
Uniwersytet Wrocławski

Wydział Matematyki i Informatyki

Krzysztof Templin

nr albumu: 186850

Zwiększanie postrzeganej rozdzielczości obrazów w ruchu

Praca magisterska napisana pod kierunkiem

dra Andrzeja Łukaszewskiego

Wrocław, 2011

Spis treści

Przedmowa 3

1. Informacje wprowadzające 4

2. Zwiększanie postrzeganej rozdzielczości obrazu 8

3. Uogólniona metoda zwiększania postrzeganej rozdzielczości 12

3.1. Ruch statycznego obrazu . 12

3.2. Animacje ze znaną funkcją przepływu optycznego . 20

3.3. Animacje z nieznaną funkcją przepływu optycznego . 24

4. Implementacja 26

Podsumowanie 27

Przedmowa

W 2010 roku Piotr Didyk, Elmar Eisemann, Tobias Ritschel, Karol Myszkowski i Hans-Peter Seidel,

naukowcy z Max-Planck-Institut für Informatik w Saarbrücken (Niemcy), opublikowali pracę pod ty-

tułem „Apparent Display Resolution Enhancement for Moving Images”. Przedstawiono w niej metodę,

która wykorzystując pewne właściwości układu wzrokowego człowieka oraz możliwości nowoczesnych

wyświetlaczy LCD umożliwia zwiększenie postrzeganej rozdzielczości poruszających się obrazów, co

objawia się wyraźną poprawą w odwzorowaniu detali. Jak wskazują autorzy, niska rozdzielczość wy-

świetlaczy wciąż pozostaje czynnikiem ograniczającym w grafice komputerowej czy fotografii cyfrowej.

Przedstawienie we właściwej skali szczegółów takich jak włosy czy metaliczna farba, wymaga większych

rozdzielczości niż te, które oferują współczesne wyświetlacze. Również postępy miniaturyzacji i wzrost

popularności urządzeń przenośnych zmuszają do poszukiwań sposobów czytelniejszego przedstawiania

detali w warunkach mocno ograniczonej liczby dostępnych pikseli. Publikacja ta została zaprezentowa-

na w Los Angeles na prestiżowej konferencji SIGGRAPH.

Od czerwca 2010 do stycznia 2011 miałem przyjemność współpracować z Karolem Myszkowskim

i Piotrem Didykiem nad rozszerzeniem możliwości wspomnianej metody. Niniejsza praca magister-

ska powstała w oparciu o zebrany wówczas materiał. Opisuję w niej zarys publikacji Didyka i in.,

a następnie przedstawiam propozycję uogólnienia ich metody na inne typy animacji oraz dokumentuję

przeprowadzone eksperymenty. Uzupełnienie pracy stanowi załączona implementacja w języku C++.

Chciałbym podziękować Karolowi Myszkowskiemu za umożliwienie mi prowadzenia badań nad tym

zagadnieniem oraz Piotrowi Didykowi za długie godziny dyskusji, podczas których dzielił się ze mną

swoją wiedzą. Udzielona przez nich pomoc w znacznym stopniu zaważyła na kształcie mojej pracy

magisterskiej.

1. Informacje wprowadzające

Niniejsza praca ma następujący układ: w tej części zaznajamiamy czytelnika z paroma faktami odno-

śnie układu wzrokowego człowieka oraz jego własnościami, które leżą u podstaw opisywanej metody.

Wspominamy także o mechanizmach działania wyświetlaczy komputerowych. Część 2 to streszcze-

nie publikacji na której bazuje nasza praca [Didyk i in., 2010]. W części 3 przedstawiamy propozycję

uogólnionej metody zwiększania postrzeganej rozdzielczości obrazu. Ostatecznie, w części 4 omawiamy

naszą implementację, którą znaleźć można na dołączonej do pracy płycie kompaktowej.

Grafika a percepcja

W dziedzinie grafiki komputerowej daje się zaobserwować w ostatnich latach starania, aby ogranicze-

nia sprzętowe przezwyciężać przy pomocy technik uwzględniających właściwości układu wzrokowego

człowieka. Przykładem takiego ograniczenia może być zakres dynamiczny współczesnych wyświetlaczy.

Ich rozpiętość tonalna wciąż pozostaje dużo mniejsza od rozpiętości rzeczywistych scen, co często unie-

możliwia ich realistyczne odwzorowanie. Z problemem tym możemy sobie częsciowo poradzić stosując

pewne „percepcyjne sztuczki”.

Rysunek 1: Iluzja Craika-Cornsweeta. Przerywaną linią oznaczono jasność postrzeganą, linią ciągłą –

jasność rzeczywistą. Źródło: adaptacja ilustracji Krawczyka i in. [2007].

W iluzji Craika-Cornsweeta, przedstawionej na rys. 1, mamy do czynienia z dwoma polami o róż-

nych rozkładach jasności. Różnica w luminancji, dość znaczna na granicy między nimi, zmniejsza się

stopniowo aż do zera wraz z odległością od środka rysunku. Wydaje się jednak, że jasność lewego

pola jest mniejsza, nawet jeśli porównamy brzegi rysunku. Dopiero zasłonięcie krawędzi ujawnia, że

mamy do czynienia z iluzją. Zestawiając odpowiednio kilka profili Craika-Cornsweeta możemy wywo-

łać wrażenie szeregu obszarów o coraz większej jasności, mimo że początkowa i końcowa jasność jest

taka sama. Pomysłowe wykorzystanie tej obserwacji pozwoliło Krawczykowi i in. [2007] na zwiększenie

postrzeganego kontrastu fotografii poddanych kompresji zakresu dynamicznego.

Innym podejściem może być modelowanie układu optycznego oka i symulacja interakcji promieni

świetlnych z jego poszczególnymi elementami. Spoglądanie wprost na silne źródło światła powodu-

je kilka interesujących efektów świetlnych, m. in. efekt glare przedstawiony na rys. 2. Wyświetlacze

komputerowe nie dysponują tak dużą jasnością aby je wywołać, jednak wprowadzenie podobnych wzo-

4

Rysunek 2: Efekt glare. Źródło: Ritschel i in. [2009].

rów w odpowiednich miejscach obrazu może zwiększyć jego postrzeganą jasność [Yoshida i in., 2008].

Modelowanie może przebiegać z różnym stopniem szczegółowości: wiele osób zwraca uwagę na fakt,

że rzeczywisty efekt glare nie jest statyczny, lecz ulega niewielkim fluktuacjom. Ritschel i in. [2009]

pokazali, że uwzględnienie tego aspektu pozwala na dodatkowe wzmocnienie iluzji.

Publikacja Didyka i in. wpisuje się w ten trend, proponując sposób na zwiększenie postrzeganej

rozdzielczości obrazu. Nie jest to pierwsza praca tego typu (por. Damera-Venkata i Chang [2009], Allen i

Ulichney [2005]), jednak wyróżnia ją brak skomplikowanych rozwiązań technicznych oraz wykorzystanie

zdolności człowieka do dokładnego podążania wzrokiem za poruszającymi się obiektami.

Budowa oka

Elementem oka o szczególnym znaczeniu dla ostrości widzienia jest region siatkówki zwany plamką żółtą

(łac. macula lutea). W jej centrum leży dołek środkowy (łac. fovea centralis), obszar najostrzejszego

widzenia, pokrywający 2◦ kąta wzrokowego [Ayoub, 2008]. To właśnie na dołek środkowy pada obraz

obiektu, na którym fiksujemy wzrok. Dołek jest niezbędny przy czytaniu, oglądaniu filmów itp. Jest to

miejsce szczególnej koncentracji czopków, komórek odpowiedzialnych za widzenie w dobrych warunkach

oświetleniowych (widzenie fotopowe), natomiast praktycznie nie występują tam pręciki, czyli komórki

umożliwiające widzenie nocne (skotopowe). Prawie każda komórka zwojowa przyjmuje sygnał z tylko

jednego czopka [Fiok, 1991], tak więc ostrość widzenia w dołku ograniczona jest tylko przez gęstość

fotoreceptorów.

Pomiary Curcio i in. [1990] pokazują, że zagęszczenie receptorów w dołku środkowym dochodzić

może do 28” (sekund kątowych). Piksel wyświetlacza full-HD o przekątnej 23 cali obserwowanego

z odległości 60 cm ma szerokość około 1.5’ (minuty kątowej). Oznacza to, że na jeden piksel może

przypadać około 9 receptorów. Sugeruje to, że człowiek może rozróżnić detale o rozmiarach mniejszych

niż te, które jest w stanie odwzorować wyświetlacz.

