
Uniwersytet Wroc÷awski
Wydzia÷Matematyki i Informatyki

Instytut Informatyki

Micha÷Mazanik

Nowoczesne uk÷ady
gra�czne

Praca Magisterska

Praca wykonana pod kierunkiem
dr Andrzeja ×ukaszewskiego

Wroc÷aw 2005

Spis trésci

Wst¾ep . 9

1. Architektura . 11
1.1. Sprz¾et . 11
1.2. Sterowniki i biblioteki . 14
1.3. Ogólny schemat pracy uk÷adu gra�cznego . 18

2. Przetwarzanie wierzcho÷ków . 23
2.1. Transformacje . 23

2.1.1. Przestrzenie rzutowe . 24
2.1.2. Przekszta÷cenia a�niczne . 29
2.1.3. Rzut perspektywiczny i równoleg÷y . 30
2.1.4. Obcinanie . 34

2.2. Programowanie uk÷adu . 36
2.2.1. Budowa programu . 38
2.2.2. Zestaw instrukcji . 40
2.2.3. Podstawowe techniki . 43

3. Generowanie obrazu . 49
3.1. Rasteryzacja i interpolacja atrybutów . 51

3.1.1. Interpolacja liniowa . 52
3.1.2. Interpolacja hiberboliczna . 53

3.2. Tekstury . 57
3.2.1. Tekstury dwuwymiarowe. 57
3.2.2. Tekstury kubiczne . 59
3.2.3. Tekstury wolumetryczne . 61
3.2.4. Filtrowanie. 62

3.3. Programowanie uk÷adu . 69
3.3.1. Budowa programu . 71
3.3.2. Zestaw instrukcji . 71
3.3.3. Podstawowe techniki . 72

3.4. Operacje na buforach . 78
3.4.1. Wyznaczanie widocznósci . 78
3.4.2. Bufor zliczania . 79
3.4.3. Alpha-Blending . 80

4. Techniki zaawansowane . 83
4.1. Faktura powierzchni i óswietlenie . 83

1

4.1.1. Symulacja nierównósci powierzchni . 84
4.1.2. Tekstury proceduralne . 88
4.1.3. Odbicie i za÷amanie świat÷a . 91

4.2. Cienie. 93
4.2.1. Mapa cienia . 94
4.2.2. Cienie wolumetryczne . 97

4.3. Przetwarzanie obrazu . 101
4.3.1. G÷¾ebia ostrósci . 101
4.3.2. Wýswietlanie obrazów o wysokiej skali jasnósci . 105

Podsumowanie .109

Bibliogra�a .111

2

Spis rysunków

1.1. Karta gra�czna z dobrze widocznym z÷¾aczem kraw¾edziowym 12
1.2. Dost¾ep do funkcji uk÷adu gra�cznego z poziomu aplikacji 15
1.3. Rasteryzacja trójk ¾ata . 16
1.4. Schemat procesu generowania obrazu. 18
1.5. Proces teksturowania oraz przyk÷ad rzutu perspektywicznego. 19
1.6. Óswietlenie obliczone tylko na wierzcho÷kach (z lewej), oraz na

ca÷ej powierzchni trójk ¾atów (z prawej). 20
2.7. Dwa rodzaje uk÷adów wspó÷rz¾ednych i ró·znica w de�nicji iloczynu

wektorowego. 23
2.8. Transformacja wspó÷rz¾ednych obiektu z uk÷adu globalnego do

uk÷adu obserwatora. Skala osi nie zosta÷a zachowana. 24
2.9. Punkty w÷ásciwe w przestrzeni P (R2) przedstawione jako proste

w R3. Punkt (x0; y0) jest obrazem [x; y; w] po przekszta÷ceniu go
do R2: . 26

2.10. W÷ásciwa prosta w przestrzeni P (R2) przedstawiona jako
p÷aszczyzna w R3: Prosta Ax0 + By0 + C = 0 jest obrazem
(A;B;C) po przekszta÷ceniu jej do R2: . 27

2.11. Prosta i punkty niew÷ásciwe w przestrzeni P (R2) przedstawione w
R3: . 28

2.12. Bry÷a widzenia. 31
2.13. Rzut perspektywiczny punktu p. 32
2.14. Przyk÷ad rzutu równoleg÷ego i perspektywicznego. 34
2.15. Proces obcinania trójk ¾ata na przyk÷adzie dwuwymiarowym, z

bry÷¾a widzenia w postaci prostok ¾ata. 35
2.16. Proces przetwarzania n wierzcho÷ków przy udziale m trójk ¾atów. 37
2.17. Jednostka przetwarzania wierzcho÷ków. 38
2.18. Kombinacja liniowa dwóch przekszta÷ceń macierzowych na

wierzcho÷kach walca. 44
2.19. Óswietlenie na wierzcho÷kach. Walec z lewej strony ma wspólne

wektory normalne dla wszystkich ścian na kraw¾edzi walca. 46
3.20. Uk÷ad wspó÷rz¾ednych bufora koloru. 49
3.21. Schemat końcowej fazy procesu generowania obrazu. 50
3.22. Poprawna rasteryzacja dwóch trójk ¾atów. 51
3.23. Znalezienie wartósci u w środku piksela (�x; �y) wymaga u·zycia

interpolacji danych z wierzcho÷ków trójk ¾ata. 52
3.24. Interpolacja liniowa parametru u w uk÷adzie rzutni, powoduje

b÷¾edne obliczenie parametru dla punktu p02. 54
3.25. Rzut perspektywiczny prostok ¾ata z na÷o·zon ¾a tekstur ¾a. Po

lewej wspó÷rz¾edne tekstury interpolowane s ¾a liniowo, po prawej
hiperbolicznie. 57

3.26. Dwuwymiarowa tekstura na÷o·zona na powierzchni¾e kuli. Dodano
map¾e nierównósci i óswietlenie. 58

3

3.27. Tekstura kubiczna z÷o·zona z szésciu kwadratowych tekstur
dwuwymiarowych. 59

3.28. Kubiczna tekstura odwzorowuj ¾aca otoczenie (str. lewa górna)
wraz z wygenerowan ¾a przy jej pomocy tekstur ¾a óswietlenia (str.
lewa dolna). Po prawej stronie obiekt óswietlony przy jej u·zyciu. 60

3.29. Tekstura wolumetryczna z÷o·zona z kilku warstw. 61
3.30. W przypadku normalnego rysowania warstw widoczne s ¾a

nieprawid÷owósci w obrazie (góra). Na dole poprawny obraz
wygenerowany przy u·zyciu tekstury wolumetrycznej. Rysowane
wielok ¾aty mog ¾a býc ustawione prostopadle do obserwatora. 62

3.31. Obraz wygenerowany bez u·zycia ·zadnych �ltrów próbkuj ¾acych
tekstur¾e. 63

3.32. Obraz wygenerowany przy u·zyciu �ltra dwuliniowego. 64
3.33. Úsredniane przez �ltr dwuliniowy teksele. 64
3.34. Obszar tekstury na÷o·zonej na wielok ¾at, który jest odwzorowany

na obszarze piksela (�x; �y). Bez u·zycia �ltra, dla piksela wybrany
b¾edzie kolor bia÷y. 65

3.35. Tekstura wraz z seri ¾a mip-map. Z prawej strony dwie mip-mapy
pokazane w powi¾ekszeniu. 66

3.36. Obraz wygenerowany przy u·zyciu mip-mappingu. 67
3.37. Obszar tekstury na÷o·zonej na wielok ¾at, który jest odwzorowany na

obszarze piksela. Ós dy jest dwa razy d÷u·zsza od osi dx: 68
3.38. Obraz wygenerowany przy u·zyciu �ltra anizotropowego (16 próbek). 69
3.39. Jednostka przetwarzania pikseli. 70
3.40. Obiekt óswietlony wed÷ug modelu Phonga w ka·zdym pikselu. 75
3.41. Obiekt z na÷o·zon ¾a tesktur ¾a óswietlony wed÷ug modelu Phonga w

ka·zdym pikselu. 77
3.42. Wykres rozk÷adu odleg÷ósci od obserwatora w buforze-Z. 78
4.43. Wektor interpolowany na powierzchni obiektu (a) nie oddaje

natury chropowatej powierzchni (b). Przygotowana mapa
wektorów normalnych (c) pozwala ten efekt uzyskác. 85

4.44. Wersory U i V uk÷adu tekstury T i ich odpowiedniki UG i VG w
uk÷adzie obiektu G. 86

4.45. Po lewej stronie normalnie óswietlony model (ok. 1000 trójk ¾atów).
Po prawej ten sam model óswietlony przy u·zyciu wczésniej
wygenerowanej mapy nierównósci powierzchni. Oryginalny model
jest zbudowany z 35000 trójk ¾atów. 88

4.46. Po lewej stronie przekrój tekstury szumów. Po prawej, obraz
powsta÷y po odpowiednim zsumowaniu szumów o malej ¾acych
cz¾estotliwósciach. 89

4.47. Przyk÷ad materia÷u proceduralnego. 90
4.48. Metoda śledzenia promieni. 91
4.49. Przyk÷ad wykorzystania efektu odbicia i za÷amania świat÷a. Obie

sk÷adowe po÷¾aczone wspó÷czynnikiem Fresnela przedstawia dolna
cz¾ésci rysunku. 93

4.50. Mechanizm dzia÷ania metody mapy cienia. Punkty p1 i p2 le·z ¾a w

4

cieniu. 94
4.51. B÷¾edy spowodowane ma÷¾a rozdzielczósci ¾a i niedok÷adnósci ¾a mapy

cienia. 96
4.52. Po lewej stronie scena wygenerowana przy pomocy mapy cienia.

Po prawej, normalnie óswietlona rzézba. 97
4.53. Idea dzia÷ania metody cieni wolumetrycznych. Punkt p1 jest w

cieniu a punkt p2 nie. 98
4.54. Wierzcho÷ki bry÷y cienia obrócone ty÷em do świat÷a zostaj ¾a

wysuni¾ete. 99
4.55. Metoda cieni wolumetrycznych generuje bardzo ostre kraw¾edzie

cieni. 100
4.56. Wyidealizowany model obiektywu. 101
4.57. Uk÷ad optyczny sk÷adaj ¾acy si¾e z pojedynczej soczewki skupiaj ¾acej. 102
4.58. Obraz z g÷¾ebi ¾a ostrósci wygenerowany przy u·zyciu uk÷adu

gra�cznego. 104
4.59. Przyk÷ad obrazu o wysokiej skali jasnósci. 105
4.60. Przyk÷ad zastosowania operatora skaluj ¾acego jasnósci punktów. 107

5

Spis tablic

1.1. Standardy magistrali danych . 12
2.2. Równania p÷aszczyzn u·zywanych przy obcinaniu. 35
2.3. Instrukcje jednostki VSU. 41
2.4. Instrukcje jednostki VSU, ci ¾ag dalszy. 42
3.5. Dodatkowe instrukcje jednostki PSU . 72
3.6. Wspó÷czynniki u·zywane podczas alpha-blendingu. 80

7

Wst¾ep

Moment powstania komputerów osobistych w latach osiemdziesi ¾atych wyznaczy÷po-
cz ¾atek nowej ery. Przez ponad dwadziéscia lat rozwoju technologicznego moc oblicze-
niowa komputerów wzros÷a o kilka rz¾edów wielkósci. Powsta÷y uk÷ady specjalizowane
w w ¾asko okréslonych zadaniach, mi¾edzy innymi w wýswietlaniu w czasie rzeczywistym
skomplikowanych trójwymiarowych scen.
Mo·zliwóśc interaktywnego ogl ¾adania przestrzennych scen otworzy÷a drog¾e ósrodkom

naukowym do wizualizacji skomplikowanych procesów zachodz ¾acych w przyrodzie. Po-
wsta÷y komputerowe maszyny szkoleniowe dla pilotów samolotów, mo·zliwe sta÷o si¾e
wirtualne zwiedzanie muzeów oraz branie udzia÷u w podboju kosmosu w grach kompu-
terowych. Wszystko to dzi¾eki ma÷emu uk÷adowi scalonemu wykonuj ¾acemu wszystkie
niezb¾edne obliczenia, uk÷adowi gra�cznemu.
Proces generowania pojedynczej klatki obrazu jest bardzo skomplikowany i sk÷ada si¾e

z wielu etapów. W ka·zdy z nich s ¾a zaanga·zowane algorytmy przetwarzaj ¾ace ogromne
ilósci danych. Praca ta ma na celu przybli·zenie wszystkich kroków, jakie musi wy-
konác uk÷ad gra�czny, aby na ekranie pojawi÷si¾e po·z ¾adany obraz. Szeroko opisane
s ¾a matematyczne podstawy funkcjonowania algorytmów ukrytych we wn¾etrzu uk÷adu
oraz metody kontrolowania ca÷ego procesu przez programist¾e. Oprócz podstawowych
technik opisane s ¾a ró·znorodne efekty specjalne, które nadaj ¾a utworzonemu obrazowi
bardziej rzeczywistego charakteru.
Baz ¾a do opracowania tej pracy s ¾a karty gra�czne szeroko dost¾epne na rynku konsu-

menckim. S ¾a to uk÷ady bardzo uniwersalne i wykorzystywane w ka·zdej dziedzinie, w
której istotny jest czas generowania obrazu. Wiedza teoretyczna ma jednak zastoso-
wanie w ka·zdym rodzaju maszyn wspomagaj ¾acych rysowanie trójwymiarowych scen,
dlatego du·za cz¾éśc tego opracowania mo·ze z powodzeniem stanowíc podstaw¾e do po-
znania tej dziedziny wiedzy.

9

Rozdzia÷1

Architektura

1.1. Sprz¾et
Architektura komputerów osobistych zosta÷a zaprojektowana z mýsl ¾a o jak najwi¾ek-
szej modularnósci i prostocie rozbudowy. Takie podej́scie istotnie upraszcza wymian¾e
poszczególnych komponentów systemu, tym samym jego ulepszanie. Rdzeń takiej ma-
szyny stanowi zbiór podstawowych uk÷adów kontroluj ¾acych prac¾e, takich jak procesor
g÷ówny, kontroler pami¾eci oraz kontroler wej́scia-wyj́scia. Du·za integracja tych uk÷adów
pozwala na bardzo szybk ¾a komunikacj¾e pomi¾edzy nimi, bez niej pr¾edkóśc wykonywa-
nia obliczeń by÷aby bardzo ma÷a. Idealnym rozwi ¾azaniem, bior ¾ac pod uwag¾e wy÷¾acznie
szybkóśc dzia÷ania systemu, jest umieszczenie wszystkich komponentów na jednej p÷y-
cie drukowanej. Pozwala to na du·z ¾a dowolnóśc w fazie projektowania i uzyskanie
maksymalnej mocy obliczeniowej. Niestety, tak zbudowany system jest drogi a roz-
budowa niemo·zliwa, bez wymiany wszystkich komponentów jednoczésnie. Rozs ¾adnym
rozwi ¾azaniem jest oddzielenie od rdzenia systemu tych uk÷adów, które szybciej ni·z inne
ewoluuj ¾a wraz z post¾epem nauki, przez co cz¾ésciej wymagaj ¾a wymiany. We wspó÷cze-
snych komputerach osobistych baz ¾a jest p÷yta g÷ówna, na której umieszczone s ¾a tylko
uk÷ady kontroluj ¾ace i koordynuj ¾ace prac¾e pozosta÷ych komponentów. Do uk÷adów do-
st¾epnych w postaci osobnych modu÷ów nale·z ¾a procesor, pami¾éc operacyjna oraz wszel-
kiego rodzaju karty rozszerzaj ¾ace funkcjonalnóśc komputera. Karty rozszerzeń to nic
innego jak p÷ytki drukowane z umieszczonymi na nich wyspecjalizowanymi uk÷adami
scalonymi, które komunikuj ¾a si¾e ze rdzeniem systemu za pomoc ¾a z÷¾acz kraw¾edziowych
(rys. 1.1).
Podczas ponad 20-letniej historii architektury PC opracowano wiele technologii

umo·zliwiaj ¾acych coraz szybsz ¾a transmisj¾e danych przez z÷¾acza kraw¾edziowe. Podsta-
wow ¾a cech ¾a danego stardardu jest maksymalna pr¾edkóśc z jak ¾a dane mog ¾a býc trans-
portowane przez szyn¾e. Przepustowóśc magistrali danych mo·zna obliczýc w prosty
sposób, mno·z ¾ac szerokóśc szyny przez jej taktowanie. W latach 80-tych, ze wzgl¾edu na
niskie wymagania, wartósci te by÷y bardzo ma÷e (tab. 1.1). Wi¾ekszóśc komputerów w
tamtych czasach komunikowa÷a si¾e z u·zytkownikiem za pomoc ¾a interfejsów tekstowych,
nie by÷o potrzeby przesy÷ác du·zej ilósci danych do uk÷adu gra�cznego. Wprowadzenie
w roku 1990 systemu Windows 3.0 zmieni÷o t¾e sytuacj¾e radykalnie.
Wézmy nast¾epuj ¾acy przyk÷ad: chcemy wýswietlíc kolorowy �lm animowany, o roz-

dzielczósci 640 na 480 pikseli, który zosta÷nagrany z cz¾estotliwósci ¾a 60 klatek na se-
kund¾e. Na jeden piksel przypadaj ¾a 3 bajty, po jednym na ka·zd ¾a sk÷adow ¾a koloru RGB.

11

Rozdzia÷1. Architektura

Rysunek 1.1: Karta gra�czna z dobrze widocznym z÷¾aczem kraw¾edziowym

Standard Rok wprowadzenia Szerokóśc szyny Taktowanie szyny Pr¾edkóśc transmisji
(bity) (MHz) (MB/s)

ISA-8 1981 8 8 8
ISA-16 1984 16 8 16
EISA 1988 32 8 32
VLB 1993 32 33 128
PCI 1994 32 33 128
AGP 1997 32 od 66 do 66*8 od 256 do 2048

Tablica 1.1: Standardy magistrali danych

Jedna klatka zajmuje wi¾ec 900 kilobajtów. Film b¾edzie p÷ynnie odtwarzany, jésli b¾e-
dziemy w stanie przes÷ác do karty gra�cznej 54 megabajty danych na sekund¾e. Dopiero
standard PCI jest w stanie podo÷ác temu zadaniu. Zamiast przesy÷ác tak ogromne ilo-
ści danych, rozs ¾adniejszym rozwi ¾azaniem jest zlecenie karcie wykonania jak najwi¾ekszej
ilósci operacji, odci ¾a·zy to znacznie prac¾e procesora oraz zmniejszy wymagan ¾a przepu-
stowóśc magistrali. Film najpierw kompresuje si¾e specjalnym programem zwanym ko-
dekiem video, który zmniejsza ilóśc danych potrzebnych do zapami¾etania informacji
o obrazie nawet kilkusetkrotnie. Dopiero tak przygotowany �lm wysy÷amy do karty
gra�cznej. We wspó÷czesnych kartach powszechne s ¾a sprz¾etowe dekodery video, które
operuj ¾a bezpósrednio na skompresowanych danych. Zysk p÷yn ¾acy z takiego post¾epowa-
nia jest oczywisty, przesy÷amy znacznie mniej danych a procesor g÷ówny mo·ze si¾e zaj ¾ác
w tym czasie wykonywaniem innych zadań, zamiast ci ¾agle przygotowywác ogromne
ilósci danych do transmisji.
W gra�cznych systemach operacyjnych z rodziny Windows wszystkie informacje s ¾a

12

1.1. Sprz ¾et

prezentowane w tzw. oknach. Okno jest to prostok ¾atny obszar otoczony ramk ¾a i wy-
pe÷niony trésci ¾a. Gdy poruszamy takim oknem po ekranie, system musi przerysowác
nie tylko ca÷¾a jego zawartóśc, ale równie·z wszystkie okna, które znajdowa÷y si¾e pod
nim lub na jego drodze. Operacja ta wymaga mi¾edzy innymi wype÷niania, za ka·zdym
razem na nowo, ca÷ego obszaru okienek kolorem ich t÷a. Podobnie jak w operacji opi-
sanej w poprzednim akapicie, wymaga to przes÷ania do karty gra�cznej bardzo du·zej
ilósci danych. Dla jednego okienka o rozmiarze 400 na 400 pikseli, b¾edzie to ponad 160
tysi¾ecy pikseli o tym samym kolorze. Jest to oczywiste marnowanie czasu, wi¾ec pro-
ducenci sprz¾etu postanowili dodác do kart gra�cznych specjalne uk÷ady, które mia÷y
zajmowác si¾e wype÷nianiem prostok ¾atnych obszarów oraz rysowaniem linii. Ten krok
kolosalnie przyspieszy÷przerysowywanie si¾e okienek w Windows a karty gra�czne zy-
ska÷y miano akceleratorów gra�cznych. Wraz z up÷ywem lat, zakres mo·zliwósci tych
ma÷ych uk÷adów scalonych zwi¾ekszy÷y si¾e do tego stopnia, ·ze potra�¾a animowác w cza-
sie rzeczywistym skomplikowane trójwymiarowe sceny.
W obecnych czasach, jako podstawowy standard przesy÷u informacji do kart roz-

szerzeń s÷u·zy szyna PCI (ang. Peripheral Component Interconnect). Na ka·zdej p÷y-
cie g÷ównej komputera jest umieszczonych kilka z÷¾acz tego typu, w których mog ¾a býc
umieszczone mi¾edzy innymi modemy, karty d́zwi¾ekowe, karty sieciowe, tunery tele-
wizyjne i wszelkiego rodzaju zewn¾etrzne kontrolery wej́scia-wyj́scia. Magistrala PCI
ma niestety istotn ¾a wad¾e, pasmo przenoszenia wynosz ¾ace 128 MB/s jest dzielone na
wszystkie urz ¾adzenia w systemie. W praktyce oznacza to, ·ze akcelerator gra�czny nie
b¾edzie mia÷do dyspozycji pe÷nej przepustowósci magistrali. Z tego powodu opraco-
wano osobne z÷¾acze dla karty gra�cznej nosz ¾ace nazw¾e AGP (ang. Accelerated Gra-
phics Port). Ma ono znacznie wi¾eksze mo·zliwósci oraz nie dzieli pasma z innymi urz ¾a-
dzeniami. Pr¾edkóśc dochodz ¾aca do 2 GB/s (w wersji AGPx8) pozwala na swobodne
przesy÷anie ogromnej ilósci danych, bez zak÷ócania pracy ca÷ego systemu.
Przy generowaniu bardzo szczegó÷owego, dobrej jakósci obrazu, wykorzystywane s ¾a

ogromne ilósci danych. Najbardziej pami¾ecio-ch÷onnymi elementami s ¾a prostok ¾atne
obrazy zwane teksturami. Opisuj ¾a one mi¾edzy innymi faktur¾e obiektów znajduj ¾acych
si¾e na scenie. Na przyk÷ad, w przypadku drewnianego sto÷u b¾edzie to obrazek przed-
stawiaj ¾acy br ¾azowe s÷oje, w przypadku ściany w pokoju mo·ze to býc zdj¾ecie tapety.
Takich tekstur przy renderowaniu skomplikowanej sceny mo·ze býc setki a ich obj¾etóśc
liczona jest w dziesi ¾atkach megabajtów. Cz¾esto na jednej teksturze, przy obliczaniu
koloru dla pojedynczego piksela, wykonuje si¾e kilka operacji. Pobieranie tych danych
za ka·zdym razem z pami¾eci operacyjnej przez magistral¾e by÷oby tragiczne w skutkach,
pr¾edkóśc tworzenia obrazu by÷aby bardzo ma÷a. Z tego powodu, na p÷ytce drukowanej
wraz z procesorem gra�cznym jest umieszczona szybka pami¾éc o pojemnósci od 32 do
256 megabajtów. Pobieranie danych z tej pami¾eci przez uk÷ad gra�czny odbywa si¾e z
pr¾edkósci ¾a dochodz ¾ac ¾a nawet do 22 GB/s.
Standard AGP, w przeciwieństwie do poprzednich rozwi ¾azań, oferuje dodatkow ¾a

funkcjonalnóśc w postaci specjalnie zarezerwowanego obszaru pami¾eci operacyjnej, do
którego dost¾ep ma równoczésnie procesor g÷ówny oraz karta gra�czna. Pozwala to
wirtualnie powi¾ekszýc ilóśc pami¾eci dost¾epnej dla uk÷adu gra�cznego. Sama karta, co
prawda posiada w÷asn ¾a pami¾éc, do której ma bardzo szybki dost¾ep, jednak jej ilóśc jest
bardzo ograniczona kosztami produkcji. Z regu÷y jest to oko÷o 64 megabajtów. Tam
powinny býc trzymane dane, które s ¾a bardzo cz¾esto wykorzystywane przy generowa-

13

Rozdzia÷1. Architektura

niu obrazu. W pami¾eci AGP mo·zna przechowywác pozosta÷e, rzadziej u·zywane dane.
Dzi¾eki takiemu mechanizmowi mo·zna te·z unikn ¾ác tzw. efektu migotania, czyli wielo-
krotnego ÷adowania do pami¾eci tej samej tekstury, która musia÷a býc w mi¾edzyczasie
wykasowana, z powodu braku miejsca na inne potrzebne dane. Taka sytuacja na pewno
mia÷aby miejsce w przypadku, gdyby zbiór tekstur potrzebnych do wygenerowania jed-
nej klatki obrazu mia÷wi¾eksz ¾a obj¾etóśc ni·z dost¾epna pami¾éc. Dzi¾eki bezpósredniemu
dost¾epowi uk÷adu gra�cznego do pami¾eci operacyjnej, odczyt odbywa si¾e du·zo wolniej,
ale ·zadne dane nie musz ¾a býc usuwane z pami¾eci karty.
Procesor znajduj ¾acy si¾e na karcie gra�cznej dawno przesta÷býc tylko konwerterem

sygna÷u cyfrowego na analogowy. Wspó÷czesny akcelerator to w pe÷ni programowalna
jednostka, posiadaj ¾aca w÷asn ¾a pami¾éc operacyjn ¾a i dzia÷aj ¾aca niezale·znie od reszty
systemu. Najwa·zniejsz ¾a cech ¾a jest w÷ásnie niezale·zna asynchroniczna praca, która
pozwala jednostce g÷ównej w tym samym czasie wykonywác inne zadania. Sam procesor
sk÷ada si¾e z setek milionów tranzystorów, nierzadko przewy·zszaj ¾ac t ¾a liczb ¾a procesor
g÷ówny. Ka·zdy synchroniczny uk÷ad scalony przy du·zych cz¾estotliwósciach taktowania
wydziela du·zo ciep÷a. Jest to obecnie du·zy problem producentów sprz¾etu, gdy·z na
kartach rozszerzeń nie ma po prostu miejsca na ogromne radiatory. Okupione jest to
wysokim poziomem szumów, wydobywaj ¾acych si¾e z wysokoobrotowych wentylatorów
umieszczonych na uk÷adzie.

1.2. Sterowniki i biblioteki
W czasie powstania pierwszych akceleratorów, dost¾ep do ich funkcji mia÷tylko system
operacyjny. Dzia÷o si¾e tak, gdy·z mia÷y one za zadanie wy÷¾acznie przyspieszác dzia÷anie
interfejsu gra�cznego. Uk÷adów by÷o stosunkowo ma÷o, wi¾ec programowanie ka·zdego
z osobna nie sprawia÷o du·zego problemu. Wraz z rozwojem i popularyzacj ¾a gra�ki
trójwymiarowej, mo·zliwósci tych uk÷adów zwi¾eksza÷y si¾e a ich ilóśc znacznie wzros÷a.
Ka·zdy z producentów opracowa÷w÷asne technologie, które niekoniecznie oferowa÷y to
samo. Niezb¾ednym sta÷o si¾e opracowanie wspólnego modelu funkcjonowania tych urz ¾a-
dzeń, oraz umo·zliwienie dost¾epu do ich funkcji przez aplikacje napisane przez zwyk÷ych
u·zytkowników. Oczywíscie zale·za÷o na tym równie·z producentom sprz¾etu. Dzi¾eki stan-
dardom daj ¾acym gwarancj¾e poprawnego dzia÷ania w danym środowisku, przekonanie
klienta do swojego produktu sta÷o si¾e znacznie ÷atwiejsze. Programísci aplikacji w
końcu mogli skupíc si¾e na polepszaniu jakósci swoich aplikacji, zamiast marnowác czas
na pisanie osobnej ście·zki kodu dla ka·zdej karty1.
Wspó÷czesny system operacyjny kontroluje prac¾e wszystkich urz ¾adzeń w systemie

za pósrednictwem sterowników, napisanych przez producentów sprz¾etu. Sterownik jest
specjalnym programem, który pósredniczy w wymianie informacji mi¾edzy systemem
operacyjnym a danym urz ¾adzeniem. Tylko jemu dane jest znác protoko÷y komunika-
cyjne, które s ¾a niezb¾edne, aby wywo÷ác jak ¾akolwiek funkcj¾e karty gra�cznej. Warstwa,
na której operuje sterownik, zwana jest niskopoziomow ¾a (rys. 1.2).
Programista ma dost¾ep do funkcji akceleratora poprzez specjalny komponent sys-

temu, który pe÷ni rol¾e interfejsu (ang. API - Application Program Interface). W

1Niestety, w obecnych czasach bardzo trudno jest napisać uniwersalny kod dzia÷aj ¾acy na ka·zdej karcie.
Powodem tego nie s ¾a jednak problemy opisane w tym akapicie.

