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Abstract

The aim of this work is research on the methods based on Vertex Merging and
comparison of their relative performance against each other and against the classic
path tracing algorithms. This work contains a description of the Vertex Connection
and Merging and Unbiased Photon Gathering techniques from the theoretical and
implementational point of view. The methods are the result of the recent research
in the field of light transport simulation. The work also contains the results of the
tests, that were carried on with the use of the aforementioned methods in various
lighting conditions.

All of the methods described in this thesis were implemented and tested using
the attached program, which is an integral part of the work. Every test image
included in this thesis was generated using this software implementation.

Celem pracy jest zbadanie metod opartych na operacji łączenia wierzchołków
(ang. Vertex Merging), porównanie ich wydajności względem siebie oraz względem
klasycznych algorytmów śledzenia ścieżek. Niniejsza praca zawiera omówienie tech-
nik Vertex Connection and Merging (VCM) oraz Unbiased Photon Gathering (UPG)
z teoretycznego i implementacyjnego punktu widzenia. Metody te są wynikiem ostat-
nich badań w dziedzinie metod symulacji oświetlenia. Praca zawiera także wyniki
testów przeprowadzonych z użyciem wymienionych metod w różnych warunkach
oświetleniowych.

Wszystkie metody opisane w pracy zostały zaimplementowane i przetestowane
w załączonym programie, będącym integralną częścią pracy. Każdy z obrazów te-
stowych zamieszczonych w pracy został wygenerowany z użyciem tego programu.
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Chapter 1

Introduction

1.1 Problem Background

Visualization and rendering software has become a crucial tool in any modern en-
gineering project. For some branches of the industry (automotive, architecture,
entertainment, etc.) an important feature of the rendering system is precision and
physical plausibility. This demand from the industry has been powering the research
in the field of physically based rendering through the recent years. Lately developed
light transport algorithms have an ability to handle arbitrary scenes, with compli-
cated geometries, very general lighting conditions and complex surface properties.

The purpose of the rendering software is to simulate the transport of light
through the mathematical representation of the scene. The description of the scene
includes the positions and shapes of objects, appearance of their surfaces, positions
of lights and cameras and many more. The theoretical foundation for any physi-
cally based rendering software is a rendering equation. The rendering equation is
a mathematical formula that governs the way light propagates and interacts with
the model of the scene. The light transport simulation is essentially equivalent to
solving the rendering equation. Many different methods exist for solving the render-
ing equation. Since the rendering equation is fundamentally an integral equation,
numerical integration methods are commonly used to solve it, in particular, a family
of methods called Monte Carlo methods. The main topic of the research in this the-
sis are Monte Carlo light transport algorithms based on a novel concept of Vertex
Merging ([GKDS12], [QSH+15a]).

1.2 Objectives

The aim of this thesis is to explore the Vertex Merging based algorithms, in par-
ticular, the recent developments in the field, presented in papers [GKDS12] and
[QSH+15a]. The paper [GKDS12] introduced the Vertex Connection and Merging
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8 CHAPTER 1. INTRODUCTION

algorithm. They found a novel way to combine Photon Mapping (PM) [Jen01] and
Bidirectional Path Tracing (BPT) [VG94] under a single framework. The core idea
behind VCM is Vertex Merging — a reinterpretation of the PM photon gathering
step as a random event with an associated probability density function. The draw-
back of Vertex Connection and Merging (VCM) is that it is a biased algorithm. The
work in [QSH+15a] builds on VCM and introduces an unbiased refinement of the
initial algorithm, which is called Unbiased Photon Gathering (UPG).

1.3 Related Work

A comprehensive introduction into the field of physically based rendering and light
transport simulation can be found in the excellent book by Matt Pharr and Greg
Humpreys [PH10]. The work of Phillip Dutré [Dut03] contains a compact refer-
ence of mathematical formulas and equations commonly used in the context of light
transport algorithms in computer graphics. The Pharr’s book [PH10] and the initial
chapters of the book by Henrik Wann Jensen [Jen01] give the background informa-
tion about the physics of light and light scattering. Another very comprehensive
work is Eric Veach’s thesis [Vea97]. It contains theoretical fundamentals of the light
transport simulation and the Monte Carlo methods.

The rendering equation and Path Tracing were introduced in 1986 paper [Kaj86]
by James T. Kajiya. During early 90’s, Eric P. Lafortune and Yves D. Willems
developed, independently to Eric Veach and Leonidas J. Guibas, the Bidirectional
Path Tracing (BPT) algorithm. Their initial research on BPT can be found in
[LW93], [VG94], [LW94a] and [VG95]. The Veach’s research on BPT led him to
the development of the path integral framework, introduced in the mentioned PhD
dissertation [Vea97] from December of 1997. In his thesis, Veach describes a provably
efficient way to combine different BPT connections, that is a balance heuristic for
multiple importance sampling (MIS). The tricky part of implementing BPT (and
VCM) is an efficient implementation of the aforementioned balance heuristic weights.
The 2011 paper by Dietger van Antwerpen [Ant11] contains the description of an
efficient recursive computation scheme for mentioned weights. The van Antwerpen’s
recursive scheme is superior to the original scheme included in Veach’s thesis when
it comes to memory accesses. Additionally, the van Antwerpen’s scheme is easier to
integrate with the vertex merging.

Photon Mapping (PM) was an innovative algorithm for light transport simula-
tion invented by Henrik W. Jansen. It is described in great detail in Jensen’s book
[Jen01] from 2001. Many improvements to the basic PM have been developed over
the years following its invention. In the work [BfI03] from 2003, Philippe Bekaert
and others proposed an improved photon gathering kernel and applied MIS to PM.
In 2008 Toshiya Hachisuka and others developed a progressive, consistent version
of PM in [HOJ08], and one year later, its refinement in [HJ09]. In 2012, Iliyan
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Georgiev and others [GKDS12] invented a Monte Carlo reformulation of PT, allow-
ing it to be combined with other path integral based techniques under the same
multiple importance sampling framework. They proposed a Vertex Connection and
Merging (VCM) algorithm, which is a combination of PM and BPT. The technical
report [Geo12], which is a work supplemental to [GKDS12], contains a discussion
about some of the issues with VCM implementation, including a description of how
to apply van Antwerpen’s MIS computation scheme to VCM. An alternative way to
integrate PM with BPT under path the integral framework is described in the work,
from the same year, by Toshiya Hachisuka and others [HPJ12].

The Vertex Connection and Merging is a biased algorithm, which is an unwanted
property for some rendering applications. In recent years (2015), Hao Qin and others
[QSH+15a] proposed an unbiased refinement of VCM. They invented an unbiased
way, called Unbiased Photon Gathering (UPG), to estimate the probability density
function of the vertex merging event.

1.4 Organization

The current, first chapter contains a brief description of what the thesis is about.
The second chapter, after a short introduction about the Monte Carlo methods and
the path integral, describes the basic BPT algorithm. After that the basic concepts
of vertex merging techniques are introduced. Then, the VCM and UPG techniques
are described from theoretical point of view. Sections 2.4.5 and 2.4.6 discuss the
computation of the multiple importance sampling weights for VCM and UPG. The
ending of the second chapter contains a description of the hash grid structure. The
third chapter describes the software implementation of the mentioned algorithms.
The initial sections describe the implementation itself in a closer detail, the latter
sections talk about building and running the program. Two last sections are about
the implementation correctness and its performance. The experimental results are
presented in the fourth chapter. The last chapter contains a short summary and
discussion about the possible extensions and future work. After the bibliography,
there are two appendices (A and B), a snapshot from the command line interface
of the program and a table with the errors for different gathering radii for the test
scenes.





Chapter 2

Theory

2.1 Monte Carlo

2.1.1 Naive Monte Carlo

Multidimensional integrals which are present in the light transport simulation are
problematic to solve using standard numerical integration methods due to their high
dimensionality. Monte Carlo methods are the only known, reliable way to solve this
kind of integrals in general settings [BfI03]. Consider a multidimensional definite
integral on a subset Ω = [a1, b1]× [a2, b2]× · · · × [ad, bd] of Rd:

I =
∫ b1

a1

∫ b2

a2
· · ·
∫ bd

ad

f(x1, x2, . . . , xd) dxd . . . dx2 dx1 =
∫

Ω
f(x̄) dx̄. (2.1)

The basic Monte Carlo methods work by repeatedly evaluating integrated function
f with random samples Xi drawn from uniform distribution over the integration
interval Ω:

FMC = v

n

n∑
i=1

f(Xi). (2.2)

The essential property of the Monte Carlo methods is that the expected value of the
estimator FMC is equal to the value of the integral I (where v =

∏d
i=1(bi−ai) is the

volume of the integration interval and n is the number of samples):

E [FMC ] = E

[
v

n

n∑
i=1

f(Xi)
]

= I. (2.3)

What is more the variance of the estimator FMC is equal to:

V ar (FMC) = E[(FMC − I)2] = 1
n

(
v

∫
Ω
f2(x̄) dx̄− I2

)
. (2.4)

The above result has important implications. The first one is that using enough
samples, any precision can be reached. The second one is that the RMS error
convergence rate of Monte Carlo is proportional to O

(√
n
−1
)
, what in other words

11



12 CHAPTER 2. THEORY

means that to halve the error one needs to quadruple the number of samples. The
third implication is that the convergence rate doesn’t depend on the dimension of the
integral (which is the major obstacle for using the conventional numerical integration
techniques).

2.1.2 Importance Sampling

In practice the O
(√

n
−1
)
convergence rate is very slow. The main focus of research

on Monte Carlo methods is to improve it. There is nothing that can be done about
√
n
−1 factor in the RMS error. However, there are methods to improve the conver-

gence rate by decreasing the other factors. One of such methods is the importance
sampling. The importance sampling uses a customized probability density function
p to concentrate the samples in the regions where the sampled function f has the
largest values. A modified estimator is as follows:

FIS = 1
n

n∑
i=1

f(Xi)
p(Xi)

, (2.5)

and the expected value is, as before, equal to the integral:

E [FIS ] = E

[
1
n

n∑
i=1

f(Xi)
p(Xi)

]
= I. (2.6)

The variance of the new estimator is equal to:

V ar (FIS) = E[(FIS − I)2] = 1
n

(∫
Ω

(f(x)− Ip(x))2

p(x) dx
)
. (2.7)

The idea behind the importance sampling is to carefully choose the probability
density function p. Notice that, if p was equal to p̂, defined as:

p̂(x) = cf(x) = f(x)∫
Ω f(x) dx , (2.8)

where c is the normalizing factor, ensuring that p̂ integrates to 1, the value of the
variance, and by extension the RMS error would be 0. Of course, it is impossible
to use this theoretical probability density function p̂, as it contains the integral of
function f , which is the one that we want to approximate in the first place. However,
the variance can be reduced by choosing such a p that its shape is similar to f .

2.1.3 Multiple Importance Sampling

Most of the time, it is hard to select the probability density function p that follows
the shape of the integrated function f over the whole integration interval. Very
often, we have the set ofm sampling techniques and the probability density functions
p1, p2, ..., pm associated with them. The particular function pj may closely follow the
shape of f in some regions of the integration interval but not in the others. Veach
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introduced an estimator that combines all that different probability density functions
in a way, that is provably close to the optimal [VG95] [Vea97]. The following equation
presents a general form of the multiple importance sampling estimator:

FMIS =
m∑
j=1

1
nj

nj∑
i=1

wj(Xi,j)
f(Xi,j)
pj(Xi,j)

. (2.9)

The above estimator can be thought as linear interpolation between different
importance sampling estimators. The factor pj is a probability density function
associated with the j-th technique. The random variable Xi,j is independently
sampled from distribution pj . Weights w1, w2, . . . , wm have to comply with following
conditions, to guarantee that the estimator stays unbiased:

•
m∑
j=1

wj(x) = 1 when f(x) 6= 0

• wj(x) = 0 when pj(x) = 0
. (2.10)

There are multiple weighting strategies to choose from. The power heuristic
family of strategies is particularly good:

wj(x) =
nβj p

β
j (x)

m∑
k=1

nβkp
β
k(x)

. (2.11)

Veach in his thesis [Vea97] proves that, in general circumstances, no other weighting
strategy can be significantly better than the balance heuristic, which is the power
heuristic with β = 1. He shows, as well, that the power heuristic with β = 2 is in
practice a better choice. Notice, that with β = 0 the power heuristic, becomes a
simple averaging scheme.

2.1.4 Russian Roulette

Given an estimator consisting of multiple terms, Russian Roulette [AK90] is a tech-
nique that allows to skip the computation of some terms of the estimator and get
an unbiased result. Consider the following estimator with two terms:

F = FH + FT . (2.12)

We want to conditionally skip the computation of the second term. Given the stan-
dard uniform random variable ξ and the probability p of executing the computation,
we can replace the original estimator F with a Russian Roulette estimator FRR:

FRR = FH +


FT
p if ξ < p

0 otherwise
. (2.13)

The expected value of modified estimator FRR is the same as the expected value of
initial estimator F . Clearly Russian Roulette increases the variance of the estimator
its applied to. Nevertheless, it can improve efficiency, if it is used to skip the terms
with low contribution and high computational cost. Additionally, Russian Roulette
allows to compute estimators with infinite number of terms.
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2.2 Rendering Equation

2.2.1 Rendering Equation

The rendering equation 2.14 describes the distribution of radiance (see Figure 2.1)
in equilibrium state over all surfaces of the scene [Kaj86]. The classic formulation
of the rendering equation assumes no participating media.

Lo(x, ωo) = Le(x, ωo) +
∫
S2
fs(x, ωo, ωi)Li(x, ωi)|ωi · n|dωi (2.14)

Given the surface position x in the scene and the normal vector n of surface at
that position, Lo(x, ωo) is the amount of the radiance outgoing in the direction ωo
from the point x. The term Le(x, ωo) is the radiance emitted by the surface itself
in the outgoing direction. The integral part of the equation is called the scattering
part and it represents the portion of light that is reflected by the surface. The
factor Li(x, ωi) is the radiance incoming to the point x from the direction ωi. The
bidirectional scattering distribution function (BSDF) fs is described in greater detail
in Section 2.2.2.

dA

dω

L~n

θ
L = d2Φ

cos θ dA dω

Φ = dQ
dt

Figure 2.1: The radiance L is the radiant flux Φ by a given surface, per unit solid
angle dω, per unit projected area cos θ dA. The radiant flux Φ is the flow of radiant
energy per unit time dt. The radiant energy Q can be viewed as the energy carried
by the stream of photons.

In the absence of the participating media, there is a correspondence (see Equa-
tion 2.15) between the radiance incoming to the surface point x from the direction ωi
and outgoing from the surface point x′ = t(x, ωi) at the direction −ωi. The function
t(x, ωi) defines the first intersection with the scene of a ray, whose origin is x and
which has the direction ωi.