5

Rysunek 3: Schematyczny przekrój oka. Zaczerpnięto z: Fiok [1991], źródło: Felhorski i Stanioch [1973].

Ruch śledzący oka

Istnieją dwa sposoby wolicjonalnej zmiany miejsca skupienia wzroku: sakady – bardzo szybkie skokowe

ruchy, występujące np. podczas czytania oraz ruchy śledzące (ang. smooth pursuit eye movements,

SPEM). Ruch śledzący pojawia się, gdy chcemy skupić wzrok na poruszającym się obiekcie. W istocie,

dość trudno wywołać ten ruch przy braku poruszającego się bodźca. Celem tego ruchu jest stabilizacja

obrazu na siatkówce, co przekłada się na ostrość widzenia. Mechanizm ten działa szczególnie dobrze

dla obiektów poruszających się jednostajnym ruchem prostoliniowym: śledzenie obiektu poruszającego

się z prędkością kątową 0.625—2.5 st/s jest niemal doskonałe, a przy prędkościach poniżej 7 st/s

pozostaje wciąż bardzo dobre [Laird i in., 2006]. Samo rozpoczęcie ruchu śledzącego jest procesem

bardzo szybkim: przebiega w czasie krótszym niż 100 ms.

Uśrednianie sygnału w czasie

Inną ważna własnością układu wzrokowego jest uśrednianie w czasie. Mechanizm ten leży u podstaw

działania wyświetlaczy CRT: każda plamka ekranu, zależnie od modelu i ustawień, rozbłyska kilkadzie-

siąt do stu kilkudziesięciu razy na sekundę, jednakże obraz wydaje się nie zmieniać. Jeśli rozbłyski są

zbyt wolne, pojawia się charakterystyczne „pływanie” bądź migotanie obrazu (ang. flickering). Czę-

stotliwość przy której się to dzieje nazywana jest częstotliwością zanikową migotania (critical flickering

frequency, CFF).

Wartość CFF zależna jest od wielu czynników, takich jak średnia jasność pola obserwacji (ang. ad-

aptation luminance), rozmiar obserwowanego obiektu czy region siatkówki, na który pada badany

obraz. Prawo Ferry’ego-Portera mówi, że CFF wzrasta liniowo wraz z logarytmem jasności bodźca.

Oznacza to, że im jaśniejszy bodziec, tym łatwiej zaobserwować migotanie. Czopki są bardziej czułe

na migotanie niż pręciki, tak więc w warunkach widzenia fotopowego CFF będzie wyższa niż podczas

6

widzenia skotopowego. Zmiana regionu siatkówki pociąga za sobą zmianę proporcji czopków do prę-

cików, a zatem widzenie centralne wiąże się na ogół z wyższą wartością CFF. Badania wykazały, że

dla centralnie obserwowanego bodźca o rozmiarach 0.3◦, CFF może nieznacznie przekroczyc 40 Hz.

Zwiększanie rozmiaru bodźca powoduje wzrost CFF, jednak do 19◦ pozostaje ona poniżej 60 Hz. Na-

leży przy tym odnotować, że powyżej CFF efektywna jasność bodźca równa jest jego średniej jasności.

Innymi słowy, przy odpowiednio krótkim okresie sygnału nie ma znaczenia dla postrzeganej jasno-

ści czy światło jest równomiernie rozłożone w czasie czy też nie. Własność ta znana jest jako prawo

Talbota-Plateau [Kalloniatis i Luu, 2009].

Wyświetlacze

Obecnie wśród wyświetlaczy komputerowych wyróżnić można dwa najpopularniejsze typy: wyświe-

tlacz kineskopowy (CRT) oraz wypierający go wyświetlacz ciekłokrystaliczny (LCD). Pomimo wielu

niewątpliwych zalet wyświetlacze LCD mają tendencję do rozmywania poruszających się obiektów

(ang. motion blur). Przyczyną tego zjawiska jest odmienny sposób prezentacji sygnału przez wyświe-

tlacz: podczas cyklu odświeżania pojedynczy piksel monitora CRT rozbłyska przez krótką chwilę,

podczas gdy w monitorze LCD świeci światłem ciągłym. Gdy obserwator zaczyna śledzić poruszający

się na monitorze obiekt, fotoreceptory mieszają sygnał sąsiadujących pikseli. Ponadto, piksele wyświe-

tlacza LCD nie zmieniają swojej jasności natychmiastowo, co również przyczynia się (aczkolwiek w

mniejszym stopniu) do rozmycia obrazu [Pan i in., 2005].

Podczas swoich badań Didyk i in. używali 22-calowego wyświetlacza LCD firmy Samsung, model

SyncMaster 2233 RZ, o częstotliwości odświeżania 120 Hz i rozdzielczości 1680 × 1050. W przyjętym

modelu pominęli oni opóźnienia ekranu i przyjęli, że zmiana jasności pikseli jest natychmiastowa.

7

2. Zwiększanie postrzeganej rozdzielczości obrazu

Celem, do którego dążą Didyk i in. [2010] jest wyświetlenie statycznego obrazu IH na wyświetlaczu o

rozdzielczości mniejszej niż res(IH). Osiągają to poprzez wyświetlenie serii obrazów mniejszej rozdziel-

czośći ItL, t = 0, 1, 2, . . . z prędkością 120 klatek na sekundę. Tak duża prędkość powoduje oczywiście

ich uśrednienie, jednak ze względu na odpowiedni dobór klatek postrzegany obraz nie zawiera artefak-

tów i zdaje się mieć rozdzielczość wyższą niż rozdzielczość ekranu. Przypadkiem, któremu poświęcono

szczególną uwagę była sytuacja, w której res(IH) = 3 · res(ItL). Proporcja ta koresponduje z pomia-

rem gęstości receptorów w siatkówce oraz – jak przekonamy się później – z częstotliwością zanikową

migotania.

Model

Didyk i in. zakładają następujący model: z pojedynczym fotoreceptorem przy danych warunkach obser-

wacji związany jest pewien okres całkowania T . Reakcja receptora r obserwującego pozycję p zmienia-

jącego się w czasie obrazu I określona jest wzorem r =
∫ T
0 I(p, t) dt. Zauważmy, że jeżeli oko pozostaje

nieruchome względem wyświetlacza, wszystkie receptory obserwujące pojedynczy piksel, zareagują tak

samo i nie będziemy w stanie zwiększyć postrzeganej rozdzielczośći obrazu. Jeśli pozwolimy, aby re-

ceptory zmieniały swoją pozycję, wzór ten uogólni się do postaci

r =
∫ T
0
I(p(t), t) dt. (1)

Dla różnych ścieżek p(t) otrzymamy w ogólności różne wartości powyższej całki, co daje możliwość

zróżnicowania reakcji pojedynczych receptorów.

Kolejnym założeniem modelu jest rozkład receptorów w siatkówce. Autorzy przyjęli, że obserwują

one rozmieszczone kratowo pozycje, odpowiadające pikselom wyświetlanego obrazu o dużej rozdzielczo-

ści. Sytuacja nie zmienia się, gdy obraz zaczyna się przemieszczać: uznajemy, że dokładność SPEM jest

na tyle wysoka, aby założyć doskonałe przypisanie pojedynczych receptorów do pikseli poruszającego

się obrazu.

Metoda

Przedstawimy teraz metodę, za pomocą której Didyk i in. wyświetlają obraz IH . Po pierwsze, należy

wymusić ruch oka względem wyświetlacza. W tym celu obraz IH jest z klatki na klatkę przemieszczany o

pewien wektor. Gdy obserwator skupi się na jakimś detalu obrazu, pojawia się ruch śledzący oka, który

stabilizuje obraz na siatkówce. Zgodnie z założeniami modelu jesteśmy w stanie dokładnie wyznaczyć

ścieżki p(t) związane z receptorami.

Zauważmy, że funkcja I(p(t), t) jest schodkowa: zmiana wartości następuje po wyświetleniu na-

stępnej klatki lub po przejściu do innego piksela na ścieżce. Stąd całkę w równaniu 1 można zastąpić

ważoną sumą wartości pikseli w kolejnych klatkach:

r =
∑
k

wk · I(p(tk), tk). (2)

8

Dla zilustrowania metody, rozważymy teraz prosty przykład, w którym obraz IH jest jednowymia-

rowy, a jego rozdzielczość jest dwukrotnie większa od rozdzielczości wyświetlacza. W każdej klatce

obraz przesuwa się o pół piksela wyświetlacza. Każdemu pikselowi IH(i) odpowiada śledzący go recep-

tor ri. Przyjmujemy okres integracji T równy czasowi wyświetlenia dwóch kolejnych klatek. Zauważmy,

że po dwóch klatkach obraz IH przesunie się dokładnie o jeden piksel wyświetlacza. Znajdziemy się

zatem w sytuacji wyjściowej, więc będziemy mogli wyświetlić ponownie te same klatki, przesunięte o

jeden piksel.