14

1.2. Sterowniki i biblioteki

Karta graficzna

Sterownik

API DirectX API OpenGL

AplikacjaAplikacja

Rysunek 1.2: Dost¾ep do funkcji uk÷adu gra�cznego z poziomu aplikacji

terminologii j¾ezyków obiektowych równie·z istnieje poj¾ecie interfejsu, jako pewnego ro-
dzaju wzorca pozbawionego implementacji. Jest to prawd ¾a równie·z w tym przypadku.
Zgodnie z przyj¾etym modelem, za implementacj¾e wi¾ekszósci funkcji zawartych w API
jest odpowiedzialny sterownik. G÷ówn ¾a cz¾ésci ¾a API s ¾a tylko nag÷ówki procedur wraz
z dok÷adnym opisem ich funkcji oraz kryteriów, które powinny spe÷niác. Takie roz-
wi ¾azanie daje du·z ¾a swobod¾e producentom uk÷adów w sposobie realizacji okréslonych
zadań. Swoboda ta jest jednak mocno ograniczona, gdy·z obraz generowany przez kon-
kretn ¾a aplikacj¾e powinien wygl ¾adác tak samo na komputerach wyposa·zonych w ró·zne
karty gra�czne. Z tego powodu opracowano zbiór zasad, które okréslaj ¾a sposób za-
chowania si¾e w sytuacjach niejednoznacznych. Przyk÷adem tego typu sytuacji jest
tzw. problem rasteryzacji. Podstaw ¾a pracy akceleratora jest rysowanie trójk ¾atów o
zadanych wierzcho÷kach oraz parametrach, takich jak kolor czy faktura powierzchni.
Wspó÷rz¾edne wierzcho÷ków trójk ¾ata s ¾a odwzorowywane na ekran, który sk÷ada si¾e ze
skończonej liczby pikseli. Problem pojawia si¾e, kiedy musimy zadecydowác, które pik-
sele nale·z ¾a a które nie nale·z ¾a do wn¾etrza trójk ¾ata. Dzieje si¾e tak dlatego, ·ze piksel
wcale nie jest punktem ale prostok ¾atem, który zajmuje bardzo ma÷¾a powierzchni¾e. W
przypadku kiedy kraw¾ed́z trójk ¾ata przecina pojedynczy piksel, nie bardzo wiadomo
kiedy nadác mu kolor trójk ¾ata a kiedy pozostawíc kolor t÷a (rys. 1.3). Istnieje kilka
sposobów poradzenia sobie z tym problemem. To, który z nich zostanie zastosowany,
zale·zy wy÷¾acznie od przyj¾etej w konkretnym API strategii. Zauwa·zmy, ·ze same para-
metry trójk ¾ata, które podajemy w procedurze rysowania, w ·zaden sposób nie okréslaj ¾a
jednoznacznego rozwi ¾azania.
Obecnie, na rynku dominuj ¾a dwa standardy programowania uk÷adów gra�cznych,

DirectX stworzony przez koncern Microsoft oraz OpenGL wprowadzony przez �rm¾e

15

Rozdzia÷1. Architektura

Silicon Graphics. Oba maj ¾a swoich zwolenników jak i zagorza÷ych przeciwników. Pod-
stawow ¾a cech ¾a ró·zni ¾ac ¾a je od siebie jest przenósnóśc, czyli mo·zliwóśc ich wykorzysta-
nia w ró·znych systemach operacyjnych. DirectX zosta÷stworzony z mýsl ¾a wy÷¾acznie o
Windows i tak te·z pozosta÷o do dzisiaj. Strategi ¾a �rmy Microsoft jest w najlepszym
przypadku ignorowanie istnienia innych systemów, cz¾esto równie·z celowe ograniczanie
ich rozwoju. Dla wielu ludzi mo·zliwóśc pracy na przyk÷ad w systemie Linux jest nie-
zb¾edna, chocia·zby ze wzgl¾edów �nansowych. Naturaln ¾a kolej ¾a rzeczy by÷o powstanie
ca÷ej rzeszy wrogów wielkiego monopolisty, którzy za wszelk ¾a cen¾e starali si¾e znaléźc
wady w oprogramowaniu Microsoftu i podwa·zýc sens korzystania z niego. Powsta÷o
wiele mitów dotycz ¾acych obu interfejsów, które z regu÷y s ¾a nieprawdziwe a ich geneza
jest zwi ¾azana ścísle z brakiem wiedzy ich pomys÷odawców.

Rysunek 1.3: Rasteryzacja trójk ¾ata

OpenGL jest nast¾epc ¾a standardu IrisGl, powsta÷ym specjalnie dla potrzeb profe-
sjonalnych stacji gra�cznych. W czasach, kiedy Silicon Graphics produkowa÷swoje
komputery, projektanci Microsoftu dopiero zastanawiali si¾e nad mo·zliwósci ¾a szerszego
wykorzystania technologii gra�cznych. Nie by÷o w tym niczego nienaturalnego, jakie-
kolwiek wyspecjalizowane uk÷ady gra�czne by÷y domen ¾a wy÷¾acznie profesjonalnych ma-
szyn. Zmieníc mia÷to Windows 95, który w zamierzeniu twórców mia÷stác si¾e domow ¾a
platform ¾a multimedialn ¾a. Skończy÷o si¾e niestety na zupe÷nie niestabilnej platformie a
DirectX zosta÷pozbawiony wielu b÷¾edów dopiero wiele lat pó́zniej.
W przeciwieństwie do OpenGL, DirectX by÷interfejsem niewygodnym w u·zyciu,

chaotycznie zaprojektowanym i s÷abo znosz ¾acym szybko rozwijaj ¾acy si¾e rynek sprz¾etu.
OpenGL zosta÷oparty na systemie rozszerzeń, ka·zd ¾a dodatkow ¾a funkcj¾e mo·zna by÷o
dodác do istniej ¾acej wersji bez jakiejkolwiek ingerencji w specy�kacj¾e. Ka·zdy producent
móg÷bez ·zadnego problemu wdro·zýc now ¾a technologi¾e natychmiast, nie czekaj ¾ac na
zatwierdzenie kolejnej wersji API. Sytuacja zmieni÷a si¾e na pocz ¾atku XXI wieku na
korzýśc Microsoftu. Paradoksalnie, przyczyn ¾a takiego stanu rzeczy nie by÷o pogorszenie

16

1.2. Sterowniki i biblioteki

si¾e jakósci architektury OpenGL, ale wzrost liczby producentów sprz¾etu. Ka·zdy z nich,
chc ¾ac wylansowác swoj ¾a technologi¾e wprowadza÷swoje wersje rozszerzeń. Spowodowa÷o
to sytuacj¾e, w której aby wykorzystác de facto t ¾a sam ¾a funkcj¾e na ró·znych kartach,
nale·za÷o napisác osobn ¾a ście·zk¾e kodu dla ka·zdej z nich. Powsta÷a co prawda organizacja
OpenGL Architecture Review Board (ARB), która mia÷a kontrolowác jego rozwój, ale
robi÷a to zbyt opieszale. Wykorzysta÷toMicrosoft, udoskonalaj ¾ac architektur¾e DirectX.
Wersja numer 9 niczym nie przypomina jej poprzedników, jest prosta w obs÷udze i
elastyczna na tyle, aby nie ograniczác rozwoju sprz¾etu2.
Obecnie, czas tworzenia oprogramowania gra kluczow ¾a rol¾e, dlatego twórcy oprogra-

mowania musz ¾a koncentrowác si¾e na bardziej uniwersalnych rozwi ¾azaniach. Pomimo
nieco wi¾ekszej wygody pisania programów w OpenGL, pozostaje on bardziej popularny
w środowiskach akademickich ni·z profesjonalnych. Dominuj ¾acy producenci procesorów
gra�cznych, jak ATI czy NVIDIA, u·zywaj ¾a standardu OpenGL przede wszystkim do
testowania nowych technologii. Wprowadzaj ¾a nowe rozszerzenia, aby móc szybko za-
prezentowác nowe mo·zliwósci swoich uk÷adów. Powsta÷przez to ogromny chaos a profe-
sjonalni twórcy oprogramowania widz ¾a OpenGL niestety tylko jako pole walki dzia÷ów
marketingowych.
W API Microsoftu nie istnieje poj¾ecie rozszerzenia, wszystkie mo·zliwe do wykona-

nia funkcje s ¾a z góry ustalone. Nie oznacza to jednak ·zadnego przymusu, karta mo·ze,
ale nie musi oferowác okréslonych funkcji. Zestaw operacji mo·zliwych do wykonania
w danej wersji DirectX, jest przed jego wprowadzeniem szczegó÷owo analizowany. W
takich spotkaniach uczestnicz ¾a równie·z producenci sprz¾etu. Dzi¾eki temu, twórcy opro-
gramowania wraz z in·zynierami mog ¾a ustalíc wspólny kierunek rozwoju technologii w
sposób, który nie godzi w interesy ·zadnej ze stron. Takie podej́scie eliminuje poten-
cjalny chaos, spowodowany ró·znorodnósci ¾a strategii rozwoju poszczególnych �rm. W
momencie wej́scia na rynek nowej wersji API, cz¾esto znajduj ¾a si¾e w nim funkcje, które
nie mog ¾a býc jeszcze wykonane przez ·zaden dost¾epny uk÷ad gra�czny. Dzi¾eki planowa-
niu posuni¾etym daleko w przysz÷óśc, nowe wersje specy�kacji mo·zna wprowadzác du·zo
rzadziej.
Bardzo istotnym jest, aby kolejne wersje API stanowi÷y rozwini¾ecie poprzedniej ar-

chitektury. Niestety, zdarzaj ¾a si¾e sytuacje, w których nie do końca przemýslane roz-
wi ¾azania musz ¾a zostác usuni¾ete, aby w ich miejsce wprowadzíc nowe. Ze wzgl¾edu na
przymus kompatybilnósci nowych wersji ze starymi, nie zawsze jest to mo·zliwe. Prowa-
dzi to do sytuacji, w której najnowsze technologie egzystuj ¾a obok swoich poprzedników,
powoduj ¾ac dodatkowy nie÷ad w dokumentacji.
W niniejszej pracy wszystkie opisy funkcji s ¾a oparte na API DirectX w wersji 9.0c.

Jest to w tej chwili najnowsza wersja specy�kacji. Wi¾ekszóśc zagadnień omawianych
w nast¾epnych rozdzia÷ach mo·zna odniéśc równie·z do innych interfejsów. Jedyn ¾a prze-
szkod ¾a b¾edzie znalezienie odpowiednika danej funkcji w dokumentacji lub nieznaczna
zmiana w kodzie programu. Pod wzgl¾edem merytorycznym, wszystkie zagadnienia po-
ruszane w tym opracowaniu pozostan ¾a w pe÷ni wartósciowe, niezale·znie od wyboru
konkretnego środowiska programistycznego.

2W czasie, kiedy powstawa÷ten tekst, organizacja ARB zatwierdzi÷a wersj¾e 2.0 specy�kacji OpenGL. Po-
rz ¾adkuje ona wi¾ekszóśc newralgicznych rozszerzeń, umieszczaj ¾ac ich odpowiedniki w specy�kacji. Na razie nie
powsta÷y jeszcze odpowiednie sterowniki, przez co nie wiadomo czy standard zostanie szeroko przyj¾ety przez
środowisko programistów.

17

Rozdzia÷1. Architektura

1.3. Ogólny schemat pracy uk÷adu gra�cznego
Generowanie obrazu przy u·zyciu akceleratora gra�cznego, sk÷ada si¾e z trzech etapów
(rys. 1.4). Pierwszy z nich wykonuje aplikacja, dwa pozosta÷e s ¾a realizowane przez
kart¾e gra�czn ¾a. Jedynym zadaniem procesora g÷ównego jest przygotowanie danych w
celu przes÷ania ich do uk÷adu.
Rysowác mo·zna wy÷¾acznie bry÷y geometryczne sk÷adaj ¾ace si¾e z trójk ¾atów. Ka·zdy

trójk ¾at jest opisany przez trzy wierzcho÷ki, które maj ¾a okréslone wspó÷rz¾edne w prze-
strzeni trójwymiarowej, oraz specjalne dodatkowe atrybuty. Aby zminimalizowác ilóśc
informacji przesy÷anych do karty, wierzcho÷ki s ¾a zapisywane w okréslonej kolejnósci.
Aby narysowác pó́zniej trójk ¾at, nale·zy podác tylko indeksy poszczególnych punktów.
Ma to istotne znaczenie wtedy, gdy trójk ¾aty maj ¾a wspólne wierzcho÷ki. W takim
przypadku, zamiast przesy÷ác te same porcje danych kilkukrotnie, wysy÷ane s ¾a tylko
identy�kuj ¾ace wierzcho÷ki numery.

1 2

3

4

5
6Aplikacja

Przetwarzanie
wierzchołków

Rasteryzacja

wierzchołki (3D)indeksy

(2,3,5) (1,4,6)

transformacja współrzędnych

obliczanie atrybutówtrójkąty (2D)

rasteryzacja

interpolacja atrybutów

obliczanie koloru

wyznaczanie widoczności
piksele

Rysunek 1.4: Schemat procesu generowania obrazu

Zestaw bry÷geometrycznych, który b¾edzie wýswietlony na monitorze, jest zde�-
niowany w przestrzeni trójwymiarowej. Dzi¾eki matematycznemu opisowi sceny, ist-
nieje mo·zliwóśc dowolnego transformowania tych obiektów. Uk÷ad gra�czny dysponuje
specjalnie wydzielon ¾a jednostk ¾a arytmetyczn ¾a, która potra� wykonywác obliczenia na

18

1.3. Ogólny schemat pracy uk÷adu gra�cznego

wspó÷rz¾ednych wierzcho÷ków. Procesem transformacji kieruje specjalny mikroprogram,
który jest wykonywany, od pocz ¾atku do końca, dla ka·zdego wierzcho÷ka. Ekran kompu-
tera sk÷ada si¾e z dwuwymiarowej matrycy pikseli i niezb¾edna jest odpowiednia trans-
formacja, która dokona rzutu wszystkich elementów na dwuwymiarow ¾a przestrzeń wy-
świetlacza. Do niedawna, wszystkie funkcje zwi ¾azane z tym procesem by÷y wykonywane
bez udzia÷u programisty. Mia÷on do wyboru tylko zestaw prede�niowanych procedur,
które potra�÷y wykonác tylko podstawowe czynnósci, jak na przyk÷ad przemno·zenie
wektora przez macierz. W nowoczesnych kartach tréśc tego mikroprogramu ustala sam
programista, ale jego podstawowa funkcja nadal jest z góry narzucona.
Proces przetwarzania wierzcho÷ków nie ogranicza si¾e tylko do transformacji ich

wspó÷rz¾ednych. Wraz z informacjami o ich po÷o·zeniu w przestrzeni, do karty mo·zna
przes÷ác dowolne atrybuty. Mog ¾a one stanowíc dodatkowe parametry obliczeń lub opi-
sywác pewn ¾a w÷asnóśc, jak na przyk÷ad kolor. Dodatkowe atrybuty, które s ¾a ustalane
indywidualnie dla ka·zdego wierzcho÷ka, s ¾a w pó́zniejszym etapie generowania obrazu
liniowo interpolowane na obszarze ca÷ego trójk ¾ata. Nadanie trójk ¾atowi faktury, opi-
sanej dwuwymiarow ¾a tekstur ¾a, polega na przekazaniu wspó÷rz¾ednych tekstury, które
maj ¾a býc przypisane danemu wierzcho÷kowi. Jednostka zajmuj ¾aca si¾e rasteryzacj ¾a,
interpoluje te wspó÷rz¾edne na ca÷ej powierzchni, pokrywaj ¾ac w ten sposób trójk ¾at dwu-
wymiarowym obrazkiem (rys. 1.5). Nale·zy zauwa·zýc, ·ze atrybut jest roz÷o·zony liniowo
tylko we wspó÷rz¾ednych trójwymiarowych. Przekszta÷cenie perspektywiczne powoduje,
·ze interpolacja wykonywana we wspó÷rz¾ednych ekranowych wcale nie jest liniowa.

(x1,y1,z1)

(x2,y2,z2) (x3,y3,z3)

(u1,v1)

(u2,v2)

(u3,v3)

układ globalny x/y/z układ tekstury u/v układ ekranu x/y

Rysunek 1.5: Proces teksturowania oraz przyk÷ad rzutu perspektywicznego.

Nie wszystkie atrybuty koniecznie trzeba przesy÷ác do procesora gra�cznego. Mikro-
program mo·ze zaj ¾ác si¾e wygenerowaniem tych danych bezpósrednio na karcie. Przyk÷a-
dem tego typu obliczeń jest pokolorowanie obiektów w zale·znósci od ich odleg÷ósci od
obserwatora. Program wykona wszystkie potrzebne operacje na wspó÷rz¾ednych wierz-
cho÷ków i nada im odpowiednie barwy tak, aby zasymulowác zjawisko mg÷y. Kolejnym
przyk÷adem jest obliczanie nat¾e·zenia óswietlenia. Maj ¾ac dan ¾a pozycj¾e źród÷a świat÷a,
jego kolor oraz nat¾e·zenie, mo·zna obliczýc intensywnóśc i barw¾e świat÷a odbitego w kie-

19

Rozdzia÷1. Architektura

runku obserwatora. Niestety, wykonuj ¾ac t ¾a operacj¾e tylko na wierzcho÷kach obiektu,
efekt b¾edzie niezadowalaj ¾acy. Jest to spowodowane liniow ¾a interpolacj ¾a koloru na ob-
szarze trójk ¾ata. Wspó÷czesne uk÷ady umo·zliwiaj ¾a obliczenia w ka·zdym narysowanym
pikselu, w tym w punktach znajduj ¾acych si¾e w obr¾ebie trójk ¾ata. Daje to o wiele do-
k÷adniejsze i bardziej wiarygodne wyniki (rys. 1.6).
Po obliczeniu wspó÷rz¾ednych i atrybutów dla wierzcho÷ków, przetworzone dane tra-

�aj ¾a do jednostki zajmuj ¾acej si¾e rasteryzacj ¾a. Rasteryzacja polega na wype÷nieniu
odpowiednim kolorem tych pikseli bufora ekranu, które znajduj ¾a si¾e w obszarze wi-
docznych po transformacji trójk ¾atów. Udzia÷programisty w tym procesie ogranicza
si¾e do napisania drugiego mikroprogramu, który obliczy kolor aktualnie rysowanego
piksela. Ca÷a reszta jest ju·z wykonywana automatycznie. Uk÷ad sam wyznacza pik-
sele pokrywaj ¾ace obszar trójk ¾ata oraz interpoluje atrybuty z wierzcho÷ków tak, aby
mo·zna je by÷o pó́zniej wykorzystác w mikroprogramie. Podobnie jak w jednostce prze-
twarzania wierzcho÷ków, ten sam program jest uruchamiany dla ka·zdego generowanego
piksela.

Rysunek 1.6: Óswietlenie obliczone tylko na wierzcho÷kach (z lewej), oraz na ca÷ej po-
wierzchni trójk ¾atów (z prawej).

Mikroprogram, który wykonuje jednostka odpowiedzialna za rasteryzacj¾e, nie wie,
który piksel na ekranie jest w÷ásnie obliczany. Jedynymi parametrami, jakimi dyspo-
nuje, s ¾a ju·z przeinterpolowane atrybuty oraz sta÷e zmienne. Wśród sta÷ych zmiennych,
znajduj ¾a si¾e mi¾edzy innymi aktualnie wybrane przez program tekstury. Jedn ¾a z pod-
stawowych operacji, któr ¾a mo·ze wykonác ten mikroprogram, jest pobranie z tekstury
wartósci koloru, znajduj ¾acego si¾e w punkcie o danych wspó÷rz¾ednych. Wspó÷rz¾edne te
by÷y albo podane wczésniej przez aplikacj¾e, albo zosta÷y wygenerowane przez mikro-
program dla wierzcho÷ków. Przy obliczaniu koloru jednego piksela, mo·zna wykorzystác
dane a·z z 16 tekstur jednoczésnie.
Ostatnim etapem jest wyznaczenie widocznósci danego piksela. Jednym z niejaw-

nych atrybutów obecnych w ka·zdej fazie generowania obrazu, jest odleg÷óśc punktu
od obserwatora. Podczas interpolacji we wspó÷rz¾ednych ekranowych, wartóśc tej od-
leg÷ósci równie·z jest obliczana na bie·z ¾aco. Podczas rysowania piksela, wartóśc ta jest

20

1.3. Ogólny schemat pracy uk÷adu gra�cznego

wpisywana do specjalnego bufora, zwanego buforem-Z. Bufor-Z ma tak ¾a sam ¾a rozdziel-
czóśc jak bufor koloru, w którym sk÷adowane s ¾a kolory pikseli końcowego obrazu. Jésli
wyst ¾api sytuacja, w której w tym samymmiejscu ma zostác narysowany piksel nale·z ¾acy
do innego trójk ¾ata, wartóśc jego odleg÷ósci jest porównywana z ju·z znajduj ¾ac ¾a si¾e w
tym miejscu wartósci ¾a w buforze-Z. Jésli oka·ze si¾e mniejsza, czyli aktualnie generowany
piksel jest bli·zej obserwatora, stare wartósci w buforach koloru i Z s ¾a nadpisywane. W
przeciwnym wypadku, aktualnie generowany piksel jest odrzucany.
Do niedawna, akcelerator oferowa÷wy÷¾acznie prede�niowane zestawy funkcji dla

wierzcho÷ków oraz pikseli. Dla wierzcho÷ków dost¾epne by÷y wy÷¾acznie proste prze-
kszta÷cenia macierzowe, a dla pikseli tylko podstawowe operacje na teksturach. Wraz
ze wzrostem wymagań co do jakósci generowanego obrazu, dodano mo·zliwóśc pro-
gramowania uk÷adu gra�cznego. Opracowano specjalne zestawy instrukcji steruj ¾acych
prac ¾a procesora gra�cznego. W tej chwili s ¾a ju·z dost¾epne nawet wysokopoziomowe
j¾ezyki programowania, dzi¾eki temu znajomóśc mikroinstrukcji nie jest ju·z konieczna.
Jednak dopiero od niedawna procesor gra�czny mo·zna nazwác w pe÷ni programowal-
nym, poniewa·z wczesne wersje j¾ezyków oferowa÷y bardzo ubogi zestaw funkcji wraz z
ca÷¾a mas ¾a obostrzeń i zakazów.
W tej pracy jest opisana architektura w wersji 2.0 dla wierzcho÷ków i 2.0 dla pik-

seli3. Stanowi ¾a one nieroz÷¾aczn ¾a ca÷óśc, mimo i·z s ¾a numerowane osobno. T¾e wersj¾e
mo·zna ju·z nazwác dojrza÷ym środowiskiem pracy, pozbawionym zasadniczych wad jej
poprzedniczek. Programy mo·zna pisác swobodnie, bez zaprz ¾atania sobie g÷owy utrud-
nieniami spowodowanymi przys÷owiowym spadkiem po nieprogramowalnych uk÷adach.
Poprzednie wersje, od 1.1 do 1.4, by÷y prób ¾a skonstruowania zestawu instrukcji z ju·z
istniej ¾acych w uk÷adzie prede�niowanych funkcji. Od wersji 2.0 wi¾ekszóśc operacji nie
da si¾e ju·z wykonác bez u·zycia mikroprogramów. Do wielu zalet nowego standardu
nale·zy równie·z istotnie zwi¾ekszona precyzja wewn¾etrznych obliczeń, przez co genero-
wany obraz jest ju·z pozbawiony widocznych wad. Dla uzmys÷owienia sobie tego faktu
warto wspomniéc, ·ze do niedawna format zapisu liczb, na których operowa÷y mikropro-
gramy mia÷8-bitow ¾a sta÷opozycyjn ¾a cz¾éśc u÷amkow ¾a. W wersji 2.0 jest to ju·z 32-bitowy
format zmiennopozycyjny.

3W chwili obecnej, standard 2.0 obs÷uguj ¾a uk÷ady �rmy NVIDIA z serii Geforce FX (5xxx) i Geforce 6 (6xxx)
oraz uk÷ady �rmy ATI oznaczone symbolami Radeon 9550,9600,9700,9800 i wszystkie z serii
Radeon X.

21

Rozdzia÷2

Przetwarzanie wierzcho÷ków

2.1. Transformacje
Bry÷y geometryczne, które s ¾a przetwarzane przez kart¾e gra�czn ¾a, sk÷adaj ¾a si¾e z wierz-
cho÷ków pogrupowanych w trójk ¾aty. Wierzcho÷ki maj ¾a wspó÷rz¾edne zde�niowane w
przestrzeni trójwymiarowej. W przypadku, gdy u·zywane jest API DirectX, uk÷ad
wspó÷rz¾ednych, w którym s ¾a okréslone wierzcho÷ki musi býc lewoskr¾etny. Ró·znica mi¾e-
dzy uk÷adem prawoskr¾etnym a lewoskr¾etnym polega na wzajemnym po÷o·zeniu osi. W
obu uk÷adach inaczej jest zde�niowana operacja iloczynu wektorowego (rys. 2.7).

Rysunek 2.7: Dwa rodzaje uk÷adów wspó÷rz¾ednych i ró·znica w de�nicji iloczynu wekto-
rowego.

Aby wygenerowác dwuwymiarowy obraz, w pierwszej kolejnósci nale·zy zde�niowác
punkt, w którym znajduje si¾e obserwator. Obserwatora mo·zna porównác do apa-
ratu fotogra�cznego, a prostok ¾atny obszar pojedynczej klatki �lmu do dwuwymiarowej
rzutni, która b¾edzie pó́zniej wýswietlona na ekranie. Z obserwatorem jest zwi ¾azany
uk÷ad wspó÷rz¾ednych, w którym osie X i Y okréslaj ¾a orientacj¾e rzuti a ós Z jest kie-
runkiem patrzenia na scen¾e. Ze wzgl¾edu na to, ·ze obserwator porusza si¾e po scenie,
jego uk÷ad jest okréslony we wspó÷rz¾ednych globalnych, tak jak wszystkie obiekty.
Przed dokonaniem rzutu na dwuwymiarow ¾a p÷aszczyzn¾e, wspó÷rz¾edne wierzcho÷ków

23

Rozdzia÷2. Przetwarzanie wierzcho÷ków

trzeba przedstawíc w uk÷adzie obserwatora. Dopiero wtedy stosowane jest przekszta÷ce-
nie, odwzorowuj ¾ace trójwymiarowe bry÷y w ich dwuwymiarowe obrazy na p÷aszczýznie.
Takie podej́scie znacznie upraszcza obliczenia zwi ¾azane z rzutami perspektywicznymi,
które daj ¾a si¾e ÷atwo sformu÷owác, jésli kierunek patrzenia obserwatora pokrywa si¾e z
osi ¾a Z uk÷adu wspó÷rz¾ednych (rys. 2.8).

Rysunek 2.8: Transformacja wspó÷rz¾ednych obiektu z uk÷adu globalnego do uk÷adu ob-
serwatora. Skala osi nie zosta÷a zachowana.

