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Abstract

We present independent method to reduce the number of shadow
ray tests. It can be used with standard acceleration ray tracing algo-
rithms. Our method is conservative and produces the same results.
We test just one shadow ray in modified scene insted of group of
rays in original scene. If our ray is not obstructed in modified scene
we know that all the rays in this group are not obstructed. The re-
sults give rise to many applications when there are many shadow
rays e. g., in bidierectional path tracing or stochastically sampling
area light sources. The formal proof of the method uses formalism
of Minkowski operators and they can also be used in implementa-
tion details.
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1 Introduction

Shadow rays are widely used in visibility checking and it is the
most time consuming part of many algorithms for global illumina-
tion. Monte Carlo methods are based on the ray tracing principles
and use shadow rays extensively. The general concept of shadow
rays includes not only the rays from shaded point to the points on
light sources but also the rays between two paths in bidirectional
path tracing [10]. Shadow rays are also applied in some of the ra-
diosity methods to calculate form factors where visibility has to be
determined. What makes them different from other rays is that we
have just the ray segment with fixed end points and we only require
the boolean information whether the ray is obstructed or not. We
are not interested in the exact intersection calculation.

In ray tracing literature there has been many solutions how to ex-
ploit spatial coherence of objects in the scene to reduce the costly
calculations of ray intersections and these methods include bound-
ing boxes, grids, octrees or BSP-trees. There has been also some
work devoted specially to shadow rays e. g., light buffers [4]. For
the review of the methods see [3].

We propose a novel technique which exploits the spatial coher-
ence of shadow rays in a new way. Therefore it is possible to
use it together with standard ray tracing acceleration methods men-
tioned above and to obtain better results when time is critical. There
are also some recent methods using studies of visual perception to
guide the calculations into important regions. In this way we avoid
calculating effects which are not perceived by humans. Our tech-
nique is also not contradictory with them. Instead of tracing groups
of rays we test just one ray in a modified scene with expanded ob-
jects. If this one ray is not obstructed we guarantee that all the rays
from this group are not obstructed. What is advantegous is that we
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can use any standard acceleration techniques in both original scene
and the modified one.

Our method is based on offsetting operation and its generaliza-
tion using Minkowski operators. Part of the work presented here
has also been published in [7, 8] where some more details of exper-
iments for penumbra generation can be found.

2 Notation

We will use the notation R(p, q) for the ray segment with endpoints
p and q and B(c, r) for the ball centered at the point ¢ and with the
radius r.

We define here the way to expand objects and construct the addi-
tional scene for tracing shadow rays. Minkowski operators (e. g., as
in [6]) and solid offsets provide a convenient way to express set op-
erations. These operators give us formalism and allow as to prove
that the visibility informations we obtain will be exactly the same.
They also give a reference to similar methods which are used in
robot motion planning.

Definition 1 (Minkowski sum and difference) For two subsets A
and B of Euclidean vector space, Minkowski sum and difference
are defined as:

A®B = {a+bla€ Abe B}, (1)
AeB = {a—-bla€AbeB} . )

Using Minkowski operators to expand objects in the case of spheri-
cal light sources will simplify to the operation of solid offsetting as
defined in [1, 9].

Definition 2 (Solid offset) For an object QQ and a distance d, a
solid d-offset O4(Q) is defined as the set of points that are not
farther than d from Q, i. e.,

0a(Q)={p|3q€Q:d(p,q) <d} . (©)
it can also be expressed using Minkowski operators as:
04(Q) =Q o B(0,d) =Q & B(0,d) . Q)

3 Rays with common origin

First let us start with classical shadow rays. For non-point light
sources we sample them stochastically to approximate the visibility
angle. We have the collection of shadow rays with common origin
for a given point we are shading. The other ends of rays belong to
the light source and they are spatially coherent.

All the rays belong to the visibility cone which is included in the
offset O, of the ray segment R(c, p) what is depicted on figure 1.
If we shrink the light source L to a point ¢ and, at the same time,
increase the occluding object @ by r the radius of L we can assure
that if the ray segment R(c, p) does not intersect the increased ob-
ject (which is not the case on the figure) then all the rays are not
occluded. More formally we can formulate the following lemma.
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Figure 1: Checking visibility of bundle of rays

Lemma 1 Let L be a convex or star-convex set respective to a point
¢ € L. If the ray R(c,p) does not intersect Q@ © (L & {c}) then
Vil € L the ray R(l,p) is not obstructed (shadowed) by Q.

Proof (by contradiction): LetC = | <1, B(z,p) denote the vis-
ibility cone of the set L as seen from point p. If there would be a ray
R(l, p) obstructed by @ then C' N Q # O but since the set L is star-
convex respective to the point ¢ we have C' C R(c,p) ® (LS {c}).
Thus, we have (R(c,p) ® (LS {c})) N @ # O which means
that there are points s € R(c,p), ! € L and ¢ € @ such that
s+ (I — ¢) = q. But this is equivalent to s = ¢ — (I — ¢) which
means that R(c,p) N (Q & (L © {c})) # 0. Hence, the ray does
intersect the expanded object.

3.1 Discussion

This lemma allows us to trace the collection of coherent rays at the
cost of one intersection since the scene with increased objects can
be constructed in preprocessing time. The exact offsetting operation
for spheres is just increasing its radius but for more complex objects
it can be expensive. However we can always take a simpler object
which includes our increased one or to do increasing of just the
bounding objects. Implementations can use couple of methods. In
the second modified scene with expanded objects we can create :

e Only bounding boxes of expanded objects and acceleration
structures for ray tracing. If the bounding box is hit we do
rest of calculations in original scene. This is quite universal
and easy to implement.

e The exact expanded objects or larger ones with their bound-
ing boxes and acceleration structures. The intersection test
for them should not be significantly more expensive than the
intersection test for original object. This way our test will
succeed in more cases but there is a trade of between com-
plexity of expanded objects (their intersection test) and how

close they are to expansion from lemma. If test fails and there
is an intersection we have to do ray tests in orginal scene to
guarantee the same results or to use other approximate meth-
ods.