Receptor ri zależnie od parzystości i przez dwie klatki obserwuje jeden bądź dwa sąsiadujące piksele.

Jego reakcja wyraża się wzorem:

ri =
1
2
·

I0L(i/2) + I1L(i/2) i mod 2 = 0,

I0L(i/2) + I1L(i/2 + 1) i mod 2 = 1.
(3)

Aby postrzegany obraz odwzorowywał IH , wartości ri powinny być równe wartościom IH(i). Od-

powiada to układowi równań liniowych:

Wx = IH , (4)

gdzie x = (I0LI
1
L)T , a macierz W koduje wagi zawarte w sumowaniu 2; w tym przypadku każdy wiersz

zawiera dokładnie dwie niezerowe wartości, równe 12 .

Poza szczególnymi przypadkami, rząd macierzy W jest większy od liczby niewiadomych (jasności

wyświetlanych pikseli), stąd dokładne rozwiązanie układu jest niemożliwe. Do wyznaczenia niewiado-

mych autorzy zastosowali metodę najmniejszych kwadratów, tj. minimalizację wyrażenia

‖Wx− IH‖22, (5)

przy założeniu, że elementy x należą do zakresu [0, 1]. Ograniczenie to uzasadnione jest tym, że jasność

piksela nie może być ujemna, ani przekraczać maksymalnej jasności wyświetlacza.

Aliasing i migotanie

Istotnym zagadnieniem jest występowanie aliasingu w postrzeganym obrazie. W poszczególnych klat-

kach otrzymanych w wyniku optymalizacji pojawia się aliasing, jednak ze względu na częstotliwość

odświeżania ekranu kolejne klatki zlewają się ze sobą. Klatki są tak dobierane, aby po uśrednieniu

przez układ wzrokowy jak najbardziej przypominały oryginalny obraz. Zatem o ile obraz o wysokiej

rozdzielczości nie zawierał aliasingu, nie powinien go zawierać również obraz postrzegany. Własność tę

co prawda trudno udowodnić formalnie, jednak została ona potwierdzona eksperymentalnie – żadna z

badanych osób nie zaobserwowała występowania aliasingu.

Przedstawiony model fotoreceptora jest znacznym uproszczeniem. Prawdą jest, że reakcja recep-

tora jest wypadkową zmian sygnału w czasie, jednak nie wyraża się ona jako prosty filtr prostokątny

(por. Van Hateren [2005]). Dodatkowo należy pamiętać, że oprócz reakcji na poziomie neurofizycznym

znaczenie mają też czynniki psychofizyczne. Jeśli jednak wyświetlać będziemy okresowy sygnał o dużej

częstotliwości (powyżej CFF), obowiązywać zacznie prawo Talbota-Plateau i rozbieżność między śred-

nim sygnałem na przestrzeni jednego okresu, a sygnałem postrzeganym stanie się niezauważalna: obraz

9

będzie miał stałą jasność. Jak wspomnieliśmy, CFF dla małych, obserwowanych centralnie bodźców

tylko nieznacznie przekracza 40 Hz. Taką samą częstotliwość ma sygnał powstały w wyniku zapętlenia

trzech klatek na wyświetlaczu o odświeżaniu 120 Hz. Didyk i in. co prawda starają się poprawić jedynie

widoczność detali, ale na powierzchni całego obrazu, co może prowadzić do migoczących powierzchni o

rozmiarach kilkunastu stopni: obraz o szerokości 600 pikseli daje około 15◦. Stąd ich metoda w pew-

nym sensie balansuje na granicy, jednakże w toku eksperymentów migotanie nie było obserwowane.

Zwiększenie liczby klatek cyklu do czterech wymagałoby już zastosowania omówionego dalej mechani-

zmu redukcji migotania. Oczywiście sytuacja zmieniłaby się, gdyby zastosować wyświetlacz o wyższej

częstotliwości.

Eksperymenty

W celu zbadania skuteczności swojej metody Didyk i in. przeprowadzili dwie serie eksperymentów,

do których zaprosili odpowiednio 14 i 5 osób. Pierwsza seria badała skuteczność metody w przypad-

ku statycznych dwuwymiarowych obrazów i stanowiła trzon części eksperymentalnej. Druga natomiast

zajmowała się przypadkiem animacji trójwymiarowych, jednakże w dość ograniczonym zakresie: zbada-

no jedynie animacje, w których pewne regiony miały odpowiednie prędkości i klatki animacji dobierano

pod kątem tychże regionów, nie dbając o jakość pozostałych.

W pierwszej serii sprawdzono pięć różnych obrazów (fotografie, tekst oraz obrazy syntetyczne o wy-

sokim stopniu szczegółowości), które przesuwano o całkowite wielokrotności piksela (prędkości składowe

w zakresie 0–3) i zmniejszano trzykrotnie. Animacje wygenerowane metodą Didyka i in. porównywane

były do obrazów powstałych na drodze standardowej procedury decymacji z zastosowaniem uprzed-

niego filtrowania antyaliasowego (okienko Lanczosa lub jeden z rodziny filtrów Mitchella-Netravali,

dopasowany do preferencji badanej osoby). Badanym osobom przedstawiano do porównania nieozna-

czone animacje w losowej kolejności i proszono o wskazanie tej, która lepiej odwzorowuje detale. Bada-

nie wykazało przewagę metody Didyka i in. W badaniu sprawdzono również czytelność generowanych

obrazów. W tym celu ręcznie zaprojektowano czcionkę rastrową o wymiarach 6 × 9 pikseli, którą na-

stępnie zmniejszano trzykrotnie (rozmiar pojedynczego znaku to jedynie 2 × 3 piksele!) i przesuwano w

poziomie. Eksperyment wykazał lepszą czytelność 13 z 26 badanych znaków przy zastosowaniu metody

Didyka i in. Po szczegółowe wyniki eksperymentów wraz z dokładnym opisem zastosowanych procedur

zainteresowanego czytelnika odysłamy do oryginalnej pracy.

Szczegóły implementacyjne

Algorytm wyznaczający optymalne podklatki zaimplementowano jako kod programu Matlab. Opty-

malizacja przebiegała w oparciu o funkcję lsqlin. Podejście to sprawdziło się, jeśli chodzi o jakość

wyników, jednak jego efektywność nie była najlepsza. Przykładowo, wyznaczenie 3 klatek dla obrazu o

rozdzielczości full-HD zajmowało ok. 5 minut. Skłoniło to autorów do poszukiwania szybszych metod

optymalizacji. Metoda gradientu prostego zaimplementowana jako zestaw fragment shaderów GLSL

pozwoliła uzyskać czasy poniżej 1 sekundy. Ograniczenie przestrzeni poszukiwań do przedziału [0, 1]

było wymuszane poprzez obcięcie po każdej iteracji.

10

Redukcja migotania

Wprowadzenie dłuższych okresów integracji, czy to ze względu na mniejszą częstotliwość odświeżania

wyświetlacza czy też większą liczbę podklatek w okresie powoduje pojawienie się migotania obrazu.

Bazując na dostępnych pomiarach czułości układu wzrokowego na migotanie [Mäkelä i in., 1994], au-

torzy wprowadzają dodatkową metodę pozwalającą na jego redukcję. Istota tej metody polega na

mieszaniu (ang. alpha blending) wyznaczonych podklatek z niemigoczącym obrazem wyznaczonym w

drodze standardowej decymacji. Proporcja w jakiej mieszane są obrazy jest indywidualnie wyznaczana

dla każdego piksela i dobierana tak, aby fluktuacje w jasności pikseli utrzymywały się poniżej progu

dostrzegalności. Oczywiście taki sposób redukcji migotania odbywa się kosztem zmniejszenia szczegó-

łowości obrazu, jednak jak podają autorzy, dla 4-klatkowego okresu na 120-hercowym wyświetlaczu,

poprawa postrzeganej rozdzielczości jest wciąż widoczna. Ponieważ widoczność migotania jest zależna

od rozmiaru obserwowanego obszaru, metoda wykrywająca nadmierne fluktuacje nie może polegać tyl-

ko na wartościach pojedynczych pikseli, ale musi też brać pod uwagę ich sąsiedztwo. Dlatego budowana

jest piramida gaussianów – ciąg obrazów I0, I1, I2, . . . o coraz mniejszych rozmiarach, z których każdy

powstaje z poprzedniego w drodze downsamplingu. Przez I0 rozumiemy oryginalny obraz, natomiast

żeby wyznaczyć Ik+1 do obrazu Ik stosowany jest odpowiedni filtr gaussowski, po czym liczba pró-

bek zmniejszana jest dwukrotnie. Na każdym poziomie piramidy obliczane są współczynniki redukcji

migotania, które następnie są propagowane w dół piramidy, tak że pojedynczy piksel obrazu I0 jest

redukowany z maksymalnym współczynnikiem spośród przypisanych mu na wszystkich poziomach.

