiplication of Bézier surfaces) LetF (u, v) andG(u, v) be Bézier

surfaces of degree(m, n) defined by pointsFij andGij respectively. ThenH(u, v) :=

F (u, v) · G(u, v) is a Bézier volume of degree(2m, 2n) defined by pointsHrs :

Hrs =
∑

i+k=r

∑

j+l=s

(

m

i

)(

m

k

)

(

2m

i+k

)

(

n

j

)(

n

l

)

(

2n

j+l

) FijGkl (2.12)

Proof. Using Definition 2.4 of Bézier surface we have

F (u, v)G(u, v) =

(

m
∑

i=0

n
∑

j=0

Bi,m(u)Bj,n(v)Fij

)(

m
∑

i=0

n
∑

j=0

Bi,m(u)Bj,n(v)Gij

)

=
m
∑

i=0

n
∑

j=0

m
∑

i=0

n
∑

j=0

(

m

i

)(

m

k

)

ui+k(1 − u)2m−(i+k)

(

n

j

)(

n

l

)

vj+l(1 − v)2n−(j+l)FijGkl

=

m
∑

i=0

n
∑

j=0

m
∑

i=0

n
∑

j=0

(

m

i

)(

m

k

)

(

m+m

i+k

)

(

n

j

)(

n

l

)

(

n+n

j+l

) Bi+k,2m(u)Bj+l,2n(v)FijGkl

�

We will be also interested in taking square of Bézier volume of degree(m, n, 1). We

can represent such a Bézier volumeF (u, v, t) as the sum of Bézier surfaces of degree

(m, n) as follows.

F (u, v, t) = (1 − t) · S0(u, v) + t · S1(u, v)

In that case to calculateH(u, v, t) = F (u, v, t)2 we can write

F (u, v, t)2 = ((1 − t)S0(u, v) + t(S1(u, v))2 =

= (1 − t)2S0(u, v)S0(u, v) + (1 − t)t · S0(u, v)S1(u, v) + t2S1(u, v)S1(u, v)

From the above equation we can see the following correspondence of control points:

control points of the surfaceS0 · S0 are the pointsHij0, control points of the surface

2 · S0 · S1 are the pointsHij1 and control points of the surfaceS1 · S1 are the points

Hij2. Therefore we have the following corollary.

Corollary 2.11 (Square of Bézier volume of degree(m, n, 1)) Let F (u, v, t) be the

Bézier volume of degree(m, n, 1) defined by pointsFijk. ThenH(u, v, t) = F (u, v, t)2

27

is a Bézier volume of degree(2m, 2n, 2) defined by control pointsHrst as follows.

Hrs0 =
∑

i+k=r

∑

j+l=s

(

m

i

)(

m

k

)

(

2m

i+k

)

(

n

j

)(

n

l

)

(

2n

j+l

) Fij0Fkl0

Hrs1 = 2 ·
∑

i+k=r

∑

j+l=s

(

m

i

)(

m

k

)

(

2m

i+k

)

(

n

j

)(

n

l

)

(

2n

j+l

) Fij0Fkl1

Hrs2 =
∑

i+k=r

∑

j+l=s

(

m

i

)(

m

k

)

(

2m

i+k

)

(

n

j

)(

n

l

)

(

2n

j+l

) Fij1Fkl1

From Equation 2.6 we can compute the derivative of a Bézier curve.

∂t

(

n
∑

i=0

Bi,n(t)Pi

)

=

n−1
∑

i=0

Bi,n−1(t) n(Pi+1 − Pi) (2.13)

Thus we have the following fact.

Fact 2.12 (Partial derivatives of Bézier volumes)If F (u, v) is a Bézier volume of

degree(m, n, p) based on pointsPijk then∂uF (u, v, t) is a Bézier volume of degree

(m−1, n, p) based on the pointsRijk = m(Pi+1,j,k−Pijk) and∂vF (u, v, t) is a Bézier

volume of degree(m, n − 1, p) based on the pointsTijk = n(Pi,j+1,k − Pijk).

2.1.2 Regular surfaces and normal vectors

The normal vector is a vector of unit length which is orthogonal to the surface in a

given point. We shall give a formula defining it for regular surfaces. Therefore let us

start with a definition.

Definition 2.13 (Regular Surface)A parametric surfaceS(u, v) is regular in its do-

main if for each point(u, v) of the domain the partial derivatives∂uS(u, v) and

∂vS(u, v) are not equal to zero and are not collinear.

For a regular parametric surfaceS(u, v) we can define normal vector as follows. The

partial derivatives of the surfaceS(u, v) in u andv directions are the vectors tangent

to the surface. Therefore by the definition of the vector product (denoted here by×)

we have:

28

Definition 2.14 (Normal Vector) For a regular parametric surface

S(u, v) : [0, 1] × [0, 1] → R
3

the vector

n(u, v) = ∂uS(u, v) × ∂vS(u, v)

is unnormalized orthogonal vector to the surface in the given point. We define the

normal vector to the surface in a point(u, v) as:

N(u, v) =
n(u, v)

||n(u, v)||

2.1.3 Rational Bézier surfaces

Definition 2.15 (Rational Bézier Surface)We defineA rational Bézier surface of de-

gree(m, n) is a parametric surface defined by:

S(u, v) =

(

X(u, v)

W (u, v)
,

Y (u, v)

W (u, v)
,

Z(u, v)

W (u, v)

)

(2.14)

whereX(u, v), Y (u, v), Z(u, v), W (u, v) are Bézier surfaces of degree(m, n) with

the one–dimensional range.

To calculate the normal vector of a parametric surface it is sufficient to have well rep-

resentated unnormalized vector orthogonal to the surface.It is constructed by means

of partial derivatives and vector product. Following Boehm(see [4]) we represent it as

a polynomial Bézier surfacen(u, v) of degree(3m − 1, 3n − 1) with vector values

n(u, v) = (nx(u, v), ny(u, v), nz(u, v))

where

nx = (∂uY ∂vZ−∂vY ∂uZ)W +(∂vY Z−Y ∂vZ)∂uW +(Y ∂uZ−∂uY Z)∂vW

ny = (∂uZ∂vX−∂vZ∂uX)W +(∂vZX−Z∂vX)∂uW +(Z∂uX−∂uZX)∂vW

nz = (∂uX∂vY −∂vX∂uY)W +(∂vXY −X∂vY)∂uW +(X∂uY −∂uXY)∂vW

To shorten the formulas above we have skiped function parameters, and we have

writtenX for X(u, v), Y for Y (u, v), and so on. Using equations above we can repre-

sentn(u, v) as a Bézier surface by calculating its control points.

29

2.2 Minkowski operators and offsets

2.2.1 Minkowski operators

We shall study regions that consists of points that are closeto given objects or included

in these objects. For this purpose we shall define expansionsand shrinking of objects

using Minkowski operators. In our method we shall apply these operations for original

objects casting shadows in a geometric scene.

Minkowski operators (e. g., [29]) provide a convenient way to express arithmetic

operations on sets.

Definition 2.16 (Minkowski Sum and Difference) For two subsetsA and B of R
k,

Minkowski sumanddifferenceare defined as:

A ⊕ B = {a + b : a ∈ A, b ∈ B} , (2.15)

A 	 B = {a − b : a ∈ A, b ∈ B} . (2.16)

We shall use also scaling of a set by a scalar. We shall call it the Minkowski scaling.

Definition 2.17 (Minkowski Scaling) For a subsetA of R
k and a realc, Minkowski

scalingis defined as:

c · A = {c · a : a ∈ A} (2.17)

We shall use the notion of a star convex set, which is a weakening of the notion of

a convex set.

Definition 2.18 (Star Convex Set)We say that a subsetA of R
k is star-convexwith

respect to a pointc ∈ A if for any pointp ∈ A the segmentR(c, p) is included in

A, i. e., if each point ofA can be connected to the pointc, called a center ofA, by a

segment included inA.