Obiekty, a dok÷adniej wierzcho÷ki je opisuj ¾ace, mo·zna poddawác dowolnym prze-
kszta÷ceniom. Zanim punkty b¾ed ¾a opisane wspó÷rz¾ednymi globalnymi, cz¾esto przecho-
dz ¾a szereg transformacji w innych uk÷adach. Przyk÷adem mo·ze býc obracaj ¾ace si¾e ko÷o
samochodu. Jésli ko÷o b¾edzie mia÷o wspó÷rz¾edne zde�niowane w uk÷adzie lokalnym,
którego ós Z jest osi ¾a obrotu ko÷a, wystarczy zastosowác proste przekszta÷cenie ob-
rotu wokó÷osi Z. Dopiero pó́zniej wspó÷rz¾edne zde�niowane lokalnie s ¾a zamieniane na
globalne.
Wszystkie operacje wykonywane na wspó÷rz¾ednych wierzcho÷ków, wymagaj ¾a spraw-

nego aparatu matematycznego, który pozwoli szybko wykonác niezb¾edne obliczenia.
Macierze nadaj ¾a si¾e do tego doskonale, ze wzgl¾edu na mo·zliwóśc kumulacji wielu trans-
formacji w jednej macierzy. Niestety, macierze w R3 spe÷niaj ¾a ten warunek tylko w
przypadku przekszta÷ceń liniowych, które nie obejmuj ¾a przesuni¾éc. Omin ¾ác to ograni-
czenie, mo·zna wykonuj ¾ac obliczenia w specjalnej przestrzeni, zwan ¾a przestrzeni ¾a rzu-
tow ¾a.

2.1.1. Przestrzenie rzutowe

Geometria euklidesowa charakteryzuje si¾e du·z ¾a przejrzystósci ¾a oraz jest ÷atwo przy-
swajalna. Niektóre w÷asnósci tej przestrzeni nie pozwalaj ¾a jednak na pe÷n ¾a swobod¾e
wykonywania pewnych operacji. Pi ¾aty aksjomat Euklidesa mówi o tym, ·ze dwie proste
mog ¾a si¾e przecinác najwy·zej w jednym punkcie. Podczas obliczania punktu przeci¾e-
cia si¾e dwóch prostych, trzeba bardzo uwa·zác, aby nie doprowadzíc do dzielenia przez
zero. Dzielenie przez zero pojawi si¾e, gdy proste te s ¾a równoleg÷e, a wi¾ec wynik tej

24

2.1. Transformacje

operacji jest nieokréslony. Pewnego rodzaju rozszerzeniem przestrzeni euklidesowej
jest przestrzeń rzutowa. Podstawow ¾a cech ¾a ró·zni ¾ac ¾a j ¾a od poprzedniczki, jest gwaran-
cja istnienia dok÷adnie jednego punktu wspólnego dla ka·zdych dwóch prostych. Ma ona
równie·z wiele przydatnych dla gra�ki komputerowej w÷asnósci, które nie maj ¾a miejsca
w geometrii euklidesowej.

De�nicja 1 Punktami w przestrzeni rzutowej P (R2) nazywamy klasy abstrakcji
relacji ~; zde�niowanej na zbiorze R3nf(0; 0; 0)g w nast ¾epuj ¾acy sposób:

(p; q; r)~(x; y; w)() 9� 2 Rnf0g : (�p; �q; �r) = (x; y; w):

Punkt [x; y; w] nazywamy w÷ásciwym, wtedy i tylko wtedy, gdy w 6= 0: Punkt [x; y; w]
nazywamy niew÷ásciwym, wtedy i tylko wtedy, gdy w = 0:

Relacja ~ jest relacj ¾a równowa·znósci, wi¾ec klasy abstrakcji tej relacji dziel ¾a zbiór
R3nf(0; 0; 0)g na roz÷¾aczne podzbiory. W zwi ¾azku z tym, ka·zda trójka (p; q; r) 2 [x; y; w]
jednoznacznie wyznacza ca÷y podzbiór. Konsekwencj ¾a tego faktu jest to, ·ze punkt
mo·zna oznaczác dowoln ¾a trójk ¾a z tego zbioru, na przyk÷ad [1; 1; 1] i [2; 2; 2] de�niuj ¾a
ten sam punkt w P (R2). Liczby x, y i w nazywamy wspó÷rz¾ednymi jednorodnymi.
Jésli w = 1, s ¾a to znormalizowane wspó÷rz¾edne jednorodne.
Istnieje bezpósredni zwi ¾azek mi¾edzy w÷ásciwymi punktami w P (R2) i punktami

w R2. Jésli w 6= 0, okréslamy transformacj¾e z P (R2)! R2 w nast¾epuj ¾acy sposób:

(x0; y0) = (x
w
;
y

w
): (2.1)

Odwrotnie, obrazem punktu (u0; v0) 2 R2 w przestrzeni P (R2) jest punkt [u0; v0; 1],
który reprezentuje nieskończony zbiór trójek w postaci (�u0; �v0; �), gdzie � 2 Rnf0g.
Poniewa·z wspó÷rz¾edne punktów P (R2) s ¾a opisywane przez trzy liczby, mo·zna so-

bie wyobrazíc, ·ze opisuj ¾a one równie·z wspó÷rz¾edne w R3. Przy takim za÷o·zeniu, punkt
[x; y; w] 2 P (R2) stanowi w R3 prost ¾a przechodz ¾ac ¾a przez punkt (0; 0; 0) o wektorze
kierunkowym (x; y; w). Jésli jest to punkt w÷ásciwy, para (x0; y0) jest równa pierw-
szym dwóm wspó÷rz¾ednym punktu przeci¾ecia tej prostej z p÷aszczyzn ¾a w = 1. Ob-
razem punktu (x0; y0) po przekszta÷ceniu R2 ! P (R2) w wyimaginowanej przestrzeni
R3, jest prosta przechodz ¾ac ¾a przez punkty (x0; y0; 1) i (0; 0; 0): Podsumowuj ¾ac, punkty
przestrzeni P (R2) mo·zna sobie wyobrazíc w R3 jako proste przechodz ¾ace przez środek
uk÷adu wspó÷rz¾ednych, a transformacj¾e P (R2) ! R2 jako przeci¾ecie tych prostych z
p÷aszczyzn ¾a w = 1 (rys. 2.9).

De�nicja 2 Prost ¾a (A;B;C) w przestrzeni rzutowej P (R2) nazywamy zbiór punktów
spe÷niaj ¾acych równanie Ax+By+Cw = 0 ; gdzie (A;B;C) 6= (0; 0; 0). Prost ¾a (A;B;C)
nazywamy w÷ásciw ¾a, wtedy i tylko wtedy, gdy A 6= 0_B 6= 0: Prost ¾a (A;B;C) nazywamy
niew÷ásciw ¾a, wtedy i tylko wtedy, gdy A = B = 0:

Podobnie jak w przypadku punktów, ka·zda trójka liczb postaci (�A; �B; �C); gdzie
� 2 Rnf0g; de�niuje t ¾a sam ¾a prost ¾a (A;B;C).

25

Rozdzia÷2. Przetwarzanie wierzcho÷ków

Rysunek 2.9: Punkty w÷ásciwe w przestrzeni P (R2) przedstawione jako proste w R3.
Punkt (x0; y0) jest obrazem [x; y; w] po przekszta÷ceniu go do R2:

W÷ásciwy punkt [x; y; w] znajduje si¾e na prostej (A;B;C), jésli Ax+By+Cw = 0:
Proste w przestrzeni P (R2) mo·zemy sobie wyobrazíc w przestrzeni R3, jako p÷aszczy-
zny przechodz ¾ace przez punkt (0; 0; 0). Skoro w 6= 0, mo·zna zastosowác wzór (2.1) i
podzielíc obie strony równania przez w. Otrzymujemy Ax0+By0+C = 0. Jest to rów-
nanie prostej w przestrzeni R2. Odwzorowanie P (R2) ! R2 mo·zemy sobie wyobrazíc
w przestrzeni R3, jako przeci¾ecie p÷aszczyzny Ax+By+Cw = 0 z p÷aszczyzn ¾a w = 1.
Wynikiem tego przeci¾ecia jest oczywíscie prosta na p÷aszczýznie w = 1 (rys. 2.10).
Niew÷ásciwy punkt [x; y; 0] znajduje si¾e na prostej (A;B;C), jésli Ax + By = 0:

Wynika z tego, ·ze przez ten punkt w przestrzeni P (R2) przechodzi ka·zda w÷ásciwa
prosta [A;B;
], gdzie
 2 R: Jésli A 6= 0 _ B 6= 0, obrazem prostych [A;B;
] w prze-
strzeni R2, jest rodzina prostych równoleg÷ych Ax0 + By0 +
 = 0. Wniosek z tego
p÷yn ¾acy jest bardzo istotny. W przestrzeni R2 proste równoleg÷e nie maj ¾a punktów
wspólnych, ale ich odpowiedniki w przestrzeni P (R2) zawsze przecinaj ¾a si¾e w pewnym
punkcie niew÷ásciwym. Id ¾ac dalej tym tropem, mo·zna przyj ¾ác, ·ze ka·zdy punkt niew÷a-
ściwy [x; y; 0] reprezentuje w przestrzeni R2 rodzin¾e prostych równoleg÷ych o równaniu
Ax0+By0+
 = 0:
Wprzypadku, kiedy A = B = 0, punkt [x; y; w] znajduje si¾e na prostej (A;B;C), je-

śli Cw = 0: Jedynymi punktami spe÷niaj ¾acymi t ¾a zale·znóśc s ¾a punkty o wspó÷rz¾ednych
[x; y; 0], czyli wy÷¾acznie punkty niew÷ásciwe. Prosta [0; 0; C] przecina wi¾ec wszystkie

26

2.1. Transformacje

Rysunek 2.10: W÷ásciwa prosta w przestrzeni P (R2) przedstawiona jako p÷aszczyzna w
R3: Prosta Ax0+By0+ C = 0 jest obrazem (A;B;C) po przekszta÷ceniu jej do R2:

punkty niew÷ásciwe przestrzeni P (R2):Nie ma ona swojego obrazu w przestrzeni R2;
ale wyobra·zaj ¾ac sobie j ¾a w R3; zobaczymy p÷aszczyzn¾e o równaniu w = 0 (rys. 2.11).
Aby znaléźc prost ¾a P = (A;B;C) przechodz ¾ac ¾a przez dwa punkty X1 = [x1; y1; w1]

i X2 = [x2; y2; w2]; nale·zy rozwi ¾azác uk÷ad równań:�
Ax1 +By1 + Cw1 = 0

Ax2 +By2 + Cw2 = 0

�
:

Rozwi ¾azaniem tego uk÷adu jest prosta P = (y2w1� y1w2; w2x1�w1x2; x2y1� x1y2):
Jésli potraktowác wspó÷rz¾edne prostej P i obu punktów jako wektory w R3, wynik tej
operacji mo·zna zapisác za pomoc ¾a iloczynu wektorowego:

P = X1 �X2:

Bardzo podobnie wygl ¾ada procedura obliczania punktu X, w którym przecinaj ¾a si¾e
proste A i B:

X = A�B: (2.2)

W obu wzorach nie wyst¾epuj¾e dzielenie, co oznacza, ·ze obie operacje maj ¾a zawsze
dobrze okréslony wynik. Przyk÷adowo, dwie proste równoleg÷e A0 = 3x + 2y + 1 = 0 i
B0 = 3x+2y+4 = 0, okréslone w R2, maj ¾a swoje odpowiedniki w przestrzeni rzutowej
P (R2) zde�niowane jako A = (3; 2; 1) oraz B = (3; 2; 4). Podstawiaj ¾ac do wzoru
(2.2) otrzymujemy punkt przeci¾ecia si¾e prostych: X = [�6; 9; 0] = [�2; 3; 0] = [1;�3

2
]:

27

Rozdzia÷2. Przetwarzanie wierzcho÷ków

Rysunek 2.11: Prosta i punkty niew÷ásciwe w przestrzeni P (R2) przedstawione w R3:

X jest punktem niew÷ásciwym, a jego interpretacja w przestrzeniR2 to rodzina prostych
równoleg÷ych o wspó÷czynniku kierunkowym �3

2
, do której nale·z ¾a mi¾edzy innymi A0

oraz B0.
Przestrzeń rzutowa P (R3), okréslona na zbiorze R4nf(0; 0; 0; 0)g; jest zde�niowana

na tej samej zasadzie co przestrzeń P (R2). Punkt w÷ásciwy o wspó÷rz¾ednych [x; y; z; w]
mo·zna przekszta÷cíc w przestrzeń R3, wykonuj ¾ac rzut na hiperp÷aszczyzn¾e w = 1 za
pomoc ¾a wzoru:

(x0; y0; z0) = (
x

w
;
y

w
;
z

w
): (2.3)

Odpowiednikami prostych (A;B;C;D) 2 P (R3) s ¾a p÷aszczyzny w przestrzeni trój-
wymiarowej R3: Wszystkie proste w÷ásciwe (A;B;C;
), gdzie
 2 R; przecinaj ¾a si¾e w
punkcie niew÷ásciwym [A;B;C; 0]. Ten punkt jest odpowiednikiem rodziny p÷aszczyzn
równoleg÷ych w R3, okréslonych wzorem Ax+By + Cz +
 = 0:
Przestrzeń P (R3) jest najbardziej interesuj ¾aca z punktu widzenia gra�ki kompute-

rowej, gdy·z wszystkie funkcje wykonywane na karcie gra�cznej operuj ¾a na geometrii
zde�niowanej w trzech wymiarach.

28

2.1. Transformacje

2.1.2. Przekszta÷cenia a�niczne

W przestrzeniach rzutowych nie zachodz ¾a w÷asnósci klasycznych operacji algebraicz-
nych, nie mo·zna równie·z zde�niowác poj¾ecia odleg÷ósci ani orientacji. Nast¾epuj ¾acy
przyk÷ad dobrze ilustruje brak podstawowych regu÷arytmetycznych w P (R2):

[1; 0; 2]1;1 = [2; 0; 4]1;2 i [2; 0; 1]2;1 = [6; 0; 3]2;2, ale

[1; 0; 2]1;1 + [2; 0; 1]2;1 = [3; 0; 3] 6= [8; 0; 7] = [2; 0; 4]1;2 + [6; 0; 3]2;2:

Zalety tych przestrzeni mo·zna wykorzystác dopiero poprzez ich ścis÷e po÷¾aczenie z
klasycznymi odpowiednikami, za pomoc ¾a transformacji rzutuj ¾acych (2.3). Najcz¾ésciej
wykorzystywan ¾a cech ¾a przestrzeni rzutowych, jest mo·zliwóśc zapisu du·zo szerszej gamy
przekszta÷ceń w postaci macierzowej. Obejmuje to nie tylko wszystkie przekszta÷cenia
a�niczne, ale równie·z rzuty perspektywiczne.
Aby wykorzystác te mo·zliwósci, nale·zy post¾epowác zgodnie z nast¾epuj ¾acym sche-

matem:

1. Wspó÷rz¾edne punktów w R3 przekszta÷cíc do przestrzeni P (R3), nadaj ¾ac wspó÷-
rz¾ednej w wartóśc 1: (x; y; z)! [x; y; z; 1]:

2. Za pomoc ¾a odpowiednio skonstruowanych macierzy R4x4, wykonác wszystkie nie-
zb¾edne transformacje.

3. Stosuj ¾ac zale·znóśc (2.3) przekszta÷cíc wspó÷rz¾edne z powrotem do R3.

Przekszta÷cenie a�niczne w przestrzeni R3 sk÷ada si¾e z macierzy A 2 R3x3, reprezen-
tuj ¾acej cz¾éśc liniow ¾a przekszta÷cenia, oraz z wektora przesuni¾ecia B 2 R3:

x0 = Ax+B: (2.4)

Dwie sk÷adowe tej transformacji uniemo·zliwiaj ¾a sk÷adanie kilku przekszta÷ceń a�-
nicznych w jedn ¾a macierz. Przestrzeń P (R3) daje jednak nowe mo·zliwósci i konstruk-
cja takiej zbiorczej macierzy jest mo·zliwa. Operacje w P (R3) zachowaj ¾a w÷asnósci
znane z przestrzeni R3 pod warunkiem, ·ze przekszta÷cany punkt oraz wynik pomno-
·zenia go przez macierz, b¾ed ¾a znajdowác si¾e na hiperp÷aszczýznie w = 1. W innym
przypadku, ze wzgl¾edu na regu÷y arytmetyczne obowi ¾azuj ¾ace w P (R3), po wykona-
niu kroku trzeciego wynikiem nie b¾edzie punkt po przekszta÷ceniu a�nicznym. Ogólna
postác macierzy R4x4 spe÷niaj ¾acej ten warunek jest nast¾epuj ¾aca:

K =

�
A B
0 1

�
; gdzie A 2 R3x3; B 2 R3:

Jak si¾e okazuje, macierze A i B b¾ed ¾ace podmacierzami K, maj ¾a identyczn ¾a postác
jak w zale·znósci (2.4). Konstrukcja macierzy K jest wi¾ec bardzo prosta i polega na
wstawieniu do niej w nienaruszonej formie, wyrazów odpowiedzialnych za przekszta÷-
cenie a�niczne w R3.

29

Rozdzia÷2. Przetwarzanie wierzcho÷ków

Macierze w przestrzeni P (R3); odpowiadaj ¾ace najcz¾ésciej wykorzystywanym prze-
kszta÷ceniom, przedstawione s ¾a poni·zej.

� Przesuni¾ecie o wektor P = (Px; Py; Pz):

T =

2664
1 0 0 Px
0 1 0 Py
0 0 1 Pz
0 0 0 1

3775
� Zmiana skali ze wspó÷czynnikami Sx; Sy i Sz.

S =

2664
Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

3775
� Obrót wokó÷osi A = (Ax; Ay; Az); przechodz ¾acej przez środek uk÷adu wspó÷rz¾ed-
nych, o k ¾at �: kAk = 1; s = sin(�); c = cos(�):

R =

2664
(1� c)A2x + c cAxAy � sAz cAxAz + sAy 0
cAxAy + sAz (1� c)A2y + c cAyAz � sAx 0
cAxAz � sAy cAyAz + sAx (1� c)A2z + c 0

0 0 0 1

3775
� Transformacja wspó÷rz¾ednych z uk÷adu L do G. Uk÷ad L jest zde�niowany w
uk÷adzie G za pomoc ¾a czterech wektorów: środka uk÷adu O = (Ox; Oy; Oz), osi
X = (Xx; Xy; Xz), osi Y = (Yx; Yy; Yz) i osi Z = (Zx; Zy; Zz).

TL!G =

2664
Xx Yx Zx Ox
Xy Yy Zy Oy
Xz Yz Zz Oz
0 0 0 1

3775

2.1.3. Rzut perspektywiczny i równoleg÷y

W celu wýswietlenia generowanego obrazu na ekranie, niezb¾edna jest transformacja
bry÷trójwymiarowych w ich dwuwymiarowe odpowiedniki. Obiektyw aparatu fotogra-
�cznego sk÷ada si¾e z szeregu soczewek, które maj ¾a za zadanie skupíc promienie świat÷a,
biegn ¾ace z okréslonego miejsca w przestrzeni, w pewnym punkcie b÷ony fotogra�cznej.
Niestety, sztuczna symulacja takiego uk÷adu jest bardzo kosztowna obliczeniowo. W
gra�ce komputerowej najcz¾ésciej stosuje si¾e wyidealizowany model obiektywu, który
daje obraz ostry niezale·znie od odleg÷ósci obiektu od obserwatora. Efekt g÷¾ebi ostro-
ści jest w tym przypadku nieosi ¾agalny, ale równoczésnie obraz jest pozbawiony wad
klasycznego obiektywu, szczególnie jésli chodzi o zniekszta÷cenia geometrii.

30

2.1. Transformacje

Tak jak w aparacie fotogra�cznym, w syntetycznym modelu wyst¾epuje poj¾ecie k ¾ata
widzenia, który okrésla obszar przestrzeni widoczny na ekranie. Obszar ten jest zbudo-
wany na bazie czterósciennego sto·zka o wierzcho÷ku w środku uk÷adu wspó÷rz¾ednych,
przez którego środek biegnie ós Z (rys. 2.12). Osie XZ oraz Y Z tworz ¾a p÷aszczyzny
symetrii tej bry÷y. K ¾aty mi¾edzy przeciwleg÷ymi ścianami s ¾a ustalane w przedziale od 0
do 180 stopni. Przyj¾eto, ·ze rozwartóśc sto·zka jest wyznaczona przez k ¾at mi¾edzy jego
poziomymi ścianami. K ¾at pomi¾edzy ścianami pionowymi jest wyznaczany tak, aby
proporcje obu k ¾atów odzwierciedla÷y stosunek wysokósci do szerokósci ekranu.
Ze wzgl¾edu na to, ·ze rzut perspektywiczny ma sens wy÷¾acznie dla punktów o wspó÷-

rz¾ednej z > 0, ustalono dwie p÷aszczyzny równoleg÷e ograniczaj ¾ace ten sto·zek. P÷asz-
czyzny te maj ¾a równania z = zN oraz z = zF , gdzie 0 < zN < zF . P÷aszczyzna z = zN ;
zwana rzutni ¾a, jest odpowiednikiem b÷ony �lmowej w klasycznym aparacie. Ograni-
czony széscioma p÷aszczyznami fragment przestrzeni, który wyznacza widoczny obszar,
jest zwany bry÷¾a widzenia.

Rysunek 2.12: Bry÷a widzenia.

Rzut perspektywiczny punktu p jest zde�niowany, jako przeci¾ecie prostej przecho-
dz ¾acej przez punkt p oraz środek uk÷adu wspó÷rz¾ednych, z p÷aszczyzn ¾a z = zN
(rys. 2.13).

Korzystaj ¾ac z w÷asnósci
y

y0
=
z

zN
otrzymujemy wzór rzutu perspektywicznego:

y0 =
yzN
z
: (2.5)

Na ekranie monitora mo·zna przedstawíc tylko prostok ¾atny wycinek rzutni. Przyj¾eto,
·ze wýswietlone na ekranie b¾ed ¾a wy÷¾acznie punkty nale·z ¾ace do nast¾epuj ¾acego przedzia÷u:

(�1 � x0 � 1;�1 � y0 � 1): (2.6)

31

Rozdzia÷2. Przetwarzanie wierzcho÷ków

Z

Y

zN

1

p=(x,y,z)

p'=(x',y',z)N

fov/2

h

zF

Rysunek 2.13: Rzut perspektywiczny punktu p.

W celu wýswietlenia na ekranie obszaru znajduj ¾acego si¾e w bryle widzenia, wspó÷-
rz¾edne punktów nale·z ¾acych do tego obszaru, po wykonaniu rzutu, musz ¾a býc zawarte
w przedziale (2.6). Aby by÷spe÷niony ten warunek, do równania (2.5) nale·zy dodác
wspó÷czynnik skaluj ¾acy, który sprowadzi wspó÷rz¾edne do w÷ásciwego przedzia÷u. Zgod-
nie z (rys. 2.13), poprawione równanie ma postác:

y0 = (
yzN
z
)=h:

Wspó÷czynnik hmo·zna obliczýc korzystaj ¾ac z zale·znósci tan(fov=2) =
h

zN
, gdzie fov

jest k ¾atem rozwarcia poziomych boków sto·zka widzenia. Ostatecznie otrzymujemy:

y0 =
y � ctg(fov=2)

z
; gdzie fov 2 (0; �): (2.7)

Dla wspó÷rz¾ednej x równanie wygl ¾ada niemal identycznie. Rozwartóśc pionowych
boków bry÷y widzenia mo·ze si¾e ró·zníc od rozwartósci poziomych, dlatego do równania

wprowadza si¾e dodatkowy wspó÷czynnik � =
h

w
; gdzie w i h oznaczaj ¾a odpowiednio

szerokóśc i wysokóśc rzutni.

x0 =
x� � ctg(fov=2)

z
(2.8)

Nieliniow ¾a zale·znóśc zmiennych w równaniach (2.7) i (2.8) da si¾e wyrazíc w sposób
liniowy w przestrzeni P (R3).

32

2.1. Transformacje

Stosuj ¾ac taki sam schemat post¾epowania jak w przypadku przekszta÷ceń a�nicznych,
mo·zna wykorzystác nast¾epuj ¾ac ¾a macierz przekszta÷cenia perspektywicznego:

P =

2664
� � ctg(fov=2) 0 0 0

0 ctg(fov=2) 0 0
0 0 1 0
0 0 1 0

3775 : (2.9)

Ka·zdy punkt o wspó÷rz¾ednych [x; y; z; 1] po przemno·zeniu przez macierz (2.9) b¾edzie
równy [�x � ctg(fov=2); y � ctg(fov=2); z; z]: Dzielenie przez z; b¾ed ¾ace ostatnim etapem
rzutu perspektywicznego, jest realizowane przez przekszta÷cenie P (R3) ! R3 (2.3);
w którym wspó÷rz¾edne dzielone s ¾a przez w: Dzi¾eki takiemu rozwi ¾azaniu, wszystkie
transformacje w÷¾acznie z przekszta÷ceniem perspektywicznym mo·zna zapisác w postaci
jednej zbiorczej macierzy.
Macierz (2.9) powoduje zupe÷n ¾a utrat¾e informacji o odleg÷ósci punktu od obserwa-

tora, po przej́sciu do przestrzeni R3: Wszystkie wspó÷rz¾edne z0 s ¾a wtedy
równe 1. Faza rasteryzacji wymaga, aby punkty by÷y ju·z poddane rzutowi perspekty-
wicznemu. Równoczésnie w÷ásnie wtedy potrzebna jest informacja o odleg÷ósci punk-
tów od obserwatora, która umo·zliwia wyznaczenie widocznósci w buforze-Z. Nale·zy
wi¾ec tak zmody�kowác macierz (2.9), aby informacje o odleg÷ósci od obserwatora nie
by÷y bezpowrotnie tracone po transformacji z przestrzeni P (R3) do R3:
Rzut perspektywiczny jest okréslony dla wspó÷rz¾ednych z 2 [aN ; zF] a wartósci w

buforze-Z musz ¾a býc w przedziale z0 2 [0; 1]. Niezb¾edne jest takie przekszta÷cenie prze-
dzia÷u [aN ; zF] w przedzia÷[0; 1]; aby uwzgl¾ednione by÷o dzielenie przez w; wyst¾epuj ¾ace
w przekszta÷ceniu do przestrzeni R3. Rozwi ¾azaniem jest nast¾epuj ¾aca zale·znóśc:

z0 =
z

zF
zF � zN

� zN
zF

zF � zN
z

: (2.10)

Ostateczna macierz przekszta÷cenia perspektywicznego, po uwzgl¾ednieniu poprawek
w trzecim wierszu, ma postác:

P =

26664
� � ctg(fov=2) 0 0 0

0 ctg(fov=2) 0 0

0 0
zF

zF � zN
�zN

zF
zF � zN

0 0 1 0

37775 : (2.11)

Po zastosowaniu macierzy (2.11) i przej́sciu do przestrzeni R3, odleg÷ósci punktów
od obserwatora mog ¾a býc w dalszym ci ¾agu porównywane, ale ich proporcje nie s ¾a ju·z
takie same jak przed rzutem perspektywicznym. Dzieje si¾e tak, poniewa·z pochodna
funkcji (2.10) nie jest sta÷a. Rozk÷ad odleg÷ósci po przekszta÷ceniu nie jest liniowy i nie
mo·zna oceníc odleg÷ósci danego wierzcho÷ka od obserwatora. Funkcja ta jest jednak
monotoniczna i dozwolone jest porównywanie wartósci ze sob ¾a.
Du·zo prostsza w konstrukcji jest macierz rzutu równoleg÷ego. Bry÷a widzenia jest w

tym przypadku prostopad÷óscianem. Zadaniem macierzy jest sprowadzenie wspó÷rz¾ed-
nych punktów w bryle widzenia, do takich samych przedzia÷ów jak w przypadku rzutu

33

Rozdzia÷2. Przetwarzanie wierzcho÷ków

perspektywicznego. Istotn ¾a ró·znic ¾a jest liniowe odwzorowanie odleg÷ósci od obserwa-
tora w przedziale z0 2 [0; 1]: Macierz tego przekszta÷cenia jest przedstawiona poni·zej,
w oraz h oznaczaj ¾a odpowiednio szerokóśc i wysokóśc bry÷y widzenia.

O =

26666664

2

w
0 0 0

0
2

h
0 0

0 0
1

zF � zN
� zN
zF � zN

0 0 0 1

37777775
Uk÷ad gra�czny wszystkie obliczenia zwi ¾azane z geometri ¾a wykonuje w przestrzeni

P (R3), nast¾epnie zgodnie ze schematem na str. 29 przekszta÷ca wspó÷rz¾edne z powro-
tem do R3.

Rysunek 2.14: Przyk÷ad rzutu równoleg÷ego i perspektywicznego.