Li(x, ωi) = Lo(t(x, ωi),−ωi) (2.15)

Another version of the rendering equation, which is more suitable for the light trans-
port simulation, uses integration over surface locations instead of the integration over
the solid angle. Using the formula for the differential solid angle:

dω = ω′ · n′

‖x′ − x‖2
dA′, (2.16)
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where n′ is the surface normal at point x′, the rendering equation becomes:

Lo(x, ωo) = Le(x, ωo) +
∫
M
fs(x, ωo, ωi)Li(x, ωi)V (x, x′) |ωi · n||ωi · n

′|
‖x′ − x‖2

dA′. (2.17)

The factor V (x, x′) is a visibility function. The visibility function is equal to one
when the points x and x′ are mutually visible and zero otherwise. There is another
form of the above equation, a so called three-point-form, it uses an explicit surface
locations in place of the solid angles:

L(x1 → x0) = Le(x1 → x0) +
∫
A
fs(x→ x1 → x0)L(x→ x1)G(x↔ x1) dA. (2.18)

The factor G(x↔ x1) = V (x↔ x1) |ωi·n||ωi·n1|
‖x1−x‖2

is known as the geometry factor.

2.2.2 Bidirectional Scattering Distribution Function

The bidirectional scattering distribution function (BSDF) fs(x, ωo, ωi) models the
interaction of the light with the surface. It is defined as the ratio between the amount
of the reflected radiance and incoming irradiance:

fs(x, ωo, ωi) = dLo(x, ωo)
dE(x, ωi)

= dLo(x, ωo)
Li(x, ωi)|ωi · n| dωi

. (2.19)

The BSDF is a generalization of the two other functions: the bidirectional reflectance
distribution function (BRDF) and the bidirectional transmittance distribution func-
tion (BTDF). The BRDF and BTDF govern, respectively, how the light is reflected
and transmitted through the surface.

Physically correct BSDF functions have to conserve energy, that is:∫
S2
fs(x, ωo, ωi)|wi · n| dωi ≤ 1. (2.20)

Additionally, BRDFs obey the Helmholtz’s law of reciprocity (Equation 2.21). In
general BTDFs are not reciprocal. However, there is a generalization of this sym-
metry condition for BSDF, which have to be obeyed by BTDFs as well (Equa-
tion 2.22, [Vea97]).

fr(x, ωo, ωi) = fr(x, ωi, ωo) (2.21)

fs(x, ωo, ωi)
η2
o

= fs(x, ωi, ωo)
η2
i

(2.22)

2.2.3 Measurement Equation

The measurement equation 2.23 is an abstraction over an arbitrary measurement of
radiometric quantity that can be done for the given scene [Vea97]. It is essentially
an integration over all points x of the scene surfacesM and over the full sphere S2
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ωcamera

x Mpixel

pinhole

xcamera

Figure 2.2: The sensitivity function for the pinhole camera selects rays with origin
at the camera center and going through the pixel sensor.

of directions ω. The measurements are responses recorded by an abstract sensor,
which is defined by its responsivity function. The responsivity function implicitly
defines the shape of the sensor and its sensitivity.

I =
∫
M×S2

We(x, ω)Li(x, ω)|ω · n| dA dω (2.23)

Typically, we want to simulate the measurements done by some virtual camera.
The camera consists of a flat sensor with grid of pixels and a lens system. The
pixels of sensor corresponds to the pixels of the result image. Every pixel represents
a separate measurement. In the context of the result image, the responsivity function
is called a pixel sensitivity function. For simplicity, in the rest of the thesis, we will
assume a pinhole lens with a flat rectangular sensor with square pixels. The pixel
sensitivity function is unique for each pixel, as it is parametrized by its surface. The
sensitivity function We(x, ω) of our sensor is equal to:

We(x, ω) = fp(x) δ
(
x− xcamera
‖x− xcamera‖

− ω
)
|ωcamera · n|−1, (2.24)

where xcamera is the position of the virtual camera, fp(x) is 1 if x lies on the pixel
surface and 0 otherwise (see Figure 2.2 for details). The inverse of the cosine of the
angle between the wcamera and the normal n of the surface of the sensor is necessary
to avoid the vignetting effect. Consider Figure 2.3. In order for the response of the
upper sensor to be the same as the response of lower sensor the cosine factor needs
to be canceled as the radiance from the surface on the right side is the same in both
cases.

A measurement equation for the pinhole camera model is obtained by substitut-
ing the sensitivity function of the pinhole camera (Equation 2.24) into the general
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θ0

θ1

n

ω0

n

ω1
pinhole

Figure 2.3: The avoid the effect of vignetting the radiance reaching the sensor must
be scaled with cosine (cos θi = ωi · n) of the incidence angle (with respect to the
sensor plane) of the ray.

measurement equation (Equation 2.23):

I =
∫
Mpixel

Li(x, ωcamera) dA. (2.25)

Now, the setMpixel is the surface of the pixel sensor and ωcamera = x− xcamera
‖x− xcamera‖

.

2.2.4 Path Integral Framework

From the three-point form of the rendering equation it can be clearly seen that the
equation is recursive, hence, it cannot be evaluated directly. Equation 2.26 presents
its expansion.

L(x1 → x0) = Le(x1 → x0)

+
∫
A
Le(x2 → x1)f(x2 → x1 → x0)G(x2 ↔ x1) dA(x2)

+
∫
A

∫
A
Le(x3 → x2)f(x3 → x2 → x1)G(x3 ↔ x2)

· f(x2 → x1 → x0)G(x2 ↔ x1) dA(x3) dA(x2)

+
∫
A

∫
A

∫
A
Le(x4 → x3)f(x4 → x3 → x2)G(x4 ↔ x3)

· f(x3 → x2 → x1)G(x3 ↔ x2)
· f(x2 → x1 → x0)G(x2 ↔ x1)
· dA(x4) dA(x3) dA(x2)

+ . . .

(2.26)
The terms in above equation correspond to the contributions of paths of different
lengths. The equation is too verbose, so an additional notation is usually introduced.
The product of BSDFs and geometry factors is called the path throughput and can



18 CHAPTER 2. THEORY

be written as:

T (x̄k) =
k−1∏
i=1

f(xi+1 → xi → xi−1)G(xi+1 ↔ xi). (2.27)

The variable x̄ is a shortcut for a path of some length k: x̄k = x0x1x2 . . . xk−1. Now,
the term for the path of length k from the recursive expansion of the rendering
equation can be written as:

P (x̄k) =
∫
A

∫
A
· · ·
∫
A︸ ︷︷ ︸

k-1

Le(xk−1 → xk−2)T (x̄) dA(x2) · · · dA(xn). (2.28)

The expansion becomes an infinite sum of above terms:

L(x1 → x0) =
∞∑
k=2

P (x̄k). (2.29)

Veach in his thesis [Vea97] introduced an elegant formulation, which combines
the above derivation and the measurement equation. It is called the path integral
framework. In the framework, the pixel measurement is represented as the integra-
tion over the space of light paths on the scene Ω:

I =
∫

Ω
f(x̄) dµ(x̄). (2.30)

The area-product measure space dµ(x̄) is extended to the space of all light paths
Ω. The function f is the measurement contribution function for a given pixel, and
is defined in terms of the radiance emission, throughput and pixel sensitivity.

f(x̄k) = Le(xk → xk−1) · T (x̄) ·G(x1 ↔ x0) ·We(x1 → x0) (2.31)

2.2.5 Solving The Path Integral

The advantage of the path integral formulation is the Monte Carlo integration can
be applied directly to it. The following equation shows an application of multiple
importance scheme to estimate the value of the measurement I, where the measure-
ment is expressed as the path integral:

I =
∫

Ω
f(x̄) dµ(x̄) ≈

m∑
j=1

1
nj

nj∑
i=1

wj(x̄i,j)
f(x̄i,j)
pj(x̄i,j)

. (2.32)

Equation 2.32 is the core of a wide range of modern light transport algorithms
including the ones described in the further sections of this thesis. Every such an
algorithm consists of m sampling techniques. The purpose of a technique is to
efficiently sample a path x, that is to compute the measurement contribution f , the
probability density p and the multiple importance sampling weight w associated with
the given path. The contributions of multiple samples are then combined according
to multiple importance sampling estimator, yielding an approximation of the final
pixel value.
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2.3 Vertex Connection Based Techniques

2.3.1 Bidirectional Path Tracing Overview

Bidirectional Path Tracing (BPT) is a light transport algorithm based on the path
integral framework and multiple importance sampling. The initial version of BPT
was introduced by Lafortune and Willems [LW93] [LW94a] and Veach and Guibas
[VG94]. Then, the idea was refined with MIS by Veach and Guibas, in another
paper [VG95] of theirs. Georgiev [GKDS12] coined the term Vertex Connection to
refer to the central algorithmic step of BPT, which is connecting the end vertices of
the light and camera sub-paths. The term was introduced to contrast with Vertex
Merging. Vertex Merging is another approach to making a connection between the
sub-paths, derived from Photon Mapping and its described in subsequent sections
of this thesis. Hence, BPT is a Vertex Connection based technique.

The core idea behind BPT is to sample multiple paths, which connect a vertex
on the light surface with a vertex on the camera lens (or the pinhole position for
the pinhole camera model). The contributions of the samples are then accumulated
in accordance with the multiple importance sampling estimator. The process is
repeated until the desired accuracy is reached.

y0 y1

y2

c y0 y1

y2

y3
d

y0
a y0 y1

b

Figure 2.4: The first stage of BPT algorithm: tracing of the light sub-path.

The process starts from sampling of the light sub-path (see Figure 2.4). To sam-
ple the light sub-path a random position and direction at the light surface are chosen
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(Figure 2.4a). The position will form the first light vertex y0, and additionally, to-
gether with the direction they comprise a ray. In the next step, the first intersection
of the ray with the scene is found (Figure 2.4b). This intersection becomes a position
of a new sub-path vertex y1. Then Russian Roulette is used to decide if the sub-path
should be terminated. If no, the process is repeated to generate next vertices of the
sub-path (Figure 2.4c and Figure 2.4d). Without Russian Roulette the process can
continue for an arbitrarily long time, which is unacceptable due to the limited com-
putational time. Aside from Russian Roulette the tracing of the sub-path may be
terminated if the sub-path throughput (described later) reaches zero.

y0 y1

y2

y3

z0

z1

z2

e y0 y1

y2

y3

z0

z1

z2

f

y0 y1

y2

y3

z0

z1
c y0 y1

y2

y3

z0

z1

z2

d

y0 y1

y2

y3

z0

a y0 y1

y2

y3

z0

b

Figure 2.5: The second stage of BPT algorithm: tracing of the camera sub-path.

The next stage of BPT is tracing of the camera sub-path (see Figure 2.5).
The overall scheme is the same as in the case of the light sub-path. However,
before the camera sub-path is extended with another segment, its current ending
needs to be connected (the connections are the dotted segments on Figure 2.5)
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with each of the prefixes of the light sub-path. Additionally, before the intersection
test with a non-emissive surfaces of the scene is done, the intersection with the
light surfaces is examined (Figures 2.5e and 2.6). The reason for this, is to handle
unidirectional camera paths. The unidirectional paths are important due to caustics.
The paths with explicit BPT connection cannot handle delta distributions present in
the specular reflections and transmissions. Furthermore, the contributions from the
directly visible lights are handled by the unidirectional camera path with the length
of one. The unidirectional path can be thought as if it was created by connecting
the current camera sub-path prefix with the light sub-path prefix of zero length.

In general, the symmetric case, where the light path is traced unidirectionally
from the light surface and hits the camera lens should be considered. However, with
the assumption of a pinhole camera, this kind of paths can be safely ignored as
the probability of hitting the sensor of the pinhole camera is equal to zero, so the
contribution of such paths is zero as well.

The connection of the camera sub-path with any of the light sub-path prefixes
produces a full light-camera path. Consider the path x̄s,t = x0x1x2 . . . xk−1. It is
defined as the concatenation of the light sub-path ȳs with the camera sub-path z̄t:

x̄s,t = x0x1x2 . . . xk−1 = ȳsz̄t = y0y1y2 . . . ys−1zt−1 . . . z2z1z0. (2.33)

In order to add the contribution of the path to the final estimate, the measurement
contribution function, the probability density function and the MIS weight of the
path have to be computed (see Section 2.2.5). They can be efficiently evaluated
by bookkeeping some extra data for each vertex of the light and camera sub-paths,
while those sub-paths are traced.

z0 z0

z1

Figure 2.6: In order to include the contribution of the unidirectional paths, the inter-
section with the light surfaces is examined before the camera sub-path is extended
with a new segment

It is important to notice that every path can be sampled in many different ways
(see Figure 2.7). The different ways of sampling of the same path correspond to
the multiple importance sampling techniques. There are k + 1 different techniques
to sample the path of length k. Let’s adapt the multiple importance estimator
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x1
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Figure 2.7: There are multiple ways to sample the same path. They differ in the
place the connection is done. Some paths are sampled more efficiently by starting
from camera and some by sampling from light. The path of length 5 has 6 sampling
techniques.

(Equation 2.9) into the context of BPT:

FBPT = 1
n

n∑
i=1

∑
s≥0,t≥1

w(x̄s,t)
f(x̄s,t)
p(x̄s,t)

= 1
n

n∑
i=1

∑
s≥0,t≥1

wx̄s,t
f x̄s,t
p x̄s,t

. (2.34)

The first sum of the estimator corresponds to the multiple passes of the BPT al-
gorithm. In every pass the sub-paths are traced and connected. The second sum
accumulates the contributions of the full light-camera paths sampled by different
techniques. The indexes s and t correspond to the lengths of the sub-paths. The
index t starts from 1 because we ignore paths that directly hit the lens of the cam-
era. In general, the light and camera sub-paths can be thought of as being infinite,
however the sum can be evaluated in finite time as the paths are being terminated
with Russian Roulette. In other words, due to Russian Roulette, the prefixes of
sub-paths which include the Russian Roulette terminated vertex have throughput
equal to zero.
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2.3.2 Forward and Backward Factors

Before proceeding with explanation of certain factors in the BPT estimator, lets
introduce some notation to simplify the formulas. The forward (~· ) and backward
( ~· ) partial geometry factors for the light (ȳ) sub-path are defined as:

~g ȳi =

∣∣∣~ωȳi · ni∣∣∣
‖yi − yi−1‖2

, ~gȳi =

∣∣∣ ~ωȳi · ni
∣∣∣

‖yi+1 − yi‖2
. (2.35)

The partial geometry factor for the first vertex of the path is explicitly defined as
having a value of 1:

~g ȳ0 = 1. (2.36)

y0

y1

y2

y3

~ωȳ1

~ωȳ0 ~ωȳ2

~ωȳ1 ~ωȳ3

~ωȳ2

~ωȳ4

Figure 2.8: The forward and backward directions. The subscript denotes the vertex
towards which the vector points. The arrow determines if the vector points along
(forward,~· ) the direction of tracing the light sub-path or against (backward, ~· ) the
light sub-path.