The usage of general Minkowski operators is more effective for
arbitrary shaped light than the usage of solid offsets. If we enclose
a linear or planar shape in a bounding sphere, we can handle it
with solid offsetting as described above. However, the approximate
shadow volume is unnecessary large. The advantage of Minkowski
operators compared to solid offsets becomes clear when we look at
non-spherical light sources. For instance, let us consider a flat light
source lying parallel to the plane zy. With the help of Minkowski
operators the extended objects are bounded by the original bound-
ing boxes extended only in dimensions z and y according to the size
of the light source and a chosen central point c. Figure 2 depicts the
scenario for a linear light source. If we used just solid offsets, we
would have to put the light source into a ball and expand all the
bounding boxes of the objects equally in all directions.

L - light source

N expanded Q
boundary of \
expanded r(c,p)\\
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Figure 2: Linear light source and x—axis extension of obstacle

3.2 Multiple light sources and optimization

Our method can handle multiple light sources. We can create for
each spatial light source the additional scene in which we will per-
form the test for given shadow rays. We can also create just one
expanded scene for all shadow ray tests taking into account the
biggest expansion. If the light sources are of the similar size taking
only one scene is as efficient as multiple ones and is less memory
consuming.

We also considered further optimization of the extension opera-
tion using the fact that the rays belong to the cone and using dis-
tance relations between point, light source and obstacle. If we cal-
culate the minimum distance from the scene to the light source and
diameter of the scene then we can shrink expansion by a factor and
basically we obtain smaller extensions. Namely we can substitute:

QO tmaz - (LS {c})

in lemma 1 for the expanded object using ¢z defined by distance
relations:

Scene_Diameter

tmaz =

Scene_Diameter + Minimal__Scene_to_Light

4 Rays with coherent origins

We can use the same framework for exploiting coherence of other
shadow rays. Let us collect rays (e. g., in bidirectional path tracing)



such that we have the set of rays with origins in the balls A and B
of radius r. Then we can also guarantee that none of the rays is
occluded by @ if the ray R(p, q) does not intersect ) increased by
O, offsetting. Following is the formal lemma which is illustrated
in Figure 3.

Lemma 2 Let p, q be the given points and v > 0 a given distance.
If the ray R(p, q) does not intersect Q © B(0,r) then none of the
rays R(s,t) for s € B(p,r) andt € B(q,r) intersects Q.

The proof of this lemma can be obtained using the same method
which was used for proving lemma 1.
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Figure 3: Checking visibility of coherent bundle of rays

Using lemma 2 we can trace at once the whole bundle of rays
which have both the starting and ending points coherent and in-
cluded in respective balls of given radius. To check that none of the
rays is obstructed by any object ) from the scene we test just one
ray in extended scene, only if the test fails then we have to do the
normal tests for each ray or to try the test once again for a smaller
bunch of rays. If the test succeeds we are often n times faster, where
n is the number of rays in a bundle, since the cost is in most cases
is the same.

5 Fast penumbra method implementation

‘We have incorporated the method into a quite efficient ray tracer [2]
to detect penumbra regions and limit the use of expensive stochastic
sampling for soft shadow calculation. It can be incorporated into
any ray tracing kernel.

We compare the run times of the new method to the run times
of traditional ray tracing without penumbra and classical stochas-
tically sampled area light sources. More details are added as re-
marks in Table 1. We use several examples of geometric data sets:
a simple scene with five cylinders and spheres, a complex molecule
transformed from the Brookhaven Protein Data Bank, a bust mod-
eled as a mesh of triangles, and the fractal balls and the rings from

the SPD-benchmark [5]. All measurements are done on a Sun Spar-
cEnterprise 4000, 168 MHz, 1.125 GByte RAM and reflect the real
time of the ray tracing loop without preprocessing.

Figure 4: Penumbra for a compact molecule.

As long as the scene description is small (simple scene) the ad-
ditional memory required for the fast penumbra calculation is neg-
ligible. For the larger scenes at most twice as much memory is
required.

The speedup which is obtained with the new method depends on
the geometry, especially on the size of the light sources and on the
size of the visible penumbras. We sampled stochastically area light
sources using 32 shadow rays for each point and area light source.
It is minimal small amount to obtain any good results. When using
larger number of rays our metod is better. The speedup for the fast
method ranges from 1.76 to 7.83 depending on the size of the light
sources: the smaller the light sources, the better the improvement
in run time. The method adapts well to the size of the penumbra.
If it is small there are less calculations and the speed—up factor is
larger. If penumbra region is quite large the calculations are nec-
essary anyway. Using only the stochastic method the cost in both
cases is the same i. e., unnecessary large.

6 Conclusion

We presented a new framework to speed—up the intersection tests
for shadow rays using the notion of Minkowski operators and solid
offsets. We proved formally that the method works correctly. It can
be used in any ray tracing method when we can group the shadow
rays with coherent origins.

We made tests in the case of stochastically sampled area light
sources and the method essentially renders the same images in
shorter time. The effectiveness of the algorithm depends on the
particular geometric data set. On average, the presented sample
scenes could be rendered two times faster compared to the run time
of classical stochastic method. However, if the penumbra regions
are small respective to the visible regions in the scene, much higher
speedups can be obtained. The additional memory requirements
never exceeded in our experiments a factor of two since we con-
structed only one additional scenery for all light sources.
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