2.1.4. Obcinanie

Po przekszta÷ceniu punktów do przestrzeni R3, na ekranie widoczne b¾ed ¾a wy÷¾acznie
punkty o wspó÷rz¾ednych spe÷niaj ¾acych uk÷ad równań:8<:�1 � x

0 � 1
�1 � y0 � 1
0 � z0 � 1

9=; : (2.12)

Te trzy przedzia÷y wyznaczaj ¾a w przestrzeni R3 prostopad÷óscian, zwany kanoniczn ¾a
bry÷¾a widzenia. Konstruuj ¾ac jakiekolwiek przekszta÷cenia rzutuj ¾ace w P (R3); nale·zy
tak budowác transformacje, aby sprowadzíc ·z ¾adany obszar, który ma býc odwzorowany
na ekran, do przedzia÷ów (2.12):
Wi¾ekszóśc przekszta÷ceń rzutuj ¾acych jest dobrze okréslona tylko na skończonym

przedziale przestrzeni P (R3), dlatego geometria znajduj ¾aca si¾e poza obszarem bry÷y
widzenia jest obcinana i odrzucana jeszcze przed wykonaniem przej́scia z P (R3) do

34

2.1. Transformacje

R3; czyli przed podzieleniem wspó÷rz¾ednych przez w. Przyj¾eto, ·ze obcinane s ¾a trój-
k ¾aty, których wierzcho÷ki przesz÷y ju·z wszystkie zadane przekszta÷cenia macierzowe,
w÷¾acznie z transformacjami rzutuj ¾acymi (np. 2.11). Po operacji obcinania, te cz¾e-
ści trójk ¾atów, które znajduj ¾a si¾e poza obszarem bry÷y widzenia, zostaj ¾a odrzucone
(rys. 2.15). Wielok ¾at wypuk÷y, który pozosta÷w bryle widzenia, jest z powrotem dzie-
lony na trójk ¾aty, które s ¾a poddawane dalszym operacjom.

Rysunek 2.15: Proces obcinania trójk ¾ata na przyk÷adzie dwuwymiarowym, z bry÷¾a wi-
dzenia w postaci prostok ¾ata.

Széśc p÷aszczyzn ograniczaj ¾acych obszar (2.12), który b¾edzie narysowany na ekranie,
ma swoje odpowiedniki w przestrzeni P (R3). Niezale·znie od zastosowanej transformacji
rzutuj ¾acej, tu·z przed wykonaniem dzielenia przez w; równania tych p÷aszczyzn s ¾a z
de�nicji identyczne (tab. 2.2).

Strona Równanie w P (R3) Równanie w R3

lewa x+ w = 0 x0 = �1
prawa x� w = 0 x0 = 1
górna y � w = 0 y0 = 1
dolna y + w = 0 y0 = �1
przednia z = 0 z0 = 0
tylnia z � w = 0 z0 = 1

Tablica 2.2: Równania p÷aszczyzn u·zywanych przy obcinaniu.

Podstawowym elementem operacji obcinania jest znalezienie punktu przeci¾ecia pew-
nej prostej, z jedn ¾a z p÷aszczyzn ograniczaj ¾acych bry÷¾e widzenia. Obci¾ety wielobok
sk÷ada si¾e z wierzcho÷ków trójk ¾ata, które znajduj ¾a si¾e w bryle widzenia, oraz z punk-
tów nowo utworzonych przez niezb¾edne przeci¾ecia. Jésli równanie p÷aszczyzny ma
postác f(x; y; z; w) = 0, a prosta przechodz ¾aca przez dwa punkty p i q jest dana w
postaci parametrycznej p + t(q � p), to zadanie polega na znalezieniu takiej wartósci
parametru t; aby f(p + t(q � p)) = 0. W tym miejscu pojawia si¾e problem. W przy-
padku, kiedy punkty p i q b¾ed ¾a mia÷y wspó÷rz¾edne w o przeciwnych znakach, punkt

35

Rozdzia÷2. Przetwarzanie wierzcho÷ków

przeci¾ecia mo·ze w wyniku obliczeń miéc wspó÷rz¾edn ¾a w = 0. Nie mo·zna dopúscíc
do takiej sytuacji, gdy·z takiego punktu nie da si¾e przedstawíc w przestrzeni R3: W
zwi ¾azku z tym, w specy�kacjach OpenGL oraz DirectX uznano za dopuszczalne wy-
÷¾acznie te punkty, które po wszystkich przekszta÷ceniach macierzowych w P (R3) maj ¾a
wspó÷rz¾edn ¾a w > 0. Gwarantuje to zawsze dobrze okréslony wynik operacji przeci¾ecia.
Za÷o·zenie dodatniego w jest niezb¾edne równie·z do wykonania poprawnego rzutu

perspektywicznego. Zauwa·zmy, ·ze jésli punkt [x; y; z; w] ma ujemne wspó÷rz¾edne z

oraz w, to wynik przekszta÷cenia z0 =
z

w
ma znak dodatni. Oznacza to, ·ze punkt

znajduj ¾acy si¾e z ty÷u za obserwatorem mo·ze si¾e znaléźc w kanonicznej bryle widzenia
w R3. Zawsze dodatni znak wspó÷rz¾ednej w zapobiega ca÷kowicie takiej sytuacji.
Ostatecznie, aby sprawdzíc czy dany punkt znajduje si¾e w bryle widzenia w prze-

strzeni P (R3), wystarczy podstawíc jego wspó÷rz¾edne do nast¾epuj ¾acego uk÷adu nierów-
nósci: 8<:�w � x � w�w � y � w

0 � z � w

9=; :
Uk÷ad gra�czny wykonuje obcinanie ca÷kowicie automatycznie. Podczas obcinania,

dla ka·zdego nowo utworzonego wierzcho÷ka s ¾a obliczane nowe atrybuty. Atrybuty ory-
ginalnych wierzcho÷ków s ¾a liniowo interpolowane na obszarze ca÷ego trójk ¾ata, dzi¾eki
temu wprowadzanie nowych punktów wielok ¾ata odbywa si¾e bardzo szybko.

2.2. Programowanie uk÷adu
W celu narysowania grupy trójk ¾atów, w pierwszej kolejnósci nale·zy przygotowác dane
w pami¾eci operacyjnej. Dane o wierzcho÷kach oraz trójk ¾atach s ¾a umieszczone w ró·z-
nych obszarach pami¾eci i osobno przesy÷ane do karty. Poniewa·z wierzcho÷ki trójk ¾atów
s ¾a identy�kowane tylko przy pomocy indeksów, informacje o wierzcho÷kach s ¾a przesy-
÷ane sekwencyjnie, jeden po drugim. Na ka·zdy wierzcho÷ek sk÷ada si¾e od jednego do
szesnastu czterowymiarowych wektorów. Semantyczne znaczenie tych wektorów jest
zupe÷nie dowolne, z regu÷y przynajmniej jeden z nich opisuje pozycj¾e wierzcho÷ka w
przestrzeni. Przes÷ane dane tra�aj ¾a do jednostki przetwarzaj ¾acej (ang. Vertex Shader
Unit), w której dla ka·zdego wierzcho÷ka jest wykonywany mikroprogram (ang. Vertex
Shader). Jego zadaniem jest wygenerowanie przy pomocy danych wej́sciowych przynaj-
mniej pozycji punktu, opisanej wspó÷rz¾ednymi jednorodnymi. Po wszystkich oblicze-
niach nast¾epuje faza obcinania, w której bior ¾a udzia÷równie·z informacje o trójk ¾atach.
Dopiero po obcinaniu wspó÷rz¾edne pozycji punktów s ¾a przekszta÷cane do przestrzeni
R3 (rys. 2.16).
Prac ¾a ca÷ego uk÷adu steruje mikroprogram, który w postaci binarnej jest równie·z

przesy÷any z pami¾eci operacyjnej do karty gra�cznej. W ka·zdym momencie mo·zna
zmieníc aktualnie obowi ¾azuj ¾acy program, ale czynnóśc ta powoduje du·ze opó́znienia w
pracy uk÷adu. Zupe÷nie nieop÷acalne jest wykonywanie osobnego programu dla ka·zdego
wierzcho÷ka, dlatego programy s ¾a tak konstruowane, aby ka·zdy z nich móg÷przetworzýc
jak najwi¾ecej wierzcho÷ków sceny. Nale·zy wyráznie zaznaczýc, ·ze z poziomu programu

36

2.2. Programowanie uk÷adu

s ¾a dost¾epne dane wy÷¾acznie aktualnie przetwarzanego wierzcho÷ka.
Dane wej́sciowe mog ¾a býc dowolne, ale proces na danym wierzcho÷ku musi zakoń-

czýc si¾e wygenerowaniem przynajmniej wspó÷rz¾ednej wierzcho÷ka w przestrzeni P (R3).
Przyk÷adowo, aby narysowác faluj ¾ac ¾a powierzchni¾e jeziora, wspó÷rz¾edne x oraz z mog ¾a
býc podane bezpósrednio a wysokóśc danego punktu nad powierzchni ¾a mo·ze býc ge-
nerowana proceduralnie wewn ¾atrz mikroprogramu, na przyk÷ad przy pomocy funkcji
trygonometrycznych. Ogólna strategia w tego typu sytuacjach polega na jak naj-
wi¾ekszym odci ¾a·zeniu procesora g÷ównego, kosztem pracy uk÷adu gra�cznego. Dzi¾eki
asynchronicznej pracy obu tych elementów mo·zliwa jest ich równoleg÷a praca.

VSUW1

Wn

...

W2

obcinanie

T1Tm ... T2

transformacja
do R3

Rysunek 2.16: Proces przetwarzania n wierzcho÷ków przy udziale m trójk ¾atów.

Wspó÷czesne procesory gra�czne posiadaj ¾a wi¾ecej ni·z jedn ¾a jednostk¾e przetwarza-
j ¾ac ¾a wierzcho÷ki. Dzi¾eki temu, ·ze mikroprogram ma dost¾ep wy÷¾acznie do informacji o
aktualnie przetwarzanym wierzcho÷ku, uk÷ad mo·ze równolegle wykonywác operacje na
kilku wierzcho÷kach na raz. Obecnie produkowane karty gra�czne posiadaj ¾a od czterech
do szesnastu jednostek VSU.
G÷ównym zadaniem jednostki przetwarzaj ¾acej wierzcho÷ki jest dostarczenie osta-

tecznych wspó÷rz¾ednych wierzcho÷ków oraz ich atrybutów. Podczas rasteryzacji, dla
ka·zdego piksela s ¾a obliczane atrybuty, które s ¾a kombinacj ¾a liniow ¾a atrybutów z trzech
wierzcho÷ków. Atrybuty dla wierzcho÷ków s ¾a opcjonalnie generowane wczésniej przez
mikroprogram i wszystkie maj ¾a postác czterech liczb rzeczywistych. Mog ¾a to býc dwa
kolory (RGBA) oraz osiem wspó÷rz¾ednych dla tekstur (XY ZW). Dane te nie musz ¾a
býc wykorzystane zgodnie z ich nazwami, jednostka zajmuj ¾aca si¾e obliczaniem koloru
poszczególnych pikseli mo·ze je wykorzystác dowolnie, zgodnie z mýsl ¾a programisty.
Mikroprogram sk÷ada si¾e z maksymalnie 256 instrukcji specjalnego mikroasemblera,

które operuj ¾a na zestawie rejestrów uk÷adu. Rejestry dziel ¾a si¾e na wej́sciowe, wyj́sciowe
oraz tymczasowe (rys. 2.17). Przy ka·zdym uruchomieniu programu w 16 rejestrach
v0 � v15 znajduj ¾a si¾e dane wej́sciowe kolejnego wierzcho÷ka, ka·zda z nich sk÷ada si¾e
z czterech liczb rzeczywistych (XY ZW). Oprócz tych informacji programista mo·ze
dowolnie ustalíc zawartóśc rejestrów reprezentuj ¾acych sta÷e, które s ¾a niezale·zne od ko-

37

Rozdzia÷2. Przetwarzanie wierzcho÷ków

VSU

dane wierzchołka
(v0­v15)

stałe zmiennoprzecinkowe
(c0­c255+)

stałe całkowitoliczbowe
(i0­i15)

stałe logiczne
(b0­b15)

pozycja
(oPos)

kolory
(oD0­oD1)

współrzędne tekstur
(oT0­oT7)

rejestry tymczasowe
(r0­r11+)

rejestr adresowy
(a0)

licznik
(aL)

Wejście Wyjście

Rysunek 2.17: Jednostka przetwarzania wierzcho÷ków.

lejnych uruchomień programu. Do dyspozycji jest co najmniej 256 wektorowych sta÷ych
rzeczywistych c0� c255 w postaci (XY ZW), 16 wektorowych sta÷ych ca÷kowitoliczbo-
wych i0� i15 w postaci (XY ZW); oraz 16 sta÷ych logicznych b0� b15 przyjmuj ¾acych
wartóśc zero lub jeden. Zawartóśc tych rejestrów mo·ze býc zmieniana w dowolnym mo-
mencie, ale wprowadza to du·ze opó́znienia, dlatego nie powinno si¾e zmieniác ich stanu
zbyt cz¾esto. Nale·zy zaznaczýc, ·ze wszystkie rejestry wej́sciowe s÷u·z ¾a tylko do odczytu,
natomiast rejestry wyj́sciowe mo·zna wy÷¾acznie zapisywác.
Rejestry tymczasowe s ¾a dost¾epne wy÷¾acznie z poziomu mikroprogramu. Nale·zy do

nich przynamniej 12 wektorowych rejestrów rzeczywistych r0�r11 w postaci (XY ZW),
czterokomponentowy ca÷kowitoliczbowy rejestr adresowania pósredniego a0 w postaci
(XY ZW) oraz licznik ogólnego przeznaczenia aL.
G÷ównym zadaniem programu jest wygenerowanie danych w rejestrach wyj́sciowych.

Nale·zy do nich rejestr pozycji oPos w postaci czterech liczb rzeczywistych (XY ZW),
dwa rejestry koloru oD0 � oD1 w postaci czterech liczb rzeczywistych (RGBA) oraz
8 rejestrów dla wspó÷rz¾ednych tekstur oT0 � oT7; równie·z w postaci czterech liczb
rzeczywistych (XY ZW). Ka·zdy program ma obowi ¾azek zapisác przynajmniej rejestr
pozycji oPos.

2.2.1. Budowa programu

Programowanie w j¾ezyku maszynowym jest bardzo czasoch÷onne. Poniewa·z rozkazy
maj ¾a bezpósrednie prze÷o·zenie na kod binarny, aby wykonác nawet prost ¾a operacj¾e
arytmetyczn ¾a nale·zy ich u·zýc przynajmniej kilku. Kod programu staje si¾e ma÷o czy-
telny i trudny w pó́zniejszej mody�kacji. Wraz ze wzrostem popularnósci w pe÷ni

38

2.2. Programowanie uk÷adu

programowalnych uk÷adów powsta÷y j¾ezyki wysokiego poziomu, które s ¾a interpreto-
wane i t÷umaczone na j¾ezyk maszynowy uk÷adu gra�cznego. W tej chwili obowi ¾azuj ¾a
trzy bardzo podobne do siebie j¾ezyki, CG opracowany przez �rm¾e NVIDIA, ASHLI
stworzony przez �rm¾e ATI, oraz HLSL (ang. High Level Shading Language) wprowa-
dzony przez Microsoft. Wszystkie s ¾a oparte na konstrukcjach znanych z j¾ezyka C i bez
wi¾ekszych zmian mog ¾a býc stosowane zamiennie. Poniewa·z j¾ezyk HLSL jest wbudo-
wany w API DirectX, w tej pracy w÷ásnie on b¾edzie stanowi÷baz¾e do konstruowania
mikroprogramów.
Mikroprogram sk÷ada si¾e z zestawu funkcji, w którym jedna jest wyró·zniona przy

kompilacji jako startowa. Po kompilacji program, który mia÷wczésniej budow¾e struk-
turaln ¾a, jest zamieniany na pojedynczy ci ¾ag instrukcji maszynowych.
J¾ezyk HLSL umo·zliwia dowolne deklarowanie zmiennych oraz sta÷ych w ka·zdym

miejscu programu. Ostateczne rozmieszczenie danych w wewn¾etrznych rejestrach pro-
cesora gra�cznego jest zale·zne tylko i wy÷¾acznie od kompilatora. Programista nie ma
·zadnego wp÷ywu na sposób wykorzystania rejestrów ani ich liczb¾e. Ze wzgl¾edu na bar-
dzo ograniczone zasoby jednostek VSU, kod programu musi býc na tyle prosty, aby
ilóśc niezb¾ednych rejestrów tymczasowych oraz rejestrów dla sta÷ych miésci÷a si¾e w
okréslonych limitach. Kompilator automatycznie wykorzystuje rejestry tymczasowe w
jak najlepszy sposób, oraz sam rozmieszcza w dost¾epnej pami¾eci sta÷e zadeklarowane
w programie.
Sta÷e mog ¾a býc inicjalizowane spoza mikroprogramu, s÷u·zy do tego wygenerowana

przez kompilator tablica sta÷ych, za pomoc ¾a której mo·zna poprzez nazw¾e uzyskác do-
st¾ep do odpowiednich danych. Rola procesora g÷ównego, czyli programu uruchomio-
nego na komputerze, polega na wys÷aniu do karty danych o wierzcho÷kach i trójk ¾atach,
wys÷aniu binarnego kodu mikroprogramu oraz na ustaleniu wartósci sta÷ych. Reszt¾e
wykonuje ju·z procesor gra�czny, w tym jednostki VSU.
Jésli zmienna zadeklarowana w mikroprogramie ma pe÷níc funkcj¾e rejestru wej́scia

lub wyj́scia, nale·zy dodác do deklaracji dodatkow ¾a informacj¾e. W przypadku reje-
strów wyj́sciowych b¾edzie to nazwa, która identy�kuje konkretny rejestr: POSITION ,
COLOR0�COLOR1 lub TEXCOORD0� TEXCOORD7. Nazwy te odpowiadaj ¾a
bezpósrednio rejestrom wyj́sciowym jednostki VSU (rys. 2.17).
Dane wej́sciowe dla wierzcho÷ka sk÷adaj ¾a si¾e z maksymalnie 16 wektorów. Nie ka·zdy

wektor musi býc wype÷niony w ca÷ósci, jésli potrzebna jest tylko pojedyncza wartóśc to
pozosta÷e trzy nie s ¾a przesy÷ane przez szyn¾e. W programie g÷ównym, wykonywanym
przez procesor komputera, trzeba wype÷níc tabel¾e, która b¾edzie zawierác informacje
o liczbie oraz formacie danych dla przesy÷anych wierzcho÷ków. Ka·zdemu z maksy-
malnie 16 komponentów jest przyporz ¾adkowany typ oraz tekstowy identy�kator. Po
przes÷aniu danych do karty, poszczególne komponenty wierzcho÷ka s ¾a przyporz ¾adko-
wywane zmiennym w mikroprogramie, które jako dodatkow ¾a informacj¾e posiadaj ¾a ten
sam identy�kator. W ten sposób unikni¾eto bezpósredniego wi ¾azania danych z konkret-
nymi rejestrami wej́sciowymi v0�v15. Kompilator decyduje któr ¾a zmienn ¾a umiéscíc w
danym rejestrze. Dla programisty wa·zna jest tylko zgodnóśc identy�katorów zadekla-
rowanych w programie z tymi, które s ¾a umieszczone przy zmiennych w mikroprogramie
dla uk÷adu gra�cznego.
Identy�katory poszczególnych komponentów nie mog ¾a býc dowolne, jest to spowo-

dowane pozosta÷ósciami po poprzednich architekturach, w których identy�katory spe÷-

39

Rozdzia÷2. Przetwarzanie wierzcho÷ków

nia÷y równie·z funkcje okréslaj ¾ace zastosowanie konkretnych danych. W przypadku,
kiedy programista nie chce w ·zaden sposób sugerowác funkcji okréslonego komponentu,
do identy�kacji nale·zy u·zýc 16 nazw: TEXCOORD0 do TEXCOORD15.
Poni·zszy przyk÷ad przedstawia prosty mikroprogram, który przetwarza wierzcho÷ki

sk÷adaj ¾ace si¾e z pozycji oraz koloru. Dane wej́sciowe ka·zdego wierzcho÷ka s ¾a przesy÷ane
pod identy�katorami TEXCOORD0 (pozycja - 3 liczby) oraz TEXCOORD1 (kolor
- 3 liczby), nast¾epnie w mikroprogramie s ¾a przyporz ¾adkowane sk÷adowym struktury
vin. Ten program tylko przepisuje dane z rejestrów wej́sciowych do wyj́sciowych.

struct T_VIN // dane wierzcho÷ka
{
float3 pos : TEXCOORD0; // pozycja
float3 col : TEXCOORD1; // kolor

};

struct T_VOUT // dane wyjściowe
{
float4 pos : POSITION; // pozycja
float3 col : COLOR0; // kolor

};

T_VOUT vmain(T_VIN vin) // mikroprogram
{
T_VOUT vout;

(float3)vout.pos=vin.pos; // przepisanie danych
vout.pos.w=1;
vout.color=vin.color;

return vout;
}

(Program 2.1)

Do podstawowych typów danych nale·z ¾a: bool (wartóśc logiczna true lub false), int
(liczba ca÷kowita), �oat (liczba rzeczywista), half (liczba rzeczywista o zmniejszonej
precyzji) oraz double (liczba rzeczywista podwójnej precyzji). Ka·zdy typ danych mo·ze
wyst¾epowác w postaci pojedynczej, wektorowej lub macierzowej, na przyk÷ad int4 ozna-
cza wektor czteroelementowy a �oat3x4 macierz o 3 wierszach i 4 kolumnach. Zmienne
o podstawowych typach danych mog ¾a býc grupowane w postaci struktur i tablic.

2.2.2. Zestaw instrukcji

Mikroprogram sk÷ada si¾e z zestawu funkcji, w których oprócz klasycznych prede�-
niowanych instrukcji steruj ¾acych mog ¾a wyst¾epowác instrukcje wykonuj ¾ace specy�czne
operacje arytmetyczne. Istnieje pewne podobieństwo tych instrukcji do funkcji biblio-
tecznych, wchodz ¾acych w sk÷ad klasycznych dystrybucji j¾ezyka C, ale ich zestaw jest
z góry okréslony i nie mo·ze býc poszerzany. Wszystkie funkcje wyst¾epuj ¾ace w wer-
sji 2.0 wraz z krótkim opisem ich dzia÷ania znajduj ¾a si¾e w tab. 2.3 oraz w tab. 2.4.
Szczegó÷owe informacje mo·zna znaléźc w dokumentacji do j¾ezyka HLSL [2].
W standardzie 2.0 podczas przetwarzania wierzcho÷ków jest mo·zliwa tylko tzw. sta-

tyczna kontrola przep÷ywu w programie. Oznacza to, ·ze instrukcje if, for oraz while nie
mog ¾a miéc jako parametrów zmiennych dynamicznych, ale wy÷¾acznie sta÷e. Nie mo·zna

40

2.2. Programowanie uk÷adu

dynamicznie zmieniác ilósci powtórzeń p¾etli ani obliczác kryterium dla instrukcji wa-
runkowej wewn ¾atrz mikroprogramu. Wszystkie te parametry nale·zy ustalíc wczésniej
w tablicy dla sta÷ych. Powy·zsze warunki mocno ograniczaj ¾a zastosowanie instrukcji
warunkowych oraz powtórzeniowych, w praktyce s÷u·z ¾a one wy÷¾acznie do w÷¾aczania lub
wy÷¾aczania okréslonych fragmentów programu oraz do powtarzania fragmentu kodu z
góry okréslon ¾a ilóśc razy. Dla przyk÷adu, jésli programista chce napisác program obli-
czaj ¾acy nat¾e·zenie óswietlenia w danym wierzcho÷ku, musi wzi ¾ác pod uwag¾e, ·ze świat÷o
mo·ze padác na ten punkt z kilku źróde÷jednoczésnie. Statyczna kontrola przep÷ywu
pozwala ca÷y kod umiéscíc w jednym mikroprogramie, który jako sta÷¾a przyjmuje ilóśc
świate÷maj ¾acych wp÷yw na dany wierzcho÷ek. W przypadku braku takiego rozwi ¾aza-
nia, programista musia÷by napisác osobny program dla ka·zdej mo·zliwej liczby świate÷.
W obecnych czasach, powy·zszy przyk÷ad ma znaczenie tylko teoretyczne, poniewa·z

coraz wi¾eksze wymagania co do jakósci generowanego obrazu wymusi÷y na producen-
tach stosowanie óswietlenia obliczanego w ka·zdym pikselu, a nie tylko na wierzcho÷kach.
Twórcy uk÷adów scalonych nie nad ¾a·zaj ¾a za wymaganiami i w mikroprogramach dla pik-
seli brakuje jakiejkolwiek kontroli przep÷ywu, a kontrola dla wierzcho÷ków sta÷a si¾e w
przypadku óswietlenia bezu·zyteczna. W nast¾epnej generacji akceleratorów ten fakt ma
si¾e zmieníc i dla pikseli ma býc ju·z wprowadzona statyczna kontrola przep÷ywu.

Instrukcja Opis
abs(x) wartóśc bezwzgl¾edna x
acos(x) arcus cosinus x
all(x) testuje czy wszystkie komponenty x s ¾a 6= 0
any(x) testuje czy którykolwiek komponent x jest 6= 0
asin(x) arcus sinus x
atan(x) arcus tangens x
atan2(x,y) arcus tangens wartósci x

y

ceil(x) najmniejsza liczba ca÷kowita � x
clamp(x,min,max) obcina x do przedzia÷u [min,max]
cos(x) cosinus x
cosh(x) cosinus hiperboliczny x
cross(x,y) iloczyn wektorowy x � y
degrees(x) przelicza radiany na stopnie
determinant(m) wyznacznik macierzy kwadratowej m
distance(x,y) odleg÷óśc mi¾edzy punktami x i y
dot(x,y) iloczyn skalarny wektorów x i y
exp(x) ex

exp2(x) 2x

faceforward(i,j,k) oblicza -i�sign(dot(j,k))
�oor(x) najwi¾eksza liczba ca÷kowita � x
fmod(x,y) reszta z dzielenia x przez y

Tablica 2.3: Instrukcje jednostki VSU.

41

Rozdzia÷2. Przetwarzanie wierzcho÷ków

Instrukcja Opis
frac(x) cz¾éśc u÷amkowa x
frexp zwraca cz¾éśc ca÷kowit ¾a i u÷amkow ¾a danej liczby
is�nite(x) true jésli x jest skończone
isinf(x) true jésli x równe -INF lub INF
isnan(x) true jésli x równe NAN lub QNAN
ldexp(x,exp) x�2exp
length(x) d÷ugóśc wektora x
lerp(x,y,s) x+s(y-x)
lit(l,h,m) zwraca wektor [1; l < 0 ? 0 : l; l < 0 jj h < 0 ? 0 : h�m]
log(x) loge(x)
log2(x) log2(x)
log10(x) log10(x)
max(x,y) x > y ? x : y
min(x,y) x < y ? x : y
modf oblicza dzielenie ca÷kowitoliczbowe
mul(x,y) mno·zy elementy
normalize(x) x

length(x)

pow(x,y) xy

radians(x) przelicza stopnie na radiany
re�ect(i,n) i-2�dot(i,n)�n (wektor odbicia i od p÷aszczyzny n)
refract oblicza wektor przej́scia mi¾edzy dwoma ósrodkami
round(x) zaokr ¾agla x do najbli·zszej liczby ca÷kowitej
rsqrt(x) 1

sqr(x)

saturate(x) clamp(x,0,1)
sign(x) 0 jésli x=0, 1 jésli x>0, -1 jésli x<0
sin(x) sinus x
sincos oblicza sinus i cosinus x
sinh(x) sinus hiperboliczny x
smoothstep oblicza interpolacj¾e Hermite�a
sqrt(x) pierwiastek kwadratowy x
step(x) (x � y) ? 1 : 0
tan(x) tangens x
tanh(x) tangens hiperboliczny x
transpose(k) transponuje macierz k

Tablica 2.4: Instrukcje jednostki VSU, ci ¾ag dalszy.