To avoid confusion, in Equation 2.35 the normalized forward and backward
directions ω were introduced. They are defined in the same fashion as forward and
backward geometry factors:

~ωȳi = yi − yi−1

‖yi − yi−1‖2
, ~ωȳi = yi − yi+1

‖yi+1 − yi‖2
. (2.37)

Using the partial geometry factors (see Section 2.2.1 for a geometry factor) allows
to define the forward and backward probability density functions for sampling the
sub-path vertices. The probability density function for sampling a light sub-path
vertex with respect to the area measure ~p ȳi is defined as the product of the partial
geometry factor ~g ȳi and the probability distribution function with respect to the
solid angle measure12 ~q ȳi , as presented in Equation 2.38. The first vertices of the

1Notice that ~q ȳ
i is probability of sampling the i–th vertex from the vertex yi−1, or equivalently

the sampling is done using the BSDF evaluated at the position of the vertex yi−1. That fact is
important from the implementational point of view, as to compute ~q ȳ

i the data (position, normal,
material etc.) associated with yi−1 (not with yi) is needed. The same applies for the reverse ~qȳ

i

factor.
2Usually ~q ȳ

i is a probability density function following the shape of the corresponding BSDF.
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corresponding sub-paths are special cases. The probability density function ~p z̄0 of
sampling the vertex at the pinhole camera is equal to 1 (it is the only choice). For
area lights the probability density function ~p ȳ0 is essentially the inverse of the total
area of all the area lights present in the scene (with the assumption that the lights
are sampled uniformly). The forward and backward factors for the camera sub-path
are defined in analogous way.

~p ȳi = ~g ȳi ~q
ȳ
i , ~p ȳi = ~gȳi ~qȳi , for i 6= 0. (2.38)

y0

nȳ0

y1

nȳ1

y2

nȳ2

y3

nȳ3

~g ȳ1 = g(y0 → y1) ~gȳ1 = g(y2 → y1)

~q ȳ2 = q(y1 → y2) ~qȳ2 = q(y3 → y2)

fs(y0 → y1 → y2) fs(y2 → y3 → y4)

Figure 2.9: The concept of the forward and backward variables. Above the prob-
ability density functions for the vertex y2, their corresponding BSDF functions are
placed.

2.3.3 Measurement Contribution Function

The measurement contribution function3 f x̄s,t = f(x̄s,t) can be defined as:

f x̄s,t = Le(xk−1 → xk−2) ·We(x1 → x0)

·
k−1∏
i=1

(G(xi+1 ↔ xi)fs(xi+1 → xi → xi−1)) ·G(x1 ↔ x0)

= f ȳs · fs(ys−2 → ys−1 → zt−1) ·G(ys−1 ↔ zt−1) · fs(ys−1 → yt−1 → zt−2) · f z̄t .
(2.39)

The symbols f ȳs and f z̄t stand for partial measurement contribution functions of
the light and camera sub-paths ȳs and z̄t respectively. The function fs uses the
three point notation for the BSDF (see Equation 2.18). The sub-path measurement
contribution functions are defined in a recursive way:

f ȳs =


L

(0)
e (y0) for s = 0

f ȳ0 · L
(1)
e (y0 → y1) ·G(y0 ↔ y1) for s = 1

f ȳs−1 · fs(ys−2 → ys−1 → ys) ·G(ys−1 ↔ ys) otherwise

. (2.40)

3See Section 2.2.4 and Equation 2.31.
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The factors L(0)
e (y0) and L

(1)
e (y0 → y1) require some explanation. The emitted

radiance function Le(y0 → y1) = L(y0, ~ω0)4 can be split into spatial L(0)
e (y0 → y1)

and directional L(1)
e (y0 → y1) parts [Vea97]. They are defined as (nȳ0 is the normal

vector at the vertex y0):

L(0)
e (y0) =

∫
S2
Le(y0, ω) ·

∣∣∣nȳ0 · ω∣∣∣ dω
L(1)
e (y0 → y1) = Le(y0, ~ωȳ0)

L
(0)
e (y0)

.
(2.41)

The split is required to limit the number of special cases to consider in the
implementation. Thanks to the split the directional part of the emitted radiance
can be threated as a BSDF function:

L(1)
e (y0 → y1) = fs(y−1 → y0 → y1). (2.42)

As such, by the definition, the directional part obeys the Helmholtz’s law of reci-
procity:

∫
S2
L(1)
e (y0 → y1)|wi · n|dω =

∫
S2

Le(y0, ω)
L

(0)
e (y0)

|wi · n|dω = 1. (2.43)

2.3.4 Probability Density Function

The probability of sampling of the full-path x̄s,t is the product of the sampling
probabilities for its light sub-path ȳs and the camera sub-path z̄t, as the connection
step is deterministic once the sub-paths are fixed. In turn, the sub-path probabilities
are products of probabilities for sampling individual sub-path vertices with respect
to the area measure:

px̄s,t = pȳs · pz̄t =
s−1∏
i=0

~p ȳi

t−1∏
i=0

~p z̄i . (2.44)

The subsequent equation (2.45) presents the recursive formulation for the sub-path
probabilities from the above formula. The recursive formulation is more suitable for
the practical implementation.

pȳs =

~p
ȳ
0 for s = 0
~p ȳs · p

ȳ
s−1 otherwise

, pz̄t =

~p z̄0 for t = 0
~p z̄t · pz̄t−1 otherwise

(2.45)

To save the memory and spare a few arithmetic operations the measurement
contribution function and the probability density functions may be fused together
into a single coefficient of the sub-path vertex (additionally, the partial geometry

4The (~·) notation means "forward" not "vector".
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factors cancels out):

αȳs = f ȳs
pȳs

=



L
(0)
e (y0)
~p ȳ
0

for s = 0
f ȳ
0 ·L

(1)
e (y0→y1)·V (y0↔y1)·|nȳ

0 · ~ω
ȳ
0|

~q ȳ
1

for s = 1
f ȳ

s−1·fs(ys−2→ys−1→ys)·V (ys−1↔ys)·|nȳ
s−1· ~ω

ȳ
s−1|

~q ȳ
s

otherwise

. (2.46)

2.3.5 MIS Weights

The last but not least piece to complete the BPT multiple importance sampling
estimator are multiple importance sampling weights. The power heuristic (intro-
duced in Section 2.1.3) is the weighting scheme usually used with BPT. The power
heuristic weights for BPT are defined as:

wx̄s,t =
(px̄s,t)β∑

s′≥0,t′≥1
(px̄s′,t′)β

=5
(px̄s,t)β

s+t−1∑
i=0

(px̄i,s+t−i)β
=
(
s+t−1∑
i=0

(px̄i,s+t−i)β

(px̄s,t)β

)−1

=
(
w−x̄s,t

)−1
.

(2.47)
For simplicity we will drop the β exponent in the following derivations6. Efficient
evaluation of the power heuristic weights for BPT is quite complicated. The following
scheme is based on the work of [Ant11] and the notes from [Geo12]. The main sum
can be split into two sub-sums, which depend only on the values related to the light
sub-path or camera sub-path respectively:

w−x̄s,t =
s+t−1∑
i=0

px̄i,s+t−i
px̄s,t

=
s∑
i=0

px̄i,s+t−i
px̄s,t

+
s+t−1∑
i=s+1

px̄i,s+t−i
px̄s,t

=
s−1∑
i=0

px̄i,s+t−i
px̄s,t

+ 1 +
t−1∑
i=1

px̄s+t−i,i
px̄s,t

=
s−1∑
i=0

~p ȳ0 · · · ~p
ȳ
i−1 ~p ȳi · · · ~p ȳs−1~p

z̄
t−1 · · · ~p z̄0

~p ȳ0 · · · ~p
ȳ
s−1~p

z̄
t−1 · · · ~p z̄0

+ 1 +
t−1∑
i=1

~p ȳ0 · · · ~p
ȳ
s−1 ~pz̄t−1 · · · ~pz̄i ~p

z̄
i−1 · · · ~p z̄0

~p ȳ0 · · · ~p
ȳ
s−1~p

z̄
t−1 · · · ~p z̄0

=
s−1∑
i=0

~p ȳ0 · · · ~p
ȳ
i−1 ~p ȳi · · · ~p ȳs−1

~p ȳ0 · · · ~p
ȳ
s−1

+ 1 +
t−1∑
i=1

~pz̄t−1 · · · ~pz̄i ~p
z̄
i−1 · · · ~p z̄0

~p z̄t−1 · · · ~p z̄0

=
s−1∑
i=0

~p ȳi · · · ~p ȳs−1

~p ȳi · · · ~p
ȳ
s−1

+ 1 +
t−1∑
i=1

~pz̄t−1 · · · ~pz̄i
~p z̄t−1 · · · ~p z̄i

=
s−1∑
i=0

s−1∏
j=i

~p ȳj

~p ȳj
+ 1 +

t−1∑
i=1

t−1∏
j=i

~pz̄i
~p z̄i

.

(2.48)
The partial sums can be rewritten in recursive manner. The following equation shows
the expansion of the left hand side sum, which corresponds to the light sub-path.

6The power heuristic with β = 1 is called a balance heuristic.
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The highlights unveil the recursion pattern:

s−1∑
i=0

s−1∏
j=i

~p ȳj

~p ȳj
=

s−1∑
i=0

s−1∏
j=i

~gȳj ~qȳj

~g ȳj ~q
ȳ
j

= ~gȳ0 ~qȳ0
~g ȳ0 ~q

ȳ
0
· ~gȳ1 ~qȳ1
~g ȳ1 ~q

ȳ
1
· · ·

~gȳs−3 ~qȳs−3

~g ȳs−3~q
ȳ
s−3
·

~gȳs−2 ~qȳs−2

~g ȳs−2~q
ȳ
s−2
·

~gȳs−1 ~qȳs−1

~g ȳs−1~q
ȳ
s−1

+ ~gȳ1 ~qȳ1
~g ȳ1 ~q

ȳ
1
· · ·

~gȳs−3 ~qȳs−3

~g ȳs−3~q
ȳ
s−3
·

~gȳs−2 ~qȳs−2

~g ȳs−2~q
ȳ
s−2
·

~gȳs−1 ~qȳs−1

~g ȳs−1~q
ȳ
s−1

+1 · · ·
~gȳs−3 ~qȳs−3

~g ȳs−3~q
ȳ
s−3
·

~gȳs−2 ~qȳs−2

~g ȳs−2~q
ȳ
s−2
·

~gȳs−1 ~qȳs−1

~g ȳs−1~q
ȳ
s−1

...

+
~gȳs−3 ~qȳs−3

~g ȳs−3~q
ȳ
s−3
·

~gȳs−2 ~qȳs−2

~g ȳs−2~q
ȳ
s−2
·

~gȳs−1 ~qȳs−1

~g ȳs−1~q
ȳ
s−1

+
~gȳs−2 ~qȳs−2

~g ȳs−2~q
ȳ
s−2
·

~gȳs−1 ~qȳs−1

~g ȳs−1~q
ȳ
s−1

+
~gȳs−1 ~qȳs−1

~g ȳs−1~q
ȳ
s−1

.

(2.49)

Subsequent equation (2.50) presents the new formula for the weight, where As−1

corresponds to the factors in the region with the red background in Equation 2.49
and as−1 corresponds to the expression in the blue region.

w−x̄s,t = (As−1 ~qȳs−2 + as−1) ~gȳs−1 ~qȳs−1 + 1 + (Ct−1 ~qz̄t−2 + ct−1) ~gz̄t−1 ~qz̄t−1, (2.50)

The sub-sum which corresponds to the camera sub-path can be expanded in the
same way, however, a special attention needs to be put to the fact that the sub-path
with t = 0 is ignored. The regions in Equation 2.49 enclosed with the dashed lines
correspond to the prior step of the recursion. The exact definitions for all of the
variables go as follows:

ai = 1
~g ȳi ~q

ȳ
i

Ai =

0 for i = 0
(Ai−1 ~qȳi−2 + ai−1) ~gȳi−1ai for i > 0

ci =


0 for i = 0

1
~g z̄i ~q

z̄
i

for i > 0

Ci =

0 for i = 0
(Ci−1 ~qz̄i−2 + ci−1) ~gz̄i−1ci for i > 0

.

(2.51)

Notice that both the base case and the general case Ci for 1 are equal to 0:

C1 = (C0 ~qz̄−1 + c0) ~gz̄0c1 = (0 · ~qz̄−1 + 0) ~gz̄0c1 = 0. (2.52)
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2.3.6 Efficient Evaluation of the BPT Estimator

An observation can be made that the variables ai and Ai (and ci together with Ci
as well, for the camera sub-path) depend only on the variables associated with i-th
vertex of the light sub-path and additionally Ai depends on the variables Ai−1 and
ai−1 from the previous recurrence step7. It means that they can be efficiently (in
constant time for each sub-path vertex) computed as the light sub-path is traced.
Then the full weight can be evaluated, as well, in constant time using Equation 2.50.
This fact is quite important, as naive evaluation of Equation 2.47 is quadratic and
requires access to all vertices of the path at once.

This argumentation also applies to the probability density function and the
measurement contribution function for the full light-camera path. Their recursive
formulations were presented in the preceding sections. Hence, the computational
cost of evaluating the BPT estimator for single connection of the sub-paths is con-
stant. Since, every prefix of the light sub-path is connected to every prefix of the
camera sub-path the computational cost is equal to the product of the number of
the vertices of the light sub-path and of the camera sub-path. In practice it means
the complexity is quadratic with respect to the total number of vertices on both
sub-paths.

2.4 Vertex Merging Based Techniques

2.4.1 VCM and UPG Overview

Vertex Connection and Merging (VCM) is an algorithm introduced in [GKDS12].
It is a hybrid algorithm, which combines the ideas from Photon Mapping (PM, see
[Jen01]) and Bidirectional Path Tracing (BPT, see Section 2.3.1). The PM based
part of VCM is called Vertex Merging (VM), and the part derived from BPT is called
Vertex Connection (VC). Thus, the full name: Vertex Connection and Merging. The
names VM and VC refer to the way the connection between the light and camera
sub-paths is done. The method of making the connection in the VM part of VCM
is the main source of bias in the algorithm. Qin and others [QSH+15a] proposed
an alternative, unbiased way for Vertex Merging called Unbiased Photon Gathering
(UPG). The key finding of UPG is unbiased way to compute the probability density
function of the merging event. The merging step is the VM equivalent for the BPT
connection between the light and camera sub-paths. In the rest of the thesis we will
use the term UPG both for the VCM algorithm with the unbiased alternative of VM
and for the unbiased merging step itself.

The core of VCM is, as in the case of BPT, the multiple importance sampling

7In the implementation Ai−1 and ai−1 are stored in the previous vertex, ~gȳ
i−1 is computed using

positions and normals of the current and previous vertices, for ~qȳ
i−2 see the footnote at page 23.



2.4. VERTEX MERGING BASED TECHNIQUES 29

estimator:

FV CM = 1
n

n∑
i=1

(CV C + CVM ), (2.53)

where CV C and CVM are defined as:

CV C = 1
nV C

nV C∑
j=0

∑
s≥0,t≥1

wV C(x̄s,t)
fVM (x̄s,t)
pV C(x̄s,t)

= 1
nV C

nV C∑
j=0

∑
s≥0,t≥1

wV C,s,t
fV C,s,t
pV C,s,t

CVM = 1
nVM

nV M∑
j=0

∑
s≥2,t≥2

wVM (x̄s,t)
fVM (x̄s,t)
pVM (x̄s,t)

= 1
nVM

nV M∑
j=0

∑
s≥2,t≥2

wVM,s,t
fVM,s,t

pVM,s,t
.