2.2.2 Solid offsets

Solid offsetting of sets is an expansion operation (see [8, 48]). It is a special case of

using Minkowski operators.

30

Definition 2.19 (Solid offset) Let B(p, d) denote the ball with the centerp of radius

d. The solid offset of the setQ with the distanced ≥ 0 is defined by:

Od(Q) = Q 	 B(0, d) = Q ⊕ B(0, d) . (2.18)

We can use either	 or⊕ since the ballB(0, d) is symmetric with respect to the point

0. The idea is illustrated in Figure 2.3. The notion of a solid offset can also be defined

as follows.

Original object

Figure 2.3: Solid offsetting operation

Proposition 2.20 (Solid Offset)For an objectQ and a distanced, a solid d-offset

Od(Q) consists of the points that are not farther thand fromQ, i. e.,

Od(Q) = {p : ∃ q ∈ Q : d(p, q) ≤ d} . (2.19)

The solid offsets define the operation of expanding objects.We can also use similar

method to define shrinking of objects. LetA denote the set complement ofA.

A = {x : x /∈ A}. (2.20)

We define negative solid offset as follows.

Definition 2.21 (Negative solid offset)Let B(p, d) denote the ball with the centerp

of radiusd. The negative solid offset of the setQ with the distanced ≥ 0 is defined by:

Ud(Q) = Q 	 B(0, d) (2.21)

31

2.2.3 Offsets curves and surfaces

In the context of extending parametric surfaces by solid offsetting we shall define offset

surfaces. They are surfaces on the the boundary of the solid offset of a parametric

surface. The idea of offsets1 was already introduced by Leibniz [30] for curves. Offsets

are are important tools in robotics, computer aided geometrical design, geometrical

optic and tolerance analysis (see [48]).

In machine milling the path of the cutter lies on the offset ofthe surface. Therefore

calculation and interrogation of offsets is used in many places in numerical controled

machine milling. Another application is configuration space approach used in robotics.

To realize collision avoidance we use the model of the robot shrinked to the point,

extending obstacles by offseting instead.

Definition 2.22 (Offset Curve) For a planar curveC(t) with the well defined nor-

malized orthogonal vectorN(t) we define the offset curve at the distanced as:

Cd(t) = C(t) + d · N(t) (2.22)

It is a displacement of the original curve in the direction ofthe normal vector.

Figures 2.4 and 2.5 show examples of offset curves to parabolic and quadratic

curves.

Definition 2.23 (Offset Surface)For a regular progenitor surfaceS(u, v) we define

the offset surface at the distanced as:

Sd(u, v) = S(u, v) + d · N(u, v) (2.23)

It is a displacement of the original surface in the directionof the normal vector.

Chapter 15 of the book [22] gives the basic properties of offsets. The survey of

main properties of offset curves can be also found in [10] and[11]. The results on

approximation of offsets are presented in [6, 23, 9].

The offsets are much more complicated than the original curves or surfaces and

usually do not belong to the same class as their progenitors (offsets of cubic curves

are not cubic in general). Generally, even for simple polynomial curves and surfaces
1also called parallel curves and surfaces

32

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-1.5 -1 -0.5 0 0.5 1 1.5

original parabola
offset with d= 0.5
offset with d= 1.0
offset with d=-0.5

Figure 2.4: Offsets to parabola

their offsets are not rational and they are inherently more complex than the progenitor

surfaces. As it can be seen on Figures 2.4 and 2.5 even for simple shapes offset curves

have self–intersections. The same concerns offset surfaces. It happens when an offset

distance is greater than the curvature radius of the curve orsurface.

There are classes of rational surfaces with rational offsets. An example of such a

subclass of rational Bézier surfaces which have rational Bézier offsets has been intro-

duced in [46]. If we restrict ourself to such a class of surfaces the shapes of offsets

are more simple and the cost of offseting operation becames smaller. However, in that

case we can use only a small class of surfaces.

One of the basic algorithmic problems is finding intersection of an offset with a

ray segment. It is used in collision detection in robotics, in machine milling, and for

rendering an offset. An intersection algorithm of an offsetof a polynomial Bézier

surface with a ray was presented in [50]. It was also used to visualize offsets using the

ray tracing method. The algorithm presented in chapter 5 (see also [37]) is substantially

faster and works for rational surfaces as well.

33

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

original quadratic curve
offset with d= 0.25
offset with d= 0.50
offset with d=-0.25
offset with d=-0.50

Figure 2.5: Offsets to quadratic curve

34

Chapter 3

Exploiting ray coherence

“It’s my own invention.”

Lewis Carroll — Through The Looking Glass

Spatial coherence of objects is commonly used in acceleration structures to make the

ray tracing algorythm efficient. It is less common in ray tracing to exploit also spatial

coherence of rays (see Section 1.4). Methods which use the coherence of rays limit the

number of objects against which a ray has to be tested but theydo not remove the need

for separate ray tests. The cost of calculation of intersections is therefore reduced but

each ray is tested for an intersection with a scene. Althoughthe acceleration structures

are used and the ray is not tested against many objects the total cost is significant.

The lemmas here present the general background how to check the visibility of a

group of coherent ray segments in the cost of tracing a singleray segment. Therefore

by tracing the single ray segment, in the cost reduced by any classical acceleration

methods, we get the answer for the whole group of rays. Usage of the method is

somehow limited to testing only visibility along the ray without calculation of first

intersection. However, it can be used with most of other acceleration methods like

grids, octrees, BSP-trees, kd–trees or hierarchical bounding boxes (see [14]) to further

reduce their time requirements.

3.1 Rays with one common origin

Recall that there are three kinds of rays. Primary rays have origin in the eye of the

observer. Reflected rays have origin at any point in the sceneand either hit arbitrary

35

point in the scene or go to infinity. Shadow rays originate in the point we are shading

and have the other end points in light sources.

After reflection the rays loose coherence therefore we are not interested in reflected

rays. The other cases worth examinination are as follows.

Shadow rays For non–point light sources we stochastically sample them to approx-

imate the visibility angle. Therefore we have the family of rays with common

point which we are shading. The other ends of rays belong to the light source so

they are spatially coherent.

Primary rays We have the group of rays with the same origin and which can be gen-

erated coherently. However, the usage of the method here would be limited since

in most of the cases rays intersect the scene. Therefore testing if the bundle of

rays is not obstructed is less efficient. It will not eliminate the need for separate

ray intersection tests and the calculation of hit points in most of the cases. An-

other weak point is that we do not know the ends of ray segmentsin advance,

although we can construct them on the base of the bounding boxof the scene.

There are also specialized methods for speeding up the first hit intersection.

We propose the method in the case of rays with common origin. It is based on

following lemma which is illustrated in Figure 3.1. When we apply it to speed up

stochastic sampling of area light sources the setL will denote the light.

Lemma 3.1 Let L be a set star-convex with respect to a pointc ∈ L. If a ray R(c, p)

does not intersectQ 	 (L 	 {c}) then for eachl ∈ L the rayR(l, p) is not occluded

(shadowed) byQ.

Proof. (by contradiction) LetC =
⋃

x∈L R(x, p) denote the visibility cone of the

set L as seen from pointp. If there would be a rayR(l, p) obstructed byQ then

C ∩ Q 6= ∅ but since the setL is star-convex respective to the pointc we haveC ⊂

R(c, p)⊕ (L	{c}). Thus, we have(R(c, p) ⊕ (L 	 {c}))∩Q 6= ∅ which means that

there are pointsr ∈ R(c, p), l ∈ L, andq ∈ Q such thatr + (l − c) = q. But this is

equivalent tor = q− (l−c) which means thatR(c, p)∩ (Q 	 (L 	 {c})) 6= ∅. Hence,

the ray does intersect the expanded object.

�

36

l

solid offset of

the ray segment

p

the obstacle

solid offset of

q

Q − obstacle

s

L − light source

c

S − surface

Figure 3.1: Not-in-shade condition for spheres.