11

3. Uogólniona metoda zwiększania postrzeganej rozdzielczości

W tej części postaramy się uogólnić przedstawioną metodę na inne typy animacji. Zajmiemy się ko-

lejno trzema przypadkami o wzrastającym stopniu ogólności. Najpierw przyjrzymy się sytuacji, gdy

statyczny obraz porusza się z dowolną prostoliniową prędkością (3.1). Następnie zaproponujemy meto-

dę zwiększenia rozdzielczości wyrenderowanych animacji trójwymiarowych, dla których dysponujemy

funkcją przepływu optycznego (3.2), po czym przejdziemy do najogólniejszego przypadku animacji,

których przepływ optyczny jest nieznany (3.3).

3.1. Ruch statycznego obrazu

W przypadku ruchu statycznego obrazu Didyk i in. [2010] skupili się w swoich eksperymentach głównie

na wyświetlaniu obrazu o 3-krotnie większej rozdzielczości przesuwającego się z całkowitoliczbową

prędkością z zakresu [0, 3]2. Wymusiło to pewną szczególną postać problemu optymalizacji klatek,

gdyż animacja była zapętlona: wystarczyło wyznaczyć postać trzech klatek. Dodatkowo założyli oni

uproszczoną postać układu równań: dokładne ścieżki receptorów nie były wyznaczane, lecz każdy

receptor zależał w równym stopniu od wartości dokładnie 3 pikseli, a każdy piksel miał wpływ na

dokładnie 9 receptorów.

W tej sytuacji, pierwszym narzucającym się uogólnieniem jest zbadanie ruchu prostoliniowego

o dowolnym przesunięciu w obu osiach, niekoniecznie powodującego zapętlenie animacji. Zgodnie z

zaproponowanym modelem, reakcja fotoreceptora w ustalonym przedziale całkowania T jest średnią

ważoną kolorów zaobserwowanych pikseli, gdzie wagi są wprost proporcjonalne do czasu obserwacji

danego piksela. Formalnie reakcję możemy wyrazić jako sumę
∑
i,j,k w

k
i,jI
k
i,j , gdzie wagi obliczane są

według wzoru:

wki,j =
1
|p(t)|

∫ T
0
χi,j(p(t))χk(t) dt. (6)

Przez χi,j rozumiemy funkcję charakterystyczną, równą 1 gdy argument leży wewnątrz piksela o współ-

rzędnych (i, j). Analogicznie, χk jest równa 1 gdy argument, będący punktem w czasie, przynależy do

k-tej klatki animacji.

Niestety nie możemy już polegać na zapętleniu animacji. Czas potrzebny na powrót obrazu wysokiej

rozdzielczości do wyjściowego położenia (lub zbliżonego) względem siatki pikseli ekranu może być dużo

dłuższy niż 3 klatki. W wyświetlanej animacji pojawią się zatem częstotliwości mniejsze niż 40 Hz, które

będą się przyczyniać do niepożądanego zjawiska flickeringu. Efekt ten postaramy się zneutralizować

poprzez wymuszanie właściwej reakcji receptorów w każdym podciągu trzech klatek animacji. Niestety

powoduje to wzrost liczby niezerowych elementów macierzy W proporcjonalny do długości animacji.

Implementacja

Podczas swoich badań korzystaliśmy z Plexusa – wciąż rozwijanego frameworku i środowiska do badań

nad grafiką komputerową autorstwa Tobiasa Ritschela. W systemie tym, inspirowanym przez programy

12

do compositingu, użytkownik-programista implementuje w postaci pojedynczych klas C++ tzw. urzą-

dzenia. Są to obiekty ze ściśle zdefiniowanym interfejsem wejścia-wyjścia, odpowiedzialne za wykonywa-

nie pojedynczych operacji graficznych, które następnie wraz z innymi urządzeniami stanowią jednostki

składowe acyklicznego grafu, reprezentującego całość badanego algorytmu. Graf budowany jest w wi-

zualnym edytorze, a do swojej dyspozycji użytkownik ma bogatą bibliotekę urządzeń wykonujących

podstawowe zadania. Na przepływ danych w grafie, którym zajmuje się sam system, użytkownik ma

wpływ poprzez specjalne urządzenia logiczne, które modyfikują domyślny sposób propagacji danych.

Podczas implementowania urządzeń programista dysponuje szeregiem wrapperów, reprezentujących

obiekty takie jak obraz, tekstura OpenGL, shader GLSL itp.

Plexus posłużył nam do początkowych badań nad algorytmem optymalizacji (ostatecznie ekspe-

rymenty przeprowadziliśmy na niezależnej implementacji w C++, którą znaleźć można na dołączonej

płycie) oraz do wyznaczenia przepływu optycznego dla animacji (por. 3.3).

W naszej implementacji użyliśmy do optymalizacji wariantu metody gradientu prostego, wzorowa-

nej na metodzie użytej przez Damerę-Venkatę i Changa [2009]. Ogólny zarys algorytmu przedstawiał

się następująco:

1. Wczytaj obraz.

2. Przejdź do przestrzeni liniowej odwracając gamma-korekcję.

3. Zainicjalizuj klatki wyjściowe jednolitym kolorem.

4. Wykonaj kilka iteracji:

(a) Dla każdego podciągu trzech klatek zasymuluj reakcję receptorów.

(b) Oblicz różnicę między oryginalnym obrazem a reakcją receptorów w każdym podciągu.

(c) Dystrybuuj różnicę w podciągach na całą sekwencję.

5. Zastosuj gamma-korekcję i zwróć podklatki.

W sercu tych procedur leży funkcja do wyznaczania wag pikseli zgodnie z równaniem 6:

input

off . wektor oznaczający początek odcinka

vel . wektor oznaczający długość odcinka

output

result . lista trójek zawierająca współrzędne pikseli wraz z wagami

fun result = generate mask(off, vel)

result = []

. factor to współczynnik, o jaki zmniejszamy rozmiar obrazka; na ogół 3

off = off / factor

vel = vel / factor

. całkowite współrzędne prostokąta ograniczającego odcinek

sleft = bmin(off.x, off.x + vel.x)c

13

sright = dmax(off.x, off.x + vel.x)e + 1

sbot = bmin(off.y, off.y + vel.y)c
stop = dmax(off.y, off.y + vel.y)e + 1

. jeśli odcinek jest bardzo krótki

if |vel| < ε

result = [(sleft, sbot, 1)]

return

endif

. iteracja po wszystkich pikselach prostokąta ograniczającego

for r = sbot to stop − 1

for c = sleft to sright − 1

. współrzędne końców odcinka

(x1, y1) = off

(x2, y2) = off + vel

. współrzędne rozważanego piksela

left = c, right = c + 1, bot = r, top = r + 1

. te same operacje względem obu osi

for axis = 1 to 2

. zamień miejscami końce odcinka jeśli pierwszy jest leksykograficznie większy

if x1 > x2

swap(x1, x2)

swap(y1, y2)

endif

. sprawdź czy rzuty na oś odcinka i piksela nie są rozłączne

if x1 > right or x2 < left

x1 = x2 = y1 = y2 = 0

break

endif

. odrzuć części odcinka, których rzut leży poza rzutem piksela

if x1 < left

y1 = y1 + (y2 − y1) · (left − x1) / (x2 − x1)

x1 = left

endif

if x2 > right

y2 = y2 − (y2 − y1) · (x2 − right) / (x2 − x1)

x2 = right

endif

swap(x1, y1)

swap(x2, y2)