(2.54)
The estimator consists of two parts the VC part CV C (which is essentially the BPT
estimator) and the VM part CVM . Every iteration (which corresponds to the sum
in Equation 2.53) of VCM has two stages. In the first stage a list of nVM light
sub-paths Ȳ = {ȳs0 , ȳs1 , . . . , ȳsnV M−1

} is generated and their vertices are stored in
the acceleration structure (described in detail in Section 2.4.9). The acceleration
structure have to support fixed-radius nearest neighbor queries. The radius r of the
query is fixed for the single iteration of the algorithm and it is known at the time the
acceleration structure is constructed. The number of VC samples vV C is typically
set to 1 and the number of VM samples (which corresponds to the number of traced
light sub-paths) is set to the number of pixels of the rendered image [GKDS12].

The second stage is similar to tracing of the camera sub-paths in BPT. For
every pixel of the light sensor a camera sub-path z̄t is traced. Before the tracing
begins, a single light sub-path from the set of sub-paths generated in the first stage
is selected (usually it is ȳsi , where i is the number of the pixel corresponding to
the current camera sub-path8). While the camera sub-path is traced, for each of its
vertices two steps are executed: the connection and the merging.

The connection is accomplished by linking the currently processed vertex of the
camera sub-path z̄t with each of the vertices of the light sub-path ȳsi selected be-
forehand and accumulating the contributions using the estimator CV C . The factors
for VC, that is fV C,s,t and pV C,s,t, are exactly the same as their BPT equivalents
fs,t and ps,t respectively (see Sections 2.3.3 and 2.3.4). Other than that, the are two
differences between this algorithm and BPT. The first one is all of the light sub-
paths are generated at the beginning of the iteration. The second difference is in
the way the multiple importance weights are computed. The BPT connections are
not the only ones contributing to the end result. The multiple importance sampling
weights have to take the contributions of the VM paths into account as well. The
details are in the following sections.

There are two ways the vertex merging can be done (see Figure 2.10). We will
call them the merging from the camera perspective and the merging from the light

8In other words the light sub-paths are paired with camera sub-paths one-to-one in the order of
their generation.
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z0

zt−1

z∗t

ys−1

ys−2

a

r

z0

zt−2

zt−1

y∗s

ys−1

b

r

Figure 2.10: The first of two possible methods for the vertex merging: a) from the
perspective of camera, b) from the perspective of light. The dashed lines are actual
connections. The light vertices are marked with empty circles. The gray lines are the
light sub-paths. For clarity only the vertices of single light sub-path were labeled.
The red dashed circle represent gathering radius.

perspective 9. The merging from the camera perspective is slightly simpler. It starts

9Qin and others [QSH+15a] proposed a heuristic which uses one or another method depending
on the reflexivity of the surface. Though their heuristic is better that any of both methods alone,
it greatly complicates already complex implementation of MIS weights computation and will not
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from tracing of the tentative vertex z∗t of the camera sub-path. The tentative ver-
tex z∗t will become the current vertex of the sub-path for the next iteration of the
camera sub-path tracing. Before that happens, however, the acceleration structure
is queried for all the light vertices in the proximity of r from the position of the ten-
tative vertex. We will call this step a vertex gathering10. Notice, that the gathered
vertices are the endpoints of the light sub-paths produced in the first stage of the
algorithm. Now, the current vertex zt−1 (which is the vertex preceding the tentative
vertex) of the camera sub-path is connected with each of the gathered endpoints
of light sub-paths yielding set of full light camera paths. The contribution of every
path y0y1 . . . ysi−1zt−1 . . . z0 is accumulated using the estimator CVM . The tenta-
tive vertex becomes the next current vertex and the process repeats until Russian
Roulette terminates it.

In the case of the merging from the light perspective the vertex gathering is
done from the position of current camera vertex zt−1. The current vertex zt−1 is
connected with each of the vertices ysi−1 preceding the gathered light vertices y∗si

.
As such, we can think about the each of the gathered vertices as of the tentative
vertices at the light sub-path. The final paths looks the same y0y1 . . . ysi−1zt−1 . . . z0,
however it’s important to remember that now ysi−1 isn’t the gathered one and the
point of the gathering zt−1 is included in the path.

2.4.2 Acceptance Probability

If we consider the set of all possible connections between the light sub-paths and
camera sub-paths the vertex gathering determines if given connection (and the path
created as the result of it) is accepted or not. The path is accepted if and only if
the endpoints of its light sub-path and camera sub-path are closer to each other
than r. As such, the vertex gathering step of the vertex merging can be viewed as
a probabilistic event with its own probability density function. We will call it the
path acceptance probability.

This observation allows us to integrate the vertex gathering into the multiple
importance sampling framework. The acceptance probability for the path x̄s,t is
the probability of the tentative vertex z∗t of the camera sub-path z̄t being sampled
in the gathering neighborhood of the endpoint ys−1 of the light sub-path ȳs . The
gathering neighborhood N (x) of the vertex v is the set of all the points belonging
to the surfaces of the scene in the proximity r from the vertex v:

N (v) = {u ∈M | ‖u− v‖ ≤ r}. (2.55)

With the gathering neighborhood defined above, the acceptance probability for the

be discussed in detail here.
10The vertex gathering step corresponds to the photon gathering in PM.
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merging from the camera perspective can be written as:

px̄,Cacc,s,t = pacc(x̄s,t) = P (‖ys−1 − z∗t ‖ < r) =
∫
N (ys−1)

p(zt−1 → z) · V (zt−1 ↔ z) dz,

(2.56)
where p(zt−1 → z) is the probability of sampling the vertex z given the vertex zt−1

with respect to the area measure (see Section 2.3.4 and Figure 2.9 for the explanation
of the notation). The visibility function V (zt−1 ↔ z) (see Section 2.2.1) is necessary
as the tentative ray may be overshadowed by the geometry and the tentative vertex
z∗t may not land in the gathering neighborhood even if sampled in its direction. For
the merging from the light perspective the equation becomes:

px̄,Lacc,s,t = pacc(x̄s,t) = P (‖zt−1 − y∗s‖ < r) =
∫
N (zt−1)

p(ys−1 → y) · V (ys−1 ↔ y) dy.

(2.57)
The final probability of sampling the path x̄s,t = ȳsz̄t in VM is the product of the
acceptance probability and the probabilities of sampling the light and camera sub-
paths (the indices C and L were dropped as the further derivations are the same for
both cases):

px̄V M,s,t = pȳsp
z̄
t p
x̄
acc,s,t. (2.58)

The direct evaluation of the above formula isn’t possible, as there is no closed solution
for the acceptance probability. The following approximation for the acceptance
probability was proposed in [BfI03] (see Section 2.3.2 for the definition of the forward
factor ~p z̄t )11:

px̄acc,s,t = ~p ȳs πr
2 = p(zs−1 → y∗s)πr2. (2.59)

This approximation uses reasonable assumption that the gathering neighborhood is
usually very small and may be approximated it with a circle. The probability of
sampling the tentative vertex is considered to be constant as well. This approxima-
tion is used in VCM and the error it introduces is the main source of the bias in
the algorithm. However, the simplicity of the formula makes it very attractive from
the computational efficiency point of view. To summarize, the probability density
of sampling the whole path using VM and approximated acceptance probability is:

px̄V M,s,t = pȳsp
z̄
t ~p

ȳ
s πr

2. (2.60)

2.4.3 Unbiased Acceptance Probability

Another approach to the problem of evaluation of the acceptance probability was
presented in [QSH+15a]. It turns out, that the acceptance probability itself can be
estimated in an unbiased fashion using the Monte Carlo methods. The approach is
based on the observation that a repetitive generation of the tentative vertices is a
Bernoulli process, whose success probability is equal to the acceptance probability.

11The equation for the camera perspective case is analogous.
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The geometric distribution associated with the process gives the number N(x̄s,t) of
trials required before the first success:

P (N(x̄s,t) = i) = px̄acc,s,t · (1− px̄acc,s,t)i−1. (2.61)

The expected value of the number of the trials before the first success is equal to
the inverse of the acceptance probability (Equation 2.62). It means that we can
estimate the reciprocal of the probability density function for the vertex gathering
simply by repeatedly sampling the tentative vertices.

E[N(x̄s,t)] =
∞∑
i=1

i · px̄acc,s,t · (1− px̄acc,s,t)i−1 = 1
px̄acc,s,t

. (2.62)

The above scheme can’t be used directly due to the high computational cost.
The number of Bernoulli trials is potentially unbounded. Consider the situation in
which the gathering neighborhood is far away from sampling point (see Figure 2.11).
The expected number of required trials is going to be prohibitively high.

y0

ys−1

zt−1

zt−2

N (zt−1)
z0

d

y∗s

Figure 2.11: When d >> r (where r is the radius of gathering, not marked for
brevity) the probability of hitting the gathering neighborhood N (zt−1) (the inter-
section of the gathering circle and the surface) is prohibitively small.

In practice it isn’t uncommon for the gathering radius to be many times smaller
than the distance from the gathering neighborhood to the sampling point. It is
important to mention that every trial requires a single test for the intersection
between the tentative ray and the geometry of the scene, and the intersection tests
are usually the most expensive operations in the ray tracing based algorithms.

To solve the problem Qin and others [QSH+15a] proposed an idea of limiting the
number of Bernoulli trials which obviously wouldn’t hit the gathering neighborhood.
Let’s recall that the tentative vertex is generated by tracing a ray from the position
of the current end of the camera sub-path zt−1 and in the direction sampled from the
distribution associated with the BSDF at that surface point. The sampling domain is
the whole unit sphere S2 centered at zt−1. The domain can be limited by projecting
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y0

ys−1

zt−1

zt−2

N (zt−1)
z0y∗s

Ωb

Figure 2.12: With the angular bound the tentative rays are focused in the gath-
ering neighborhood N (zt−1). Notice however, that still some rays doesn’t hit the
neighborhood due to geometry of the surface.

the gathering neighborhood onto the unit sphere and introducing an angular bound.
In this new scheme, the tentative rays are sampled from the original domain limited
with this bound. The angular bound can be selected arbitrarily, however the tighter
fit to the gathering neighborhood the better performance. Imposing the angular
bound on the full sphere domain yields a new bounded domain Ωb. The following
equation presents the relationship between the expected value of the new geometric
distribution on number of bounded trials N b(x̄s,t) and the acceptance probability
reciprocal:

1
px̄acc,s,t

= E[N b(x̄s,t)]
pbs,t

, (2.63)

where pbs,t is the adjustment factor defined as:

pbs,t =
∫

Ωb

p(ys−1 → y) dy. (2.64)

The adjustment factor pbs,t has to have a closed form solution. This requirement
obviously limits the range of BSDF probability density functions for which the an-
gular bound can be applied. The supplementary material [QSH+15a] for [QSH+15b]
contains derivations of the angular bounds for Lambertian and Phong’s BSDFs. To
summarize, we can estimate the reciprocal of the acceptance probability by tracing
N b(x̄s,t) tentative rays, from the bounded sampling domain, until one of the ten-
tative vertices lands in the gathering neighborhood and applying the normalization
factor pbs,t to the result:

1
px̄acc,s,t

≈ N b(x̄s,t)
pbs,t

. (2.65)

Assuming that the distance to the gathering neighborhood d = ‖zt−1 − ys−1‖
is way greater than its radius r, the factor by which the number of Bernoulli trials
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is reduced equals to:

E[N b(x̄s,t)]
E[N(x̄s,t)]

≈ πr2

d2 . (2.66)

The improvement is huge in practice, as for the most of the connections r is much
smaller (r << d) than d. Qin gives the number 2.81 as the average number of trials
per connection for practical scenes and it agrees with the results obtained by the
author of this thesis. Nonetheless, the estimation of the gathering probability stays
one of the main bottlenecks in the UPG implementation.

2.4.4 Bias in Measurement Contribution Function

The acceptance probability density function isn’t the only source of bias in the VCM.
The measurement contribution function can be evaluated in two ways as well. In
unbiased case, the measurement contribution function is evaluated as:

f x̄s,t = f ȳs · fs(ys−2 → ys−1 → zt−1) ·G(ys−1 ↔ zt−1) · fs(ys−1 → yt−1 → zt−2) · f z̄t .
(2.67)

Important here is the fact that the correct BSDF fs(ys−1 → yt−1 → zt−2) is used. In
contrast, the approximation used in the VCM implementation contains the BSDF
fs(z∗t → yt−1 → zt−2). Assuming that the distance between the points z∗t and ys−1

is negligibly small, the BSDF fs(z∗t → yt−1 → zt−2) can be good approximation for
the correct one:

fs(z∗t → yt−1 → zt−2) ≈ fs(ys−1 → yt−1 → zt−2). (2.68)

Similar considerations apply to the geometry factor, in VCM the approximate ver-
sion G(z∗t ↔ zt−1) is used. The usage of approximate BSDF has several advantages.
The approximate evaluation is a little more efficient in practical implementation as
it avoids recomputing BSDF related values for the new direction. For example in
UPG the geometry factor for the new direction has to be recomputed, which requires
an additional intersection test for the visibility factor embedded in the geometry fac-
tor. However, the main reason the approximation is used in VCM is the precise way
doesn’t support perfectly specular surfaces. The perfectly specular BSDF can be
sampled only unidirectionally, when the path is traced. Because of the delta distri-
butions, the BSDF evaluated at the end vertices of the light and camera sub-paths
for explicit connection is always equal zero. The approximation circumvents this by
reusing the BSDF of the tentative rays.

This is the reason for which UPG doesn’t support ideal reflections and re-
fractions. On the other hand, VCM can suffer from severe errors caused by the
approximation.



36 CHAPTER 2. THEORY

2.4.5 MIS Weights for VCM

The computation of the MIS weights for BPT is already quite complicated (see Sec-
tion 2.3.5). The VM part of VCM makes things even more complex, as contributions
both from the vertex connection and vertex merging need to be taken into consider-
ation. The general expression for the power heuristic weight in the context of VCM
is (as before we drop the β exponent for clarity):

wx̄v,s,t =
nvp

x̄
v,s,t

nV C
∑

s′≥0,t′≥1
px̄V C,s′,t′ + nVM

∑
s′≥2,t′≥2

px̄V M,s′,t′
, (2.69)

where v is either V C or VM . The reason for which the eye sub-paths for VC are not
considered was explained in the BPT section. The light sub-paths with the length
shorter than 2 are skipped in VM, because VC alone samples them usually in a
more efficient manner than VM (see [GKDS12]). As it was the case for BPT, the
weights defined as in Equation 2.69 cannot be evaluated directly. To enable efficient
computation they need to be rewritten in a recursive manner.

First, we need to transform the basic formula for the VCM power heuristic
weight (Equation 2.69) to its reciprocal form:

wx̄v,s,t =
nvp

x̄
v,s,t

nV C
∑

s′≥0,t′≥1
px̄V C,s′,t′ + nVM

∑
s′≥2,t′≥2

px̄V M,s′,t′

=
nvp

x̄
v,s,t

nV C
s+t−1∑
i=0

px̄V C,i,s+t−i + nVM
s+t−2∑
i=2

px̄V M,i,s+t−i

=
(
nV C
nv

s+t−1∑
i=0

px̄V C,i,s+t−i
px̄v,s,t

+ nVM
nv

s+t−2∑
i=2

px̄V M,i,s+t−i
px̄v,s,t

)−1

=
(
w−x̄v,s,t

)−1
.