37

Let us assume that the setL is a ball of radiusd. With the notion of solid offsets,

we obtain that the bundle of ray segments starting inp and having the other endpoint in

L is not obstructed by an objectQ if the rayR(c, p) does not intersect the solid offset

Od(Q).

3.2 Rays with coherent origins

We can use the same framework as for rays with common origin for exploiting coher-

ence of general shadow rays. That is, for those ray segments that we only test whether

they are occluded or not. In bidirectional path tracing method we get large number

of shadow rays between two paths. This method is feasible in that case. However,

we have to cache the shadow rays and group them for testing. Let us assume that we

have the set of rays with origins in the ballsA andB of radiusd. Then we can also

guarantee that none of the rays is occluded byQ if the rayR(p, q) does not intersect

Q increased byOd offsetting. The following lemma is illustrated by Figure 3.2.

q

p

solid offset of
the obstacle

Q − obstacle

solid offset of
the ray segment R(p,q)

Figure 3.2: Bundle of coherent rays.

38

Lemma 3.2 Let p, q ∈ R
3, and letd ∈ R, d > 0. If the rayR(p, q) does not intersect

Q 	 B(0, d) then for eachr ∈ B(p, d), and eachs ∈ B(q, d) the raysR(r, s) do not

intersectQ.

Proof. (by contradiction) Assume that rayR(r, s) is obstructed byQ. Then since

R(r, s) ⊂ R(p, q) ⊕ B(0, d)

we have

(R(p, q ⊕ B(0, d)) ∩ Q 6= ∅.

This is equivalent to

R(p, q) ∩ (Q 	 B(0, d)) 6= ∅,

which contradicts the assumption of the lemma.

�

Using this lemma we can trace at once the whole bundle of rays which have both

the starting and ending points coherent and included in respective balls of a given

radius. To check that none of the rays is obstructed by an object Q from the scene we

test just one ray in extended scene, only if the test fails then we have to do the normal

tests for each ray, or try the test once again for a smaller bundle of rays. If the test

succeeds we are oftenn times faster, wheren is the number of rays in a bundle, since

the cost in most of the cases is the same.

39

Chapter 4

Fast penumbra method

“He did his very best to make

The billows smooth and bright —

And this was odd, because it was

The middle of the night.”

Lewis Carroll — Through The Looking Glass

We present a fast method to generate penumbras which avoids unnecessary calcula-

tions. It is based on stochastic ray tracing (see Section 1.3.2). There are no severe

restrictions on the shape of the objects or the light sources. However, certain types

of objects and light sources will allow faster rendering times. The main idea is to

detect possible regions where penumbra occurs and to confinethe expensive process

of stochastic sampling of spatial light sources to those regions. Lemma 3.1 gives a

condition, such that if it holds for a point we are shading, then we know that the light

source is fully visible. Therefore we can skip tracing shadow rays and directly calcu-

late illumination at this point.

4.1 Overview of the algorithm

We shall first describe our algorithm in a world of spheres. Wemodel both the light

sources and the objects as simple spheres. Figure 4.1 shows ascene where a light

sourceL casts a shadow on the surfaceS because the light is occluded by the object

Q. The umbra and the penumbra compose the entire shadow. The basic idea of the al-

gorithm to speed up penumbra calculation is very simple. We detect penumbra regions

40

and employ expensive calculations only when it is necessary. The detection is based

on the following observation. If we shrink the light sourceL to a point and, at the

same time1 , increase the occluding objectQ by the radius ofL, then the true shadow

volume is a subset of the approximate shadow volume. This depends neither on the

radius ofL nor on the distance betweenL andQ or L andS.

Lemma 3.1 gives the theoretical background for the general case. Description

of the expansion is given by Minkowski operators. Lemma 3.1 also guarantees that

the algorithm can work with objects and light sources of arbitrary shape and renders

correct images.

shadow

penumbra

umbra

L - light source

Q - object

confined region

S - surface

Figure 4.1: Shadow classification.

Once we have confined the shadow, we can employ analytical models or stochastic
1It is worth mentioning that the approach of using Minkowski operators on the objects of the ge-

ometric data set is also known in motion planning as a “configuration space approach” [29]. There,

C-obstaclesare defined that confine the areas which cannot be reached by a center point of a robot.

Motion planning is performed in many stages of the algorithmonly with this center point, so not the

entire possibly complex robot must be considered in large areas of the environment.

41

ray tracing to sample the solid angle under which the light source is visible. Outside

of the confined region we can skip this step since we know that the light source is fully

visible. The following discussion is restricted to stochastic ray tracing which is used

in our implementation.

For the ray tests which confine the region of penumbra we need the special scene

with extended objects. Therefore we perform ray tracing in two different data sets. The

“geometric” data set contains the environment as usual; the“shadow” data set contains

the shrunken light sources and the increased objects. We determine in the shadow data

set whether a given point belongs to a shadow region or not, i.e., shadow rays are

initially traced in the shadow data set. If the point is in light, we apply the appropriate

illumination model. If the point is found to be in shade, we start stochastic ray tracing

in the geometric data set. As a further optimization, we detect umbra regions with a

similar approach confining further the penumbra region (seeSection 4.6).

Because there are two data sets, the memory requirements of the algorithm are at

most twice as high as those of the the underlying ray tracing algorithm without the soft

shadow enhancement. However, in the second set we only have to store the bounding

volumes and the data structure used to accelerate ray tracing (grid, octree, or whatso-

ever). An intersection test in case of a bounding volume testin the shadow data set

can be performed with an expanded object using its original geometrical description.

The next section describes this concept in more detail. Discussion of the details of the

algorithm follows.

4.2 Multiple light sources

Our method can handle multiple light sources. We create for each spatial light source

the additional scene in which we perform the test for given shadow rays. We can

also create just one expanded scene for all shadow ray tests taking into account the

biggest expansion. If the light sources are of the similar size taking only one scene is

as efficient as multiple ones and is less memory consuming.

As it is shown in Figure 4.2 we can use only the biggest expansion which is marked

with dotted circles. In our implementation when more than one light source is present,

we increase all objects by the maximum amount required by allthe light sources. We

use just one additional shadow scene.

42

Light A

Light B

expansions

shaded point

Figure 4.2: Multiple lights.

4.3 How to expand ?

Minkowski operators and offsets are hard or costly to evaluate in the general case.

However, the not-in-shade condition is the base for many ideas to calculate bounding

boxes or approximations of expanded objects.

Lemma 3.1 allows us to trace the collection of coherent rays at the cost of one

intersection since the scene with increased objects can be constructed during the pre-

processing stage. For spheres the offsetting operation is just increasing its radius but

for other objects it can be expensive and can give more complex objects. However, we

can always take a simpler object which includes our expandedone or to do increas-

ing of just the bounding objects. Implementations can use couple of methods. In the

second modified scene with expanded objects we can create either

• Only bounding boxes of expanded objects and acceleration structures for ray

tracing. Then If the bounding box is hit we do calculations inoriginal scene.

This is quite universal and easy to implement.

• The exact expanded objects or larger ones with their bounding boxes and accel-

eration structures. If we construct exact expansion as given in Lemma 3.1 our

43

test will succeed in more cases. We can also construct largerexpanded object.

If the test fails and there is an intersection we have to do raytests in the original

scene to guarantee the same results or to use other approximate methods.

For expanded objects the intersection test should not be significantly more expensive

than the intersection test for original object. There is a trade of between complexity of

expanded objects and the condition to have the smallest expansion possible (given by

Lemma 3.1). Complexity of object gives us complexity of intersection test and smaller

expansion causes our test to suceed in more cases.

4.4 Offsets versus Minkowski expansion

If the light source is a ball with given radiusd then the solid offset is the required

expansion of the obstacleQ. With the notion of solid offsets, we obtain: a pointp

is not in shade of an objectQ respective to a light sourceB(c, d) if the ray R(c, p)

does not intersect the solid offsetOd(Q). Solid offsets are useful for several reasons.