14

swap(left, bot)

swap(right, top)

endfor

. znormalizowana waga proporcjonalna do długości pozostałej części odcinka

weight = |(x2 − x1, y2 − y1)| / |vel|
. odrzuć piksele o bardzo małych wagach (w szczególności o wadze zero)

if weight > ε

result = [result, (c, r, weight)]

endif

endfor

endfor

endfun

W oparciu o powyższą funkcję możemy zdefiniować dwie dualne procedury zależne od numeru

klatki. Pierwsza z nich dla zadanego piksela obrazu wysokiej rozdzielczości (receptora) zwraca listę

współrzędnych wraz z wagami, odpowiadającą pikselom niskiej rozdzielczości, przez które „przejdzie”

receptor:

input

off . współrzędne receptora

num . numer klatki

output

pixels . lista trójek zawierająca współrzędne pikseli wraz z wagami

fun pixels = receptor to pixels(off, num)

pixels = generate mask(off + num · vel, vel)

endfun

Druga procedura dla danych współrzędnych piksela i numeru klatki wyznacza listę receptorów na

które piksel ma wpływ, wraz z wagami:

input

off . współrzędne piksela

num . numer klatki

output

receptors . lista trójek zawierająca współrzędne receptorów wraz z wagami

fun receptors = pixel to receptors(off, num)

receptors = {(x, y, w) | (off.x, off.y, w) ∈ receptor to pixels((x, y), num)}
endfun

Te dwie procedury posłużą odpowiednio do wyznaczenia błędu (punkt 4b) oraz jego dystrybucji

(punkt 4c). Całość optymalizacji ilustruje następujący pseudokod:

15

input

image . obraz wysokiej rozdzielczości

factor . współczynnik o jaki zmniejszamy rozmiar obrazu

vel . prędkość z jaką poruszać się ma obraz

len . długość sekwencji do wygenerowania

iterations . liczba iteracji optymalizacji

output

subframes . optymalna lista klatek niskiej rozdzielczości

fun subframes = optimize(image, factor, vel, len, iterations)

(width, height) = size(image)

(swidth, sheight) = size(image) / factor

. odwróć gamma-korekcję

image = gamma−1(image)

. inicjalizuj klatki; new image() zwraca czarny obraz

for i = 0 to len − 1

subframes[i] = new image(swidth, sheight)

corrections[i] = new image(swidth, sheight)

weightsums[i] = new image(swidth, sheight)

endfor

for iter = 1 to iterations

for i = 0 to len − 3

response = new image(width, height)

. symuluj reakcję receptorów

for x, y, s in {0, . . . , width − 1} × {0, . . . , height − 1} × {0, 1, 2}
L = receptor to pixels((x, y), i + s)

for sx, sy, w in L

response[x, y] = response[x, y] + w · 13 · subframes[i + s][sx, sy]

endfor

endfor

. błąd reakcji receptorów

error = image − response

. dystrybuuj błąd reakcji na piksele klatek

for sx, sy, s in {0, . . . , swidth − 1} × {0, . . . , sheight − 1} × {0, 1, 2}
L = pixel to receptors((sx, sy), i + s)

. poprawka piksela to średnia ważona błędów odpowiednich receptorów

for x, y, w in L

corrections[i + s][sx, sy] = corrections[i + s][sx, sy] + w · error[x, y]

weightsums[i + s][sx, sy] = weightsums[i + s][sx, sy] + w

endfor

endfor

16

endfor

. uaktualnij podklatki, zeruj poprawki i współczynniki normalizacji

for i = 0 to len − 1

subframes[i] = subframes[i] + corrections[i] / weightsums[i]

. obetnij wartości pikseli do zakresu [0, 1]

subframes[i] = clamp(subframes[i], 0, 1)

corrections[i] = new image(swidth, sheight)

weightsums[i] = new image(swidth, sheight)

endfor

endfor

for i = 0 to len − 1

subframes[i] = gamma(subframes[i])

endfor

endfun

Klasyczny resampling

W ocenie skuteczności metody ważne jest wybranie właściwego punktu odniesienia do porównań. Didyk

i in. swoje wyniki porównywali z animacją, w której każda klatka była wynikiem downsamplingu ory-

ginalnego obrazu. W procesie tym używamy próbek bitmapy o wysokiej rozdzielczości do rekonstrukcji

oryginalnej sceny przedstawionej na obrazie. Następnie, z obrazu usuwamy częstotliwości powyżej

granicy Nyquista aby uniknąć aliasingu, po czym sygnał ponownie próbkujemy. W wyidealizowanym

przypadku oba te kroki możemy przeprowadzić przy użyciu splotu z przeskalowaną funkcją sinc. W

dziedzinie fourierowskiej odpowiada to dokładnej selekcji częstotliwości poniżej pewnej częstotliwości

granicznej zależnej od współczynnika skalowania (im „szersze” jądro splotu, tym więcej częstotliwości

odetniemy). Niestety jest to proces stratny, a dodatkowo w praktyce zmuszeni jesteśmy stosować jego

aproksymacje, stąd ocena jakości wyniku jest w znacznej mierze subiektywna. Didyk i in. używali

okienka Lanczosa:

L(x) =


sinc(x) sinc(x/2) |x| ¬ 2, x 6= 0,

1 x = 0,

0 2 < |x|

lub jednego z filtrów Mitchella-Netravali:

Mb,c(x) =
1
6
·


(12− 9b− 6c)|x|3 + (−18 + 12b+ 6c)|x|2 + (6− 2b) |x| ¬ 1,

(−b− 6c)|x|3 + (6b+ 30c)|x|2 + (−12b− 48c)|x|+ (8b+ 24c) 1 < |x| ¬ 2,

0 2 < |x|.

Oba filtry przeskalowano tak, aby ich promień miał długość 6. Promień ten był dobrany tak, aby

pojedyncze klatki animacji nie zawierały aliasingu. Podczas naszych badań zaobserwowaliśmy jednak

17

4.1 4.2 4.3

Rysunek 4: Wycinek z klatki uzyskanej za pomocą optymalizacji (4.1) oraz filtrowania Lanczosa w

przestrzeni liniowej z promieniem 3 (4.2) i 4 (4.3).

następującą własność: jeśli zmniejszymy promień do 3-4 jednostek, tym samym pozwalając na pojawie-

nie się aliasingu w pojedynczych klatkach, otrzymamy rezultaty bardzo podobne do tych powstałych w

wyniku optymalizacji. Dodatkowo, odwrócenie gamma-korekcji przed filtrowaniem może spowodować

dalsze zmniejszenie tej różnicy1. Porównanie przedstawiono na rys. 4. Powstaje zatem pytanie, czy

optymalizacji nie można by całkowicie wyeliminować, podobnie jak w pracy Damery-Venkaty i Chan-

ga [2009] zastępując ją odpowiednio dobranymi filtrami. Pierwsze próby Didyka i in. w tym kierunku

zakończyły się jednak niepowodzeniem i problem ten pozostaje otwarty.

Eksperyment

Eksperyment polegał na wygenerowaniu animacji odpowiadających ruchom prostoliniowym o prędko-

ściach z zakresu [0, 3]2. Przestrzeń tę pokryliśmy równomiernie stosując krok 0.1 piksela. Ograniczy-

liśmy się do prędkości o składowej x niewiększej niż składowa y, ze względu na symetrię pozostałych

przypadków. W wyniku otrzymaliśmy 495 animacji.

Rysunek 5: Obraz testowy dla ruchu o dowolnej prędkości. Źródło: Didyk i in. [2010].

Jako obrazu testowego użyliśmy zdesaturowanego wycinka z oryginalnego obrazu stosowanego w

1Obserwacja ta przyczyniła się do decyzji, aby we wszystkich eksperymentach omawianych w tej pracy, przed zasto-

sowaniem filtrowania Lanczosa przechodzić do przestrzeni liniowej odwracając gamma-korekcję.

18

6.1 6.2

Rysunek 6: Porównanie działania optymalizacji dla prędkości (1, 1) i prędkości (6, 6).

eksperymentach przez Didyka i in. (rys. 5). Wycinek miał wymiary 600×600 pikseli, długość sekwencji

120 klatek.

Dla żadnego ruchu o prędkości niecałkowitej nie otrzymaliśmy w pełni zadowalających rezulatatów,

aczkolwiek dla kilkunastu z nich efekty były bardzo dobre, np. ruch (1.2, 1.2) lub (1.8, 1.8). Właściwie

dla każdego przypadku prędkości niecałkowitej dało się zaobserwować artefakty, które podzielić można

na trzy grupy:

1. Flickering o niskiej częstotliwości. Jak wspomnieliśmy wcześniej, klatki dla prędkości całkowito-

liczbowych zawierały aliasing przestrzenny niwelowany przez uśrednianie w czasie. Dla innych

prędkości bardzo często pojawiał się jednak efekt „pływających schodków”, t.j. widocznego alia-

singu przestrzennego przemieszczającego się wzdłuż krawędzi. Ruch ten wynika z fluktuacji o

niskiej częstotliwości.