(2.70)
Let’s recall the relation between the probability density functions for VC and VM
(first defined in Equations 2.44 and 2.60):

px̄V C,s,t = pȳsp
z̄
t =

s−1∏
i=0

~p ȳi

t−1∏
i=0

~p z̄i

px̄V M,s,t = pȳsp
z̄
t · ~p ȳs πr2 =

s−1∏
i=0

~p ȳi

t−1∏
i=0

~p z̄i · ~p ȳs πr2

= px̄V C,s,t · ~p ȳs πr2.

(2.71)

The probability density for VM contains the approximation of the acceptance prob-
ability ~p ȳs πr2. The inverse weight for VM (Equation 2.72) can be expressed in terms
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of the inverse weight for VC (Equation 2.73):

w−x̄V M,s,t = nV C
nVM

s+t−1∑
i=0

px̄V C,i,s+t−i
px̄V M,s,t

+ nVM
nVM

s+t−2∑
i=2

px̄V M,i,s+t−i
px̄V M,s,t

= 1
~p ȳs πr2

nV C
nVM

(
nV C
nV C

s+t−1∑
i=0

px̄V C,i,s+t−i
px̄V C,s,t

+ nVM
nV C

s+t−2∑
i=2

px̄V M,i,s+t−i
px̄V C,s,t

)

= 1
~p ȳs πr2

nV C
nVM

w−x̄V C,s,t,

(2.72)

w−x̄V C,s,t = nV C
nV C

s+t−1∑
i=0

px̄V C,i,s+t−i
px̄V C,s,t

+ nVM
nV C

s+t−2∑
i=2

px̄V M,i,s+t−i
px̄V C,s,t

. (2.73)

To simplify the notation, let’s introduce an η variable for the fraction:

η = nVMπr
2

nV C
. (2.74)

To write the weight in a recursive form, we need to rearrange the equations into
more suitable shape. The following set of equations shows required transformations
(the equations are valid for s ≥ 2 and t ≥ 2, for other cases the second sum is equal
0, without this condition the second step is invalid):

w−x̄V C,s,t = nV C
nV C

s+t−1∑
i=0

px̄V C,i,s+t−i
px̄V C,s,t

+ nVM
nV C

s+t−2∑
i=2

px̄V M,i,s+t−i
px̄V C,s,t

1= nV C
nV C

s∑
i=0

px̄V C,i,s+t−i
px̄V C,s,t

+ nV C
nV C

t−1∑
i=1

px̄V C,s+t−i,i
px̄V C,s,t

+ nVM
nV C

s∑
i=2

px̄V M,i,s+t−i
px̄V C,s,t

+ nVM
nV C

t−1∑
i=2

px̄V M,s+t−i,i
px̄V C,s,t

2=
s−1∑
i=0

~p ȳ0 · · · ~p
ȳ
i−1 ~p ȳi · · · ~p ȳs−1~p

z̄
t−1 · · · ~p z̄0

~p ȳ0 · · · ~p
ȳ
s−1~p

z̄
t−1 · · · ~p z̄0

+ η
s−1∑
i=2

~p ȳ0 · · · ~p
ȳ
i−1~p

ȳ
i ~p ȳi · · · ~p ȳs−1~p

z̄
t−1 · · · ~p z̄0

~p ȳ0 · · · ~p
ȳ
s−1~p

z̄
t−1 · · · ~p z̄0

+
t−1∑
i=1

~p ȳ0 · · · ~p
ȳ
s−1 ~pz̄t−1 · · · ~pz̄i ~p

z̄
i−1 · · · ~p z̄0

~p ȳ0 · · · ~p
ȳ
s−1~p

z̄
t−1 · · · ~p z̄0

+ η
t−1∑
i=2

~p ȳ0 · · · ~p
ȳ
s−1 ~pz̄t−1 · · · ~pz̄i ~pz̄i−1~p

z̄
i−1 · · · ~p z̄0

~p ȳ0 · · · ~p
ȳ
s−1~p

z̄
t−1 · · · ~p z̄0

+ η~p ȳs + 1

(2.75)
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w−x̄V C,s,t
3=
s−1∑
i=0

~p ȳi · · · ~p ȳs−1

~p ȳi · · · ~p
ȳ
s−1

+ η
s−1∑
i=2

~p ȳi
~p ȳi · · · ~p ȳs−1

~p ȳi · · · ~p
ȳ
s−1

+
t−1∑
i=1

~pz̄t−1 · · · ~pz̄i
~p z̄t−1 · · · ~p z̄i

+ η
t−1∑
i=2

~pz̄t−1 · · · ~pz̄i
~p z̄t−1 · · · ~p z̄i

~pz̄i−1

+ η~p ȳs + 1

4=
s−1∑
i=0

s−1∏
j=i

~p ȳj

~p ȳj
+ η

s−1∑
i=2

~p ȳi

s−1∏
j=i

~p ȳj

~p ȳj

+
t−1∑
i=1

t−1∏
j=i

~pz̄j
~p z̄j

+ η
t−1∑
i=2

~pz̄i−1

t−1∏
j=i

~pz̄j
~p z̄j

+ η~p ȳs + 1.

(2.76)

Firstly, the sums corresponding to VC and VM techniques are split into sub-sums
corresponding to the light and eye sub-paths (1). The probability distribution func-
tions are expanded and the terms for i = s are moved out from the light sub-path
sums (2). In the next step the common factors are reduced in the joint probability
density function fractions (3). At the end the products are rewritten in a more con-
cise form (4). The result expression is ready to be rewritten in a recursive manner.
The following formula shows the recursive form of Equation 2.76:

w−x̄V C,s,t = (As−1 ~qȳs−2 + as−1) ~gȳs−1 ~qȳs−1 + (Ct−1 ~qz̄t−2 + ct−1) ~gz̄t−1 ~qz̄t−1

+ η(Bs−1 ~qȳs−2 + ~g ȳt−1~q
ȳ
t−1bs−1) ~gȳs−1 ~qȳs−1 + η(Dt−1 ~qz̄t−2 + ~gz̄t−2 ~qz̄t−2dt−1) ~gz̄t−1 ~qz̄t−1

+ η~g ȳs ~q
ȳ
s + 1.

(2.77)

Each of four sub-sums can be expanded using the same scheme as in the case
of BPT (see Equation 2.49). The subexpressions Ai, ai, Ci and ci are defined in
Equation 2.51. The recursive formulas for the remaining recursive subexpressions
are as follows:

bi =


0 for i ∈ {0, 1}

1
~g z̄i ~q

z̄
i

for i > 1

Bi =


0 for i = 0

(Bi−1 ~qȳi−2 + ~g ȳi−1~q
ȳ
i−1bi−1)

~gȳi−1
~g z̄i ~q

z̄
i

for i > 0

di =


0 for i ∈ {0, 1}

1
~g z̄i ~q

z̄
i

for i > 1

Di =

0 for i = 0
(Di−1 ~qz̄i−2 + ~gz̄i−2 ~qz̄i−2di−1) ~gz̄i−1di for i > 0

.

(2.78)

Notice that both the base case and the general cases Di for 1 and 2 are equal to 0
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(the same stands for Bi):

D1 = (D0 ~qz̄−1 + ~gz̄−1 ~qz̄−1d0) ~gz̄0d1 = (0 · ~qz̄−1 + ~gz̄−1 ~qz̄−1 · 0) ~gz̄0d1 = 0
D2 = (D1 ~qz̄0 + ~gz̄0 ~qz̄0d1) ~gz̄1d2 = (0 · ~qz̄0 + ~gz̄0 ~qz̄0 · 0) ~gz̄1d2 = 0.

(2.79)

2.4.6 MIS Weights for UPG

The formulas for MIS weights from the previous sections apply both to VCM and
UPG. However as they are expressed in terms of the approximation of the accep-
tance probability, one may wonder if it will not introduce an error to otherwise
unbiased UPG technique. The answer is it will not because as long as the conditions
from Equation 2.10 for the MIS weights are maintained the multiple importance
sampling will stay unbiased. However, a sufficiently large error between the real and
approximated acceptance probability may lead to suboptimal weighting. The error is
especially large when the distance between the current camera vertex is close to the
gathering radius r. To workaround the problem Qin and others [QSH+15a] proposed
to clamp the approximation of the acceptance probability to 1 (see Section 2.4.2):

px̄acc,s,t = min(~p ȳs πr2, 1). (2.80)

The idea is that the acceptance probability cannot be larger than 1, so in cases
when the basic approximation is greater than 1 the clamped approximation is always
better. They argue, as well, that such a clamping isn’t required for VCM. The bias
in VCM usually manifests itself as excessive smoothing of the details. However its
often a desirable property of biased methods to trade the increase in low frequency
error, usually unnoticeable for human observer, for the computational efficiency.

To incorporate clamping into multiple importance sampling framework the
equations for the VM multiple importance sampling weights have to be slightly
modified. The following equations present the new, clamped incarnation of the
formulas from the previous section:

w−x̄V C,s,t = (As−1 ~qȳs−2 + as−1) ~gȳs−1 ~qȳs−1 + (Ct−1 ~qz̄t−2 + ct−1) ~gz̄t−1 ~qz̄t−1

+ nVM
nV C

(Bs−1 ~qȳs−2 + min(~g ȳs−1~q
ȳ
s−1πr

2, 1) · bs−1) ~gȳs−1 ~qȳs−1

+ nVM
nV C

(Dt−1 ~qz̄t−2 + min( ~gȳt−2 ~qȳt−2πr
2, 1) · dt−1) ~gz̄t−1 ~qz̄t−1

+ nVM
nV C

min(~g ȳs−1~q
ȳ
s−1πr

2, 1) + 1.

(2.81)
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bi =


0 for i ∈ {0, 1}

1
~g z̄i ~q

z̄
i

for i > 1

Bi =

0 for i = 0
(Bi−1 ~qȳi−2 + min(~g ȳi−1~q

ȳ
i−1πr

2, 1) · bi−1) ~gȳi−1bi for i > 0

di =


0 for i ∈ {0, 1}

1
~g z̄i ~q

z̄
i

for i > 1

Di =

0 for i = 0
(Di−1 ~qz̄i−2 + min( ~gz̄i−2 ~qz̄i−2πr

2, 1) · di−1) ~gz̄i−1di for i > 0
.

(2.82)

2.4.7 Bias vs Consistency Interlude

An algorithm computing the integral
∫
f(x) dx is called unbiased if its results are

correct on average. Otherwise it is called biased. More precisely, unbiasedness means
that the expected value of the underlying estimator FN is equal to the real value of
the integral being evaluated:

E [FN ]−
∫
f(x) dx = 0. (2.83)

The algorithm is consistent, if the error of the result approaches 0 as the number of
samples N goes to the infinity:

lim
N→∞

FN −
∫
f(x) dx = 0. (2.84)

In general those two properties aren’t related to each other. The estimator
can be consistent and biased and vice versa. The consistency guarantees that the
algorithm converges to the correct solution. All the methods presented in this thesis
are consistent ones. The advantage of unbiased algorithms is ability to bound the
error, which manifests itself usually as high frequency noise coming from variance.

2.4.8 VCM Consistency

The approximations in the acceptance probability and the contribution measurement
functions introduce bias into VCM algorithm. However, it can be made consistent
by shrinking the gathering radius r in subsequent iterations (see [GKDS12]).

ri = r1
√
iα−1 (2.85)

The ri variable in above equation is the radius in the i-th iteration and r1 is the
initial radius. The parameter α is an user parameter and it should be in range (0, 1).
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The RMS convergence rate of the VCM technique is bounded by:√
O(n−1) +O(n2(β+1)(α−1)), (2.86)

where the second term under the root is the error coming from bias. The β parameter
is the one from MIS power heuristic. From above, it follows that for α ≤ 2β+1

2β+2
has the optimal RMS convergence rate of O(

√
n−1), which is the same as BPT’s

convergence.

2.4.9 Acceleration Structure

Both VCM and UPG algorithms require an acceleration structure for performing fast
fixed-radius queries of the light sub-path vertices. The build time and the query time
of the acceleration structure are critical, since they are the second most repeated
operations after the ray-scene intersections. One such an acceleration structure
suitable for vertex merging based techniques is the hash grid. The hash grid supports
n-dimensional queries, but as the actual implementation uses the three dimensional
one, we will focus on this particular case in the following explanations. The described
approach scales easily to higher dimensions. For simplicity the figures show two
dimensional version.

The basis of the hash grid data structure is a grid of cells with fixed size r.
Every cell contains a set of points, which in our case represents the light vertices.
The position fcell of the cell for the point p = [px, py, pz] can be found with following
formula:

fcell(p) =
[⌊
px
r

⌋
,

⌊
py
r

⌋
,

⌊
pz
r

⌋]
. (2.87)

To find all the points within the distance r from the query point q, the cell fcell(q)
corresponding to the query point q is found and the points from this cell and all of
its 26 neighboring cells (total 27 = 3 × 3 × 3 cells, see the green block of cells in
Figure 2.14) are tested if they lie within the distance r to the query point.

This query scheme can be implemented with a hash map and a vector (an array)
of points. The key for the hash map is the position of the cell and the value is a
range of points from the vector. In the real implementation the range is defined as
two integer indices: the index rbegin to the first point in the vector and the index
rend to the point next to the last one (so that number of points rsize in the range
can be obtained with simple subtraction rsize = rend − rbegin ). For clarity 12 we
will use the pair [rbegin, rsize] to depict the range. The point ranges in the vector
correspond to the cells from the hash grid, as presented in Figure 2.13.

To build the structure, the vector of points is sorted lexicographically (first by
the z coordinate, then by y and by x at the end). Then, the consecutive ranges
of points are grouped into the cells (thanks to the sorting the points from a single

12To limit number of arrows in the diagrams.
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Figure 2.13: The overview of the two dimensional hash grid structure. The hash map
stores the ranges of the points from the vector of the points. The ranges correspond
to contents of certain cells.

cell occupy a continuous region of the vector). The hash map, which associates the
ranges to the particular cells, is created at the end.

This basic build scheme can be improved. An observation can be made that
not only the points inside a single cell, but the cells neighboring each other along
the x axis, occupy continuous region inside the vector. We can exploit this fact and
instead of storing in the hash map the range of points from the current cell only, we
can store the range spanning over the neighbors of the current cell, see Figure 2.14.
Several corner cases have to be handled here e.g. when one of the neighbors doesn’t
contain any points or the current cell is the last or the first cell in the row.

This improved approach has two advantages. The first one is that only 9 hash
lookups, instead of 27, are required to visit all important cells. The second one is
an improved cache locality and branch prediction, as the points from a single triplet
of cells are traversed in one strike. The improvement in the performance of the
hash map query, with respect to the basic building scheme, is almost 17% for the
synthetic test case and over 50% for the more realistic bearings test case (see the
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Figure 2.14: An improved layout of the hash grid. Storing the ranges of points from
the triplets of cells saves on hash lookups when the structure is queried. The green
part shows the query region with the center q and the radius r.

last paragraph in this section).