First, they are easy to evaluate for spheres since offsets ofspheres are spheres with

bigger radius. Second, for other simple geometric objects like cylinders and cones if

we extend them by incresing their parameters the solid offset of the original object

is included in such an extended object.. Third, there are specialized algorithms for

calculating offsets of parametric surfaces which can be used.

There are situations where it is better to use solid offsets but Minkowski operators

provide more effective algorithm for arbitrary shaped light sources. The advantage of

Minkowski operators compared to solid offsets becomes clear when we look at non-

spherical light sources.

Example 4.1 Let L be a linear light source lying parallel to the axisx. Situation is

illustrated in Figure 4.3. We want to test wheter the objectQ can obscure any shadow

ray from the pointp to the light sourceL. We can see with the help of Minkowski

operators that extended objects as required are bounded by the original bounding

boxes extended only in dimensionx according to the size of the light source and a

chosen central pointc.

If we enclose a linear or planar light source in a bounding sphere, we can also

contruct the test for penumbra region using solid offsetting. However, in that case the

approximate shadow volume is unnecessary large. We have to expand all the bounding

boxes of the objects in shadow scene equally in all directions.

44

x

y

p

Q − obstacle

L − light source

c

r(c,p)

expanded Q
boundary of

expanded r(c,p)

shaded point in the scene

Figure 4.3: Linear light source causes smaller extended object.

45

4.5 Optimizations

Lemma 3.1 is a good criterion to detect possible shadow regions. However, there are

points in full light which we do not detect. It follows from the fact that the visibility

cone of rays from the lightL seen from pointp is smaller than the set of rays that meet

criteria from the Lemma. We can further confine the possible shadow regions if we

construct the shadow data set with smaller offsets (or with scaled sets and Minkowski

operators). The idea is illustrated in Fig. 4.4. We start with spherical light sources and

offsets and will present obvious generalizations.

p

c

l

s

L − light source

Q − obstacle

q

original offset

decreased offset

Figure 4.4: Radius optimization.

As we see in Fig. 4.4, instead of taking the solid offset of object Q at distance

d(c, l) for a shadow intersection test, we can use the offset at distanced(s, q) but for

the test for these points. We can define in that case the ratiot in which we can shrink

the offset distance:

t :=
d(s, q)

d(c, l)
(4.1)

46

with simple geometry we can see that it is equivalent to:

t =
d(s, q)

d(c, l)
=

d(p, q)

d(p, l)
=

d(p, q)

d(p, q) + d(q, l)
(4.2)

Since the operation of offsetting is global and should not depend on the points, we

have to choose the maximum value oft for all pointsp ∈ S, l ∈ L, andq ∈ Q.

Using this ratio we can take smaller expansion still detecting the region containing

both umbra and penumbra. We will definetmax which would be valid for all possible

points combinations.

tmax = max

{

d(p, q)

d(p, q) + d(q, l)
: p ∈ S, l ∈ L, q ∈ Q

}

≤

≤
max{d(p, q) : p ∈ S, q ∈ Q}

max{d(p, q) : p ∈ S, q ∈ Q} + min{d(q, l) : q ∈ Q, l ∈ L}
(4.3)

Using notation from Section 2.2 for the scaling of the setA by a real numbert as

t · A, we can formulate the following result.

Lemma 4.2 Let L be a star-convex set respective to a pointc ∈ L and let tmax be

defined by Equation 4.3 (forS, L andQ). If the rayR(c, p) does not intersect the set

Q 	 tmax · (L 	 {c}) (4.4)

then the pointp is not in shade ofQ respective toL.

In the definition oftmax the pointsp, q belong to the scene, and the pointl is from

the light source. Therefore we can calculatetmax for the entire scene using the diam-

eter of the scene (maximal distance between pointsp andq) and the closest distance

from the light source to the scene (minimal distance betweenpointsq and l) . The

improvement compared to Lemma 3.1 is significant if the distance to the light source

is not too small compared to the diameter of the scene.

To get even better results we calculatetmax for each pair of an obstacle and a light

source and use it in expansion operation for the given obstacle. In the case of several

light sources even if we use only one additional scenery for shadow rays it is also better

to calculate separatetmax values. Value oftmax is a lower bound for the shrinking ratio

and even if we do not compute this optimal shrinking ratio in each case, we can use

any valuet with 1 > t ≥ tmax.

47

4.6 Umbra detection

The previous discussion allowed us to distinguish between the region in full light and

the region in shadow. However, there might exist a totally shadowed umbra region

where we need not to use stochastic ray tracing. We recall that the set complement is

denoted asA. In the following lemma we have the condition detecting umbra region.

Lemma 4.3 LetL be a star-convex set with respect to a pointc ∈ L. If the rayR(c, p)

intersectsQ 	 (L 	 {c}) then a pointp is in the umbra ofQ with respect to the light

sourceL.

Proof. If the R(c, p) intersectsQ 	 (L 	 {c}) (see Fig. 4.5 for an illustration) then

there exists a pointr ∈ R(c, p) such thatr /∈ Q 	 (L 	 {c}). This is equivalent that

for all q̄ /∈ Q and for alll ∈ L holdsr 6= q̄ − (l − c). Using simple transformations,

we obtain for allq̄ /∈ Q and for alll ∈ L we havēq 6= r + (l − c). This means that the

set{r} ⊕ (L 	 {c}) is totally included in the setQ. But this is nothing else but the set

L translated byr − c. It is star–convex respective to the pointr, hence for an arbitrary

point l ∈ L the rayR(p, l) intersects it (the set{r} ⊕ (L 	 {c})). Since it is included

in Q the ray intersects objectQ what means that the pointp is totally shadowed and

thatp is in the umbra region.

�

We can reformulate the condition given in Lemma 4.3 in the special case of spher-

ical light sources using negative solid offsets which were defined in Section 2.2. The

same optimization considerations for the distance as used in Section 4.5 apply, so we

may use the bigger set as well:

Q 	 tmax · (L 	 {c}) . (4.5)

The umbra detection is done after having detected an object possibly casting shadow

which is a good candidate to pass the test. Making the full test in a whole third data

set holding only the shrunken objects requires more memory and more time. The gain

is not sufficient since most of the tests fail. The experiments have shown that in almost

all cases testing all the objects for umbra is slower than testing only one object which

passed the penumbra detection test already.

48

L − light source

p

solid offset
negative

c
l

L translated by r−c

shaded surface

obstacle Q

r

Figure 4.5: Umbra and negative solid offset.

49

4.7 Performance results

Our algorithm can be incorporated into any ray tracing kernel. Basically, it does not

matter which classical acceleration method to enhance. Regular grids, octree, hierar-

chies of bounding boxes, or combinations of these can be used. We have incorporated

our algorithm into RAYO ray tracer by A. Formella which is quite efficient. The ray

tracer is based on an algorithm with modified BSP tree and plane traversal (for details

see [12]).

Cylinders Balls4 Rings Molecule Bust

a) simple ray tracing 0.91 5.42 1.83 1.34 3.15

b) stochastic ray tracing 12.05 64.21 32.35 8.25 37.47

fast penumbra

c) standard 6.10 43.48 15.11 5.66 32.46

d) optimized detection 5.72 26.81 10.54 5.02 24.02

e) with umbra detection 5.22 25.39 11.04 4.95

Table 4.1: Run times in seconds for different images and algorithms.

Remarks: a) Traditional ray tracing which produces sharp shadows.

b) Penumbra with classical stochastic ray tracing.c) Our method with

shadow data sets.d) Optimized method with reduced extended objects ac-

cording to thetmax ratio. e) Additional umbra detection. (We still did not

implement inner offsets for meshes.)

We compare the run times of the new method to the run times of traditional ray

tracing without penumbra and classical stochastic ray tracing. More details are added

as remarks in Table 4.1. We present several examples of geometric data sets: a simple

scene withcylindersand spheres (Fig. 4.9), a complexmolecule(Fig. 4.10) trans-

formed from the Brookhaven Protein Data Bank, abust(Fig. 4.11) modeled as a mesh

of triangles, and the fractalballs (Fig. 4.12) and therings (Fig. 4.13) from the SPD-

benchmark [16]. The computations were done on a Sun SparcEnterprise 4000, 168

MHz, 1.125 GByte RAM and the presented datas reflect real timeof the ray tracing

loop without preprocessing. The test have been done being a single user so that the

50

real time has been essentially equal to the user time.