2. Flickering wysokiej częstotliwości. Gdy fluktuacje zwiększały częstotliwość, aliasing przestrzenny

w tym miejscu przestawał być widoczny, jeśli jednak częstotliwość nie była dostatecznie wysoka

(powyżej CFF), powstawał efekt migotania.

3. Statyczny aliasing przestrzenny. Nawet gdy nie występował żaden z dwóch poprzednich arte-

faktów, widoczny był aliasing przestrzenny („schodki” na krawędziach). Prawdopodobnie tego

artefaktu można by uniknąć stosując wstępne filtrowanie obrazu.

Należy jednak odnotować, że testowane prędkości są problematyczne również dla tradycyjnego re-

samplingu. Migotanie występowało (aczkolwiek w trochę mniejszym stopniu) nawet gdy stosowaliśmy

okienko Lanczosa o promieniu 6. Żeby pozbyć się flickeringu trzeba by zwiększyć promień filtru, co w

jeszcze większym stopniu zredukowałoby ostrość obrazu.

Zbadaliśmy również 30 prędkości postaci (x, x) dla x ∈ (3, 6]. Duża część tych animacji nie zawierała

flickeringu, jednak efekt wyostrzenia, zwłaszcza dla większych prędkości, był dyskusyjny. Przy takich

prędkościach wciąż można zaobserwować pewną różnicę, jednak według naszej oceny nie jest ona już

tak oczywista. Przede wszystkim proces optymalizacji rozmywał pojedyncze klatki, co ilustruje rys. 6.

19

Ponadto, wśród potencjalnych przyczyn wskazać można fakt, że wraz ze wzrostem prędkości nasila

się efekt rozmycia (motion blur, patrz część 1), dodatkowo wyniki eksperymentalne [Laird i in., 2006]

sugerują spadek możliwości układu wzrokowego w zakresie precyzyjnego ruchu śledzącego.

3.2. Animacje ze znaną funkcją przepływu optycznego

Uogólnienie metody Didyka i in. na animacje wymaga wprowadzenia pojęcia przepływu optycznego

(ang. optical flow). Przez obraz rozumiemy dwuwymiarowy układ wzorów świetlnych będący odwzo-

rowaniem różnic jasności obserwowanej sceny. Jak podają Horn i Schunck [1981], przepływ optyczny

jest to rozkład postrzeganych prędkości wzorów w obrazie i może być wynikiem ruchu obiektów w

scenie względem obserwatora. Jednakże związek między ruchem obiektów a przepływem optycznym

niekoniecznie jest oczywisty. Przykładowo, kula o jednorodnej barwie obracająca się wokół własnej

osi nie tworzy poruszających się wzorów. Z drugiej strony zmiany oświetlenia statycznej sceny mogą

powodować ruch refleksów świetlnych na powierzchni obiektów. Niemniej dla wygody ograniczymy się

do przypadków, w których przepływ optyczny może być wprost utożsamiony z ruchem powierzchni

obiektów.

Animacje trójwymiarowe są cyfrowymi obrazami wirtualnej, zmiennej w czasie trójwymiarowej sce-

ny. W pewnym uproszczeniu, każdy piksel ustalonej klatki jest obrazem punktu przestrzeni wirtualnej,

znajdującego się na powierzchni jakiegoś obiektu, podlegającemu przekształceniom, takim jak ruch

czy deformacja. Położenie tego punktu możemy śledzić w przestrzeni wirtualnej, a zatem również jego

rzut na powierzchnię ekranu w kolejnych klatkach. Możliwe jest więc zdefiniowanie funkcji przepływu

optycznego f : N3 → R2, której argumentami są współrzędne (x, y) piksela ekranu oraz numer klatki i,

a wartością wektor przesunięcia (∆x,∆y) na powierzchni ekranu. Funkcję f otrzymać można w łatwy

sposób podczas generowania animacji, gdyż jest ona elementem opisu sceny lub daje się z niego łatwo

wyznaczyć.

Śledzenie punktów

Stoimy teraz przed następującym problemem: dla danej animacji o prędkości 120 kl/s wraz z przepły-

wem optycznym wygenerować animację o trzykrotnie mniejszej rozdzielczości, zachowując przy tym

jak największą rozdzielczość postrzeganą. W przypadku statycznych obrazów wszystkie punkty prze-

mieszczały się w ten sam, dobrze zdefiniowany sposób, jednak teraz nie dysponujemy tak dokładną

informacją. W każdej klatce pojawia się nowy zestaw punktów o znanej prędkości zastępując poprzed-

ni. Pojawia się zatem pytanie, co tak naprawdę jest śledzone i jak przebiegają ścieżki receptorów na

ekranie. Żeby zaradzić tej trudności, zastosujemy uproszczoną strategię: zamiast wyznaczać długie

ścieżki, skupimy się na lokalnej optymalizacji krótkich ścieżek, które niekoniecznie łączą się ze sobą.

Dla każdej klatki wprowadzać będziemy nowy zbiór wirtualnych receptorów, poruszających się ruchem

prostoliniowym o długości życia trzech klatek:

rix,y =
∫ 3
0
I(pix,y(t), i+ t) dt. (7)

20

Ścieżka pix,y jest odcinkiem wyznaczonym przez przepływ optyczny:

pix,y(t) = (x, y) + t · f(x, y, i). (8)

Innymi słowy zakładamy, że ścieżki receptorów są lokalnie (w czasie i przestrzeni) stałe. Powyższe

wzory podobnie jak poprzednio definiują układ równań liniowych, z pikselami animacji niskiej roz-

dzielczości jako niewiadomymi, do którego stosujemy tę samą metodę optymalizacji. Zauważmy, że dla

całkowitoliczbowego ruchu statycznego obrazu rozważanego przez Didyka i in. mamy f ≡ (k1, k2) i

problem redukuje się do tego samego co poprzednio układu równań.

Adaptacja pseudokodu przedstawionego w punkcie 3.1 do przypadku ogólnej animacji wymaga

jedynie drobnych zmian – musimy zmodyfikować funkcje receptor to pixels i pixel to receptors, tak aby

uwzględniały funkcję przepływu optycznego oraz wprowadzone do modelu receptory wirtualne:

input

off . współrzędne receptora

rec . numer receptora

num . numer klatki

output

pixels . lista trójek zawierająca współrzędne pikseli wraz z wagami

fun pixels = receptor to pixels(off, rec, num)

vel = optical flow(off, rec)

t = num − rec

pixels = generate mask(off + t · vel, vel)

endfun

input

off . współrzędne piksela

rec . numer receptora

num . numer klatki

output

receptors . lista trójek zawierająca współrzędne receptorów wraz z wagami

fun receptors = pixel to receptors(off, rec, num)

receptors = {(x, y, w) | (off.x, off.y, w) ∈ receptor to pixels((x, y), rec, num)}
endfun

oraz uaktualnić ich wywołania w głównej procedurze:

fun subframes = optimize(image, factor, vel, len, iterations)

. . .

receptor to pixels((x, y), i, i + s)

. . .

pixel to receptors((sx, sy), i, i + s)

. . .

endfun

21

Ze względu na efektywność obliczeń w naszej implementacji z optymalizacji wyłączyliśmy receptory,

dla których funkcja przepływu optycznego była większa niż 6 w kierunku którejś z osi. W takich

przypadkach zakładaliśmy, że f jest równa (0, 0), przyjmując, że znacząca poprawa ostrości w tym

miejscu animacji nie jest możliwa.

Eksperymenty

W celu przetestowania naszej metody wygenerowaliśmy w programie Blender 2.49 pięć animacji pro-

stych obiektów wraz z przepływem optycznym i porównaliśmy wynik optymalizacji klatek z filtrami

Lanczosa o promieniach 3, 4, 5 oraz 6. Do zapisu użyliśmy formatu EXR, który umożliwia zapis kana-

łów jako liczb zmiennoprzecinkowych ze znakiem. Kanał czerwony przechowywał jasność, natomiast

kanały zielony i niebieski posłużyły do zapisu funkcji przepływu optycznego (w Blenderze wartość

vector render layer).

7.1 7.2 7.3

Rysunek 7: Obiekty użyte w testach 1–4.