42

2.2. Programowanie uk÷adu

2.2.3. Podstawowe techniki

Mimo i·z zestaw instrukcji jednostek VSU jest du·zy, uk÷ad gra�czny nie mo·ze wykonác
wszystkich niezb¾ednych operacji zwi ¾azanych z wierzcho÷kami. Podstawowym proble-
mem jest dost¾epnóśc informacji tylko o pojedynczych wierzcho÷kach, przez co jakie-
kolwiek czynnósci obejmuj ¾ace topologi¾e obiektu musi przeprowadzác procesor g÷ówny.
Nale·zy równie·z pami¾etác, ·ze niektóre konstrukcje w programie mog ¾a nie zostác skom-
pilowane nawet, jésli program jest semantycznie poprawny. Wynika to z du·zych ob-
ostrzeń, przede wszystkim dotycz ¾acych dost¾epnych zasobów rejestrów i pami¾eci.
Do podstawowych i najwa·zniejszych zastosowań jednostek przetwarzaj ¾acych wierz-

cho÷ki nale·z ¾a transformacje macierzowe. Odci ¾a·zenie procesora g÷ównego nawet tylko
jednym mno·zeniem macierzy na wierzcho÷ek daje ogromne oszcz¾ednósci czasowe. W
typowych aplikacjach wyst¾epuje wiele obiektów ruchomych, przez co ilóśc niezb¾ednych
transformacji uk÷adów odniesienia oraz innych przekszta÷ceń jest na tyle du·za, ·ze po-
moc uk÷adu gra�cznego jest nieoceniona.
Poni·zszy program przedstawia najcz¾ésciej wykonywan ¾a operacj¾e, przemno·zenia wspó÷-

rz¾ednych ka·zdego wierzcho÷ka przez macierz, która odpowiada transformacji wspó÷rz¾ed-
nych z uk÷adu obiektu do uk÷adu obserwatora. Uk÷ad obiektu cz¾esto jest nazywany
uk÷adem lokalnym, w przeciwieństwie do uk÷adu globalnego, w którym okréslane s ¾a
ostateczne pozycje wszystkich elementów sceny. W macierzy mxLocalToView musi
býc równie·z zawarty rzut perspektywiczny lub równoleg÷y.

float4x4 mxLocalToView; // macierz transformacji

struct T_VIN // dane wierzcho÷ka
{
float3 pos : TEXCOORD0; // pozycja

};

struct T_VOUT // dane wyjściowe
{
float4 pos : POSITION; // pozycja

};

T_VOUT vmain(T_VIN vin)
{
T_VOUT vout;
float4 wpos;

(float3)wpos=vin.pos;
wpos.w=1;

// transformcja wierzcho÷ka
vout.pos=mul(mxLocalToView,wpos);

return vout;
}

(Program 2.2)

W typowej scenie jest umieszczona pewna ilóśc obiektów, ka·zdy z nich sk÷ada si¾e
z okréslonej ilósci trójk ¾atów oraz wierzcho÷ków. Animowác obiekty w ca÷ósci mo·zna
poprzez zmian¾e macierzy transformuj ¾acej go do uk÷adu globalnego. Przy takiej technice

43

Rozdzia÷2. Przetwarzanie wierzcho÷ków

animacji, w pami¾eci procesora gra�cznego wystarczy umiéscíc program (2.2) i przy
rozpoczynaniu przetwarzania ka·zdego nowego obiektu zmieniác tylko postác macierzy
mxLocalToView, przesy÷aj ¾ac do karty ca÷y czas te same wspó÷rz¾edne wierzcho÷ków.
W programie (2.2) wspó÷rz¾edne wierzcho÷ków s ¾a przesy÷ane w postaci trzech (XYZ)

a nie czterech komponentów (XYZW). Dzieje si¾e tak dlatego, ·ze przede wszystkim
nale·zy unikác przesy÷ania zb¾ednych informacji przez szyn¾e, w tym przypadku by÷aby to
wspó÷rz¾edna w; domýslnie równa 1. Konsekwencj ¾a takiego post¾epowania jest konwersja
na typ czterokomponenetowy tu·z przed przemno·zeniem przez macierz. Za wspó÷rz¾edn ¾a
w podstawia si¾e wtedy 1.
Interesuj ¾ace efekty mo·zna uzyskác stosuj ¾ac kombinacj¾e liniow ¾a mi¾edzy wynikami

przemno·zenia tego samego wierzcho÷ka przez kilka ró·znych macierzy. W taki w÷ásnie
sposób w programach gra�cznych i grach symuluje si¾e efekt napinania si¾e skóry na
stawach postaci (rys. 2.18).

Rysunek 2.18: Kombinacja liniowa dwóch przekszta÷ceń macierzowych na wierzcho÷kach
walca.

Pierwszym etapem jest przygotowanie modelu i przyporz ¾adkowanie wierzcho÷kom
odpowiednich kósci. Czynnóśc ta jest przeprowadzana, gdy model jest w stanie spo-
czynku (górna cz¾éśc rys. 2.18) a ka·zdy wierzcho÷ek ma swoje wspó÷rz¾edne przedsta-
wione w uk÷adzie globalnym G. W środku modelu umieszcza si¾e po÷¾aczone ze sob ¾a
odcinki, które odpowiadaj ¾a prawdziwym kósciom. Ka·zdy odcinek wyznacza pewien
uk÷ad wspó÷rz¾ednych znajduj ¾acy si¾e w G.
Niech macierzM oznacza dowolne przekszta÷cenie a�niczne, które odpowiada trans-

formacji kósci. Jésli wspó÷rz¾edne dowolnego wierzcho÷ka przemno·zymy przez macierz
M , wierzcho÷ek w stosunku do przekszta÷conej przez M kósci b¾edzie dok÷adnie w tej
samej pozycji co wczésniej. W przypadku przyk÷adu z walcem, wierzcho÷ki na końcach

44

2.2. Programowanie uk÷adu

powinny poruszác si¾e razem z kósci ¾a a wierzcho÷ki w pobli·zu stawu musz ¾a zostác úsred-
nione tak, aby wp÷yw na nie mia÷y obie przy÷¾aczone do stawu kósci. Ten efekt mo·zna
uzyskác poprzez kombinacj¾e liniow ¾a wspó÷rz¾ednych uzyskanych po przemno·zeniu wierz-
cho÷ka przez macierze M1

K i M
2
K ; odpowiadaj ¾ace obu kósciom. Warunkiem uzyskania

poprawnych wizualnie wyników jest sumowanie si¾e wspó÷czynników przy kombinacji
do 1. Ogólne równanie przekszta÷cenia wierzcho÷ka przy u·zyciu n kósci wygl ¾ada nast¾e-
puj ¾aco:

v0 =
nX
i=1

�i �M i
K � v; gdzie

nX
i=1

�i = 1 (2.13)

Dla dwóch kósci, wagi � w pobli·zu stawu zbli·zaj ¾a si¾e do 1
2
: W środku kósci jeden

z nich zbli·za si¾e do 1 a drugi do 0. Wagi s ¾a przyporz ¾adkowywane poszczególnym
wierzcho÷kom na sta÷e w specjalnym programie gra�cznym, który wspomaga ten proces.
Zadaniem mikroprogramu jest przeprowadzenie operacji zwi ¾azanych z równaniem

(2.13). Do danych przesy÷anych do karty dodaje si¾e wagi wierzcho÷ków a macierze MK

wprowadza si¾e jako sta÷e. Dla ka·zdego wierzcho÷ka mo·ze býc kilka wspó÷czynników
wagowych, w zale·znósci od ilósci kósci maj ¾acych wp÷yw na jego pozycj¾e. Poniewa·z
w mikroprogramach mo·zna adresowác pósrednio tylko rejestry sta÷ych rzeczywistych,
trzeba niestety pisác osobny program dla ka·zdej mo·zliwej ilósci kósci. Z tego wzgl¾edu,
aby nie zmieniác programu zbyt cz¾esto, wierzcho÷ki wysy÷a si¾e do karty pogrupowane
wed÷ug ilósci kósci do nich przyporz ¾adkowanych. Poni·zszy program demonstruje t ¾a
technik¾e dla trzech kósci.

float3x4 bones[3]; // macierze kości
float4x4 mx_Global2View;

struct T_VIN // dane wierzcho÷ka
{
float3 pos : TEXCOORD0; // pozycja
float w[2] : TEXCOORD1; // wagi

};

struct T_VOUT // dane wyjściowe
{
float4 pos : POSITION;

};

T_VOUT vmain(T_VIN vin) // mikroprogram
{
T_VOUT vout;
float3 p1,p2,p3;
float4 pos2;

// 3 pozycje wierzcho÷ka
p1=mul(bones[0],vin.pos);

#

(Program 2.3)

45

Rozdzia÷2. Przetwarzanie wierzcho÷ków

"
p2=mul(bones[1],vin.pos);
p3=mul(bones[2],vin.pos);

// wagowanie
(float3)pos2=vin.w[0]*p1+vin.w[1]*p2+(1-vin.w[0]-vin.w[1])*p3;
pos2.w=1.0f;

// transformacja
vout.pos=mul(mx_Global2View,pos2);

return vout;
}

(Program 2.3)

Równie·z w tym przypadku, ze wzgl¾edu na jak najmniejsz ¾a ilóśc przesy÷anych infor-
macji, ostatnia waga dla wierzcho÷ka nie jest przesy÷ana. Mo·zna j ¾a w prosty sposób
obliczýc, odejmuj ¾ac od jedynki pozosta÷e wagi.
Ostatnim z podstawowych sposobów wykorzystania jednostki VSU jest oblicza-

nie nat¾e·zenia óswietlenia padaj ¾acego na wierzcho÷ki. Ka·zdy wierzcho÷ek jest cz¾ésci ¾a
wspóln ¾a kilku trójk ¾atów, które maj ¾a wektory normalne do swojej powierzchni. Aby
obliczýc óswietlenie, nale·zy okréslíc wektor normalny do powierzchni obiektu w ka·zdym
z wierzcho÷ków. Najcz¾ésciej wektory z otaczaj ¾acych wierzcho÷ek trójk ¾atów s ¾a úsred-
niane. Dzi¾eki temu óswietlenie b¾edzie p÷ynnie zmienia÷o intensywnóśc na wierzcho÷kach
mimo tego, ·ze obiekt jest w rzeczywistósci kanciasty. Nale·zy pami¾etác, ·ze ostatecznie
obliczony kolor óswietlenia b¾edzie w obr¾ebie trójk ¾ata interpolowany liniowo i przy ma÷ej
ilósci trójk ¾atów efekt nie b¾edzie zadowalaj ¾acy (lewa strona rys. 1.6).

Rysunek 2.19: Óswietlenie na wierzcho÷kach. Walec z lewej strony ma wspólne wektory
normalne dla wszystkich ścian na kraw¾edzi walca.

Przy obliczaniu wektora normalnego na wierzcho÷kach s ¾a u·zywane równie·z bardziej
zaawansowane techniki, uwzgl¾edniaj ¾ace na przyk÷ad rozmiar poszczególnych trójk ¾atów.
Czasami wierzcho÷ek nale·zy do ostrej kraw¾edzi, która nie powinna zostác óswietlona

46

2.2. Programowanie uk÷adu

w sposób g÷adki. Poniewa·z kolor wierzcho÷ka b¾edzie interpolowany na ka·zd ¾a ze ścian,
z któr ¾a ten wierzcho÷ek jest po÷¾aczony, nale·zy skopiowác jego pozycj¾e i stworzýc nowe
wierzcho÷ki w tym samym miejscu. W ten sposób w punkcie, gdzie le·za÷pierwotny
wierzcho÷ek, spotkaj ¾a si¾e ró·zne kolory (rys. 2.19).
W przypadku obliczania intensywnósci z wielu źróde÷́swiat÷a, wystarczy napisác

tylko jeden mikroprogram, który b¾edzie dzia÷a÷niezale·znie od ich liczby. Jest to mo·z-
liwe, poniewa·z dane o świat÷ach s ¾a umieszczone w przestrzeni przeznaczonej na sta÷e, a
sta÷e mo·zna indeksowác pósrednio. Informacje o wierzcho÷kach sk÷adaj ¾a si¾e z pozycji,
wektora normalnego i koloru powierzchni. Program (2.4) oblicza kolor odbity od wierz-
cho÷ka w kierunku obserwatora, przy czym liczba świate÷jest ograniczona wy÷¾acznie
ilósci ¾a dozwolonych sta÷ych. W programie zastosowano model Phonga [8]:

k = ks cos(N;L) + kd cos
n(R;E); (2.14)

gdzie ks oznacza sk÷adow ¾a rozproszona świat÷a, kd - sk÷adow ¾a zwierciadlan ¾a, N -
wektor normalny do powierzchni, L - kierunek padania świat÷a, R to wektor L od-
bity od powierzchni, E - kierunek patrzenia obserwatora, n - wspó÷czynnik g÷adkósci
powierzchni.

struct T_LIGHT // dane świat÷a
{
float3 pos; // pozycja świat÷a
float3 col_diff; // sk÷adowa rozproszona
float3 col_spec; // sk÷. zwieciadlana
float pn; // wsp. g÷adkośći

};

int n_lights; // ilość świate÷
T_LIGHT lights[8]; // świat÷a (maks. 8)

float4x4 mxLocalToView; // macierz transformacji
float3 eye_pos; // pozycja obserwatora

struct T_VIN // dane wierzcho÷ka
{
float3 pos : TEXCOORD0; // pozycja
float3 n : TEXCOORD1; // wektor normalny
float3 col : TEXCOORD2; // kolor

};

struct T_VOUT // dane wyjściowe
{
float4 pos : POSITION; // pozycja
float3 col : COLOR0; // kolor

};

T_VOUT vmain(T_VIN vin) // mikroprogram
{
T_VOUT vout;
int i;
float3 eye,eye_rfl,light;

#

(Program 2.4)

47

Rozdzia÷2. Przetwarzanie wierzcho÷ków

"
float lp;
float4 pos={0,0,0,1};

vout.col=(float3)pos;
eye=normalize(eye_pos-vin.pos);
eye_rfl=reflect(eye,vin.n);

// obliczenie nat¾e·zenia swiat÷a
for(i=0;i<n_lights;i++)
{
light=normalize(lights[i].pos-vin.pos);

// sk÷adowa rozproszona
lp=max(0,dot(vin.n,light));
vout.col+=lights[i].col_diff*lp;

// sk÷adowa zwierciadlana
lp=max(0,pow(dot(eye_rfl,light),lights[i].pn));
vout.col+=lights[i].col_spec*lp;

}

// kolor powierzchni
vout.col*=vin.col;
// pozycja
(float3)pos=vin.pos;
vout.pos=mul(mxLocalToView,pos);

return vout;
}

(Program 2.4)

W celu przyspieszenia obliczeń, pozycje świate÷oraz obserwatora s ¾a podane w tym
samym uk÷adzie wspó÷rz¾ednych, co wierzcho÷ki obiektu. Równie·z w celach optymaliza-
cyjnych zamiast odbijác od powierzchni wektory kierunku świate÷, odbijany jest wektor
kierunku patrzenia obserwatora.

48

Rozdzia÷3

Generowanie obrazu

Po zakończeniu procesu przetwarzania wierzcho÷ków, informacje o scenie sk÷adaj ¾a si¾e
ze wspó÷rz¾ednych wierzcho÷ków w przestrzeni R3, pogrupowanych w trójk ¾aty. Wspó÷-
rz¾edne te s ¾a obrazem obiektów po przekszta÷ceniach rzutuj ¾acych (x; y; z; w)! (x0; y0; z0)
i wszystkie nale·z ¾a do tzw. kanonicznej bry÷y widzenia. Pary (x0; y0) 2 ([�1; 1]; [�1; 1])
s ¾a wspó÷rz¾ednymi na p÷aszczýznie rzutni a z0 2 [0; 1] jest dodatkow ¾a informacj ¾a o
wzajemnej odleg÷ósci punktów od obserwatora. Wspó÷rz¾edne x0 i y0 musz ¾a býc prze-
kszta÷cone tak, aby widoczny obszar sceny pokry÷·z ¾adane prostok ¾atne okno w buforze
koloru (x0; y0)! (�x; �y). Po÷o·zenie oraz rozmiary okna s ¾a dowolne.
Bufor koloru niekoniecznie musi býc odwzorowany bezpósrednio na ekran monitora.

Mo·ze býc równie·z tekstur ¾a, która zostanie pó́zniej na÷o·zona na kilka trójk ¾atów na
scenie, na przyk÷ad w charakterze ekranu telewizora.

X

Y

układ bufora koloru

X'

Y'

układ kanonicznej
bryły widzenia

(0,0)

(w ­1,h ­1)b b

()xo o,y

wo

ho

Rysunek 3.20: Uk÷ad wspó÷rz¾ednych bufora koloru.

Środek lewego górnego piksela ma w uk÷adzie bufora koloru wspó÷rz¾edn ¾a (0; 0) a
środek prawego dolnego (wb�1; hb�1), gdzie wb i hb oznaczaj ¾a odpowiednio szerokóśc

49

Rozdzia÷3. Generowanie obrazu

i wysokóśc bufora w pikselach (rys. 3.20).
Transformacja, która zamienia wspó÷rz¾edne kanoniczne na wspó÷rz¾edne bufora jest

przedstawiona poni·zej: �
�x
�y

�
=

�
wo
2

0 0
0 �ho

2
0

� �
x0

y0

�
+

�
wo
2
+ �xo

ho
2
+ �yo

�
; (3.15)

gdzie wo i ho okréslaj ¾a odpowiednio szerokóśc i wysokóśc okna w pikselach a punkt
(�xo; �yo) wyznacza po÷o·zenie lewego górnego rogu okna. W takiej postaci dane tra�aj ¾a
do cz¾ésci uk÷adu, która ka·zdemu trójk ¾atowi przyporz ¾adkowuje piksele, które sk÷adaj ¾a
si¾e na jego obraz. Proces ten zwany jest rasteryzacj ¾a.
W nast¾epnej kolejnósci, dla ka·zdego piksela s ¾a obliczane atrybuty, które pocz ¾atkowo

maj ¾a wartósci wy÷¾acznie dla wierzcho÷ków aktualnie przetwarzanego trójk ¾ata. Kolory,
wspó÷rz¾edne dla tekstur oraz informacje o odleg÷ósci od obserwatora s ¾a interpolowane
w sposób dyskretny na obrazie ca÷ego trójk ¾ata. Od tego momentu, ka·zdy piksel jest
autonomicznym elementem obrazu, posiadaj ¾acym w÷asne atrybuty i wspó÷rz¾edne. Po-
zosta÷e informacje, mi¾edzy innymi o topologii sceny, nie s ¾a ju·z do niczego potrzebne.
Ka·zdy wyodr¾ebniony piksel jest przetwarzany przez specjaln ¾a jednostk¾e uk÷adu gra-

�cznego (ang. Pixel Shader Unit). Dla ka·zdego piksela jest wykonywany mikropro-
gram, którego zadaniem jest obliczenie wartósci, która b¾edzie umieszczona w buforze
koloru. Poza atrybutami, mikroprogram mo·ze wykorzystác, poprzez specjalne instruk-
cje próbkuj ¾ace, dane pochodz ¾ace z maksymalnie kilkunastu tekstur.
Po obliczeniu koloru piksela, uk÷ad wykonuje kilka czynnósci zwi ¾azanych z buforami,

w których s ¾a zapisane dane o poprzednio generowanych pikselach. Oprócz bufora koloru
i bufora-Z, który s÷u·zy do wyznaczenia widocznósci, programista mo·ze wykorzystác
bufor zliczania (ang. stencil bu¤er). W typowych zastosowaniach, znajduj ¾a si¾e w nim
informacje o ilósci wygenerowanych pikseli o tych samych wspó÷rz¾ednych.
Na buforach mo·zna wykonác kilka prede�niowanych funkcji, które jako argumenty

przyjmuj ¾a dane w buforze i informacje o aktualnie przetwarzanym pikselu. Dopiero po
wykonaniu tych czynnósci w buforach s ¾a potencjalnie zapisywane nowe wartósci.

PSU

rasteryzacja

transformacja
do R3

interpolacja
atrybutówpiksele

operacje
na buforach

Pn P1...

Rysunek 3.21: Schemat końcowej fazy procesu generowania obrazu.

50

3.1. Rasteryzacja i interpolacja atrybutów

3.1. Rasteryzacja i interpolacja atrybutów
Regu÷y dotycz ¾ace procesu rasteryzacji s ¾a ścísle zde�niowane, gwarantuje to identycz-
nie wygenerowane obrazy tej samej sceny na ró·znych akceleratorach. W rozdziale
pierwszym przedstawiona jest metoda, która przyporz ¾adkowuje do trójk ¾ata ka·zdy pik-
sel, który ma nawet najmniejsz ¾a cz¾éśc wspóln ¾a z obszarem zajmowanym przez trójk ¾at
(rys. 1.3). W przypadku, kiedy dwa trójk ¾aty maj ¾a wspóln ¾a kraw¾ed́z, doprowadzi to
do sytuacji, w której grupa pikseli na kraw¾edzi zostanie przyporz ¾adkowana do oby-
dwu trójk ¾atów. W konsekwencji niektóre piksele zostan ¾a narysowane dwa razy, co
niepotrzebnie zwi¾eksza koszt obliczeń. Przy du·zej ilósci ma÷ych trójk ¾atów, wi¾ekszóśc
miejsca na ekranie b¾edzie zajmowana przez tego typu piksele a zb¾edne obliczenia mog ¾a
zaj ¾ác blisko po÷ow¾e czasu póswi¾econego na generowanie obrazu. Problem ten zosta÷
skutecznie rozwi ¾azany przez wprowadzenie takich zasad rasteryzacji, aby ka·zde dwa
geometrycznie spójne trójk ¾aty nie mia÷y wspólnych pikseli.

Rysunek 3.22: Poprawna rasteryzacja dwóch trójk ¾atów.

Piksel stanowi cz¾éśc obrazu trójk ¾ata na ekranie tylko wtedy, gdy jego geometryczny
środek znajduje si¾e w polu trójk ¾ata. W przypadku, kiedy środek piksela znajduje si¾e
na kraw¾edzi, stosowane s ¾a specjalne warunki. Kraw¾edzie dzielone s ¾a na górne, dolne,
lewe oraz prawe. Górne i dolne to kraw¾edzie poziome, lewe oraz prawe to pozosta÷e
kraw¾edzie odpowiednio z lewej oraz z prawej strony trójk ¾ata. Piksel le·z ¾acy na obrze·zu
jest przyporz ¾adkowywany trójk ¾atowi tylko wtedy, gdy nie le·zy na jego dolnej lub prawej
kraw¾edzi (rys. 3.22).
Przynale·znóśc pikseli wyznacza si¾e za pomoc ¾a odpowiednio zmody�kowanych algo-

rytmów rysowania linii. Najcz¾ésciej stosowany jest algorytm Bresenhama [1]. Po po-
dzieleniu kraw¾edzi na grupy, wyznaczane s ¾a wspó÷rz¾edne pikseli nale·z ¾acych do lewych

51

Rozdzia÷3. Generowanie obrazu

i prawych kraw¾edzi. Warunki specjalne s ¾a cz¾ésciowo realizowane podczas generowa-
nia linii a cz¾ésciowo poprzez dodatkowe sprawdzenia. Powierzchni¾e trójk ¾ata stanowi ¾a
piksele pomi¾edzy obliczonymi wspó÷rz¾ednymi. Implementacja tego mechanizmu zale·zy
wy÷¾acznie od projektanta uk÷adu gra�cznego.

3.1.1. Interpolacja liniowa

Po przekszta÷ceniach rzutuj ¾acych, wspó÷rz¾edne wierzcho÷ków ka·zdego trójk ¾ata s ¾a przed-
stawione w dwuwymiarowym uk÷adzie bufora. Wartósci atrybutów, które s ¾a zde�nio-
wane dla wierzcho÷ków, musz ¾a býc w szybki sposób obliczone we wszystkich pikselach
sk÷adaj ¾acych si¾e na obraz trójk ¾ata (rys. 3.23). Przy za÷o·zeniu, ·ze wartósci atrybutów
maj ¾a býc interpolowane liniowo we wspó÷rz¾ednych bufora, mo·zna zastosowác bardzo
szybk ¾a metod¾e obliczeń, niewymagaj ¾ac ¾a czasoch÷onnych operacji arytmetycznych.

(, ,u)x y0 0 0

(, ,u)x y1 1 1

(, ,u)x y2 2 2

(, ,?)x y

Y

układ bufora koloru

Rysunek 3.23: Znalezienie wartósci u w środku piksela (�x; �y) wymaga u·zycia interpolacji
danych z wierzcho÷ków trójk ¾ata.

Poszukiwanym rozwi ¾azaniem s ¾a wspó÷czynniki A, B i C nast¾epuj ¾acej funkcji linio-
wej:

u = f(�x; �y) = A � �x+B � �y + C: (3.16)

Istnieje tylko jedno rozwi ¾azanie tego problemu, poniewa·z wartóśc atrybutu u mo·zna
wyobrazíc sobie jako wspó÷rz¾edn ¾a z w przestrzeni R3: Po liniowej interpolacji tej wspó÷-
rz¾ednej, wynikiem b¾ed ¾a trzy wierzcho÷ki (�x0; �y0; z0); (�x1; �y1; z1) i (�x2; �y2; z2) po÷¾aczone
p÷aszczyzn ¾a w R3.

52

3.1. Rasteryzacja i interpolacja atrybutów

Wspó÷czynniki funkcji (3.16) mo·zna uzyskác poprzez rozwi ¾azanie uk÷adu równań
liniowych: 24�x0 �y0 1

�x1 �y1 1
�x2 �y2 1

3524AB
C

35 =
24u0u1
u2

35 ;
st ¾ad

8>>><>>>:
A =

du1dy2 � du2dy1
dx1dy2 � dx2dy1

B =
du2dx1 � du1dx2
dx1dy2 � dx2dy1

9>>>=>>>; ; gdzie
8<:dx1 = �x1 � �x0; dy1 = �y1 � �y0; du1 = u1 � u0dx2 = �x2 � �x0; dy2 = �y2 � �y0; du2 = u2 � u0

9=; :

Wspó÷czynniki A i B oblicza si¾e raz na ka·zdy trójk ¾at. Poniewa·z A =
@f

@�x
i B =

@f

@�y
,

funkcj¾e f mo·zna obliczác w prosty sposób bez u·zycia parametru C :

u = f(�x; �y) = A(�x� �x0) +B(�y � �y0) + u0: (3.17)

Interpolacja liniowa pozwala bardzo szybko obliczác wartósci atrybutów dla s ¾asia-
duj ¾acych pikseli. Przesuwaj ¾ac si¾e o jeden piksel w prawo lub w dó÷, do ju·z obliczonego
parametru u wystarczy dodác odpowiednio A lub B. Jésli scena sk÷ada si¾e z du·zej
ilósci trójk ¾atów, wyeliminowanie z obliczeń parametru C znacznie zmniejsza koszt ob-
liczeniowy. Uk÷ad gra�czny korzysta z sekwencyjnego obliczania wartósci atrybutów,
wi¾ec obliczanie funkcji f w postaci (3.17) jest szybsze ni·z tej w postaci (3.16).
Dla uzupe÷nienia, parametr C jest równy:

C =
�x0(du2dy1 � du1dy2) + �y0(du1dx2 � du2dx1) + u0(dx1dy2 � dx2dy1)

dx1dy2 � dx2dy1
:

3.1.2. Interpolacja hiberboliczna

Jésli rozk÷ad wartósci atrybutów pomi¾edzy wierzcho÷kami jest liniowy w przestrzeni
P (R3), to po przej́sciu do R3 rozk÷ad mo·ze býc ju·z nieliniowy. Dla przyk÷adu, je·zeli
jeden z atrybutów b¾edzie odpowiada÷kolorowi trójk ¾ata, to liniowa interpolacja ko-
loru pomi¾edzy wierzcho÷kami wygeneruje b÷¾edny obraz sceny, jésli operacja ta b¾edzie
wykonana po rzucie perspektywicznym.
Na rys. 3.24 przedstawiony jest rzut perspektywiczny odcinka o końcach w punktach

p0 i p1: Do ka·zdego wierzcho÷ka przyporz ¾adkowany jest atrybut u, który jest liniowo
roz÷o·zony na ca÷ej d÷ugósci odcinka. Punkt pm le·zy w po÷owie d÷ugósci mi¾edzy punktami
p0 i p1 a wartóśc atrybutu wynosi dla niego um = 1

2
u0+

1
2
u1: Punkty p00 i p

0
1 s ¾a obrazami

punktów p0 i p1 po rzucie perspektywicznym. Oczywíscie w punktach p00 i p
0
1 wartósci

53

Rozdzia÷3. Generowanie obrazu

atrybutów pozosta÷y niezmienione. Obrazem punktu p2 na rzutni jest punkt p02; który
le·zy dok÷adnie w po÷owie odleg÷ósci mi¾edzy punktami p00 i p

0
1: Wartóśc atrybutu w p2

wynosi u2 i taka powinna býc te·z w punkcie p02: Niestety, przy zastosowaniu liniowej
interpolacji atrybutu u pomi¾edzy punktami p00 i p

0
1; wartóśc w punkcie p02 wyniesie

1
2
u0 +

1
2
u1 = um; co jest ró·zne od u2:

Y

zN

p (u)0 0

p (u)2 2

p (u)m m

p (u)1 1

p' (u)0 0

p' (u)1 1

p' ()2 um

rzutnia

p =(p +p)/2m 0 1

u =(u +u)/2m 0 1

p' =(p' +p')/22 0 1

Z

Rysunek 3.24: Interpolacja liniowa parametru u w uk÷adzie rzutni, powoduje b÷¾edne
obliczenie parametru dla punktu p02.