Table 4.2 describes parameters of our test scenes together with the numbers of

traced rays for images. The resolution for the tests has beenset to128×128 pixel. For

larger images, the run times scale almost linearly with the resolution. The numberd of

distributed rays was always set to 32. We enhanced the tracing of shadow rays with a

shadow buffer. For each node of the ray tree a queue of up to twoobjects is buffered.

A miss in the buffer enforces a delete of the last element in the queue, a hit of an object

initiates an insertion as the first element of the queue.

In Table 4.2 for each method and each test scene we have the number of generated

shadow rays and the average numbers of intersection tests per ray in geometric and

shadow sceneries. The average numbers of intersections perray with objects in both

sceneries are quite low due to the well selected acceleration structures. The follow-

ing trade-off can be observed. Our fast method significantlyreduces the number of

shadow rays to be traced. On the other hand, the number of intersection tests per ray is

increased. The difference is larger if we use optimized decreased offsets. The umbra

detection may not always pay-off, e. g., in the rings example, because the inner offset

objects become too small. Additionally, we observed that the light cache hit rate has

slightly improved for the more complex data sets.

Table 4.3 shows the memory requirements of the different implementations. As

long as the scene description is small (simple scene) the additional memory required

for the fast penumbra calculation is negligible. For the larger scenes at most twice as

much memory is required.

The speedup which is obtained with the new method depends on the geometry,

especially on the size of the light sources and on the size of the visible penumbras.

Table 4.4 summarizes the run times for the balls3 data set with 822 objects. The size of

the light sources was increased for the benchmark accordingto the sizes of the spheres

being present in the data set. Stochastic ray tracing was performed withd = 32. The

speedup for the fast method ranges from 1.76 to 7.83 depending on the size of the light

sources: the smaller the light sources, the better the improvement in run time. The

method well adapts to the size of the penumbra. If it is small there is less calculations

and speed–up factor is bigger. If penumbra region is quite large the calculations are

necessary anyway. Using only stochastic method the cost in both cases is the same

i. e., unnecessary large.

In Fig. 4.6–4.8 we compare the run time of classical stochastic ray tracing with the

run time of the version of the improved penumbra calculation(optimized decreased

51

offsets according to Lemma 4.2). The figures show the dependance of run times on

the numberd of stochastic rays per point. As it can be seen the dependanceis close to

linear for all scenes and for both methods. Comparing the slopes of the lines we obtain

for larged that the speedup for the simple scene is 2.1, for the moleculescene 2.7 and

for the bust scene 1.8, respectively.

0

20

40

60

80

100

120

140

20 40 60 80 100 120

re
al

 ti
m

e
in

 s
ec

on
ds

number of distributed rays per point

our fast method
classical stochastic

Figure 4.6: Run time dependance on the number of shadow rays per

shaded point in the simple scene with cylinders.

52

0

20

40

60

80

100

120

140

20 40 60 80 100 120

re
al

 ti
m

e
in

 s
ec

on
ds

number of distributed rays per point

our fast method
classical stochastic

Figure 4.7: Run time dependance on the number of shadow rays per

shaded point in the molecule scene.

0

20

40

60

80

100

120

140

20 40 60 80 100 120

re
al

 ti
m

e
in

 s
ec

on
ds

number of distributed rays per point

our fast method
classical stochastic

Figure 4.8: Run time dependance on the number of shadow rays per

shaded point in the bust scene.

53

Figure 4.9: Penumbra in a simple scene.

Figure 4.10: Penumbra for a compact molecule.

54

Figure 4.11: Penumbra in the bust scene.

Figure 4.12: Penumbra in the balls scene.

55

Figure 4.13: Penumbra in the rings scene.

Figure 4.14: Penumbra in the scene with rational surface.

56

Cylinders Balls4 Rings Molecule Bust

objects 11 7383 62 1685 98506

spherical light sources 2 3 3 2 1

reflected rays 20167 10976 2962 7303 0

a) # shadow rays 31592 51719 47415 4260 32136

Igeom 0.85 1.74 1.40 0.99 0.94

b) # shadow rays 1027757 1397529 1459345 105153 496704

Igeom 1.30 2.36 1.22 1.80 2.13

c) # shadow rays 324911 430300 367355 34615 196667

Igeom 1.87 2.43 3.31 3.94 2.87

Ishadow 1.13 2.32 1.72 2.27 4.62

d) # shadow rays 289054 215151 215155 26800 135324

Igeom 2.01 4.03 4.39 4.53 4.00

Ishadow 1.08 0.85 1.39 1.79 2.05

e) # shadow rays 287481 213120 215155 26691

Igeom 1.77 3.16 4.39 4.29

Ishadow 1.08 0.85 1.39 1.79

Table 4.2: Characteristics of the example scenes.

Remarks: In all scenes the number of primary rays was equal to 16384.

The numbersIgeom andIshadow denote the number of intersection tests per

ray in the geometry data set and in the shadow data set, respectively. For

the description of the different methods see remarks in Table 4.1.

57

Cylinders Balls4 Rings Molecule Bust

b) simple ray tracing 44 3064 82 670 58181

c) stochastic ray tracing 45 3070 83 693 58181

fast penumbra

d) standard 48 5535 114 1265 110176

d) optimized detection 48 5991 117 1296 110197

e) with umbra detection 49 5990 117 1296

Table 4.3: Memory requirements in KByte for different images and algorithms.

Remarks: The numbers reflect dynamically allocated memory. In addi-

tional to the given values, a frame buffer of 50 KByte was allocated. For

the description of the different methods see remarks in Table 4.1.

fast class. speedup

Balls3 3.29

a) 5.63 44.13 7.83

b) 9.88 44.33 4.48

c) 17.10 45.30 2.64

d) 27.21 48.10 1.76

Table 4.4: Run times for the Balls3 data set for different sizes of the light sources.

Remarks: The sizes of the light sources were set to the sizes of the spheres

(a) smallest sphere,d) largest sphere). The first line shows the run time

for simple ray tracing with no penumbra.

58

Chapter 5

Intersection methods

“It can’t go straight, you know, if you pin it all on one side,.. . ”

Lewis Carroll — Through The Looking Glass

We are interested in finding intersection of expanded objects with a ray. For rational

surfaces it is not a trivial task. In our algorithm we will present these surfaces in Bézier

form as they have been defined in Section 2.1. We will also use the notion of the Bézier

volumes defined there. For a rational surfaceS(u, v) of degree(m, n) we want to find

all intersections of its offset at given distanced and a ray in parametric formR(t).

Recall thatSd(u, v) denotes an offset of a surfaceS(u, v) at a distanced. The

algorithm works as follows. Our goal is to solve inR3 the geometrical intersection

problem:

Sd(u, v) = R(t) (5.1)

In the first step we will transform the problem 5.1 into the problem of solving the

following array of equations:

F (u, v, t) = 0

∂uF (u, v, t) = 0 (5.2)

∂vF (u, v, t) = 0

whereF (u, v, t) will be defined in Corollary 5.3 as a polynomial of degree(2m, 2n, 2).

The solutions of the equation array 5.2 include all solutions of the Equation 5.1 but the

reverse is not true. Formulations 5.1 and 5.2 are not equivalent.

59

Offset surfaceSd(u, v) in its definition contains the normal vectorN(u, v). The

normal vector of a polynomial surface is not in general even rational function of the

parametersu andv since to calculate it we use the square root (see Section 2.1.2).

Therefore we significantly simplify the equations eliminating the square root which is

not present in formulation 5.2.

In the second step we will solve the array of equations 5.2 by asubdivision method

which is described in Section 5.2.2. The solutions of the system 5.2 can belong either

to the positive offsetSd(u, v) or to the negative oneS−d(u, v). In the last step of the

algorithm we will choose the right ones.