Pierwsza animacja przedstawiała obracającą się kulę z nałożonym tekstem jako teksturą (rys. 7.1).

W tym, jak i w następnych testach zawierających obracający się obiekt oś obrotu była równoległa

do przekątnej obrazu. Nasza implementacja dała wyniki lepsze od filtrowania z promieniem 3 (lekko

widoczny aliasing) oraz 5, 6 (obraz mniej ostry). Filtrowanie z promieniem 4 dało porównywalny wynik.

Warto odnotować, że dla obu metod litery na poruszającej się kuli wydawały się grubsze w porównaniu

z pojedynczą klatką animacji, co nabierze pewnego znaczenia w teście 3.

Druga animacja przedstawiała dwa szeregi brył oteksturowanych bitmapą używaną do testowania

ruchu statycznego obrazu (rys. 7.2). Obserwator przemieszczał się pomiędzy szeregami i równolegle do

nich. Wektory prędkości skierowane były od środka obrazu na zewnątrz, a ich długość zwiększała się

wraz z odległością od środka. W tym przypadku nasza implementacja dała lepsze wyniki od wszystkich

sprawdzonych filtrów Lanczosa. Większy rozmiar filtru powodował rozmycie obrazu na jego brzegach,

mniejszy natomiast skutkował aliasingiem w centrum obrazu. Aby uzyskać porównywalny efekt należa-

łoby użyć filtrowania o zmiennym promieniu, zależnym od prędkości w danym miejscu obrazu. Warto

zwrócić uwagę na fakt, że taki typ ruchu w obrazie, tj. wynikający z przemieszczania się kamery w nie-

22

ruchomym otoczeniu, ma spore znaczenie praktyczne w wielu dziedzinach, takich jak kinematografia,

wizualizacje architektoniczne czy gry komputerowe.

Trzecia animacja przedstawiała tę samą co w pierwszym teście kulę (rys. 7.1), jednak tym razem

ruch polegał na naprzemiennym zwiększaniu i zmniejszaniu obiektu. Zoptymalizowana animacja wy-

kazywała interesującą właśność: w momencie gdy wektory prędkości zerowały się (tj. gdy kula osiągała

minimalny bądź maksymalny rozmiar) tekstura traciła odrobinę kontrastu. Związane jest to ze wspo-

mnianym przy okazji pierwszego testu efektem pogrubienia liter podczas animacji. Aby wyrównać

jasność liter należałoby w jakiś sposób zróżnicować działanie algorytmu ze względu na obecność ruchu.

Filtr o promieniu 6 dawał obraz bardziej rozmyty, mniejsze promienie zwiększały ilość aliasingu. W

tym teście wedle naszej oceny, nie można przesądzić, która metoda dała lepsze wyniki.

W czwartej animacji badanym obiektem była znów obracająca się kula, jednak ze zmienioną tek-

sturą (rys. 7.3). Ponownie filtry o promieniach 5 i 6 dały obraz bardziej rozmyty, promień 4 dał obraz

porównywalny, a przy promieniu 3 zaobserwować można było zwiększony aliasing.

Rysunek 8: Obiekt użyty w teście 5.

W ostatnim teście obracaliśmy obiekt zilustrowany na rys. 8. Dla rejonów w centrum obrazu na-

sze obserwacje są analogiczne do tych w teście 1 i 4: filtrowanie Lanczosa o promieniu 4 dało wy-

niki porównywalne do optymalizacji. Jednak dla włókien bliżej brzegów występował aliasing, który

wymagał zwiększenia promienia filtru. Jednocześnie w tych samych rejonach dla zoptymalizowanych

klatek zaobserwować można było sporych rozmiarów czarne obwódki wokół niektórych włókien. Ar-

tefakt ten wynika prawdopodobnie ze znacznych różnic prędkości – cienkie włókna o dużej prędkości

przemieszczają się na statycznym tle. Podobnie jak w teście 3 ciężko jest wskazać zwycięzcę, jednak

zoptymalizowane klatki dały lepszy efekt na większym obszarze niż którykolwiek z filtrów.

Przeprowadzone testy wskazują, że zaimplementowana optymalizacja dla animacji może dać wyniki

lepsze niż proste filtrowanie. Wedle naszej oceny, żeby uzyskać porównywalny efekt, należałoby uza-

leżnić rozmiar filtru od rozkładu prędkości w obrazie. Jednocześnie nasz algorytm wymaga poprawek

usuwających efekt zmiany ogólnego wyglądu odnotowany w teście 3, jak również artefakty widoczne

w teście 5.

23

3.3. Animacje z nieznaną funkcją przepływu optycznego

Ostatnim rozważanym przez nas uogólnieniem metody był przypadek dowolnej animacji, dla której

nie dysponujemy dokładnym przepływem optycznym. Pierwszym krokiem jest zatem jego estyma-

cja. W tym celu zastosowaliśmy algorytm oparty na funkcjonale TV-L1 zaproponowany przez Za-

cha i in. [2007]. Użyliśmy implementacji opublikowanej w ramach projektu GPU4Vision2, zaadapto-

wanej do użycia w Plexusie (patrz rozdział 3.1).

Eksperymenty

Działanie naszego algorytmu w połączeniu z wyznaczaniem funkcji przepływu optycznego sprawdzili-

śmy na trzech testach. Pierwszy test zawierał tę samą co poprzednio obracającą się kulę z nałożonym

tekstem, jednak tym razem przepływ optyczny był nieznany. Wygenerowane klatki na pierwszy rzut

oka wydawały się nieodróżnialne. Dokładniejsze oględziny pozwoliły stwierdzić obecność bardzo ma-

łych artefaktów na krawędzi obracającego się obiektu, ale według nas pozostawały one bez wpływu na

jakość wyniku.

9.1 9.2

Rysunek 9: Fragment animacji Big Buck Bunny (9.1, źródło: http://www.bigbuckbunny.org/) oraz

testowa sekwencja video (9.2).

Następnie przetestowaliśmy nasz program na materiale zaczerpniętym z animacji Big Buck Bun-

ny, której nieskompresowane klatki w rozdzielczości full-HD można pobrać z oficjalnej strony filmu3.

Ponieważ film ten tworzony był z myślą o odtwarzaniu z prędkością 24 klatek na sekundę, do testów

wybraliśmy fragment początkowej sceny (klatki 554–733), gdzie ruch kamery jest na tyle powolny,

że pięciokrotne przyspieszenie wciąż pozwala na w miarę swobodną obserwację. Z klatek tych wyod-

rębniliśmy obszar w prawej części kadru o rozmiarze 900 × 900 (rys. 9.1). Filtry o promieniu 3 i 4

zawierały nieakceptowalną ilość aliasingu. Filtr o promieniu 6 byl mniej ostry niż zoptymalizowane

klatki. Promień 5 pozwolił uzyskać podobny poziom szczegółowości, jednak porównanie jest utrudnio-

ne ze względu na to, że filtr Lanczosa zwiększył kontrast sceny. Stąd prawdopodobnie wynika również
2OFlib. Institute for Computer Graphics and Vision (Graz University of Technology) http://gpu4vision.icg.tugraz.at/
3Big Buck Bunny. c©2008 Blender Foundation, http://www.bigbuckbunny.org/

24

większa widoczność aliasingu niż w zoptymalizowanych klatkach. Zaskakująco niska okazała się wi-

doczność artefaktów związana z niedokładnościami algorytmu wyznaczania przepływu optycznego.

Ostatni test zawierał materiał nakręcony przez nas kamerą. Sekwencja ta zawierała przesuwający

się po przekątnej obraz zadrukowanej kartki papieru (rys. 9.2). Ponieważ ruch wymuszony był ręcz-

nie, nie był on płynny i widoczne były wstrząsy. Filtr o promieniu 3 zawierał znaczny aliasing. Dla

promienia 4 aliasing był mniejszy, jednak wciąż większy niż w przypadku zoptymalizowanych klatek.

Promień 6 dał obraz bardziej rozmyty. Promień 5 obraz porównywalnej jakości, być może z lekkim

wskazaniem na korzyść naszego algorytmu. Ponownie zaskakuje niska zawartość artefaktów związanych

z wyznaczaniem przepływu optycznego: w tym teście nie byliśmy w stanie wskazać jednoznacznie ani

jednego.