In the photon mapping algorithm the kd-tree is used for the queries. Since the
kd-tree structure supports queries with an arbitrary radius size, it can be used for
fixed radius queries as well. However, it turns out that the hash grid offers a better
performance in practice.

For general d-dimensional kd-tree the complexity of the axis-parallel range query
is O(n1− 1

d + k) where k is number of reported points. The build complexity of both
structures is similar O(n logn) 13.

To find out the algorithmic complexity of the hash grid we need to make some

13Technically the build procedure for the hash grid could be implemented without sorting, as
O(n) algorithm. However, then, it wouldn’t be possible to directly store the points corresponding
to particulars cells in continuous chunks of the memory (at least without additional rearrangements
operations which would require sorting). It would prohibit the described optimization and in general
have disastrous effect to the cache locality. In the implementation, for the typical n, the resulting
constant would be much higher that the logn factor.
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simplifications. Let’s call the 3× 3× 3 block of cells (the green cells in Figure 2.14)
intersecting with the query region a query block. Let’s assume that the points
are distributed uniformly over the query block. The volume of the query block
is equal to vblock = (3r)3 = 27r3 and the volume of the query region is equal to
vquery = 4

3πr
3. By the assumption of uniform distribution the number of reported

points k is proportional to the number of points in the block n:

k

n
≈ vquery
vblock

= c. (2.88)

The complexity of the query is linear O(n) with respect to the number n of visited
points in the block, and by above equation to the number of reported points O(k).
The assumption about the uniform distribution of the points inside the query block
in in the context of vertex merging based techniques may look like a radical sim-
plification. The light vertices are scattered randomly through the surfaces of the
scene and not freely over the whole volume. Inside of the single query block they
will be distributed uniformly over some planar surface (or multiple surfaces) inter-
secting with the query block. It means that the O(k) is only a rough approximation.
Nevertheless, as it can be seen in Figure 2.16 this bound is very close to the reality.
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0.1ms
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1M 2M 3M 4M 5M 6M 7M 8M 9M 10
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M

Bearings query times Cornell Box query times

kd-tree
kd-tree+

hash grid
hash grid+

hash grid∗

hash grid+∗

Figure 2.15: The query times with respect to the number of points in the scene. The
M suffix stands for 106. The explanation of ·+ and ·∗ can be found in Table 2.1.
The charts shows that hash grid scales better than kd-tree as the number of points
increases. The number of reported points k increases linearly with the number of
points n in the scene (the horizontal axis) as the distribution of points is uniform,
which confirms O(k) complexity of hash grid query (see Figure 2.16 as well.
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Figure 2.16: The time per query with respect to the average number of points k
returned by the query. The relationship is linear and almost independent from the
tested scene. The linear relationship confirms that hash grid query has a O(k) query
complexity.

The algorithms were tested on three different scenes: Cornell Box, Bearings and
Sponza. Two sets of the points were uniformly scattered over the surfaces of the
scene. The kd-tree and hash grid were constructed over the first set of queried points,
then multiple fixed radius queries were executed at the positions from the second set.
The build time and query times are presented in Table 2.1 and Figure 2.15. The
hash-grid offers a considerably better build performance and query performance.
The performance of the hash grid degrades in comparison to the kd-tree as the
radius increases, however for the typical small radii the advantage of the hash grid
is significant. The improvement in the build time for the optimized hash grid with
respect to the optimized kd-tree is 36% - 67% (for r = 0.01). The improvement in
the query time is 14% - 73%.
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Structure Build time Query time Build time Query time
r = 0.01 r = 0.01 r = 0.1 r = 0.1

Bearings

kd-tree 2.1418s 0.0497ms 2.7595s 2.8665ms
kd-tree+ 1.5503s 0.0144ms 1.9351s 0.7152ms
hash grid 0.6664s 0.0147ms 0.4207s 0.9058ms
hash grid+ 0.9831s 0.0123ms 0.4140s 0.9089ms
hash grid∗ 0.7170s 0.0190ms 0.4325s 0.9218ms
hash grid+∗ 1.4518s 0.0132ms 0.4443s 0.9122ms

Cornell Box

kd-tree 2.1951s 0.0378ms 2.0284s 1.0029ms
kd-tree+ 1.6130s 0.0129ms 1.5598s 0.2619ms
hash grid 0.4631s 0.0068ms 0.3726s 0.2985ms
hash grid+ 0.5217s 0.0048ms 0.3654s 0.2968ms
hash grid∗ 0.4649s 0.0115ms 0.3676s 0.3026ms
hash grid+∗ 0.5557s 0.0063ms 0.3731s 0.2978ms

Sponza

kd-tree 2.0638s 0.0179ms 2.0652s 0.2992ms
kd-tree+ 1.8117s 0.0067ms 1.5713s 0.0860ms
hash grid 0.6440s 0.0038ms 0.4551s 0.0841ms
hash grid+ 0.9488s 0.0018ms 0.4633s 0.0819ms
hash grid∗ 0.7314s 0.0095ms 0.4613s 0.0897ms
hash grid+∗ 1.5294s 0.0035ms 0.5238s 0.0842ms

Table 2.1: The build and query times of different acceleration structures. The grayed
out rows show the times for the micro-optimized versions of structures, marked with
·+ as well. The green cells mark the best time in the column. The tests were
conducted for two different query radii r = 0.01 and r = 0.1. The versions using
slower std::unordered_map were marked with ·∗.



Chapter 3

Implementation

3.1 Overview

An integral part of this thesis is an implementation of PT, BPT, VCM and UPG.
The implementation is written purely in software (no GPU acceleration) using C++.
Intel’s Embree1 library was used as a ray tracing back-end (the library facilitates an
API for creation of the acceleration structure and querying for intersections between
rays and scene primitives). The advanced SIMD features of Embree, which allow to
trace packets of rays simultaneously, weren’t used. The reason was a lack of time to
optimize all four techniques to use them. Nevertheless, the author appreciates the
fact that it would be very interesting to see the influence of SIMD on the perfor-
mance of probability reciprocal estimation in UPG, what is its current performance
bottleneck.

Thanks to Assimp2 library the implemented program is able to directly load
.blend Blender files (and reload them on modification), what greatly accelerated
the implementation-testing cycle. The glad3, glfw4 and imgui5 libraries were used
to create an interactive, real time preview of the rendering progress. The glm6

library provided basic mathematical primitives like 3– and 4–dimensional vectors,
matrices and operations on them. The ska::flat_hash_map7 library was used as
high performance drop-in replacement for std::unordered_map in the hash grid
implementation. The OpenEXR8 library was used to save the result images in high
dynamic range .exr format.

Despite the fact that some of the techniques can be considered as the gener-
1https://embree.github.io
2https://github.com/assimp/assimp
3https://github.com/Dav1dde/glad
4http://glfw.org
5https://github.com/ocornut/imgui
6https://glm.g-truc.net
7https://github.com/skarupke/flat_hash_map
8https://openexr.com
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alization of the others (e.g. BPT as generalization of PT), the PT and BPT were
implemented separately from VCM and UPG. It allowed to cross check the correct-
ness of the implementation by comparing the results from independent code paths.

3.2 Building and Running

The implementation can be found in a public git repository under the address https:
//github.com/ciechowoj/master. The git repository is mostly self contained (the
dependencies are provided as git submodules), however a few external dependencies
need to be installed on Linux system to be able to build the program. The list of
required libraries is available in README.md file in the root directory of the repository.
If all the dependencies are fulfilled the implementation can be build simply with the
make command. The program can be compiled and run under Microsoft Windows
using Visual Studio, however the build process isn’t as straightforward as on Linux9.

The initial build may take a significant amount of time as it builds the sub-
modules from scratch. After the build process is completed the main executable file
master.bin can be found in the build/master subdirectory. For convenience we
will simply call it master. The primary way to use the master program is a com-
mand line interface. The full set of possible parameters can be found in Appendix A.

3.3 Rendering Scenes

The main functionality of the program is rendering of the 3d scenes. The scenes have
to be in the .blend format (created with Blender software). Obviously the program
supports only very limited set of features offered by Blender. Only the basic mesh
models with normal vectors are supported (there is no support for additional per
vertex data like texture coordinates). Figure 3.1 shows adjustable parameters. For
the camera the focal length and sensor size can be modified. Multiple cameras are
supported (selected with the --camera parameter). For lights the color and energy
can be specified (the resultant light power is the color multiplied by the power).
If the diffuse flag is selected the light is an area light, otherwise it is a directional
light. The diffuse and specular colors are the coefficients of the energy conserving
Phong BSDF (kd and ks respectively, in Equation 3.1), the hardness is a value of
shiness exponent (the n coefficient, for more details see Lafortune and Willems paper
[LW94b]). The α variable is an angle between the perfect specular reflection and the
outgoing direction. The factors kd and ks have to obey the inequality kd + ks ≤ 1
otherwise the BSDF will not conserve energy.

fr(x, ωi, ωo) = kd
1
π

+ ks
n+ 2

2π cosn α (3.1)

9One complication is it requires manual building of some dependencies.

https://github.com/ciechowoj/master
https://github.com/ciechowoj/master
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Figure 3.1: The adjustable parameters (highlighted with green color) of camera,
materials and light respectively seen in the Blender interface.

The output of the program is a high dynamic range image in the .exr format.
The high dynamic range images cannot be directly represented on paper or displayed
on contemporary low dynamic range monitors. The images need to be tone mapped
first, that is converted to low dynamic range. The wide support for .exr format and
the existence of open source software for tone mapping with support to .ext files were
the reasons to use this format. The freely available luminance-hdr software was
used to tone map the images presented in this thesis. The master program can also
be used as a simple .exr viewer but its tone mapping capabilities are limited to simple
linear scaling, which is fine for a quick preview but unsuitable for a presentation.
The linearly remapped images are either overexposed or the detail in shadows is
lost.

The output files from master cannot be readily opened by luminance-hdr tool.
The raw .exr result from master contains a special s channel (beside r, g, b channels)
which represents number of samples generated for the particular pixel. The idea is
to decrease the accumulation of floating point errors by delaying the division by the
number of samples until the very end of rendering. To convert the raw .exr output
from master to the standard .exr file, the master bake command has to be used. It
makes the division by the number of samples and removes the extra s channel from
the .exr file.
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3.4 Auxiliary Tools

The master program provides several tools to manage the long rendering times and
a huge number of result images with different combinations of rendering parameters.

The master command accepts a special --reference parameter. The argument
of this parameter is a path to the reference image. The reference image is used to
compute the errors during rendering. For every sample the absolute error and the
root mean square errors are computed and their values are stored for later analysis.
In order to store the error measurement the master program exploits another feature
of the .exr format, which is support for custom meta data. The information about
errors is saved inside the file with the image itself. This is very convenient, because
otherwise the data would have to be stored externally doubling the number of output
files to manage. The information about errors can be extracted from .exr meta data
using master measurements command.

By default the errors are computed for the whole image. The --trace param-
eter allows to specify additional rectangular fragments of the image for which the
errors should be computed.

The meta data from the image can be stripped with the master strip com-
mand. The master merge command allows to merge the results from multiple files
into a single one (e.g. the rendering can be done on multiple machines or in multiple
runs). The master continue command allows to restart the rendering in the place
where it was stopped (it is handy in case of failure or when the machine is needed
for something else). The --snapshot parameter enables the auto save feature. The
parameter accepts a number of minutes as its argument. When it is specified the
output file will be overwritten periodically with the current result of rendering. The
master diff command computes relative difference between the input images, for
an example, see the next section (Section 3.5).

3.5 Implementation Correctness

The implementation turned out to be a very challenging process. It was relatively
easy to get visually convincing results, however getting precise, physically correct
images is a different story. To facilitate this the implementation was tested on the
number of test scenes10.

The simplest test scene is called a furnace test and it consists of a closed volume
with certain properties. The surfaces which make up the volume boundaries are
covered with diffuse reflectors and emitters having a constant reflectance ρd = πfd

and emittance Le (the factor fd is a constant value of the diffuse BSDF). The
radiance L at any point of such a scene is constant and its value can be calculated

10The scenes can be found in models subdirectory of the repository.
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analytically. The value of the radiance is equal to:

L =
∞∑
i=0

ρidLe = Le
1− ρd

. (3.2)

The above equation is just a decomposition of the total radiance into the radiances
reaching some point of the scene after n−1 reflections (in other words: coming along
the path of length n). The value of the radiance which reaches the point along the
paths of length n is equal to:

L(n)
r (ω) = L(n)

r = ρ
(n−1)
d Le. (3.3)

The meaning of this equation is the radiance L(n)
r along the path of length n is

constant (L(n)
r = ρ

(n−1)
d Le) and independent from the direction (L(n)

r (ω) = L
(n)
r ). It

can be proven by simple induction over the path length n. For the paths with length
1, the lights are directly visible, so the radiance is equal to L(1)

r = Le. For the paths
with length n, the intensity of reflected light L(n)

r is equal to:

L(n)
r =

∫
S2
fd(ωo, ωi)L(n−1)

r (ωi)|ωi · n| dωi

=
∫
S2

ρd
π
L(n−1)
r |ωi · n| dωi

= ρd
π
L(n−1)
r

∫
S2
|ωi · n| dωi

= ρdL
(n−1)
r = ρ

(n−1)
d Le.

(3.4)

By inductive assumption, the radiance L(n−1)
r (ωi) incoming over the paths of length

n − 1 is constant and directionally independent, thus we can move it out of the
integral in the third transformation.

In our case11 (see Figure 3.2) the scene consists of a cube and six diffuse area
lights, aligned with the walls of the cube, emitting the radiance Le = 1

2 . The cube
is made of a diffuse material with reflectance ρd = πfd = 1

2 . Thus, the radiance L
reaching camera is equal to Le

1−ρd
= 1. This result can be readily used to verify the

correctness of the output computed by the program.

In general the radiance reaching the camera cannot be computed analytically.
For the other test cases12 a high precision reference image was rendered using BPT
and the results from other algorithms were compared against it13. The test scenes
were designed to verify different configurations of lighting, geometry and materials
or to pinpoint the root cause of a certain bug. For simplicity the lights in the scenes
are calibrated, so that the average radiance reaching the camera is equal to 1 (in
other words the average radiance calculated over all the pixels in the image is equal
to 1). This allows to quickly determine if something is wrong without comparing
the image with the reference one.

11models/TestCaseFurnace.blend
12models/TestCase0.blend - models/TestCase18.blend
13The correctness of BPT implementation was tested against the basic PT algorithm.
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Figure 3.2: A screenshot from Blender presenting the furnace test scene. The front
wall of the cube is removed to show the interior. The right area light (out of six) is
selected.