5.1 Main theorem

Lemma 5.1 Let C(t) denote a parametric curve such that its derivative∂tC(t) does

not vanish in the neighborhood of the pointC(t0), and letP be a point such that

P 6= C(t0). and let us define by the dot product the square distance function f(t) :=<

C(t)− P, C(t)− P) >. Then the vectorC(t0)− P is orthogonal to the curveC(t) at

the pointC(t0) iff ∂tf(t0) = 0.

Proof. Using the following rule for calculating the derivative of the dot product:

∂t < A(t), B(t) >=< ∂tA(t), B(t) > + < A(t), ∂tB(t) >

we obtain:

∂tf(t0) = ∂t < C(t0) − P, C(t0) − P >= 2 < C(t0) − P, ∂tC(t0) >

�

Theorem 5.2 LetS(u, v) denote a regular parametric surface, letR(t) be a curve and

d a positive real. Let the functionf(u, v, t) be defined by:

f(u, v, t) := ||S(u, v)− R(t)||2 − d2

Then the system of equations:

f(u0, v0, t0) = 0 (1)

∂uf(u0, v0, t0) = 0 (2) (5.3)

∂vf(u0, v0, t0) = 0 (3)

60

is equivalent to the following alternative of two equations:

R(t0) = S−d(u0, v0) or R(t0) = Sd(u0, v0).

Proof. If R(t0) = Si(u0, v0), for i = −d or i = +d then the distance from the

pointR(t0) to the point on the surfaceS(u0, v0) is equal tod and the first of Equations

5.3 holds. From the definition of the offset it follows that the vectorS(u0, v0)−R(t0)

is orthogonal to any curve on the surface at the pointS(u0, v0) and in particular to the

curvesS(t, v0) andS(u0, t). Lemma 5.1 applied to these curves gives the last two of

Equations 5.3.

To prove the reverse implication assume that the last two of Equations 5.3 hold.

By Lemma 5.1 the vectorS(u0, v0)−R(t0) is orthogonal to linearly independent vec-

tors ∂uS(u0, v0) and ∂vS(u0, v0). This means that the pointR(t0) lies on the line

orthogonal to the surface at the pointS(u0, v0). From the first of Equations 5.3 it

follows that the distance of the pointsR(t0) andS(u0, v0) is equal tod. Therefore

R(t0) = S−d(u0, v0) or R(t0) = S+d(u0, v0).

�

Corollary 5.3 LetS(u, v) be a regular rational Bézier surface inR3 defined by

S(u, v) =

(

X(u, v)

W (u, v)
,

Y (u, v)

W (u, v)
,

Z(u, v)

W (u, v)

)

whereX(u, v), Y (u, v), Z(u, v), W (u, v) are polynomial functions such thatW (u, v) >

0. LetR(t) = (x(t), y(t), z(t)) be a curve inR3, d > 0 a real number and let

F (u, v, t) := (X − xW)2 + (Y − yW)2 + (Z − zW)2 − d2W 2

Then the following system of equations:

F (u0, v0, t0) = 0 (5.4)

∂uF (u0, v0, t0) = 0 (5.5)

∂vF (u0, v0, t0) = 0 (5.6)

is equivalent to the alternative of two equations:

R(t0) = S−d(u0, v0) or R(t0) = Sd(u0, v0).

61

5.2 The Algorithm

Now we shall present a pseudocode of the algorithm based on the results given in

Section 5.1.

Input:

A Surface S(u, v) represented by a (m,n)-mesh of points in R
3

An Offset distance d

A Parametric ray R(t) = R0 + tV where R0, V ∈ R
3

Output:

Set of parameters (u, v, t) of intersection point

The Algorithm:

(1) F := CalculateVolumeFunction(S, d,R);

(2) PushVolume(F);

(3) while StackNotEmpty() do begin

(4) F := PopVolume();

(5) (* Check if 0 inside F, ∂uF and ∂vF *)

(6) if ZerosInsideHull(F) then

(7) if (SmallEnough(F)) then

(8) (* Generate and classify solution *)

(9) GenerateSolution(F)

(10) else begin

(11) (* Split in one of directions u, v, t sequentially *)

(12) SplitBezier(F, F1, F2);

(13) PushVolume(F1);

(14) PushVolume(F2);

(15) end

(16) end

62

5.2.1 Calculation ofF

First we reparameterize the rayR(t) by scaling the vectorV such that all solutions of

our intersection problem 5.1 lie on the ray segment connectingR0 andR0 + V . Now

for R(t) we are interested in the parameter range[0, 1].

In the line (1) of the algorithm we construct Bézier volume representaton for the

functionF which was defined in Corollary 5.3. Control points ofF in the Bézier form

can be calculated by simple arithmetic on control points which was defined in Section

2.1.1. Thus, we have Bézier volumeF defined by its control points and we can start the

subdivision algorithm described below. In line (2) of the algorithm we push original

Bézier volume on stack.

5.2.2 Subdivision and convex hull checking

Subdvision algorithm is a common way to solve intersection problems for Bézier

curves and surfaces. It is based on de Casteljau subdivisionalgorithm (see Property

2.6) and convex hull property (see Property 2.7).

To solve the problem 5.2 we use the subdivision algorithm. Werecursively split

the Bézier volume each time into smaller volumes and using convex hull property we

check if these small volumes can possibly contain solutions. That is we test if the

convex hull of the set of control points of a Bézier volumeFijk contains the point

(0, 0, 0). We remove the volumes which can not contain solutions of ourequation. We

proceed until we run out of volumes which possibly contain solutions or until the split

volume is small enough. In that second case we generate solution of the Equation 5.2.

We subdivide the Bézier volumeF sequentially in directionsu, v andt. To make

each step of the the algorithm less expensive we use the convex hull property to check

the “min–max” bounding box of(F, ∂uF, ∂vF) instead of checking exact convex hull.

That is we check each coordinate of the functionF (u, v, t) independently if convex

hull of given coordinate of control points contains0. In our case we have to check if

there are control points with different signs for the function F and for its two partial

derivatives.

By the Fact 2.12 the partial derivatives∂uF and∂vF of F are easy to calculate

using the control points ofF . Therefore in our algorithm we calculate the control

points of∂uF and∂vF online in each step when checking the convex hull property.

63

Thus we simplified the problem to the subdivision algorithm for the one functionF

with modified convex hull checking.

The major cost of the subdivision algorithm is the cost of splitting the volume by

de Casteljau algorithm. If we do not calculate exact convex hull then the time required

for convex hull checking is neglible.

5.2.3 Classification of solutions

We are solving the array of equations 5.2 and from Corollary 5.3 we know that we get

solutions for both offsets at distancesd and−d. If we want to consider only one offset

Sd(u, v) then we have to classify the solutions we have obtained. Since our solution

contains all parameters which describe our situation completely we have what follows.

The solution(u, v, t) corresponds to an offsetSd(u, v) if

Sign(d) = Sign(< N(u, v), R(t) − S(u, v) >).

5.3 Complexity analysis

The time for calulating the control points of Bézier volumeF can be neglected. Solv-

ing the equation system is the most time consuming part of thealgorithm. The number

of steps in the subdivision algorithm is a function of desired accuracyε and belongs to

the classO(log(1/ε)).

The cost of one step of the subdivision algorithm is the cost of the subdivision of

the Bézier surface or volume using de Casteljau algorithm. We can represent this cost

as the number of elementary operations of midpoint calculations. The surface is split

into four subsurfaces and the volume is split into eight subvolumes. This guarantee

that the parameter intervals will be smaller by half than before the subdivision. De

Casteljau algorithm for curves of degreen usesn(n + 1)/2 midpoint calculations.

In Table 5.1 we present the comparison of numbers of appropriate elementary op-

erations for each subdivision step for our algorithm and others. All these algorithms

use the subdivision algorithm but in each algorithm the reformulation of the problem

is different therefore in each of them different objects arebeing subdivided.