Rozwi ¾azaniem powy·zszego problemu jest u·zycie bardziej skomplikowanej metody in-
terpolacji w uk÷adzie rzutni. Niech punkty p0 = (x0; y0; z0; w0) i p1 = (x1; y1; z1; w1)
stanowi ¾a końce odcinka w przestrzeni P (R3). Po wykonaniu rzutu perspektywicz-

nego, wierzcho÷ki b¾ed ¾a mia÷y wspó÷rz¾edne p00 = (x00; y
0
0; z

0
0) = (

x0
w0
;
y0
w0
;
z0
w0
) i p01 =

(x01; y
0
1; z

0
1) = (

x1
w1
;
y1
w1
;
z1
w1
): Interpolacja liniowa wspó÷rz¾ednej y0 mi¾edzy punktami p00 i

p01 przed wykonaniem rzutu perspektywicznego jest okréslona wzorem:

y0t(t) =
y0(1� t) + y1t
w0(1� t) + w1t

; gdzie t 2 [0; 1]: (3.18)

Interpolacja liniowa wspó÷rz¾ednej y0 po rzucie perspektywicznym ma postác wzoru:

y0s(s) =
y0
w0
(1� s) + y1

w1
s, gdzie s 2 [0; 1]: (3.19)

54

3.1. Rasteryzacja i interpolacja atrybutów

Funkcje (3.18) i (3.19) s ¾a ci ¾ag÷e i monotoniczne na przedziale [0; 1] oraz maj ¾a takie
same dziedziny i przeciwdziedziny. Parametry s i t nie ÷¾aczy jednak zale·znóśc liniowa.

y0t(t) = y
0
s(s);

czyli

y0(1� t) + y1t
w0(1� t) + w1t

=
y0
w0
(1� s) + y1

w1
s. (3.20)

Poddaj ¾ac równanie (3.20) serii nast¾epuj ¾acych przekszta÷ceń:

y0(1� t) + y1t
w0(1� t) + w1t

=
y0w1(1� s) + y1w0s

w0w1
;

[y0(1� t) + y1t]w0w1 = [w0(1� t) + w1t][y0w1(1� s) + y1w0s];

y0w0w1s� y0w0w1st� y0w21t+ y0w21st+ y1w0w1t� y1w0w1st� y1w20s+ y1w20st = 0;

t =
�y0w0w1s+ y1w20s

�y0w0w1s� y0w21 + y0w21s+ y1w0w1 � y1w0w1s+ y1w20s
;

t =
w0s(�y0w1 + y1w0)

[w0s+ w1(1� s)](�y0w1 + y1w0)
;

otrzymujemy

t =
w0s

w0s+ w1(1� s)
: (3.21)

Podstawiaj ¾ac (3.21) do równania y(t) = y0(1� t) + y1t otrzymujemy:

y(s) = y0(1�
w0s

w0s+ w1(1� s)
) + y1

w0s

w0s+ w1(1� s)
: (3.22)

55

Rozdzia÷3. Generowanie obrazu

Po przekszta÷ceniu równania (3.22):

y(s) =
y0w0s+ y0w1(1� s)� y0w0s+ y1w0s

w0s+ w1(1� s)
;

y(s) =
y0w1(1� s) + y1w0s
w0s+ w1(1� s)

;

y(s) �

1

w0w1
1

w0w1

=
y0w1(1� s) + y1w0s
w0s+ w1(1� s)

�

1

w0w1
1

w0w1

otrzymujemy

y(s) =

y0
w0
(1� s) + y1

w1
s

1

w0
(1� s) + 1

w1
s
: (3.23)

Interpoluj ¾ac liniowo parametr s na przedziale [0; 1] i równoczésnie przebiegaj ¾ac li-
niowo przedzia÷[y00; y

0
1] mo·zna za pomoc ¾a wzoru (3.23) dowiedziéc si¾e, jak ¾a wspó÷rz¾edn ¾a

y mia÷dany punkt p0 przed rzutem perspektywicznym. Poniewa·z parametryzacja (3.21)
jest zale·zna wy÷¾acznie od wspó÷rz¾ednej w, mo·zna za jej pomoc ¾a poznác nie tylko wspó÷-
rz¾edn ¾a y punktu p0 przed rzutem, ale tak·ze jak ¾akolwiek wartóśc, która mia÷a liniowy
rozk÷ad na przedziale [p0; p1]: Odpowiedni wzór na poprawn ¾a interpolacj¾e atrybutu u
w uk÷adzie rzutni, a wi¾ec ju·z po rzucie perspektywicznym, ma postác:

u(s) =

u0
w0
(1� s) + u1

w1
s

1

w0
(1� s) + 1

w1
s
, dla s 2 [0; 1]: (3.24)

Aby znaléźc bezpósredni ¾a zale·znóśc parametru u od wspó÷rz¾ednej y0 wystarczy pod-

stawíc za s wyra·zenie
y0 � y00
y01 � y00

; w ten sposób s b¾edzie równe 0 dla y0 = y00 i równe 1 dla

y0 = y01.
W celu poprawnego obliczenia wartósci atrybutu u w ka·zdym punkcie nale·z ¾acym do

obrazu trójk ¾ata, nale·zy liniowo interpolowác po powierzchni obrazu dwie wartósci:
u

w

oraz
1

w
(licznik i mianownik 3.24): Kiedy wartóśc u jest potrzeba w konkretnym punk-

cie, nale·zy wykonác dzielenie u0 =
u

w
=
1

w
(3.24): Interpolacja we wspó÷rz¾ednych bufora

ekranu b¾edzie mia÷a identyczn ¾a postác, wystarczy tylko przyporz ¾adkowác poszczególne
atrybuty i wspó÷rz¾edne w odpowiednio przekszta÷conym wierzcho÷kom (3.15). W ten
sposób mo·zna poprawnie obliczýc wartóśc wszystkich atrybutów w ka·zdym pikselu,

56

3.2. Tekstury

nale·z ¾acym do obrazu trójk ¾ata w buforze koloru. Ten rodzaj interpolacji, ze wzgl¾edu
na natur¾e funkcji (3.24), jest nazywany interpolacj ¾a hiperboliczn ¾a.
Poprawna interpolacja pojedynczej wartósci wymaga jednej operacji dzielenia na

ka·zdy obliczany piksel obrazu. W porównaniu ze zwyk÷¾a liniow ¾a interpolacj ¾a jest to
bardzo du·zy koszt, poniewa·z wykonanie dzielenia jest najwolniej wykonywan ¾a przez
procesory operacj ¾a arytmetyczn ¾a.

Rysunek 3.25: Rzut perspektywiczny prostok ¾ata z na÷o·zon ¾a tekstur ¾a. Po lewej wspó÷-
rz¾edne tekstury interpolowane s ¾a liniowo, po prawej hiperbolicznie.

Interpolacja liniowa da zbli·zone do poprawnych wyniki tylko wtedy, gdy wspó÷rz¾edne
w wierzcho÷ków nie ró·zni ¾a si¾e du·zo od siebie. Jésli w0 = w1 zwi ¾azek (3.21) zredukuje
si¾e do t = s. Jésli scena sk÷ada si¾e z bardzo ma÷ych trójk ¾atów, wtedy wspó÷rz¾edne w
wierzcho÷ków b¾ed ¾a do siebie zbli·zone i b÷¾edy interpolacji nie b¾ed ¾a a·z tak widoczne jak
na rys. 3.25.
Obecnie produkowane uk÷ady gra�czne nie pozwalaj ¾a ju·z na w÷¾aczenie interpolacji

liniowej. Wszystkie wartósci atrybutów s ¾a zawsze interpolowane hiperbolicznie.

3.2. Tekstury

3.2.1. Tekstury dwuwymiarowe

Najcz¾ésciej u·zywanym rodzajem tekstur s ¾a prostok ¾atne zbiory tekseli, które reprezen-
tuj ¾a faktur¾e powierzchni obiektów. Ka·zdy teksel sk÷ada si¾e z danych opisuj ¾acych kolor
powierzchni, trzech komponentów w przypadku modelu RGB. Dane s ¾a umieszczone w
dwuwymiarowej tablicy, któr ¾a indeksuje si¾e poprzez wspó÷rz¾edne u 2 R oraz v 2 R.
Rozmiary tekstury w poziomie i w pionie musz ¾a býc równe odpowiednio m = 2k i
n = 2l, gdzie k i l nale·z ¾a do liczb ca÷kowitych nieujemnych a m i n oznaczaj ¾a od-
powiednio szerokóśc i wysokóśc tekstury mierzon ¾a w tekselach. Jest to spowodowane
mo·zliwósci ¾a szybszego dost¾epu do kolejnych wierszy tablicy, gdy·z mno·zenie przez po-
t¾egi dwójki wymaga wy÷¾acznie operacji przesuni¾éc bitów.
W API DirectX zwi ¾azek mi¾edzy wspó÷rz¾ednymi u i v a wspó÷rz¾edn ¾a adresowanego

57

Rozdzia÷3. Generowanie obrazu

teksela (tu; tv) 2 (f0::m � 1g; f0::n � 1g) zale·zy od wybranego trybu post¾epowania,
gdy wspó÷rz¾edna u lub v wykracza poza przedzia÷[0; 1). Dost¾epne s ¾a trzy podstawowe
tryby adresowania:

� Tryb ramki, w którym pobranie teksela o wspó÷rz¾ednych (u; v) le·z ¾acych poza
przedzia÷em ([0; 1); [0; 1)) powoduje zwrócenie koloru ramki. Kolor ramki jest
podawany jako parametr konkretnej tekstury. Wspó÷rz¾edne le·z ¾ace w powy·zszym
przedziale wyznaczaj ¾a teksel o wspó÷rz¾ednych:

(tu; tv) = (bumc; bvnc): (3.25)

� Tryb powtarzania, w którym wspó÷rz¾edne poza przedzia÷em s ¾a sprowadzane do
niego z powrotem za pomoc ¾a wzoru:

(tu; tv) = (b(u� buc)mc; b(v � bvc)nc): (3.26)

� Tryb lustrzanego odbicia:

tu =

�
b(u� buc)mc jésli buc jest parzyste lub równe 0
b(1� (u� buc))mc jésli buc jest nieparzyste

�
; (3.27)

tv =

�
b(v � bvc)nc jésli bvc jest parzyste lub równe 0
b(1� (v � bvc))nc jésli bvc jest nieparzyste

�
:

Rysunek 3.26: Dwuwymiarowa tekstura na÷o·zona na powierzchni¾e kuli. Dodano map¾e
nierównósci i óswietlenie.

58

3.2. Tekstury

Po przyporz ¾adkowaniu odpowiednich wspó÷rz¾ednych u i v wierzcho÷kom modelu,
wartósci te s ¾a interpolowane na obszarze trójk ¾atów. W ka·zdymwygenerowanym pikselu
obrazu, przy pomocy wspó÷rz¾ednych u i v, uk÷ad pobiera dane konkretnego teksela.
Informacje te s÷u·z ¾a pó́zniej do obliczenia ostatecznego koloru piksela w buforze koloru
(rys. 1.5). Format danych tekseli ró·zni si¾e nie tylko ilósci ¾a komponentów (od 1 do 4)
ale te·z ilósci ¾a bajtów przeznaczonych dla pojedynczego komponentu. W zale·znósci od
·z ¾adanej dok÷adnósci mo·ze to býc liczba ca÷kowita 8 lub 16 bitowa oraz 16 lub 32 bitowa
liczba rzeczywista.

3.2.2. Tekstury kubiczne

Tekstura kubiczna sk÷ada si¾e z szésciu zwyk÷ych kwadratowych tekstur dwuwymiaro-
wych. Ka·zda z nich reprezentuje jedn ¾a ścian¾e prostopad÷óscianu rozpi¾etego pomi¾edzy
punktami (�1;�1;�1) i (1; 1; 1): Przy pobieraniu danych z tekstury kubicznej u·zy-
wane s ¾a trzy wspó÷rz¾edne (x; y; z), które mo·zna interpretowác jako wektor zaczepiony
w punkcie (0; 0; 0); czyli w środku széscianu (rys. 3.27).

+X­X

+Y

­Y

+Z

­Z

Y

X

X

X

Y Y Y

Z ­Z ­X
Z

­Z

+Z ­Z+X­X

+Y

­Y

U

V

T4 T0T1

T2

T3

T5

(1,1,1)

(­1,­1,­1)

Rysunek 3.27: Tekstura kubiczna z÷o·zona z szésciu kwadratowych tekstur dwuwymia-
rowych.

Wynikiem operacji pobrania danych o wspó÷rz¾ednych d = (x; y; z) jest teksel prze-
cinany przez pó÷prost ¾a o pocz ¾atku w punkcie (0; 0; 0) i zwrocie (x; y; z): W pierwszej
kolejnósci uk÷ad wybiera najd÷u·zsz ¾a sk÷adow ¾a wektora kierunkowego d. Bezpósrednio
wyznacza ona ścian¾e (tekstur¾e), na której wyst ¾api przeci¾ecie. Dla przyk÷adu, jésli naj-
d÷u·zsz ¾a sk÷adow ¾a wektora jest wspó÷rz¾edna z i jest ona dodatnia to wybierana jest

59

Rozdzia÷3. Generowanie obrazu

tekstura T4: Poniewa·z wszystkie ściany s ¾a oddalone od środka dok÷adnie o 1, punkt
przeci¾ecia dany jest wzorem:

(xp; yp) = (
x

jzj ;
y

jzj): (3.28)

Do poprawnego odwo÷ania si¾e do tekstury dwuwymiarowej niezb¾edna jest transfor-
macja wspó÷rz¾ednych (xp; yp) do uk÷adu tekstury U=V :

(u; v) = (
xp
2
+
1

2
;
�yp
2
+
1

2
): (3.29)

W przypadku, kiedy najd÷u·zsz ¾a wspó÷rz¾edn ¾a nie jest z, w równaniu (3.28) wspó÷-
rz¾edne zamieniaj ¾a si¾e miejscami a w zale·znósci (3.29) znaki przy wspó÷rz¾ednych dopa-
sowuj ¾a si¾e tak, aby transformacja do uk÷adu U=V by÷a prawid÷owa (rys. 3.27).
Tekstury kubiczne mog ¾a s÷u·zýc jako mapa odwzorowuj ¾aca w punkcie pewn ¾a war-

tóśc, która zmienia si¾e wraz z k ¾atem patrzenia z tego punktu. Dobrym przyk÷adem
jest intensywnóśc promieniowania padaj ¾acego na punkt z okréslonego kierunku. Po
obliczeniu tych wartósci w okréslonym miejscu sceny, na przyk÷ad metod ¾a raytracingu,
wygenerowan ¾a tekstur¾e kubiczn ¾a mo·zna wykorzystác do óswietlenia ma÷ego modelu w
czasie rzeczywistym.

Rysunek 3.28: Kubiczna tekstura odwzorowuj ¾aca otoczenie (str. lewa górna) wraz z
wygenerowan ¾a przy jej pomocy tekstur ¾a óswietlenia (str. lewa dolna). Po prawej
stronie obiekt óswietlony przy jej u·zyciu.

Przy za÷o·zeniu, ·ze model jest ma÷y a środowisko jest znacznie od niego oddalone,
pozycje wierzcho÷ków modelu mo·zna potraktowác jako punkt. W ten sposób kie-

60

3.2. Tekstury

runek wektora normalnego do powierzchni wyznaczy sk÷adow ¾a rozproszon ¾a świat÷a
(rys. 3.28). Wektor normalny do powierzchni zostaje zakodowany na wierzcho÷kach
w trzech wspó÷rz¾ednych dla tekstury i interpolowany przez uk÷ad na powierzchni trój-
k ¾atów. Wszystkie niezb¾edne obliczenia zwi ¾azane z pobraniem wartósci intensywnósci
z tekstury kubicznej wykona mikroprogram dla pikseli.

3.2.3. Tekstury wolumetryczne

Tekstura wolumetryczna sk÷ada si¾e z k tekstur dwuwymiarowych m � n u÷o·zonych
równolegle w kszta÷t prostopad÷óscianu. Tak ¾a tekstur¾e mo·zna potraktowác jako trój-
wymiarowy zbiór tekseli, który mo·zna indeksowác za pomoc ¾a trzech wspó÷rz¾ednych
(x; y; z) 2 R3: Pierwsze dwie s ¾a odpowiednikami wspó÷rz¾ednych u i v w przypadku
dwuwymiarowym i okréslaj ¾a po÷o·zenie teksela na konkretnej warstwie. Trzecia wyzna-
cza indeks warstwy, która ma býc u·zyta do odczytania danych teksela. W taki sposób
zapisywane s ¾a dane na przyk÷ad z aparatury medycznej, która wykonuje seri¾e zdj¾éc
organu o ró·znej g÷¾ebokósci penetracji (rys. 3.29).

Rysunek 3.29: Tekstura wolumetryczna z÷o·zona z kilku warstw.

Przej́scie ze wspó÷rz¾ednych x i y do indeksu teksela i-tej warstwy (tix; t
i
y) odbywa si¾e

identycznie jak w przypadku dwuwymiarowym (równania 3.25 - 3.27). Do wyznaczenia
numeru warstwy u·zywane s ¾a takie same zale·znósci, ale dla jednej zmiennej: i = tz.
Uk÷ad gra�czny pozwala na rysowanie wy÷¾acznie dwuwymiarowych elementów (trój-

k ¾atów), nie jest mo·zliwe narysowanie w pe÷ni trójwymiarowego obiektu. Pierwszym na-
suwaj ¾acym si¾e rozwi ¾azaniem jest narysowanie wszystkich warstw w postaci cz¾ésciowo
przézroczystej. Niestety na wygenerowanym obrazie b¾edzie widác wyrázne nieci ¾ag÷o-
ści pomi¾edzy warstwami. Najwi¾eksze przerwy b¾ed ¾a widoczne, gdy kierunek patrzenia
obserwatora b¾edzie równoleg÷y do której́s z warstw (rys. 3.30).
U·zywaj ¾ac tekstur wolumetrycznych mo·zna rysowác warstwy dowolnie zorientowane

61

Rozdzia÷3. Generowanie obrazu

Rysunek 3.30: W przypadku normalnego rysowania warstw widoczne s ¾a nieprawid÷o-
wósci w obrazie (góra). Na dole poprawny obraz wygenerowany przy u·zyciu tekstury
wolumetrycznej. Rysowane wielok ¾aty mog ¾a býc ustawione prostopadle do obserwatora.

i o dowolnym kszta÷cie. Ka·zda warstwa sk÷ada si¾e z pewnej ilósci trójk ¾atów, na których
wierzcho÷kach s ¾a przyporz ¾adkowane wspó÷rz¾edne punktów w teksturze wolumetrycznej.
W czasie rasteryzacji uk÷ad interpoluje te wspó÷rz¾edne i dla ka·zdego piksela generowa-
nego obrazu stosuje równania (3.25 - 3.27), które pozwalaj ¾a obliczýc numer warstwy
oraz pozycj¾e teksela na teksturze wolumetrycznej. Jésli wspó÷rz¾edne tekstury, ryso-
wanych z trójk ¾atów warstw, b¾ed ¾a wype÷niác prostopad÷óscian oraz b¾ed ¾a zorientowane
równolegle do obserwatora, to obraz b¾edzie wype÷niony w pe÷ni i praktycznie pozba-
wiony nieci ¾ag÷ósci (rys. 3.30).

3.2.4. Filtrowanie

Bufor koloru posiada okréslon ¾a rozdzielczóśc mierzon ¾a w pikselach. Ka·zdy piksel jest
bardzo ma÷ym prostok ¾atem, który mo·ze býc zabarwiony w ca÷ósci pojedynczym kolo-
rem. Ka·zda tekstura równie·z jest z÷o·zona ze skończonej liczby prostok ¾atnych tekseli.
Wielok ¾at po wszystkich przekszta÷ceniach zostaje zamieniony na zbiór pikseli odwzo-

62

3.2. Tekstury

rowuj ¾acych go buforze. Je·zeli na wielok ¾at zosta÷a na÷o·zona tekstura, to w ka·zdym
pikselu zostanie pobrana wartóśc koloru odpowiedniego teksela, zgodnie z obliczonymi
wspó÷rz¾ednymi.

Rysunek 3.31: Obraz wygenerowany bez u·zycia ·zadnych �ltrów próbkuj ¾acych tekstur¾e.

Kolor ka·zdego piksela powinien niéśc ze sob ¾a informacj¾e o wszystkich tekselach,
które s ¾a widoczne przez ma÷e prostok ¾atne tworzone przez niego okienko. Podane w
poprzednim podrozdziale metody pobierania danych z tekstur nie uwzgl¾edniaj ¾a tego
faktu. Ka·zdy piksel przyjmie kolor tylko jednego teksela, który jest wyznaczony przez
przeci¾ecie pó÷prostej, biegn ¾acej od obserwatora przez środek piksela, z p÷aszczyzn ¾a
tekstury na÷o·zonej na wielok ¾at. Jésli rozmiar teksela po rzucie perspektywicznym jest
ma÷y w stosunku do rozmiaru piksela, pojawi ¾a si¾e widoczne artefakty obrazu (górna
cz¾éśc rys. 3.31).
Podobnie jest w przypadku, kiedy rozmiar teksela jest du·zo wi¾ekszy w porówna-

niu do rozmiaru piksela. W takich miejscach pojawi ¾a si¾e �z¾eby�b¾ed ¾ace konsekwencj ¾a
skończonej rozdzielczósci obrazu (dolna cz¾éśc rys. 3.31). Je·zeli rozdzielczóśc zostanie
znacznie zwi¾ekszona, to kraw¾edzie mi¾edzy tekselami b¾ed ¾a g÷adkie.
Cz¾ésciowym rozwi ¾azaniem powy·zszych problemów s ¾a specjalne �ltry, które bior ¾a

udzia÷przy operacji próbkowania danych z tekstury. Rozró·zniane s ¾a dwa rodzaje
�ltrów. Pierwsz ¾a grup¾e stanowi ¾a �ltry przeciwdzia÷aj ¾ace powstawaniu �z¾ebów�przy
du·zych powi¾ekszeniach, drug ¾a �ltry obliczaj ¾ace kolor piksela przy u·zyciu wi¾ecej ni·z
jednego teksela w przypadku du·zych pomniejszeń.

Filtrowanie dwuliniowe

Filtr dwuliniowy nale·zy do pierwszej grupy i jego dzia÷anie mo·zna porównác do lekkiego
rozmazania tekstury na wielok ¾acie (rys. 3.32). Jésli z równań (3.25 - 3.27) zostanie
usuni¾eta ostatnia operacja, czyli sprowadzanie wyniku do dziedziny liczb ca÷kowitych,
otrzymane wspó÷rz¾edne (t0u; t

0
v) wyznacz ¾a dok÷adn ¾a pozycj¾e (u; v) na teksturze. (t

0
u; t

0
v)

przebiegaj ¾a tekstur¾e p÷ynnie wraz ze zmian ¾a wspó÷rz¾ednych u i v. Dla przyk÷adu, jésli
tekstura ma rozmiary 2 � 2 teksele, to dla u = 0 ! t0u = 0 (lewa kraw¾ed́z pierwszej
kolumny tekseli) a dla u = 0:25 ! t0u = 0:5 (́srodek pierwszej kolumny tekseli). Filtr

63

Rozdzia÷3. Generowanie obrazu

dwuliniowy zamiast pobierác kolor tylko z jednego teksela (tu; tv) úsrednia kolory z
czterech tekseli najbli·zszych punktowi (t0u; t

0
v) na teksturze.

Rysunek 3.32: Obraz wygenerowany przy u·zyciu �ltra dwuliniowego.

Niech �(u; v) oznacza kolor teksela o wspó÷rz¾ednych (tu; tv). Jésli wspó÷rz¾edne tek-
stury w środku generowanego piksela s ¾a równe u i v, to �ltr dwuliniowy úsredni dane
z nast¾epuj ¾acych 4 s ¾asiaduj ¾acych ze sob ¾a tekseli:

t0;0 = �(u�
1

2m
; v � 1

2n
), t0;1 = �(u+

1

2m
; v � 1

2n
);

t1;0 = �(u�
1

2m
; v +

1

2n
), t1;1 = �(u+

1

2m
; v +

1

2n
):

U

V

t0,0 t0,1

t1,0 t1,1

(t' ,t')u v

Rysunek 3.33: Úsredniane przez �ltr dwuliniowy teksele.

64

3.2. Tekstury

Niech:

� = um� 1
2
� bum� 1

2
c,

� = vn� 1
2
� bvn� 1

2
c:

Ostateczny kolor piksela przy u·zyciu �ltra dwuliniowego dany jest wzorem:

�L(u; v) = (1� �)(1� �)t0;0 + �(1� �)t0;1 + (1� �)�t1;0 + ��t1;1:

Dla tekstur wolumetrycznych metoda jest podobna, ale úsredniane jest 8 najbli·z-
szych wspó÷rz¾ednym (t0x; t

0
y; t

0
z) tekseli pochodz ¾acych z 2 warstw, po 4 na warstw¾e.

Mip-mapping

Mip-mapping (z ÷acińskiego: multum in parvo, t÷um.: wiele w ma÷ym) jest technik ¾a,
która nale·zy do drugiej grupy �ltrów, poprawiaj ¾acych jakóśc tekstur wýswietlanych w
ma÷ych skalach. Czarno-bia÷a szachownica, ustawiona prostopadle do obserwatora w
du·zej odleg÷ósci, powinna zamieníc si¾e w ma÷y szary prostok ¾at. Dzieje si¾e tak, ponie-
wa·z czarne i bia÷e pola le·z ¾a wtedy w bardzo ma÷ych odleg÷ósciach od siebie, úsredniaj ¾ac
si¾e w kolor szary. Niestety, dysponuj ¾ac skończon ¾a rozdzielczósci ¾a bufora ekranu, kom-
puterowa symulacja tego zjawiska nie b¾edzie prawid÷owa. Przez ma÷e okno ka·zdego
piksela, sk÷adaj ¾acego si¾e na obraz oddalonego prostok ¾ata, b¾edzie widác du·z ¾a grup¾e
czarnych i bia÷ych tekseli. Podczas operacji pobierania koloru teksela wybrany zosta-
nie kolor bia÷y albo czarny. Tak wygenerowany obraz b¾edzie si¾e sk÷ada÷tylko z bia÷ych
i czarnych pikseli.

Y piksele

(,)x y

(,x y­1)

(, +1)x y

wielokąt

tekstura

odwzorowany piksel (x y,)

dx

dy

Rysunek 3.34: Obszar tekstury na÷o·zonej na wielok ¾at, który jest odwzorowany na ob-
szarze piksela (�x; �y). Bez u·zycia �ltra, dla piksela wybrany b¾edzie kolor bia÷y.

65

Rozdzia÷3. Generowanie obrazu

Rozwi ¾azác ten problem mo·zna stosuj ¾ac úsrednianie kolorów wszystkich tekseli wi-
docznych przez okienko piksela (rys. 3.34). Takie podej́scie jest bardzo kosztowne, gdy·z
na jeden piksel obrazu mo·ze przypadác dowolna ilóśc ró·znych tekseli. Mip-mapping
pozwala na generowanie obrazów przybli·zonych do poprawnego. Dla ka·zdej tekstury
jest generowany ci ¾ag log2(minfm;ng) tzw. mip-map, czyli tekstur powsta÷ych przez
dwukrotne zmniejszenie ka·zdej poprzedniej. Dla tekstury T0 o rozmiarze 128 � 128
wygenerowane b¾ed ¾a mip-mapy T1::T7 o rozmiarach 64� 64, 32� 32, ..., 1� 1 tekseli.
Kolor teksela mip-mapy Tk o wspó÷rz¾ednych (p; q); gdzie fp; qg 2 Z, jest wynikiem
úsrednienia 4 tekseli tekstury Tk�1 o wspó÷rz¾ednych (2p; 2q); (2p+ 1; 2q); (2p; 2q + 1) i
(2p+ 1; 2q + 1) (rys. 3.35):

128x128

64x64

32x32 16x16 8x8

4x4 2x2 1x1

8x8

4x4

Rysunek 3.35: Tekstura wraz z seri ¾a mip-map. Z prawej strony dwie mip-mapy poka-
zane w powi¾ekszeniu.