Multiple issues were detected using the above approach with the test scenes.
Some of the problems had nonobvious sources like poor quality of the random num-
ber generator, a bug in the acceleration structure or different kinds of problems
with floating point numbers14. Despite described efforts to eliminate all the bugs,
the implementation still shows error in some circumstances. In the bearings scene
the BPT and UPG give slightly different results in the particular area of the scene
(the space between the rings of the horizontal bearing). Figure 3.3 shows a closeup
to the problematic area. The difference means that there have to be an error in the
implementation of one of the techniques as both algorithms are unbiased. The possi-
ble sources of the difference include: numerical errors (e.g. caused by rising floating
point numbers to high powers for highly reflective Phong material), inefficiency of
BPT (in presence of highly reflective surfaces the probability of sampling long paths
is extremely slow) or simply a bug in the implementation. The error may be present
in other scenes as well, thus it may have an influence on the results presented at
the end of this thesis. The author was unable to pinpoint the root cause of the
problem so far. One difficulty in doing so, is the only scene among the tested ones
where the phenomenon appears is the bearings scene. In particular, it doesn’t show
up in the simpler test scenes (like the test cases described at the beginning of the

14Floating point numbers can cause all sorts of problems. The traps range from precision loss
and instability to things like different hashes for +0 and -0.
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section). The very long rendering time required to catch such subtle errors poses a
great difficulty for debugging. Usually, it takes only a few samples per pixel to see
that something is wrong, however in the aforementioned case the error is so minute
that it takes a few thousand of samples to decrease the noise to the level where
the error starts to be visible. Those problems make the standard fix-build-verify
approach inapplicable.

3.6 Performance Considerations

The implementation was profiled using the gprof tool. The Embree library pro-
vides efficient facilities to perform ray-triangle intersections, so the optimization
effort was directed to other parts of the program. A considerable effort was put
to optimize the fixed radius query acceleration structure — hash grid. Initial ex-
periments showed that even a highly optimized kd-tree is slower in performing fast
fixed radius queries than a simple hash grid data structure (see Section 2.4.9 for
more details). Surprisingly, a great improvement in the speed was obtained by re-
placing the std::unordered_map with the highly optimized ska::flat_hash_map.
Table 3.1 shows the best times for std::unordered_map and ska::flat_hash_map
from multiple runs of the program compiled with one of the structures enabled15.
The version with ska::flat_hash_map is 30% faster than the version with the hash

time class name

4.51s ska::flat_hash_map
5.87s std::unordered_map

Table 3.1: ska::flat_hash_map vs std::unordered_map.

map from the C++ standard library. In addition to optimizing the data structures
a bunch of micro-optimizations like devirtualization and inlining of critical functions
(methods) was applied through the whole program. The computations for different
parts of the image were parallelized. Table 2.1 presents the simplified output from
gprof for the final version of the program15.

As we can see the additional gains could be only acquired by optimizing the ray-
triangle intersections itself (occluded and intersect). One approach to improve
the speed of intersections would be to use the batch versions of the ray-triangle
intersection routines which can trace a whole packet of multiple rays at once. It is
expected that this would give additional boost in the speed, however for the price
of increased complexity of the whole implementation. The complexity would be
increased, as other parts of the implementation would need to handle the batches of

15The program was run with master models/CrytekSponza.blend --UPG --parallel
--num-samples=20 --radius=0.01 --batch --output=/tmp/test.exr.
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% time self function name

23.16 embree::avx::BVHNIntersector1<...>::occluded(...)
19.46 embree::avx::BVHNIntersector1<...>::intersect(...)
8.91 UPGBase<...>::_gather(...)
7.00 UPGBase<...>::_connect(...)
4.88 Scene::querySurface(...) const
3.43 DiffuseBSDF::query(...) const
2.95 Scene::occluded(...) const
2.88 ska::detailv3::sherwood_v3_table<...>::grow()
2.02 UPGBase<...>::_traceEye(...)
2.00 HashGrid3D<...>::build(...)
1.94 PhongBSDF::query(...) const
1.15 std::mersenne_twister_engine<...>::operator()()
1.11 std::sort<...>(...)
1.06 Scene::intersect(...) const
18.05 other

% time total function name

15.32 UPGBase<...>::scatter(...)

Table 3.2: The profiler output for the sample run of the program. The timings (time
self ) in the upper part of the table are exclusive (the function time doesn’t include
the time of the child if the child appears in the table as well). The lower part of the
table contains the total timings (time total), that is the actual time that was spent
inside the function.

rays.

Another potential improvement would be to increase the CPU utilization by
parallelizing the construction process of the acceleration structure. The scatter
function performs the generation of the light vertices and construction of the ac-
celeration structure over them. The scatter function isn’t currently parallelized,
so that during its execution the CPU is underutilized. The improvement would be
moderate, as currently it uses only 15% of the execution time (see Table 3.2).

Instead of tracing the light vertices at the beginning of each iteration we could
use the light vertices from the previous iteration and in parallel to the main part of
the program (the tracing of the eye sub-paths), generate the light vertices and build
the acceleration structure for the next iteration. That way the scatter function
could be run in parallel with the actual tracing of the eye paths, in which case the
CPU would be fully utilized.
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Figure 3.3: The closeup to the fragment of Bearings scene rendered using UPG and
BPT. The bottom images present a relative difference PUP G−PBP T

min(PUP G,PBP T ) between top

images, where P is the brightness
√
P 2
r + P 2

g + P 2
b of a pixel. The Gaussian blur was

applied to the right bottom image to make it more clear. The region between the
bearing rings is significantly brighter on the image rendered using UPG than on the
image rendered using BPT which suggest some kind of bug in the implementation.
The presence of the error in the area where the surfaces are very close to each other
suggests some problems with floating points computations.





Chapter 4

Results

4.1 Test Scenes

The scenes Bathroom (Salle de Bain)1, Breakfast Room2 and Crytek Sponza3 come
from the Morgan McGuire’s website [McG17]. The Bearings scene was modeled by
the author of this thesis. The pocket watch4 lying on the table in the Breakfast
Room scene was created by the user totopremier from the website blendswap.com5.
The geometry of the clock’s face was added by the author (the original face was a
texture, and texturing isn’t supported by the program). The original materials and
lights from all the scenes were discarded and a new arrangement was created by
the author (the original materials and lights were incompatible with the program).
The light arrangement is described in more detail under the figures with the result
images (see Section 4.4).

4.2 Rendering of Results

The scenes were rendered using the BPT, UPG, UPG* (UPG with gathering from
the camera) and VCM techniques. Firstly, for every scene the high quality image was
rendered using BPT with a long rendering time (at least 48h). The reference images
were rendered on a machine equipped with Intel Core i5-3317U CPU @ 1.70GHz
and 8 GB RAM with a resolution of 1024×1024 pixels. Table 4.1 shows a summary
of the rendering times for the particular scenes. Some of the scenes were rendered
multiple times with different lighting or camera arrangements (the camera id is the
number in the superscript of the scene name).

1Licence CC BY 3.0, Copyright Nacimus Ait Cherif
2Licence CC BY 3.0, Copyright Wig42
3Licence CC BY 3.0, Copyright 2010 Frank Meinl, Crytek
4Licence CC BY 3.0, Copyright totopremier
5As a matter of fact some other scenes from the McGuire’s website originate from blendswap.com

as well.
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blendswap.com
https://creativecommons.org/licenses/by/3.0/
https://www.blendswap.com/user/nacimus
https://creativecommons.org/licenses/by/3.0/
http://www.blendswap.com/user/Wig42
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://www.blendswap.com/user/totopremier
blendswap.com
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Scene Time Samples

Bathroom 72h 44082
Bearings 263h 834279
BreakfastRoom10 58h 35334
BreakfastRoom11 56h 28394
BreakfastRoom20 58h 30157
BreakfastRoom21 54h 26263
CrytekSponza0 88h 89558
CrytekSponza1 71h 68989
CrytekSponza2 101h 83942

Table 4.1: The time of the rendering and the number of samples per pixel for the
reference images.

Rendering algorithms are parametrized by super-parameters whose automatic
adjustment is an open problem. In our case, they are the beta parameter β for
multiple importance sampling (affecting all algorithms presented here), the gathering
radius r (for vertex merging based techniques) and the alpha parameter α for a
radius shrinking scheme (related to VCM). For the beta, the value 2 was chosen as
suggested by Veach in his thesis [Vea97]. For the VCM alpha parameter the value of
0.75 was chosen (see [GKDS12] and Section 2.4.8). To find out the optimal value for
the gathering radius, every scene was rendered multiple times with different values
of the radius. The rendering time was at least 20 minutes. The detailed data from
the rendering can be found in the table in Appendix B. The optimal choices of the
radii are presented in Table 4.2. Figure 4.1 shows the influence of the gathering
radius on the rendering error for the BreakfastRoom21 scene. The choice of the
gathering radius is important as the difference in the error is significant for different
radii. The range of reasonably good radii varies from scene to scene.

The result images were rendered using parameters as described above6. The
machine equipped with Intel Xeon E5-2673 v3 @ 2.4GHz and 16 GB RAM was used
for rendering. The rendering time of 6 hours was used and the resolution was set to
the same as of the reference images (1024× 1024).

4.3 Discussion

The performance of the rendering algorithm is determined by the speed with which
the image converges to the reference image, that is the speed with which the abso-
lute approximation error decreases to zero. For the test scenes the performance of

6The exact command line invocation can be found in the script GenerateFinalResults.ps1 in
the repository.
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Figure 4.1: The correspondence between the gathering radius size and the absolute
error for the BreakfastRoom21 scene rendered using UPG. Notice, that the y-axis
doesn’t start from zero. The optimal value is well pronounced.

the UPG and VCM algorithms ranges, from being on par with BPT, to being signif-
icantly better (consider the convergence charts in Figures 4.4-4.12). The Bathroom
scene is the only scene, among the tested ones, where vertex merging based algo-
rithms are slightly worse than classic BPT. The improvement in the performance is
noticeable especially for the features which are considered hard to render using the
classic path tracing algorithms (PT, BPT). The vertex merging based algorithms
efficiently handle caustics induced by highly reflective surfaces (see the excerpts b, c
and h from Figure 4.5 and the excerpt e from Figure 4.8) and are frequently superior,
when it comes to rendering specular effects (see the excerpts a - e from Figure 4.8
and Figure 4.12), however it isn’t a rule (e.g. the reflection from the excerpt c in
Figure 4.9).

The advantage of the vertex merging based algorithms isn’t limited only to the
specular effects. The UPG and VCM are better in rendering the areas of the images
illuminated by indirect light. The difference in efficiency grows with the number
of reflections (see indirectly illuminated areas in Crytek Sponza and the interior
of the bearing box in the Bearings scene). The BreakfastRoom2 (see Figure 4.8
and Figure 4.9) scene is the most striking example of this phenomenon. The images
rendered with VCM and UPG are actually better than the reference image generated
with BPT. Conversely, the common property of the scenes where the vertex based
algorithms have worse performance is a big amount of direct lighting or lighting with
a low number of reflections. In the Bathroom scene (Figure 4.4), where almost the
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Scene UPG UPG∗ V CM

Bathroom0 0.05 0.045 0.1
Bearings0 0.03 0.02 0.04
BreakfastRoom10 0.01 0.01 0.025
BreakfastRoom11 0.01 0.01 0.05
BreakfastRoom20 0.015 0.01 0.015
BreakfastRoom21 0.02 0.01 0.05
CrytekSponza0 0.02 0.01 0.035
CrytekSponza1 0.02 0.01 0.035
CrytekSponza2 0.02 0.01 0.03

Table 4.2: The optimal radii for particular techniques. The optimality criterion is
an absolute error between the image in question and the reference image.

whole visible region is directly illuminated with the area light, the error in the images
rendered by UPG and VCM is actually greater than in the image rendered with BPT.
The advantage of BPT for direct lighting is visible in the BreakfastRoom1 scene
too. Still, some areas in the shadows in this scene have better quality in the images
rendered with UPG and VCM (e.g. excerpt c, Figure 4.9).

Another property of the vertex merging techniques where the merging is done
from the light perspective (UPG) is a low frequency error. This kind of error tends to
be less questionable for a human observer than the high frequency spikes generated
by vanilla BPT (the characteristic "fireflies" noise) or the alternative version of UPG
(UPG*). For example, compare the area around the jug in the images generated
with BPT and UPG in Figure 4.9 or the light reflection on the first-plane ledge in
Figure 4.11 (e.g. excerpt c).

from light from camera

Figure 4.2: Two different variants of the vertex merging for the primary camera
rays: from the light perspective (on the left) and from the camera perspective (on
the right).

The low frequency noise in UPG is a result of a common light sub-path being
shared by the multiple pixels which are in the close proximity to themselves. Let’s
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consider Figure 4.2. The grid represents the pixels of the image. For multiple pixels
the same light vertex is gathered (the dark green one at the center of the gathering
region), hence the value of multiple pixels is generated using the same light sub-path.
This phenomenon can be observed as characteristic patches of pixels (see Figure 4.3)
and results in low frequency noise.

Figure 4.3: An image generated with UPG with single sample per pixel. The direct
lighting is disabled for clarity. The bright patches correspond to the particular
gathering areas.

This smoothing behavior, when beneficial in most cases, sometimes may cause
problems. Consider a situation where a high intensity light sub-path is sampled.
In case of BPT it would be connected only to one camera sub-path, which would
result in the high frequency firefly pixel characteristic to BPT. However, in the case
of UPG (and VCM) the light sub-path is merged to multiple camera sub-paths.
This may produce ugly artifacts in the image (see the reflection in the floor in the
Crytek Sponza scene, Figure 4.11). The artifacts will disappear as more samples are
generated, but still they have potential to spoil otherwise high quality renderings.

The UPG* algorithm is a variant of UPG which does the vertex gathering from
the camera perspective. When its efficiency for caustics and specular effects is still
better than that of BPT, the general performance is worse than of the first variant.
The reason for this is UPG* doesn’t have the smoothing behavior of UPG. The
primary camera rays are merged directly with the gathered light vertex (consider
the right sub-figure in Figure 4.2)7.

The biased version of UPG: the VCM algorithm produces images visually sim-
7This kind of merging is equivalent to the BPT connection. It is explicitly ignored in the

implementation.
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ilar to the ones generated by UPG. Unfortunately, the results generated by VCM
suffer from bias artifacts, which are especially visible in the corners and other places
where two surfaces are close to each other. The artifacts are severe enough to be
noticed by a human even on the renderings with significant number of samples. The
most spectacular examples of those artifacts can be seen in the excerpts c−e in Fig-
ure 4.4, excerpt j in Figure 4.6, excerpt b in Figure 4.9 and excerpt j in Figure 4.12.
Additionally, if the radius reduction scheme is used for VCM (which usually is, as
it is required for consistency) VCM degenerates to BPT over time. It means that
only the first samples of VCM benefit from the efficiency of the vertex merging and
the performance will decrease as the number of samples increases.