New Algorithm is the algorithm presented here

— subdivides volume of degree(2n, 2n, 2)

64

VP Polynomial is the algorithm given by E. Vafiadou and N. Patrikalakis in [50]

— subdivides two surfaces of degree(5n − 2, 5n − 2)

VP Rational is a simple extension ofVP Polynomial for the rational case

— subdivides two surfaces(8n − 2, 8n − 2)

Number of midpoint calculationsn = 2 n = 3 n = 4

New Algorithm 6n2(6n + 4) 384 1188 2688

VP Polynomial (5n − 2)2(15n − 3) 1728 7098 18468

VP Rational (8n − 2)2(24n − 3) 8820 33396 83700

Table 5.1: Numbers of midpoint calculations in each step of the subdivision algorithm

for a surface of degree(n, n).

As it can be seen from the Table 5.1, for the Bézier surfaces ofdegrees: 2, 3, 4 the

subdivision phase for the new algorithm is 4–7 times faster for polynomial surfaces

and 22–31 times faster for rational ones. Moreover for surfaces of higher degree the

speed up is bigger.

5.4 Experimental results

The algorithm invented by Vafiadou and Patrikalakis [50] hasbeen tested on a graphic

workstation running at 20MHz. The results of these tests aregiven for the comparison

purpose with our method in Table 5.2. We have implemented thenew algorithm in “C”

programming language.To measure the performance we included it in simple ray tracer

which generated test rays. The tests of the new algorithm have been carried out on a

slow 486DX2 66MHz microprocessor based computer running the Linux operating

system. The effeciency of numerical calculations of this machine is comparable to the

efficiency of 20MHz Sun workstations. We have also integrated the code into RAYO

ray tracer written by A. Formella [12], which was used for generation of presented

images.

The test results have been obtained for intersection with rays generated by a simple

ray tracer implemented for this purpose. Thus for one surface many rays have been

generated and the running times of the algorithm finding all intersections have been

65

Surface description Degree VP results New algorithm

Sweep of parabola (1,2) 2.7, 1.5 0.03

Sweep ofx4 (1,4) 10.4, 6.7, 10.5 0.07

Table 5.2: Intersection times in seconds of the Vafiadou–Patrikalakis algorithm for few

given test rays and average times of our new algorithm.

Surface description Degree d Hit % Aver. Max.

Sweep of parabola (1,2) 0.5 31.3 0.03 0.16

Sweep ofx4 (1,4) 0.5 30.0 0.07 0.38

Rational Hill (2,2) 0.2 25.0 0.06 0.82

Table 5.3: Performance of the new algorithm (times in seconds).

obtained. Table 5.3 shows the average as well as the maximum running times in sec-

onds (for accuracy of the algorithm set up to0.0001). The information how many rays

hit the offset is also presented there since the algorithm runs faster when there is no

intersection.

Following figures demonstrate images generated using the RAYO ray tracer and

our intersection algorithm. The Figure 5.1 shows a sweep of parabola with two offsets

at the distancesd = −0.5 (below) andd = 0.7 (above). The Figure 5.2 shows two

surfaces of degree(2, 2) : the polynomial one (left) and the rational one (right) with

the central weight stretched to10 (other control points have weight1). Next pictures

show offsets of these surfaces withd = −0.2 (fig.5.3,5.4).

66

Figure 5.1: Offsets of sweep of parabola atd = −0.5 (below) andd = 0.7 (above)

Figure 5.2: Polynomial and rational hills

67

Figure 5.3: Offsets of polynomial and rational hills withd = −0.2

Figure 5.4: Offsets of polynomial and rational hills withd = −0.2

68

Chapter 6

Conclusions

“That’s all, said Humpty Dumpty.”

Lewis Carroll — Through The Looking Glass

We have presented a new method to speed up tracing of generalized shadow rays which

is based on tracing the group of rays in the cost of tracing just one ray. The method

is based on Minkowski operators and solid offsets. We have proved formally that if

we use this method we will get the same results as without it. This guarantees the

correctness of the results obtained.

We have constructed the a algorithm to speed up calculation of penumbra. The

main idea is to detect the shadow regions such that stochastic ray tracing is confined

to the penumbra. We have used the notion of Minkowski operators and solid offsets to

provide the means to handle a variety of differently shaped light sources and objects.

We have shown that the method works correctly and that it essentially renders the same

images as stochastic ray tracing.

We have described and implemented an improvement of the basic algorithm which

uses decreased offsets. The effectiveness of the algorithmdepends on the particular

geometric data set. On average, the presented sample scenescould be rendered two

times faster compared to the run time of classical stochastic ray tracing. However,

if the penumbra regions are small respective to the visible regions in the scene, much

higher speedups can be obtained. The additional memory requirements never exceeded

in our experiments a factor of two.

To show that the method works also for different kind of objects we have devel-

oped a new algorithm for rational Bézier surfaces. It finds all intersections of the ray

69

segment with an offset of Bézier surface. The geometrical subdivision method and the

Bézier reprezentation guarantee that the algorithm is robust (finds all solutions) and

is numerically stable. The algorithm is substantially faster than the previously known

one. Because of this, and because of advances in computing power of computers it is

practical for photorealistic rendering of offset surfaces. As an example, the ray traced

images of cubic rational surfaces have been presented (average intersection time in this

case was less than a milisecond on a fast workstation). The algorithm can be also ap-

plied to collision detection and to other areas in CAGD, motion planning and machine

milling.

The general method of speeding up shadow ray tracing seems tobe very appro-

priate to be incorporated into any ray tracing system. To exploit further possibilities,

cases where the rays are not given in coherent groups should be examined. However,

the memory requirements are getting bigger in that case, andthere are additinal costs

for accesing special ray caching structures which have to beconstructed.

As we have shown in our experiments for new algorithm in Chapter 4 adding um-

bra detection did not improved significantly the performance. However, performance

depends on the test scenes. We are not excluding that it will be profitable in some spe-

cial cases when the umbra regions are large. Further research might also investigate

the calculation of combined convexboundedvolumes that would allow detection of

the umbra more precisely (for instance for CSG-models). A single bounded volume

might be calculated for a number of joined objects.

For complex data set, we expect a further improvement in rendering time of new

algorithm from Chapter 4, if an additional space subdivision is employed for the can-

didate objects casting penumbra. If the test for a ray in shadow scene fails, we can

have the list of objects which can potentially obstruct the group of rays. Therefore if

we use some acceleration structures for this list of candidate objects it will be faster to

trace the rays from this group in this small subset of objects.

70

Bibliography

[1] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Laurent Moll. Ef-

ficient image-based methods for rendering soft shadows.Proceedings of SIG-

GRAPH 2000, pages 375–384, July 2000.

[2] John Amanatides. Ray tracing with cones.Computer Graphics (SIGGRAPH

’84 Proceedings), 18(3):129–135, July 1984.

[3] Hujun Bao and Qunsheng Peng. Shading models for linear and area light

sources.Computers and Graphics, 17(2):137–145, 1993.

[4] Wolfgang Boehm, Gerald Farin, and Jurgen Kahmann. A survey of curve and

surface methods in cagd.Computer Aided Geometric Design, 1(1):1–60, 1984.

[5] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray trac-

ing. Computer Graphics (Proceedings of SIGGRAPH 84), 18(3):137–145, July

1984.

[6] Gerald Farin. Curvature continuity and offsets for piecewise conics. ACM

Transactions on Graphics, 8(2):89–99, 1989.

[7] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design.

Academic Press, 1990.

[8] Rida T. Farouki. Exact offset procedures for simple solids. Computer Aided

Geometric Design, 2(4):257–279, 1985.

[9] Rida T. Farouki. The approximation of non-degenerate offset surfaces.Com-

puter Aided Geometric Design, 3(1):15–43, 1986.

[10] Rida T. Farouki and C. Neff. Algebraic properties of plane offset curves.Com-

puter Aided Geometric Design, 7:101–128, 1990.