Pobieraj ¾ac kolor tekstury w konkretnym pikselu uk÷ad decyduje, której wersji tek-
stury u·zýc. Im wi¾ekszy jest rozmiar piksela w stosunku do rozmiaru teksela, tym
wi¾ekszy indeks mip-mapy, która b¾edzie u·zyta do odczytu koloru. W celu obliczenia
przybli·zonego stosunku rozmiarów u·zywa si¾e nast¾epuj ¾acej zale·znósci:

p(�x; �y) = max

(s�
@u

@�x

�2
+

�
@v

@�x

�2
;

s�
@u

@�y

�2
+

�
@v

@�y

�2)
: (3.30)

Wektory dx = (
@u

@�x
;
@v

@�x
) i dy = (

@u

@�y
;
@v

@�y
) w przybli·zeniu rozpinaj ¾a na sobie ob-

szar tekstury, który jest rzutowany do okienka piksela. Nie jest to wartóśc dok÷adna,
gdy·z wektory zmieniaj ¾a si¾e na obszarze pojedynczego piksela ze wzgl¾edu na nieliniowy
charakter przekszta÷ceń rzutuj ¾acych.

66

3.2. Tekstury

Wartóśc p(�x; �y) opisuje szerokóśc kwadratu (w tekselach), który trzeba úsredníc,
aby uzyskác w przybli·zeniu poprawny kolor piksela. Do dyspozycji jest kilka ró·znych
wersji tekstury. W ka·zdej s ¾a úsrednione bloki tekseli o wielkósci od 1 do minfm;ng,
przy czym blok úsrednionych tekseli w mip-mapie Tk jest dwa razy szerszy i d÷u·zszy
od tego w Tk�1. Przyj¾eto, ·ze indeks mip-mapy jest obliczany za pomoc ¾a wzoru:

k(�x; �y; �) = minf b�c; log2(minfm;ng) g, gdzie � = log2[p(�x; �y)]:

Je·zeli rozmiar teksela b¾edzie nie wi¾ecej ni·z dwukrotnie mniejszy od rozmiaru pik-
sela, to wybrana b¾edzie tekstura T0. Je·zeli b¾edzie nie wi¾ecej ni·z czterokrotnie mniejszy
to b¾edzie wybrana tekstura T1; itd.. Pobieranie koloru z wybranej ju·z wersji tekstury
jest wykonywane przy u·zyciu �ltra dwuliniowego. W celu ukrycia momentu podmiany
tekstury w czasie oddalania si¾e od obserwatora, stosuje si¾e podobne do �ltra dwulinio-
wego rozwi ¾azanie. Wybierane s ¾a dwie mip-mapy najbli·zsze wartósci �, kolory pobiera
si¾e z obydwu i úsrednia przy pomocy interpolacji dwuliniowej. Ten sposób post¾epo-
wania nazywany jest interpolacj ¾a trójliniow ¾a, gdy·z przy úsrednianiu bierze udzia÷8
tekseli, po 4 na mip-map¾e (rys. 3.36).
Niech �L(u; v; k) oznacza kolor teksela o wspó÷rz¾ednych (tu; tv); pobranego z mip-

mapy Tk przy u·zyciu �ltra dwuliniowego. Ostateczny kolor tekstury przy u·zyciu mip-
mappingu dany jest wzorem:

�M(u; v) = [1� �0] � �L(u; v; k1) + �0 � �L(u; v; k2);

gdzie

�0 = �� b�c; k1 = k(�x; �y; �); k2 = k(�x; �y; �+ 1):

Rysunek 3.36: Obraz wygenerowany przy u·zyciu mip-mappingu.

67

Rozdzia÷3. Generowanie obrazu

Filtrowanie anizotropowe

D÷ugósci wektorów sk÷adowych równania (3.30): dx = (
@u

@�x
;
@v

@�x
) i dy = (

@u

@�y
;
@v

@�y
) mog ¾a

si¾e od siebie znacznie ró·zníc. Oznacza to, ·ze obraz piksela na teksturze jest wyd÷u·zony
w kierunku której́s z osi. W tym przypadku uk÷ad wyznaczy mip-map¾e kieruj ¾ac si¾e
d÷u·zsz ¾a sk÷adow ¾a, przez co úsredniony zostanie kwadrat o boku 8�8 tekseli (rys. 3.37).
Spowoduje to rozmazanie obrazu (górna cz¾éśc rys. 3.36).

tekstura

dx

dy

Rysunek 3.37: Obszar tekstury na÷o·zonej na wielok ¾at, który jest odwzorowany na ob-
szarze piksela. Ós dy jest dwa razy d÷u·zsza od osi dx:

Prawid÷owo úsrednione powinny býc piksele w obr¾ebie prostok ¾ata o d÷ugósciach bo-
ków odpowiadaj ¾acych liczbom jdxj i jdyj. Filtr anizotropowy rozwi ¾azuje ten problem
wybieraj ¾ac mip-map¾e, która odpowiada krótszej osi i úsredniaj ¾ac nie jeden, ale kilka
tekseli w obr¾ebie prostok ¾ata (rys. 3.38).

p(�x; �y) = min

(s�
@u

@�x

�2
+

�
@v

@�x

�2
;

s�
@u

@�y

�2
+

�
@v

@�y

�2)

Ilóśc próbek wacha si¾e od 1 do 16 a ich u÷o·zenie jest ścísle zale·zne od implementacji.
Z regu÷y wybierane s ¾a teksele równomiernie roz÷o·zone na odcinku d÷u·zszej z osi. Liczba
próbek zmienia si¾e w zale·znósci od stosunku d÷ugósci obu osi. W sytuacji pokazanej
na (rys. 3.37) wybrana b¾edzie mip-mapa T2 2 � 2 teksele. Stosunek d÷ugósci osi
wynosi 2 do 1; wi¾ec uk÷ad úsredni 2 próbki roz÷o·zone równomiernie na osi dy. Filtr
anizotropowy jest rozszerzeniem techniki mip-mappingu, ale mo·ze býc u·zywany i bez
niego. W takim przypadku, aby uzyskác zadowalaj ¾ace rezultaty, ilóśc próbek musi býc
znacznie wi¾eksza. W praktyce najbardziej sensowne jest u·zycie mniejszej ilósci próbek
z w÷¾aczonym mip-mappingiem.

68

3.3. Programowanie uk÷adu

Rysunek 3.38: Obraz wygenerowany przy u·zyciu �ltra anizotropowego (16 próbek).

3.3. Programowanie uk÷adu
Po zakończeniu procesu interpolacji atrybutów i rasteryzacji jednostka przetwarzania
pikseli wykonuje mikroprogram dla ka·zdego piksela sk÷adaj ¾acego si¾e na obraz trój-
k ¾ata. Tréśc programu jest ustalana przez programist¾e i przesy÷ana do uk÷adu przed
rozpocz¾eciem procesu generowania obrazu. Program mo·ze býc zmieniany w dowolnym
momencie, ale jest to bardzo kosztowna czasowo operacja. Dla ka·zdego piksela, przy
pomocy danych wej́sciowych, musi býc wygenerowany jeden kolor, który bierze udzia÷
w czynnósciach zwi ¾azanych z buforami.
Ka·zdy piksel ma dost¾ep wy÷¾acznie do w÷asnych danych wej́sciowych i tymczasowych.

Dzi¾eki temu w tym samym czasie mo·ze býc przetwarzana wi¾eksza ilóśc pikseli. Obec-
nie, uk÷ady gra�czne posiadaj ¾a od 1 do 16 jednostek przetwarzana pikseli, zwanych
potokami.
Ka·zdy program sk÷ada si¾e z maksymalnie 96 instrukcji specjalnego mikroasemblera,

w tym maksymalnie 64 instrukcji arytmetycznych i 32 próbkuj ¾acych tekstury. Rejestry
uk÷adu dziel ¾a si¾e na wej́sciowe, wyj́sciowe, tymczasowe i rejestry tekstur (rys. 3.39).
Przy ka·zdym uruchomieniu programu w rejestrach wej́sciowych znajduje si¾e 8 prze-
interpolowanych wspó÷rz¾ednych tekstur (t0 � t7) oraz dwa kolory (v0 � v1): Ka·zdy
rejestr wej́sciowy sk÷ada si¾e z 4 liczb rzeczywistych (XY ZW). Oprócz tych informacji
programista mo·ze dowolnie ustalíc zawartóśc rejestrów reprezentuj ¾acych sta÷e, które s ¾a
niezale·zne od kolejnych uruchomień programu. Do dyspozycji s ¾a 32 rejestry wektorowe
c0�c31, ka·zdy w postaci czterech liczb rzeczywistych (XY ZW): Tak jak w przypadku
jednostki dla wierzcho÷ków, ka·zda zmiana zawartósci rejestrów tymczasowych wprowa-
dza bardzo du·ze opó́znienia. Nale·zy zaznaczýc, ·ze sta÷e mog ¾a býc zmieniane wy÷¾acznie
przez procesor g÷ówny spoza poziomu mikroprogramu. Rejestry wej́sciowe, sta÷ych oraz
tekstur mo·zna jedynie odczytywác a rejestry wyj́sciowe zapisywác.
Rejestry tymczasowe s ¾a dost¾epne tylko z poziomu mikroprogramu. Nale·zy do nich

od 12 do 32 rejestrów wektorowych r0 � r31, ka·zdy w postaci 4 liczb rzeczywistych
(XY ZW):

69

Rozdzia÷3. Generowanie obrazu

Zadaniem mikroprogramu jest wygenerowanie koloru w rejestrze wyj́sciowym oC0,
który sk÷ada si¾e z czterech komponentów nale·z ¾acych do liczb rzeczywistych (XY ZW).
Rejestrów próbkuj ¾acych tekstur¾e s0�s15 (ang. texture sampler register) nie mo·zna

odczytywác ani zapisywác. S÷u·z ¾a one jedynie do identy�kacji tekstury, która ma býc
u·zyta do pobrania koloru teksela. Konkretne tekstury s ¾a przyporz ¾adkowywane do tych
rejestrów spoza mikroprogramu, przed jego wykonaniem. Ka·zda instrukcja próbkuj ¾aca
wymaga podania przynajmniej jednego rejestru tekstury oraz wspó÷rz¾ednych, które
wyznaczaj ¾a pozycj¾e teksela.

PSU

kolory
(v0­v1)

stałe zmiennoprzecinkowe
(c0­c31)

kolor
(oC0)

rejestry tymczasowe
(r0­r31)

rejestry tekstur
(s0­s15)

Wejście Wyjście

współrzędne tekstur
(t0­t7)

Rysunek 3.39: Jednostka przetwarzania pikseli.

Podczas opisywania w÷ásciwósci uk÷adu producenci cz¾esto pos÷uguj ¾a si¾e poj¾eciami
jednostki teksturuj ¾acej (ang. Texture Mapping Unit) oraz ilósci tych jednostek na po-
tok. Jednostka teksturuj ¾aca jest �zyczn ¾a cz¾ésci ¾a uk÷adu scalonego, odpowiedzialn ¾a
za operacje dost¾epu oraz pobierania danych z tekstur. Poj¾ecia te pozwalaj ¾a na osza-
cowanie liczby pikseli, które uk÷ad jest w stanie obliczýc w tym samym momencie.
Niech przyk÷adowy uk÷ad dysponuje 8 potokami i 16 jednostkami teksturuj ¾acymi w
tym dwoma na potok. Uk÷ad b¾edzie w stanie przetwarzác 8 pikseli na potok tylko pod
warunkiem, ·ze liczba tekstur, z których pobierane s ¾a dane dla pojedynczego piksela,
nie przekracza liczby jednostek teksturuj ¾acych na potok. Jésli liczba ta b¾edzie wi¾eksza,
to potok musi �po·zyczýc�jednostki z innego potoku, wy÷¾aczaj ¾ac go jednoczésnie z pro-
cesu przetwarzania. Je·zeli mikroprogram u·zywa danych z 2 tekstur, to uk÷ad przeliczy
8 pikseli jednoczésnie (tyle ile ma potoków). Jésli u·zywa 3 lub 4 tekstury, to przeliczy
tylko 4 piksele jednoczésnie.

70

3.3. Programowanie uk÷adu

3.3.1. Budowa programu

Mikroprogramy dla pikseli mo·zna pisác tak·ze w j¾ezyku HLSL. Wszystkie obostrzenia,
limity i budowa programu s ¾a takie same jak w przypadku programów dla wierzcho÷-
ków. Inne s ¾a liczby rejestrów i ich identy�katory. Do rejestrów wej́sciowych t0 � t7
program odwo÷uje si¾e poprzez identy�katory TEXCOORD0 � TEXCOORD7; do
v0�v1 poprzez nazwy COLOR0�COLOR1: Rejestr wyj́sciowy oC0 ma identy�kator
COLOR0. Liczba dost¾epnych kolorów i wspó÷rz¾ednych dla tekstur zale·zy od danych
wygenerowanych przez jednostk¾e przetwarzania wierzcho÷ków. Rejestry wyj́sciowe tej·ze
s ¾a bezpósrednio skojarzone z rejestrami wej́sciowymi dla jednostki PSU.
Rejestry próbkuj ¾ace tekstury maj ¾a swoje odpowiedniki w HLSL w postaci nowych

typów danych: sampler1D (tekstura jednowymiarowa), sampler2D (dwuwymiarowa),
sampler3D (wolumetryczna) i samplerCUBE (kubiczna). Ka·zda zmienna tego typu
zadeklarowana w programie zostanie skojarzona z pewnym rejestrem próbkuj ¾acym.
Nazwa zmiennej jest u·zywana poza mikroprogramem w celu przyporz ¾adkowania do
niej konkretnej tekstury, okréslenia typu adresowania i rodzaju �ltra. Typ zmiennej
jednoznacznie de�niuje rodzaj tekstury do niej przyporz ¾adkowanej.
Poni·zszy program kopiuje kolor z rejestru wej́sciowego do wyj́sciowego. W ten sposób

ka·zdy piksel otrzyma kolor b¾ed ¾acy wynikiem liniowej interpolacji kolorów pomi¾edzy
trzema wierzcho÷kami (cieniowanie Gourauda).

struct T_PIN // dane interpolowane mi¾edzy wierzcho÷kami
{
float4 col : COLOR0; // kolor wejściowy

};

struct T_POUT // dane wyjściowe
{
float4 col: COLOR0; // kolor wynikowy

};

T_POUT PShader(T_PIN pin) // mikroprogram
{
T_POUT pout;

pout.col=pin.col; // przepisanie danych

return pout;
}

(Program 3.1)

3.3.2. Zestaw instrukcji

W standardzie 2.0 dla j¾ezyka HLSL programy dla pikseli nie mog ¾a u·zywác ·zadnych
instrukcji steruj ¾acych przep÷ywem. Niedozwolone s ¾a instrukcje warunkowe oraz wyko-
nywanie p¾etli. Zestaw instrukcji sk÷ada si¾e z wszystkich rozkazów dla jednostki prze-
twarzania wierzcho÷ków (tab. 2.3 i tab. 2.4) i dodatkowych próbkuj ¾acych tekstury
(tab. 3.5).

71

Rozdzia÷3. Generowanie obrazu

Instrukcja Opis

tex1D(s,t) Pobiera kolor o wspó÷rz¾ednej tx z tekstury
jednowymiarowej s .

tex1Dproj(s,t) Pobiera kolor o wspó÷rz¾ednej
tx
tw
z tekstury

jednowymiarowej s.
tex2D(s,t) Pobiera kolor o wspó÷rz¾ednej (tx; ty) z tekstury

dwuwymiarowej s:

tex2Dproj(s,t) Pobiera kolor o wspó÷rz¾ednej (
tx
tw
;
ty
tw
) z tekstury

dwuwymiarowej s:
tex3D(s,t) Pobiera kolor o wspó÷rz¾ednej (tx; ty; tz) z tekstury

wolumetrycznej s.

tex3Dproj(s,t) Pobiera kolor o wspó÷rz¾ednej (
tx
tw
;
ty
tw
;
tz
tw
) z tekstury

wolumetrycznej s.
texCUBE(s,t) Pobiera kolor o wspó÷rz¾ednej (tx; ty; tz) z tekstury

kubicznej s.

texCUBEproj(s,t) Pobiera kolor o wspó÷rz¾ednej (
tx
tw
;
ty
tw
;
tz
tw
) z tekstury

kubicznej s.

Tablica 3.5: Dodatkowe instrukcje jednostki PSU

3.3.3. Podstawowe techniki

Programowanie jednostki przetwarzaj ¾acej piksele sprowadza si¾e do obliczenia jednego
wyj́sciowego koloru. Do dyspozycji s ¾a sta÷e, dane wej́sciowe pochodz ¾ace od wierzcho÷-
ków oraz tekstury. Przeprowadzanie skomplikowanych obliczeń podczas generowania
ka·zdego piksela, pozwala na uzyskanie znacznie bardziej realistycznych efektów ni·z
opisane wczésniej metody. Przede wszystkim chodzi tu o algorytmy symuluj ¾ace ró·zne
w÷ásciwósci powierzchni, w tym charakterystyki odbijania świat÷a. Wartósci liniowo
interpolowane mi¾edzy wierzcho÷kami nigdy nie b¾ed ¾a w stanie poprawnie oddác zmian
funkcji, które zachodz ¾a we wn¾etrzu obszaru trójk ¾ata.
Dysponuj ¾ac mo·zliwósci ¾a przeprowadzenia obliczeń bezpósrednio dla ka·zdego pik-

sela, programy dla wierzcho÷ków tylko przygotowuj ¾a dane wej́sciowe. Wektory nor-
malne, kierunek patrzenia obserwatora i inne wartósci wektorowe s ¾a interpolowane
liniowo przez uk÷ad. Program dla pikseli pobiera wektory i w zale·znósci od potrzeb
normalizuje je, aby zastosowane przekszta÷cenia mia÷y takie same dzia÷anie w ka·z-
dym miejscu trójk ¾ata. Wektory s ¾a umieszczane w 8 rejestrach wyj́sciowych jednostki
VSU: TEXCOORD0-TEXCOORD7, potem interpolowane przez uk÷ad i pobierane
przez mikroprogram dla pikseli. Oczywíscie interpolacja liniowa wspó÷rz¾ednych wek-
tora kierunkowego nie jest poprawn ¾a metod ¾a. Interpolowany liniowo powinien býc k ¾at
nachylenia wektora a nie jego wspó÷rz¾edne. B÷¾edy te nie s ¾a jednak bardzo widoczne a
ilóśc oszcz¾edzonego na obliczeniach czasu jest ogromna. Nale·zy zauwa·zýc, ·ze powy·zsz ¾a
metod¾e stosuje si¾e tylko dla wektorów mi¾edzy którymi k ¾at jest mniejszy od 180o:
Poni·zszy program dla wierzcho÷ków jest przygotowaniem danych do óswietlenia

obiektu metod ¾a Phonga (2.14) w ka·zdym generowanym pikselu (Program 3.2). Oblicza
on jedynie wektory kierunkowe obserwatora oraz świat÷a w ka·zdym z wierzcho÷ków.

72

3.3. Programowanie uk÷adu

float4x4 mxLocalToView; // macierz transformacji
float3 eye_pos; // pozycja obserwatora
float3 light_pos; // pozycja świat÷a

struct T_VIN // dane wejściowe
{
float3 pos : TEXCOORD0; // pozycja wierzcho÷ka
float3 n : TEXCOORD1; // wektor normalny

};

struct T_VOUT // dane wyjściowe
{
float4 pos : POSITION; // pozycja
float3 eye : TEXCOORD0; // kierunek patrz. obserwatora
float3 light : TEXCOORD1; // kierunek padania świat÷a
float3 n : TEXCOORD2; // wektor normalny

};

T_VOUT VShader(T_VIN vin) // mikroprogram dla wierzcho÷ków
{
T_VOUT vout;
float4 pos={0,0,0,1};

(float3)pos=vin.pos; // pozycja
vout.pos=mul(mxLocalToView,pos);

vout.eye=eye_pos-vin.pos; // wektor kierunkowy
vout.light=light_pos-vin.pos; // wektor kierunkowy
vout.n=vin.n; // przepisanie

return vout;
}

(Program 3.2)

Po zakończeniu fazy przetwarzania wierzcho÷ków, ka·zdy uruchomiony dla piksela
program b¾edzie mia÷do dyspozycji przeinterpolowany wektor normalny, kierunek z
którego patrzy obserwator oraz kierunek z którego pada świat÷o (Program 3.3).

// dane świat÷a
float3 light_col_diff; // sk÷adowa rozproszona
float3 light_col_spec; // sk÷. zwieciadlana
float light_pn; // wsp. g÷adkości

float3 scol; // kolor powierzchni obiektu

struct T_PIN // dane wejściowe
{
float3 eye : TEXCOORD0; // kierunek patrzenia obserwatora
float3 light : TEXCOORD1; // kier. padania świat÷a
float3 n : TEXCOORD2; // wektor normalny jnj!=1

};
#

(Program 3.3)

73

Rozdzia÷3. Generowanie obrazu

"
struct T_POUT // dane wyjściowe
{
float4 col : COLOR0; // kolor

};

T_POUT PShader(T_PIN pin) // mikroprogram dla pikseli
{
T_POUT pout;
float3 eye,eye_rfl,light,n,col;
float lp;

// normalizacja wektorów po interpolacji
eye=normalize(pin.eye);
light=normalize(pin.light);
n=normalize(pin.n);

eye_rfl=reflect(eye,n); // odbicie wektora wzgl¾edem n

// sk÷adowa rozproszona
lp=max(0,dot(n,light));
col=light_col_diff*lp;

// sk÷adowa zwierciadlana
lp=max(0,pow(dot(eye_rfl,light),light_pn));
col+=light_col_spec*lp;

col*=scol; // kolor powierzchni

(float3)pout.col=col;
pout.col.w=0.0f;

return pout;
};

(Program 3.3)

Efekt dzia÷ania powy·zszych programów jest przedstawiony na rys. 3.40.
Znormalizowanie 3 wektorów oznacza obliczenie 3 pierwiastków kwadratowych na

piksel. Pierwiastek jest operacj ¾a arytmetyczn ¾a, która zu·zywa bardzo du·zo czasu pro-
cesora gra�cznego. Istnieje metoda, która pozwala przybli·zýc wartóśc pierwiastka przy
pomocy odwo÷ania do tekstury kubicznej. Dla ka·zdego teksela tekstury kubicznej o

wspó÷rz¾ednych d = (x; y; z); zamiast koloru nale·zy zakodowác wartóśc
1

jdj : U·zywaj ¾ac
tak przygotowanej tekstury, program dla pikseli mo·ze znormalizowác wektor d wyko-
nuj ¾ac nast¾epuj ¾ac ¾a operacj¾e:

dN = texCUBE(s; d) � d:

W ten sposób obliczenie pierwiastka kwadratowego zosta÷o zamienione na jedno
pobranie wartósci z tekstury. Op÷acalnóśc tej techniki jest uzale·zniona od pr¾edkósci
dzia÷ania uk÷adu. W najnowoczésniejszych kartach mo·ze si¾e zdarzýc przypadek, ·ze po-
branie koloru z tekstury b¾edzie trwa÷o d÷u·zej ni·z obliczenie pierwiastka. Przyczyn ¾a jest
pami¾éc cache, w której procesor umieszcza ca÷y blok tekseli otaczaj ¾acych ten o wspó÷-
rz¾ednych (x; y; z) zak÷adaj ¾ac, ·ze b¾edzie si¾e do nich odwo÷ywa÷w nast¾epnej kolejnósci.

74

3.3. Programowanie uk÷adu

Pami¾éc cache jest du·zo szybsza od podstawowej, ale jest jej bardzo ma÷o. Dlatego
za÷adowanie bloku w celu pobrania tylko jednej wartósci mo·ze si¾e okazác nieop÷acalne.

Rysunek 3.40: Obiekt óswietlony wed÷ug modelu Phonga w ka·zdym pikselu.

Poni·zsze dwamikroprogramy prezentuj ¾a równie·z technik¾e óswietlenia modelem Phonga,
ale zamiast jednolitego koloru obiektu zosta÷a na÷o·zona dwuwymiarowa tekstura. W
programie zastosowano te·z normalizacj¾e przy u·zyciu mapy kubicznej.

float4x4 mxLocalToView; // macierz transformacji
float3 eye_pos; // pozycja obserwatora
float3 light_pos; // pozycja świat÷a

struct T_VIN // dane wejściowe
{
float3 pos : TEXCOORD0; // pozycja wierzcho÷ka
float3 n : TEXCOORD1; // wektor normalny
float2 uv : TEXCOORD2; // wsp. tesktury

};

struct T_VOUT // dane wyjściowe
{
float4 pos : POSITION; // pozycja
float3 eye : TEXCOORD0; // kierunek patrz. obserwatora
float3 light : TEXCOORD1; // kierunek padania świat÷a
float3 n : TEXCOORD2; // wektor normalny
float2 uv : TEXCOORD3; // wsp. tekstury

};
#

(Program 3.4)

75

Rozdzia÷3. Generowanie obrazu

"
T_VOUT VShader(T_VIN vin) // mikroprogram dla wierzcho÷ków
{
T_VOUT vout;
float4 pos={0,0,0,1};

(float3)pos=vin.pos; // pozycja
vout.pos=mul(mxLocalToView,pos);

vout.eye=eye_pos-vin.pos; // wektor kierunkowy
vout.light=light_pos-vin.pos; // wektor kierunkowy
vout.n=vin.n; // przepisanie
vout.uv=vin.uv // przepisanie

return vout;
}

(Program 3.4)

Powy·zszy mikroprogram jest wykonywany przez jednostk¾e VSU. Poni·zej znajduje
si¾e mikroprogram dla jednostki PSU.

float3 light_col_diff; // sk÷adowa rozproszona
float3 light_col_spec; // sk÷. zwieciadlana
float light_pn; // wsp. g÷adkości

sampler2D tex; // textura dwuwymiarowa
samplerCUBE nmap; // textura normalizuj¾aca

struct T_PIN
{
float3 eye : TEXCOORD0; // kier. patrzenia obserwatora
float3 light : TEXCOORD1; // kier. padania świa÷ta
float3 n : TEXCOORD2; // wektor normalny jnj!=1
float2 uv : TEXCOORD3; // wsp. tekstury

};

struct T_POUT // dane wyjściowe
{
float4 col : COLOR0; // kolor

};

T_POUT PShader(T_PIN pin) // mikroprogram dla pikseli
{
T_POUT pout;
float3 eye,eye_rfl,light,n,col,tcol;
float lp;

#

(Program 3.5)

76

3.3. Programowanie uk÷adu

"
// normalizacja wektorów po interpolacji
eye=texCUBE(nmap,pin.eye)*pin.eye;
light=texCUBE(nmap,pin.light)*pin.light;
n=texCUBE(nmap,pin.n)*pin.n;

eye_rfl=reflect(eye,n); // odbicie wektora wzgl¾edem n

// sk÷adowa rozproszona
lp=max(0,dot(n,light));
col=light_col_diff*lp;

// sk÷adowa zwierciadlana
lp=max(0,pow(dot(eye_rfl,light),light_pn));
col+=light_col_spec*lp;

col*=tex2D(tex,pin.uv); // kolor powierzchni

(float3)pout.col=col;
pout.col.w=0.0f;

return pout;
};

(Program 3.5)

Rysunek 3.41: Obiekt z na÷o·zon ¾a tesktur ¾a óswietlony wed÷ug modelu Phonga w ka·zdym
pikselu.

77

Rozdzia÷3. Generowanie obrazu

3.4. Operacje na buforach

3.4.1. Wyznaczanie widocznósci

W rozdziale pierwszym zosta÷a wyjásniona idea pracy bufora-Z. Po obliczeniu koloru
piksela, jego odleg÷óśc od obserwatora jest porównywana z wartósci ¾a ju·z znajduj ¾ac ¾a si¾e
w buforze-Z. W przypadku, kiedy test da wynik negatywny, piksel nie jest poddawany
dalszym operacjom i kolor nie jest zapisywany do bufora koloru. Jésli wynik jest
pozytywny, to piksel bierze udzia÷w dalszych operacjach a stara wartóśc w buforze Z
jest nadpisywana. Bufor-Z ma zawsze tak ¾a sam ¾a rozdzielczóśc jak bufor koloru.
W porównaniach bierze udzia÷wspó÷rz¾edna z0; odpowiadaj ¾aca odleg÷ósci od obser-

watora aktualnie generowanego piksela:

z0 =
z

zF
zF � zN

� zN
zF

zF � zN
z

, gdzie z0 2 [0; 1]: (3.31)

Odleg÷óśc z jest interpolowana na obszarze trójk ¾ata metod ¾a hiperboliczn ¾a. Ze
wzgl¾edu na to, ·ze z0 ju·z jest funkcj ¾a hiperboliczn ¾a ze wzgl¾edu na z, prawid÷owa in-
terpolacja przyjmuje postác liniow ¾a z0 = (1� �)z01 + �z02:
Za÷ó·zmy, ·ze zN � zF ; wtedy

zF
zF � zN

� 1 a zN
zF

zF � zN
� zN : Równanie (3.31)

przyjmie wówczas postác:

z0 = 1� zN
z
:

Wykres tej zale·znósci dla zN = 1 wygl ¾ada nast¾epuj ¾aco:

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90 100

Z'

Z

Rysunek 3.42: Wykres rozk÷adu odleg÷ósci od obserwatora w buforze-Z.