25

4. Implementacja

Implementacja naszego algorytmu to pojedynczy plik C++ (plik mgr.cpp). Do kompilacji wymagane

jest API OpenGL w wersji 2.0 z obsługą rozszerzenia framebuffer object oraz biblioteki freeglut 2.6.0.0,

GLEW 1.5.7.0, DevIL 0.1.7.8. Używaliśmy kompilatora MinGW 3.4.2. Binaria biblioteki DevIL na

potrzeby MinGW konwertowaliśmy przy użyciu narzędzia reimp z pakietu mingw-utils w wersji 0.3

(nie udało nam się poprawnie ich skonwertować przy użyciu wersji 0.4-1). Program używa fragment

shaderów do gamma-korekcji oraz filtrowania Lanczosa.

Jedynym parametrem wywołania programu, jest względna ścieżka do katalogu zawierającego poje-

dynczy test. Struktura katalogu z testem jest następująca:

test/

lanczos/

3/

4/

5/

6/

originals/

subs/

config.txt

0001.exr

0002.exr

0003.exr

. . .

Pliki EXR to klatki wysokiej rozdzielczości, w których kanał czerwony oznacza luminancję, natomiast

kanały niebieski i zielony kodują funkcję przepływu optycznego. W katalogach lanczos, originals oraz

subs zapisane zostaną odpowiednio obrazy przefiltrowane okienkiem Lanczosa (liczba w nazwie pod-

katalogu oznacza promień filtru), oryginalne kanały luminancji o wysokiej rozdzielczości oraz zopty-

malizowane podklatki niskiej rozdzielczości. Kluczowym plikiem jest config.txt, w którym zawarta jest

konfiguracja testu. Struktura tego pliku jest następująca: w pierwszej linii liczba klatek animacji oraz

flaga (1 lub 0) czy optymalizujemy animację czy statyczny obraz. W tym drugim przypadku program

zignoruje wszystkie pliki EXR poza pierwszym. Druga i trzecia linia kodują format nazewniczy plików

EXR: odpowiednio długość nazwy oraz numer pierwszej klatki. Linie czwarta i piąta to odpowied-

nio szerokość i wysokość pojedynczej klatki. Linia szósta zawiera dwie liczby rzeczywiste, oznaczające

prędkość statycznego obrazu wyrażoną w pikselach wysokiej rozdzielczości na klatkę. Siódma linia za-

wiera współczynnik redukcji rozdzielczości (w naszych testach zawsze 3). Ósma linia oznacza liczbę

iteracji optymalizacji. Linie 9-11 wskazują katalogi lanczos, originals oraz subs.

Na płycie zamieściliśmy również wygenerowane przez nas klatki dla testów z części 3.2 i 3.3 oraz

program umożliwiający wyświetlenie i porównanie klatek (plik player.cpp). Oczywiście, użytkowanie

tego programu ma sens tylko w przypadku monitora o częstotliwości odświeżania 120 Hz.

Czytelnik może wygenerować samodzielnie sceny testowe przy użyciu pliku scenes.blend.

26

Podsumowanie

W niniejszej pracy omówiliśmy metodę zwiększania postrzeganej rozdzielczości poruszających się ob-

razów na wyświetlaczach ciekłokrystalicznych o wysokiej częstotliwości odświeżania. Natępnie zapro-

ponowaliśmy uogólnienie metody na przypadek ruchu o dowolnej prędkości i animacji ze znaną bądź

nieznaną funkcją przepływu optycznego oraz przedstawiliśmy wyniki przeprowadzonych badań ekspe-

rymentalnych, w których użyliśmy załączonej implementacji algorytmu.

Przeprowadzone eksperymenty pokazały, że w przypadku ruchu statycznego obrazu o dowolnej

prędkości z zakresu (0, 3]2 wyostrzenie obrazu jest możliwe, niemniej prawie zawsze odbywa się to

kosztem pojawienia się aliasingu. Z drugiej strony niecałkowite prędkości są podatne na występowanie

aliasingu również przy zastosowaniu tradycyjnych metod resamplingu. Wzraz ze wzrostem prędkości,

metoda daje gorsze wyniki i dla prędkości (6, 6) jej stosowanie jest już nieopłacalne. Podobne wnioski

wyciągnąć można dla animacji z daną funkcją przepływu optycznego: nasza metoda powoduje wzrost

postrzeganej rozdzielczości obrazu, ale zależnie od rozkładu prędkości w obrazie, w niektórych miej-

scach może pojawić się aliasing. Wskazaliśmy przykłady, dla których filtrowania Lanczosa (nawet gdy

dopuścimy zbyt mały w skali pojedynczej klatki promień filtru) nie można uznać ze bezsprzecznie

lepsze, gdyż zależnie od rozmiaru filtru uzyskany przy jego użyciu obraz miał więcej aliasingu lub był

mniej ostry. Pokazaliśmy, że gdy przepływ optyczny animacji nie jest znany, wciąż można zastosować

naszą metodę, używając algorytmu jego estymacji. W takich wypadkach interesująca jest dosyć niska

czułość metody na niedokładności w oszacowaniu przepływu.

Jako kierunki dalszych badań wskazalibyśmy rozważenie możliwości jakie niesie z sobą użycie wy-

świetlaczy o częstotliwościach wyższych niż 120 Hz, jak również sprawdzenie stosowalności metody

do wyświetlaczy CRT. Wydaje się również, że zastosowanie okulografii (ang. eye tracking) mogłoby

stworzyć dalsze możliwości rozwoju metody.

27

Literatura

Allen, W. i Ulichney, R. (2005). Wobulation: Doubling the addressed resolution of projection di-

splays. Proceedings of the Symposium Digest of Technical Papers (SID), tom 47.4 The Society for

Information Display, str. 1514–1517.

Ayoub, G. (2008). An organ of exquisite perfection. Visual Transduction and Non-Visual Light

Perception.

Curcio, C. A., Sloan, K. R., Kalina, R. E. i Hendrickson, A. E. (1990). Human photoreceptor topo-

graphy. The Journal of Comparative Neurology, 292(4):497–523.

Damera-Venkata, N. i Chang, N. L. (2009). Display supersampling. ACM Trans. Graph., 28(1):9:1–

9:19.

Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K. i Seidel, H.-P. (2010). Apparent display reso-

lution enhancement for moving images. ACM Transactions on Graphics (Proceedings SIGGRAPH

2010, Los Angeles), 29(3).

Felhorski, W. i Stanioch, W. (1973). Kolorymetria trójchromatyczna. WNT, Warszawa.

Fiok, A. (1991). Podstawy ogólne. Telewizja. WKŁ, Warszawa.

Horn, B. K. P. i Schunck, B. G. (1981). Determining optical flow. Artifical Intelligence, 17:185–203.

Kalloniatis, M. i Luu, C. (2009). Temporal resolution. http://webvision.med.utah.edu/temporal.html.

Krawczyk, G., Myszkowski, K. i Seidel, H.-P. (2007). Contrast restoration by adaptive countersha-

ding. The European Association for Computer Graphics Annual Conference EUROGRAPHICS

2007, tom 26 Computer Graphics Forum. Blackwell.

Laird, J., Rosen, M., Pelz, J., Montag, E. i Daly, S. (2006). Spatio-velocity CSF as a function of

retinal velocity using unstabilized stimuli. Human Vision and Electronic Imaging XI, tom 6057

SPIE Proceedings Series, str. 32–43.

Mäkelä, P., Rovamo, J. i Whitaker, D. (1994). Effects of luminance and external temporal noise on

flicker sensitivity as a function of stimulus size at various eccentricities. Vision Research, 34(15):1981–

91.

Pan, H., Feng, X.-F. i Daly, S. (2005). LCD motion blur modeling and analysis. Proc. ICIP 2005, str.

21–24.

Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K. i Seidel, H.-P. (2009). Temporal

glare: Real-time dynamic simulation of the scattering in the human eye. The European Associa-

tion for Computer Graphics 30th Annual Conference : EUROGRAPHICS 2009, tom 28 Computers

Graphics Forum, str. 183–192, Monachium, Niemcy.

28

Van Hateren, J. H. (2005). A cellular and molecular model of response kinetics and adaptation in

primate cones and horizontal cells. J. Vision, 5(4):331–347.

Yoshida, A., Ihrke, M., Mantiuk, R. i Seidel, H.-P. (2008). Brightness of the glare illusion. Proceedings

of ACM Symposium on Applied Perception in Graphics and Visualization, str. 83–90, Los Angeles,

CA, USA.

Zach, C., Pock, T. i Bischof, H. (2007). A duality based approach for realtime TV-L1 optical flow.

Pattern Recognition (Proc. DAGM), str. 214–223, Heidelberg, Niemcy.

29