4.4 Result Images

Below figures present the obtained results. The numbers in the corners of the zoomed
excerpts are the RMS errors computed only for the excerpt areas. The source regions
of the excerpts are marked with color coded rectangles and letters. The charts in
the top right corner presents the relationship between the absolute error and the
rendering time. The y-axes of the charts are logarithmic. The images generated
with some techniques were omitted for brevity, the full images and their .exr versions
can be found in the repository with the program.
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Figure 4.4: The Bathroom scene. The scene presents interior of a bathroom. The
chrome elements and the mirrors are simulated using Phong material with a high
shininess coefficient. The scene is illuminated by a single diffuse area light placed
instead of the window glass. For the explanation of the markings see Section 4.4.
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Figure 4.5: The Bearings scene. The scene presents ball bearings and a cardboard
box for their packaging. The scene is illuminated by two directional lights (their
arrangement can be guessed from the positions of cardioid caustics) and one weaker
overhead diffuse area light. For the explanation of the markings see Section 4.4.
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Figure 4.6: The BreakfastRoom10 scene. The scene presents a breakfast room
illuminated by the sunlight passing through blinds. The sunlight is simulated with
single directional light. Pay attention to the severe artifacts under the chain for
VCM rendering (excerpt j). For the explanation of the markings see Section 4.4.
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Figure 4.7: The BreakfastRoom11 scene. Another shot on the Breakfast Room
scene (see Figure 4.6) from a different camera perspective. Compare the high fre-
quency error on the table around the jar in the BPT rendering with the UPG
rendering. For the explanation of the markings see Section 4.4.
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Figure 4.8: The BreakfastRoom20 scene. The scene is illuminated by directional
light passing though a slightly opened doors. In low lightning conditions the result
generated with UPG is actually better than the reference image generated with
much more time using BPT. The excerpts d and e were tone mapped with decreased
brightness to show the detail. For the explanation of the markings see Section 4.4.
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Figure 4.9: The BreakfastRoom21 scene. Another variant of the Breakfast Room
scene (see Figure 4.8) from different camera perspective. The UPG rendering is
significantly less noisy. Notice the characteristic "fireflies" noise on the teapot and
inside the teacup in the BPT rendering. For the explanation of the markings see Sec-
tion 4.4.
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Figure 4.10: The CrytekSponza0 scene. The scene is illuminated by two overhead
lights. One light is a directional light simulating the sun (its direction can be guessed
from the hard shadows). Another one is a diffuse area light simulating the light com-
ing from the sky. The areas in the shadow are much less noisy in the UPG rendering
than in the rest of renderings. For the explanation of the markings see Section 4.4.
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Figure 4.11: The CrytekSponza1 scene. Another shot at Crytek Sponza scene. The
lighting is the same as in Figure 4.10. A simple gradient sky was added to cover
the black background. Notice the artifacts on the floor near the excerpt b. For the
explanation of the markings see Section 4.4.
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Figure 4.12: The CrytekSponza2 scene. The closeup on the vase from the Crytek
Sponza scene. The excerpt j shows another example of a VCM artifact. Most of the
specular features are rendered more efficiently with UPG. In some cases UPG* is
significantly better than UPG (excerpt h). The lighting is the same as in Figure 4.10.
For the explanation of the markings see Section 4.4.





Chapter 5

Conclusions

5.1 Summary

The objective of this thesis was to explore the vertex merging based algorithms
presented in the papers [QSH+15a] and [GKDS12]. Three algorithms were imple-
mented: UPG, UPG* and VCM. Additionally BPT was implemented as a reference
algorithm. The relative performance of all four algorithms was evaluated on the
diverse set of scenes under various lighting conditions.

Although the method of unbiased vertex merging proposed in [QSH+15a] seems
to be computationally expensive, in practice the UPG algorithm based on it offers a
performance which is at least comparable and often superior to the classic approaches
(represented here by BPT). Due to lack of the smoothing behavior (see Section 4.3)
the UPG* isn’t as efficient (for the considered scenes) as UPG. The performance
of VCM is on par with the UPG but it suffers from bias artifacts. The greatest
improvements of the performance for UPG were observed in the scenes with a low
amount of direct light and a high amount of specular materials.

5.2 Future Work

The results presented in this thesis only scratched the surface of possibilities offered
by the vertex merging techniques. It would be interesting to see the efficiency of
the hybrid heuristic (combining UPG and UPG* into a single technique) proposed
in [QSH+15a]. Another extension was suggested in the work [Geo12]. Georgiev de-
scribes a technique for VCM (and thus for UPG) to lower the memory consumption
in cases where the BSDF structures take a significant amount of memory. Another
idea is a variable gathering radius. Currently the radius is constant for the whole im-
age. Georgiev and others in [Geo12] propose a scheme where the radius is a per-pixel
property. The adjustment of super-variables like the gathering radius or multiple
importance sampling beta is an area desiring additional research. An unsolved issue
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is the source of the error mentioned at the end of Section 3.5.

The VCM and UPG algorithms implemented in this thesis are actually hybrids
with BPT. It would be interesting to see the evaluation of the performance of the
pristine versions of those techniques.

An observation could be made that the artifacts noticeable by human viewer
in the VCM renderings appear only in the specific places like the corners or edges
of the scene. It would be interesting to explore the idea of a heuristic combining
UPG with VCM. The UPG could be only used in places where artifacts generated
by VCM are visible and VCM everywhere else. The decision could be made on the
length of the tentative ray. Some interpolation scheme would be needed to avoid
visible transitions between the techniques.

Apart from the micro optimizations that were already applied to the implemen-
tation, there is potential for other performance improvements. The Embree library
offers a functions to trace the rays in batches. An especially interesting application
of the batched ray tests would be the unbiased computation of the probability den-
sity function for the vertex merging. Currently it’s done a ray after ray until the hit.
An introduction of extra tentative rays could improve the precision (and efficiency)
of the estimation (see Section 2.4.3 for more details). The standard library functions
like pow or sin in the implementation of Phong BSDF are quite expensive. The SSE
versions could improve the performance of BSDF computations. Another idea for
further research is implementation of the investigated techniques in the GPU.

The implementation is missing some basic algorithmic optimizations like strat-
ification and usage of low-discrepancy sequences (Quasi Monte Carlo). Current
implementation supports only basic lambertian and Phong’s BSDF models. The
support for more complex BSDFs and the perfectly specular surfaces for UPG are
two new possible directions of the research.

The last thing is the measurement of the error in the result images itself. The
absolute and root mean square errors are standard choices for basic purposes. How-
ever, it turns out that the image with a lower absolute error isn’t always perceived as
the better one by the human viewer. It would be interesting to explore how well the
vertex merging algorithms perform when some kind of a perceptual image quality
index is the measurement criterion.
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Appendix A

Help Snapshot

Description of the main functionalities can be found in Section 3.2.

Input file is required .

Usage:
master <in > [ options ] Render the scene from the <in >

↪→ file.
master average <in > Compute average value of pixels

↪→ in the image <in >.
master errors <fst > <snd > Compute abs and rms (in this

↪→ order) errors between the images <fst > and <snd >.
master time <in > Returns the rendering time of

↪→ the image <in >.
master measurements <in > Extract and print measurements

↪→ from the <in > file.
master traces <in > Print positions of traces

↪→ extracted from input file metadata .
master continue <in > Continue rendering of the <in >

↪→ image.
master gnuplot <ins >... Create convergence charts from

↪→ multiple <ins > images .
master diff <out > <fst > <snd > Compute relative difference

↪→ between <fst > and <and > and save the result as <out >.
master merge <out > <fst > <snd > Merge the images <fst > and <snd >

↪→ and save the result as <out >.
master strip <out > <in > Strip metadata from file <in >

↪→ and save the result as <out >.
master bake <out > <in > Remove the channel with number

↪→ of samples from the image <in > save the result as <out >.

Options ( master ):
-h --help Show this help.
--version Show version .
--PT Use path tracing for rendering (

↪→ this is default one).
--BPT Use bidirectional path tracing (

↪→ balance heuristics ).
--VCM Use vertex connection and

↪→ merging .
--UPG Use unbiased photon gathering .
--num - photons =<n> Use <n> photons . [ default : 1 000

↪→ 000]
--radius =<n> Use <n> as maximum gather radius

↪→ . [ default : 0.1]
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--roulette =<n> Russian roulette coefficient . [
↪→ default : 0.5]

--beta=<n> MIS beta. [ default : 1]
--alpha =<n> VCM alpha. [ default : 0.75]
--batch Run in batch mode ( interactive

↪→ otherwise ).
--quiet Do not output anything to

↪→ console .
--no -vc Disable vertex connection .
--no -vm Disable vertex merging .
--no -ui Disable user interface .
--from - camera Merge from camera perspective .
--from -light Merge from light perspective .
--no - lights Do not draw the lights .
--no - reload Disable auto - reload (input file

↪→ is reloaded on modification in interactive mode).
--num - samples =<n> Terminate after <n> samples .
--num - seconds =<n> Terminate after <n> seconds .
--num - minutes =<n> Terminate after <n> minutes .
--parallel Use multi - threading .
--output =<path > Output file. <input >.<width >.<

↪→ height >.<time >.< technique >. exr if not specified .
--reference =<path > Reference file for comparison .
--seed=<n> Seed random number generator .
--snapshot =<n> Save output every <n> seconds .
--camera =<id > Use camera with given id. [

↪→ default : 0]
--resolution =<WxH > Resolution of output image. [

↪→ default : 512 x512]
--trace=<XxY[xW]> Trace errors in window of radius

↪→ W and at the center at XxY. [ default : XxYx2]
--sky - horizon =<RxGxB > Color of sky horizon . [ default :

↪→ 0x0x0]
--sky - zenith =<RxGxB > Color of sky zenith . [ default : 0

↪→ x0x0]
--blue -sky=<B> Alias to --sky - horizon =<0x0x0 >

↪→ --sky -zenith <0x0xB >. [ default : 0]

Options ( gnuplot ):
--input=<path > The path to .exr file containing

↪→ error data.
--output The output image with the chart.
--traces Generate a matrix of charts with

↪→ data from window traces .
--select =<wildcard > Consider only series which name

↪→ matches <wildcard >.

Examples :
View the image.exr file.

master image.exr

Render scene.blend using UPG with vertex merging from camera
↪→ perspective .

master scene. blend --UPG --radius =0.01 --beta =2 --from - camera
↪→ --output =image.exr

Render scene.blend using BPT for 20 minutes , save the result
↪→ every 6 minutes .

master scene .blend --BPT --output =image.exr --num - minutes =20
↪→ --snapshot =360

Render scene.blend using BPT use all cores , use camera no. 2.
master scene .blend --BPT --output =image.exr --parallel --

↪→ camera =2



79

Render scene.blend using UPG use reference .exr as the reference
↪→ image , compute errors in square window at position [32,
↪→ 32] with side size equal to 16.

master scene.blend --UPG --output =image.exr --reference =
↪→ reference .exr --trace =32 x32x8

Render scene.blend using UPG use all cores compute errors for
↪→ multiple windows .

master scene.blend --UPG --output =image.exr --reference =
↪→ reference .exr --trace =32 x32x8 --trace =42 x142x16

Merge two results from two different images .
master output .exr image - machineA .exr image - machineB .exr

Render image in batch ( headless ) mode.
master scene.blend --BPT --output =image.exr --parallel --

↪→ camera =2 --batch

Render simple gradient based sky in places where there is no
↪→ geometry .

master scene.blend --BPT --output =image.exr --parallel --batch
↪→ --blue -sky =10





Appendix B

Optimal Radii

Alg. Scene 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 Exp.

UP G Bathroom0 1.08 1.09 1.10 1.11 1.10 1.06 1.05 1.02 1.02 1.00 1.00 1.00 ×100

UP G Bearings0 5.84 4.67 4.26 4.09 4.06 4.00 4.14 4.33 4.21 - 4.41 4.70 ×10−3

UP G BreakfastRoom10 6.10 5.62 5.75 6.05 6.74 7.40 8.25 9.18 9.95 - - - ×10−2

UP G BreakfastRoom11 6.45 5.81 5.83 6.07 6.72 7.45 8.13 9.04 9.88 - - - ×10−2

UP G BreakfastRoom20 3.89 2.95 2.85 2.91 3.12 3.39 3.61 3.94 4.16 - - - ×10−1

UP G BreakfastRoom21 1.94 1.51 1.38 1.33 1.35 1.40 1.48 1.56 1.67 - - - ×10−1

UP G CrytekSponza0 7.23 5.35 4.76 4.57 4.59 4.73 5.01 5.26 5.59 - - - ×10−2

UP G CrytekSponza1 8.49 6.24 5.64 5.53 5.57 5.78 6.18 6.35 6.99 - - - ×10−2

UP G CrytekSponza2 1.74 1.27 1.17 1.16 1.20 1.26 1.35 1.44 1.54 - - - ×10−1

UP G∗ Bathroom0 1.07 1.09 1.10 1.10 1.11 1.08 1.08 1.07 1.07 1.08 1.10 1.12 ×100

UP G∗ Bearings0 6.22 5.71 5.33 5.24 5.24 5.32 5.57 5.60 5.95 - 6.19 6.51 ×10−3

UP G∗ BreakfastRoom10 6.44 6.27 6.81 7.48 8.59 9.52 10.42 11.58 12.70 - - - ×10−2

UP G∗ BreakfastRoom11 6.71 6.68 7.26 8.13 9.17 10.34 11.64 12.83 13.96 - - - ×10−2

UP G∗ BreakfastRoom20 6.70 6.10 6.29 6.71 7.21 7.84 8.35 8.82 9.28 - - - ×10−1

UP G∗ BreakfastRoom21 2.26 2.25 2.47 2.76 3.08 3.37 3.71 4.00 4.28 - - - ×10−1

UP G∗ CrytekSponza0 7.68 6.93 7.60 8.60 9.43 10.46 11.31 12.33 13.06 - - - ×10−2

UP G∗ CrytekSponza1 9.95 9.22 10.41 11.91 13.11 14.66 16.02 16.98 18.24 - - - ×10−2

UP G∗ CrytekSponza2 2.49 2.20 2.30 2.45 2.62 2.82 3.04 3.18 3.39 - - - ×10−1

V CM Bathroom0 - - - - - - - - - - - - ×100

V CM Bearings0 - 8.89 8.16 7.49 7.69 7.90 6.73 6.68 6.85 6.84 - - ×10−3

V CM BreakfastRoom10 - 7.16 6.80 6.50 6.46 6.62 6.77 7.10 7.56 7.95 - - ×10−2

V CM BreakfastRoom11 - 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 ×100

V CM BreakfastRoom20 - 4.02 3.79 3.94 4.48 4.99 5.47 6.17 6.68 7.19 - - ×10−1

V CM BreakfastRoom21 - 3.30 3.31 3.32 3.30 3.29 3.29 3.31 3.31 3.29 3.29 3.33 ×100

V CM CrytekSponza0 - 7.86 6.58 5.99 5.71 5.61 5.60 5.77 5.97 6.22 - - ×10−2

V CM CrytekSponza1 - 4.37 4.32 4.31 4.31 4.31 4.30 4.31 4.32 4.32 - - ×10−1

V CM CrytekSponza2 - 8.02 7.99 7.99 7.98 7.98 7.98 7.98 7.98 7.99 - - ×10−1

Alg. Scene 0.06 0.065 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.2 0.3 Exp.

V CM Bathroom0 - - 6.4712 6.2093 6.0795 6.0339 6.1291 6.2458 6.4321 6.6574 8.4883 12.4645 ×10−1

Table B.1: The absolute error with respect to the reference image for different
radii (see Section 4.2 for details). The value highlighted with the green color is the
minimum error. The errors from the different rows cannot be compared as they
may have been rendered on different machines or with different rendering time.
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