71

[11] Rida T. Farouki and C. Neff. Analytic properties of plane offset curves.Com-

puter Aided Geometric Design, 7:83–100, 1990.

[12] Arno Formella and Christian Gill. Ray Tracing: A Quantitative Analysis and

a New Practical Algorithm.The Visual Computer, 11(9):465–476, December

1995.

[13] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. ARTS: Accelerated ray

tracing system.IEEE Computer Graphics and Applications, 6(4):16–26, April

1986.

[14] Andrew S. Glassner (editor). An Introduction to Ray Tracing. Academic Press,

1989.

[15] Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE Computer

Graphics and Applications, 4(10):15–22, October 1984.

[16] Eric A. Haines. A proposal for standard graphics environments.IEEE Computer

Graphics and Applications, 7(11):3–5, November 1987.

[17] Eric A. Haines and Donald P. Greenberg. The light buffer: A ray tracer shadow

testing accelerator.IEEE Computer Graphics and Applications, 6(9):6–16,

September 1986.

[18] Vlastimil Havran. Heuristic Ray Shooting Algorithms.Ph.d. thesis, Department

of Computer Science and Engineering, Faculty of ElectricalEngineering, Czech

Technical University in Prague, November 2000.

[19] Wolfgang Heidrich, Stefan Brabec, and Hans-Peter Seidel. Soft shadow maps

for linear lights.Rendering Techniques 2000: 11th Eurographics Workshop on

Rendering, pages 269–280, Springer–Verlag Wien New York, June 2000.

[20] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects.Computer

Graphics (SIGGRAPH ’84 Proceedings), 18(3):119–127, July 1984.

[21] Paul S. Heckbert and Michael Herf. Simulating soft shadows with graphics

hardware. Technical Report CMU-CS-97-104, CS Dept., Carnegie Mellon U.,

January 1997. http://www.cs.cmu.edu/ ph.

[22] Joseph Hoschek and Dieter Lasser. Fundamentals of Computer Aided Geomet-

ric Design. A K Peters, 1993.

72

[23] Joseph Hoschek. Spline approximation of offset curves. Computer Aided Geo-

metric Design, 5(1):33–40, 1988.

[24] Henrik W. Jensen and Niels J. Christensen. Efficiently rendering shadows using

the photon map.Compugraphics ’95, pages 285–291, December 1995.

[25] Henrik Wann Jensen. Global illumination using photon maps. Eurograph-

ics Rendering Workshop 1996, pages 21–30, Springer–Verlag Wien New York,

June 1996.

[26] James T. Kajiya. The rendering equation.Computer Graphics (Proceedings of

SIGGRAPH 86), 20(4):143–150, August 1986.

[27] M. Kaplan. Space-tracing: A constant time ray-tracer.SIGGRAPH ’85 State of

the Art in Image Synthesis seminar notes, 18(3):149–158, July 1985.

[28] Brett Keating and Nelson Max. Shadow penumbras for complex objects by

depth-dependent filtering of multi-layer depth images.Eurographics Rendering

Workshop 1999, pages 197-212, Springer–Verlag Wien New York, June 1999.

[29] J.-C. Latombe. Robot Motion Planning. Kluwer AcademicPublishers, 1991.

[30] G.W. Leibniz. Generalia de natura linearum anguloque contactus et osculi

provocationibus aliisque cognatis et eorum usibus nonnullis. Acta Eruditorum,

1692.

[31] Mark E. Lee, Richard A. Redner, and Samuel P. Uselton. Statistically opti-

mized sampling for distributed ray tracing.Computer Graphics (SIGGRAPH

’85 Proceedings), 19(3):61–67, July 1985.

[32] Eric P. Lafortune and Yves D. Willems. Bi–directional path tracing.Proc. of

CompuGraphicsm (Alvor, Portugal), pages 145–153, 1993.

[33] Eric P. Lafortune and Yves D. Willems. Reducing the number of shadow rays in

bidirectional path tracing.WSCG’95 Conference Proceedings,pages 384-392,

University of West Bohemia, February 1995.

[34] Andrzej Łukaszewski. Exploiting Coherence of Shadow Rays. AFRIGRAPH

2001 Conference Proceedings(to be published by ACM SIGGRAPH).

73

[35] Andrzej Łukaszewski, Andrzej Szczepkowicz. Computersimulation of FIM

images — the convex hull model.Vacuum (Elsevier Science Ltd),54(1999),

pages 67-71.

[36] Andrzej Łukaszewski and Arno Formella. Fast penumbra calculation in ray

tracing.WSCG’98 Conference Proceedings,Vol. II, pages 238–245, University

of West Bohemia, February 1998.

[37] Andrzej Łukaszewski. Finding ray-offset intersection for rational Bézier sur-

faces. Technical Report 97/04, Institute of Computer Science, University of

Wrocław, Poland, May 1997.

[38] Andrzej Łukaszewski. Evolutionary Programming In Graph Coloring.Badania

Operacyjne i Decyzje,Nr. 3/1995 pages 67-74.

[39] Masataka Ohta and Mamoru Maekawa. Ray coherence theorem and constant

time ray tracing algorithm.Computer Graphics 1987 (Proceedings of CG In-

ternational ’87), pages 303–314. Springer–Verlag, 1987.

[40] Steven Parker, Peter Shirley, and Brian Smits. Single sample soft shadows.

Technical Report UUCS-98-019, Computer Science Department, University of

Utah, October 1998. http://www.cs.utah.edu/~bes/papers/coneShadow.

[41] Sumant N. Pattanaik. Computational methods for globalillumination and visu-

alisation of complex 3d environments. published by Birla Institute of Technol-

ogy & Science, Computer Science Department, February 1993.

[42] Sumant N. Pattanaik and S. P. Mudur. Computation of global illumination by

monte carlo simulation of the particle model of light.Third Eurographics Work-

shop on Rendering, pages 71–83, May 1992.

[43] Sumant N. Pattanaik and S. P. Mudur. The potential equation and importance in

illumination computations.Computer Graphics Forum, 12(2):131–136, 1993.

[44] Andrew Pearce and David Jevans. Exploiting shadow coherence in ray tracing.

Proceedings of Graphics Interface ’91, pages 109–116, June 1991.

[45] Bui-T. Phong. Illumination for computer generated pictures. Communications

of the ACM, 18(6):311–317, June 1975.

74

[46] Helmut Pottmann. Rational curves and surfaces with rational offsets.Computer

Aided Geometric Design, 12:175–192, 1995.

[47] Pierre Poulin and John Amanatides. Shading and shadowing with linear light

sources.Eurographics ’90, pages 377–386. North–Holland, September 1990.

[48] Jerek. Rossignac and A.A.G. Requicha. Offseting operations in solid modelling.

Computer Aided Geometric Design, 3:129–148, 1986.

[49] B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman

and Hall, Ltd. London, 1985.

[50] Maria-E. Vafiadou and Nicholas M. Patrikalakis. Interrogation of offsets of

polynomial surface patches.Eurographics ’91, pages 247–259. North–Holland,

September 1991.

[51] Eric Veach. Robust Monte Carlo Methods For Light Transport Simulation.Ph.d.

thesis,Stanford University, 1997.

[52] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive

rendering with coherent ray tracing.Computer Graphics Forum, 20(3), 2001.

[53] Leonard Wanger. The effect of shadow quality on the perception of spatial rela-

tionships in computer generated imagery.Computer Graphics (1992 Symposium

on Interactive 3D Graphics), 25(2):39–42, March 1992.

[54] Turner Whitted. An improved illumination model for shaded display.Commu-

nications of the ACM, 23(6):343–349, June 1980.

[55] Andrew Woo. Efficient shadow computations in ray tracing. IEEE Computer

Graphics and Applications, 13(5):78–83, September 1993.

[56] Andrew Woo, Pierre Poulin, and Alain Fournier. A surveyof shadow algo-

rithms. IEEE Computer Graphics and Applications, 10(6):13–32, November

1990.

75