78

3.4. Operacje na buforach

Dla z = 2 wartóśc z0 jest równa 1
2
; czyli 50% zakresu bufora-Z jest zu·zywane na

wartósci odleg÷ósci, które le·z ¾a bardzo blisko obserwatora. Ka·zda liczba rzeczywista za-
pisana na komputerze ma skończon ¾a dok÷adnóśc i po÷owa dost¾epnych mo·zliwych liczb
jest poch÷aniana przez bardzo ma÷¾a cz¾éśc zakresu zmiennej z. Odbija si¾e to bezpósred-
nio na dok÷adnósci porównań dla odleg÷ósci tylko troch¾e dalszych od minimalnej zN :
Stopień zaburzeń b¾edzie tym wi¾ekszy im bli·zsze zera b¾edzie zN: B÷¾edy objawiaj ¾a si¾e
w postaci przenikania si¾e trójk ¾atów, które le·z ¾a bardzo blisko siebie. Odj¾ecie od siebie
ich odleg÷ósci daje w÷ásciwie wartóśc przypadkow ¾a. Wartóśc maksymalna zF nie ma
praktycznie ·zadnego wp÷ywu na dok÷adnóśc porównań.
Bufor-Z daje satysfakcjonuj ¾ace wyniki tylko wtedy, gdy wartóśc zN jest ustawiona na

najwy·zsz ¾a akceptowaln ¾a dla obserwatora. Wi ¾a·ze si¾e z tym brak mo·zliwósci podej́scia
do obiektu bardzo blisko, gdy·z trójk ¾aty b¾ed ¾a ucinane przez p÷aszczyzn¾e z = zN :
Liniowy rozk÷ad mo·zna uzyskác stosuj ¾ac tzw. bufor-W. Zamiast wspó÷rz¾ednej z0;

miar ¾a odleg÷ósci jest wtedy przeskalowana wspó÷rz¾edna w: w0 = �w + �: Interpolacja

jest jednak bardzo kosztowna, gdy·z interpolowana liniowo musi býc wartóśc
1

w0
:W celu

porównania odleg÷ósci, w ka·zdym pikselu wartóśc ta musi býc odwrócona, co wymusza
wykonanie jednego dzielenia na piksel.
Bufor-w nie jest jednak lepszym rozwi ¾azaniem ze wzgl¾edu na rzut perspektywiczny.

Obiekty le·z ¾ace bardzo blisko obserwatora b¾ed ¾a porównywane z du·zo mniejsz ¾a dok÷ad-
nósci ¾a ni·z w przypadku bufora-Z. Tym razem b÷¾edy pojawi ¾a si¾e nie w dalszych odleg÷o-
ściach, ale w bli·zszych. Decyzja wyboru bufora powinna wi ¾azác si¾e z rodzajem sceny i
wymaganiami stawianymi jej wygl ¾adowi.
Problem ten nie wyst¾epuje, jésli macierz przekszta÷ceń dla wierzcho÷ków nie jest

osobliwa. Jésli dolny wiersz macierzy M jest równy [0; 0; 0; 1]; to w = 1 i wartósci
odleg÷ósci w buforze-Z rozk÷adaj ¾a si¾e liniowo.
Test widocznósci obejmuje wykonanie porównania nowej wartósci g÷¾ebokósci ze

star ¾a. Wiele efektów specjalnych korzysta z mo·zliwósci zmiany rodzaju porównania.
Standardowo test daje wynik pozytywny, jésli nowa wartóśc jest mniejsza b ¾ad́z równa
starej. DirectX umo·zliwia stosowanie dowolnego rodzaju operacji porównania wraz z
mo·zliwósci ¾a wy÷¾aczenia zapisywania nowych wartósci do bufora.

3.4.2. Bufor zliczania

Bufor zliczania (ang. stencil bu¤er) jest zawsze takiej samej rozdzielczósci, co bufor
koloru. Ka·zdemu pikselowi jest przyporz ¾adkowana jedna liczba ca÷kowita nieujemna,
znajduj ¾aca si¾e w buforze zliczania. Najbardziej popularna jest wersja 8-bitowa, mog ¾aca
przechowywác liczby od 0 do 255.
Po téscie widocznósci, ka·zdy piksel mo·ze przej́śc test z buforem zliczania. W pierw-

szej kolejnósci, jeszcze przed wys÷aniem jakiejkolwiek geometrii do karty, programi-
sta ustala wartóśc jednej sta÷ej ca÷kowitoliczbowej Sc. Podczas generowania obrazu,
dla ka·zdego wygenerowanego piksela jest przeprowadzany test, którego wynikiem jest
prawda albo fa÷sz. Piksel nie zostanie narysowany, jésli test b¾edzie mia÷wynik ne-
gatywny. Test sk÷ada si¾e z porównania wartósci Sc z wartósci ¾a, która znajduje si¾e
w buforze zliczania pod wspó÷rz¾ednymi aktualnie przetwarzanego piksela. Tak jak w
buforze-Z, operacja porównania mo·ze býc dowolna.
Dla ka·zdego z dwóch mo·zliwych wyników testu, programista ustala jak zmieni si¾e

79

Rozdzia÷3. Generowanie obrazu

wartóśc w buforze zliczania. Mo·ze pozostawíc j ¾a bez zmian, dodác lub odj ¾ác 1, zast ¾apíc
wartósci ¾a Sc lub wykonác inwersj¾e bitów. Dodatkowo, operacja porównania i reakcji
na nie, mo·ze býc wykonana na argumentach z wy÷¾aczeniem ·z ¾adanych bitów. Maski
podaje si¾e przed generowaniem obrazu sceny.
Przyk÷adem u·zycia bufora zliczania jest testowanie algorytmów wyznaczania wi-

docznósci. Funkcja porównania ustawiona jest wtedy na zwracanie zawsze prawdy a
wartósci w buforze po wykonaniu testu zwi¾ekszane s ¾a o 1. Po narysowaniu ca÷ej sceny,
w ka·zdym miejscu bufora zliczania b¾edzie znajdowác si¾e liczba narysowanych w tym
miejscu pikseli. Bufor zliczana stanowi te·z niezb¾edny element jednej z bardzo popu-
larnych technik rysowania cieni, która zosta÷a opisana w nast¾epnym rozdziale.

3.4.3. Alpha-Blending

Alpha-blending jest ostatnim etapem generowania obrazu. Obliczony kolor piksela
staje si¾e jednym z argumentów funkcji, której wynikiem jest kolor ostatecznie wpi-
sywany do bufora koloru. Nazwa tej techniki pochodzi od czwartego komponentu
wektora koloru, zwanego wspó÷czynnikiem alpha. Dla przyk÷adu model RGBA ozna-
cza, ·ze pierwsze trzy sk÷adowe opisuj ¾a kolor a czwarta dodatkowy wspó÷czynnik alpha.
Wspó÷czynnik alpha ma z regu÷y taki sam format jak pozosta÷e komponenty, najpopu-
larniejszy jest format 8-8-8-8, czyli 8 bitów na ka·zd ¾a sk÷adow ¾a.
Funkcja, o której mowa w poprzednim akapicie ma nast¾epuj ¾ac ¾a postác:

K = FSKS + FDKD; (3.32)

gdzie K oznacza ostateczny kolor wpisywany do bufora, KS - obliczony przez jed-
nostk¾e PSU kolor piksela a KD - stary kolor znajduj ¾acy si¾e w buforze koloru. FS i
FD s ¾a wspó÷czynnikami, z których ka·zdy mo·ze przyj ¾ác jedn ¾a z podanych w tab. 3.6
postaci. KC oznacza wartóśc koloru, który jest sta÷ym parametrem ustalanym przed
generowaniem obrazu.

Nazwa Wartóśc
ZERO (0; 0; 0; 0)
ONE (1; 1; 1; 1)
SRCCOLOR (KS :r; KS :g; KS :b; KS :a)
INVSRCCOLOR (1�KS :r; 1�KS :g; 1�KS :b; 1�KS :a)
SRCALPHA (KS :a; KS :a; KS :a; KS :a)
INVSRCALPHA (1�KS :a; 1�KS :a; 1�KS :a; 1�KS :a)
DESTALPHA (KD:a; KD:a; KD:a; KD:a)
INVDESTALPHA (1�KD:a; 1�KD:a; 1�KD:a; 1�KD:a)
DESTCOLOR (KD:r; KD:g; KD:b; KD:a)
INVDESTCOLOR (1�KD:r; 1�KD:g; 1�KD:b; 1�KD:a)
SRCALPHASAT (f; f; f; f), gdzie f = minfKS :a; 1�KD:a)
BLENDFACTOR (KC :r; KC :g; KC :b; KC :a)
INVBLENDFACTOR (1�KC :r; 1�KC :g; 1�KC :b; 1�KC :a)

Tablica 3.6: Wspó÷czynniki u·zywane podczas alpha-blendingu.

80

3.4. Operacje na buforach

Sk÷adowe koloru (r; g; b; a)mog ¾a býc u·zywane w mikroprogramach zamiennie z ozna-
czeniami wektora (x; y; z; w):
Podstawowym zastosowaniem alpha-blendingu jest symulacja przézroczystósci po-

wierzchni. W sk÷adowej alpha koloru powierzchni umieszcza si¾e wspó÷czynnik prze-
źroczystósci i rysuje powierzchni¾e ze wspó÷czynnikami FS = SRCALPHA i FD =
INV SRCALPHA:W ten sposób funkcja (3.32) interpoluje liniowo kolory KS i KD ze
wspó÷czynnikiemKS:a: Przy stopniach przézroczystósci ró·znych od 1

2
wszystkie obiekty

pó÷przézroczyste nale·zy rysowác na ekranie od ty÷u do przodu. W przeciwnymwypadku
obraz wynikowy nie b¾edzie prawid÷owy. Niestety s ¾a przypadki, kiedy nie uda si¾e posor-
towác trójk ¾atów w ca÷ósci i trzeba stosowác bardziej zaawansowane techniki ·zeby ten
porz ¾adek utrzymác.
Drugim przyk÷adem jest tzw. rendering wieloprzebiegowy. Obliczanie w mikropro-

gramie dla pikseli nat¾e·zenia z kilku źróde÷́swiat÷a jednoczésnie mo·ze okazác si¾e nie-
wykonalne. Brakuje kontroli przep÷ywu a ilóśc rozkazów jest ograniczona. Pozostaje
wtedy narysowác t ¾a sam ¾a geometri¾e kilka razy, ale umieszczaj ¾ac w buforze koloru inne
wartósci. Najpierw rysuje si¾e nat¾e·zenia pierwszego świat÷a. Przy ka·zdym kolejnym,
rysuje si¾e ten sam obiekt ze wspó÷czynnikami FS = ONE i FD = ONE: W ten spo-
sób w buforze koloru znajdzie si¾e suma wszystkich nat¾e·zeń świat÷a. Ostatnim etapem
jest narysowanie obiektu kolorem powierzchni z parametrami FS = DESTCOLOR i
FD = ZERO; czyli mno·z ¾ac kolor powierzchni przez nat¾e·zenie świat÷a.
Takie podej́scie ma jednak powa·zn ¾a wad¾e. Dok÷adnóśc liczb umieszczonych w

buforze koloru jest du·zo mniejsza ni·z u·zywanych bezpósrednio w mikroprogramach.
Powstaj ¾a ogromne przek÷amania w gradientach kolorów. Standardowy bufor koloru
ma dok÷adnóśc 8 bitów na sk÷adow ¾a, co oznacza, ·ze ka·zda sk÷adowa mo·ze przyj ¾ác
maksymalnie 256 wartósci. Rozwi ¾azaniem mo·ze býc rysowanie do tekstury w forma-
tach zmiennopozycyjnych, ale na nieszcz¾éscie wspó÷czesne akceleratory nie umo·zliwiaj ¾a
alpha-blendingu wraz z formatami zmiennopozycyjnymi.
Nale·zy wyráznie zaznaczýc, ·ze ka·zda sk÷adowa koloru obliczonego przez jednostk¾e

PSU jest obcinana do przedzia÷u [0; 1]. W buforze koloru odwzorowywanym na ekranie
nie mog ¾a si¾e znaléźc wartósci spoza niego. Bezpósrednim powodem jest zakres inten-
sywnósci kolorów, który jest w stanie wýswietlíc monitor. Jésli rysujemy do tekstury,
to jest to mo·zliwe, ale tylko przy teksturach o formacie zmiennopozycyjnym.

81

Rozdzia÷4

Techniki zaawansowane

Wygl ¾ad wygenerowanej sceny zale·zy od stopnia skomplikowania metod u·zytych do ob-
liczania koloru poszczególnych pikseli. Proste techniki, które uwzgl¾edniaj ¾a kilka tekstur
i lokalny model óswietlenia cz¾esto nie wystarczaj ¾a, aby obraz by÷zadowalaj ¾acej jakósci.
W tym rozdziale s ¾a przedstawione bardziej zaawansowane sposoby generowania obrazu,
które pozwalaj ¾a na nadanie scenie bardziej realistycznego oblicza. Nale·zy pami¾etác,
·ze przedstawione tu metody nie maj ¾a na celu jak najlepszego odwzorowania rzeczywi-
stósci, ale jedynie wywo÷anie u obserwatora wra·zenia, ·ze obraz jest faktycznie zbli·zony
do rzeczywistego. Aby osi ¾agn ¾ác ten cel, cz¾esto u·zywane s ¾a metody, które nie maj ¾a
pod÷o·za �zycznego a jedynie daj ¾a optyczne podobieństwo do zjawisk zachodz ¾acych w
realnym świecie.
Opisane w tym rozdziale techniki s ¾a jedynie skromnym wycinkiem mo·zliwósci, jakie

oferuj ¾a uk÷ady gra�czne. Wybrane zosta÷y te efekty, które demonstruj ¾a wykorzystanie
szerokiego zakresu mo·zliwósci uk÷adu w mo·zliwie jak najbardziej ró·znorodny sposób.
Do ka·zdego podrozdzia÷u jest do÷¾aczony program, który demonstruje dzia÷anie opisy-
wanej techniki. Do jego uruchomienia jest potrzebny uk÷ad gra�czny, który obs÷uguje
w pe÷ni model mikroprogramów w wersji 2.0. W przypadku nie dysponowania tego
typu sprz¾etem, fragment dzia÷ania ka·zdego z programów zosta÷nagrany do pliku AVI.

4.1. Faktura powierzchni i óswietlenie
Kolor ka·zdego piksela jest obliczany wewn ¾atrz mikroprogramu. Danymi wej́sciowymi
s ¾a atrybuty pochodz ¾ace z wierzcho÷ków oraz ograniczona ilóśc sta÷ych rzeczywistych.
Przy pomocy takiego mechanizmu nie jest mo·zliwa symulacja w czasie rzeczywistym
globalnych modeli óswietlenia, gdy·z informacje o wygl ¾adzie ca÷ej sceny nie zmieszcz ¾a si¾e
w rejestrach sta÷ych. W typowych zastosowaniach miejsca wystarcza tylko na zapisanie
pozycji i atrybutów punktowych źróde÷́swiat÷a.
Globalne modele óswietlenia mog ¾a býc zastosowane, ale tylko pod warunkiem, ·ze nie

zale·z ¾a one od pozycji obserwatora na scenie. W takim przypadku, dane przeliczonego
wczésniej przez procesor g÷ówny óswietlenia s ¾a zapisywane w postaci tekstur i pó́zniej
nak÷adane przez uk÷ad statycznie na obiekty. W ten sposób na powierzchni ka·zdego
trójk ¾ata b¾ed ¾a dost¾epne dane o intensywnósci i kolorze rozproszonej sk÷adowej óswie-
tlenia. Niestety, ilóśc miejsca na tekstury równie·z jest ograniczona i ma to zasadniczy
wp÷yw na dok÷adnóśc tych danych (ma÷a rozdzielczóśc tekstur).
Do niedawna, nawet symulacja lokalnych modeli óswietlenia pozostawia÷a wiele do

·zyczenia. Dopiero uk÷ady w pe÷ni programowalne i dostatecznie szybkie pozwoli÷y na

83

Rozdzia÷4. Techniki zaawansowane

stosowanie bardziej skomplikowanych metod. Wraz z lepszymi uk÷adami pojawi÷y si¾e
równie·z mo·zliwósci dok÷adniejszego symulowania optycznych w÷ásciwósci materia÷ów,
z których sk÷adaj ¾a si¾e poszczególne obiekty.

4.1.1. Symulacja nierównósci powierzchni

Obiekty sceny sk÷adaj ¾a si¾e z siatki po÷¾aczonych ze sob ¾a trójk ¾atów. Bardzo szczegó÷owe
odtworzenie obiektu wymaga ogromnej ilósci trójk ¾atów, które opisuj ¾a jego kszta÷t. W
przypadku, kiedy obiekt jest zbudowany z materia÷u, którego powierzchnia jest nie-
równa i chropowata, opisanie tych ma÷ych odkszta÷ceń za pomoc ¾a osobnych trójk ¾atów
poci ¾aga za sob ¾a bardzo du·ze koszty obliczeniowe. Ze wzgl¾edu na stosunkowo niedu·z ¾a
moc obliczeniow ¾a wspó÷czesnych uk÷adów gra�cznych, wszystkie elementy sceny musz ¾a
sk÷adác si¾e z jak najmniejszej ilósci trójk ¾atów.
Rozwi ¾azaniem powy·zszego problemu jest technika symulowania ma÷ych nierównósci

powierzchni za pomoc ¾a odpowiednio przygotowanych tekstur (ang. Bump Mapping).
Pomys÷pochodzi z roku 1978, w którym James Blinn zaprezentowa÷t¾e technik¾e po raz
pierwszy [12].
Podstawowym komponentem obliczeń zwi ¾azanych z óswietleniem jest wektor pro-

stopad÷y do powierzchni, zwany wektorem normalnym. Standardowo, wektor ten jest
obliczany na wierzcho÷kach obiektu i interpolowany na obszarze trójk ¾ata. W celu do-
k÷adnego odwzorowania nierównósci powierzchni, wektor normalny (x; y; z) jest zapi-
sany w teksturze pod trzema sk÷adowymi koloru (r; g; b). Tekstura ta pokrywa ca÷¾a
powierzchni¾e obiektu, wi¾ec mikroprogram dla pikseli mo·ze pobrác z tekstury wartóśc
wektora normalnego i u·zýc go zamiast tego interpolowanego pomi¾edzy wierzcho÷kami
(rys. 4.43).
Jedynym problemem, jaki pojawia si¾e przy zastosowaniu powy·zszej techniki jest

zgodnóśc uk÷adów odniesienia, w których s ¾a zapisane wektory normalne oraz wek-
tor kierunkowy świat÷a i obserwatora. Do poprawnego obliczenia wartósci nat¾e·zenia
świat÷a wszystkie te wektory musz ¾a býc okréslone w tym samym uk÷adzie odniesienia.
Istniej ¾a dwie metody rozwi ¾azania tego problemu, z których ka·zda ma swoje zalety i
wady.
Pierwsz ¾a z metod jest wygenerowanie tekstury w taki sposób, aby wektory nor-

malne by÷y zapisane w tym samym uk÷adzie wspó÷rz¾ednych, co wierzcho÷ki obiektu
(ang. object space bump mapping). Obliczenie nat¾e·zenia świat÷a nie poci ¾aga za sob ¾a
koniecznósci ·zadnych dodatkowych obliczeń. W sta÷ych dla mikroprogramu podaje si¾e
wówczas wspó÷rz¾edne obserwatora i pozycj¾e świat÷a w uk÷adzie obiektu. Nast¾epnie mi-
kroprogram dla wierzcho÷ków oblicza wektory kierunkowe obserwatora i świat÷a, które
s ¾a pó́zniej interpolowane i normalizowane na powierzchni trójk ¾atów. Mikroprogram dla
pikseli pobiera wektor normalny z tekstury za pomoc ¾a wspó÷rz¾ednych, które na etapie
generowania mapy wektorów normalnych zosta÷y przyporz ¾adkowane do poszczególnych
wierzcho÷ków. Pozostaje ju·z tylko obliczýc nat¾e·zenie świat÷a wed÷ug wybranego mo-
delu.
Istotn ¾a wad ¾a tego rozwi ¾azanie jest to, ·ze ka·zdemu punktowi na powierzchni obiektu

musi odpowiadác dok÷adnie jeden punkt na teksturze wektorów normalnych. Dla przy-
k÷adu, jésli obiekt ma imitowác mur i jego powierzchnia sk÷ada si¾e z powtarzaj ¾acego si¾e
obok siebie wzoru ceg÷y, to tekstura dla wektorów normalnych b¾edzie niestety musia÷a

84

4.1. Faktura powierzchni i óswietlenie

a) b)

c)

Rysunek 4.43: Wektor interpolowany na powierzchni obiektu (a) nie oddaje natury chro-
powatej powierzchni (b). Przygotowana mapa wektorów normalnych (c) pozwala ten
efekt uzyskác.

zawierác wzory nierównósci dla ka·zdej ceg÷y. Jest to marnowanie miejsca w pami¾eci
karty gra�cznej, gdy·z wystarczy jeden wzór nierównósci dla pojedynczej ceg÷y, który
b¾edzie powielany na obszarze muru przy pomocy jednego z trybów adresowania tek-
stury (str. 58).
Je·zeli priorytetem jest ilóśc pami¾eci zajmowanej przez tekstury, mo·zna zapisác

wspó÷rz¾edne wektorów normalnych w uk÷adzie tekstury (ang. texture space bump
mapping). W odró·znieniu od poprzedniej metody, przygotowanie mapy nierównósci nie
wymaga znajomósci wygl ¾adu obiektu, na który zostanie ona na÷o·zona. Niech G ozna-
cza uk÷ad wspó÷rz¾ednych obiektu a T uk÷ad wspó÷rz¾ednych tekstury. Wersory uk÷adu
T pokrywaj ¾a si¾e z osiami U i V tekstury, czyli s ¾a równe odpowiednio U = (1; 0; 0),
V = (0; 1; 0) i W = (0; 0; 1). Wersor W jest prostopad÷y do p÷aszczyzny tekstury. Je-
·zeli na powierzchni nie ma býc ·zadnych chropowatósci, to wszystkie elementy tekstury
b¾ed ¾a równe (0; 0; 1); czyli b¾edzie to wektor normalny skierowany prostopadle do p÷asz-
czyzny tekstury. Na prostok ¾atnej powierzchni mapy nierównósci mo·zna odwzorowác
powierzchni¾e na przyk÷ad pojedynczej ceg÷y.
W nast¾epnej kolejnósci mapa nierównósci jest nak÷adana na powierzchni¾e obiektu.

Ka·zdemu wierzcho÷kowi zostaje przyporz ¾adkowana para wspó÷rz¾ednych u 2 R i v 2 R,
które okréslaj ¾a po÷o·zenie wierzcho÷ka na mapie nierównósci. W ten sposób w ka·z-
dym punkcie na powierzchni trójk ¾ata s ¾a znane wspó÷rz¾edne, pod którymi znajduje si¾e

85

Rozdzia÷4. Techniki zaawansowane

wektor normalny NT (u; v) zapisany w uk÷adzie odniesienia tekstury. Nale·zy zauwa-
·zýc, ·ze pojedynczy wektor normalny mo·ze býc przyporz ¾adkowany wielu punktom na
powierzchni obiektu. Mo·zna to osi ¾agn ¾ác stosuj ¾ac adresowanie w trybie powtarzania,
wtedy ka·zdy punkt z przyporz ¾adkowanymi wspó÷rz¾ednymi (i+p; j+q); gdzie fi; jg 2 Z
i fp; qg 2 f[0; 1); [0; 1)g; b¾edzie mia÷identyczny wektor normalny (w uk÷adzie T).
Oprócz tych wspó÷rz¾ednych, potrzebne s ¾a jeszcze informacje o orientacji uk÷adu tek-

stury wzgl¾edem uk÷adu odniesienia obiektuG. MacierzMT!G 2 R3x3, która odpowiada
transformacji wektora kierunkowego z uk÷adu T do G, mo·ze býc inna dla ka·zdego trój-
k ¾ata. Z za÷o·zenia, p÷aszczyzna U=V uk÷adu T pokrywa si¾e z p÷aszczyzn ¾a wyznaczon ¾a
przez powierzchni¾e trójk ¾ata (rys. 4.44). Postác macierzy MT!G jest przedstawiona
poni·zej:

MT!G =
�
UG VG NG

�
;

gdzie UG i VG oznaczaj ¾a wersory uk÷adu T o wspó÷rz¾ednych zapisanych w uk÷adzie
G:

UG =

�
@x

@u

@y

@u

@z

@u

�
; VG =

�
@x

@v

@y

@v

@z

@v

�
; NG = VG � UG: (4.33)

U

V

UG

VG

układ tekstury T układ G

(u ,v)1 1

(u ,v)2 2

(u ,v)3 3

(x ,y)1 1,z1

(x ,y)2 2,z2(x ,y)3 3,z3

Rysunek 4.44: Wersory U i V uk÷adu tekstury T i ich odpowiedniki UG i VG w uk÷adzie
obiektu G.

Ze wzgl¾edu na b÷¾edy podczas nak÷adania tekstury z wektorami normalnymi na
obiekt, wektory UG i VG mog ¾a miéc d÷ugósci ró·zne od 1 i mog ¾a te·z nie býc do sie-
bie prostopad÷e (rys. 4.44). Podczas transformacji wektorów kierunkowych spowoduje
to niepo·z ¾adane zniekszta÷cenia ich kierunku i d÷ugósci. S ¾a one niepo·z ¾adane, poniewa·z
zasad ¾a obowi ¾azuj ¾ac ¾a podczas nak÷adania jakiejkolwiek tekstury na obiekt jest zacho-
wanie proporcji i kwadratowego kszta÷tu tekseli na powierzchni trójk ¾atów. Wszelkie
odst¾epstwa od tej regu÷y s ¾a wynikiem b÷¾edów i nie powinny miéc wp÷ywu na kierunek

86

4.1. Faktura powierzchni i óswietlenie

transformowanych wektorów. Wektory sk÷adaj ¾ace si¾e na macierzMT!G s ¾a w pierwszej
kolejnósci normalizowane a pó́zniej ortogonalizowane, na przyk÷ad metod ¾a Grahama-
Shmidta:

�UG = UG � (NG � UG)NG;
�VG = VG � (NG � VG)NG � (�UG � VG) �UG;
�NG = NG

która w przypadku zale·znósci (4.33) redukuje si¾e do:

�UG = UG;
�VG = VG � (UG � VG)UG;
�NG = NG:

Macierz MG!T , która odpowiada transformacji wektora kierunkowego z uk÷adu G
do uk÷adu tekstury T , ma postác:

MG!T =

0@ �UTG�V TG
�NT
G

1A :
Przy pomocy macierzyMG!T mo·zna dokonác transformacji wektorów kierunkowych

świat÷a i obserwatora do uk÷adu tekstury T . Po wykonaniu tej operacji i pobraniu z
tekstury wektora normalnego NT (u; v) mo·zliwe jest ju·z obliczenie nat¾e·zenia świat÷a.
Podobnie jak w przypadku zwyk÷ego óswietlania obiektów, wektory sk÷adaj ¾ace si¾e

na macierz MG!T s ¾a úsredniane na wierzcho÷kach, ortogonalizowane i interpolowane
na powierzchni trójk ¾atów. Daje to wra·zenie wyg÷adzenia óswietlenia na kraw¾edziach
pomi¾edzy trójk ¾atami.
Schemat pracy uk÷adu gra�cznego w przypadku tej metody sprowadza si¾e do in-

terpolacji wektorów �UG; �VG i �NG pomi¾edzy wierzcho÷kami trójk ¾atów by nast¾epnie w
mikroprogramie dla pikseli znormalizowác je i z÷o·zýc w macierz MG!T : Dla ka·zdego
generowanego piksela wektory kierunkowe świate÷i obserwatora s ¾a transformowane do
uk÷adu T; po czym nast¾epuje obliczenie nat¾e·zenia świat÷a przy pomocy wektora normal-
nego NT (u; v): Ponowna ortogonalizacja wektorów macierzy MG!T w mikroprogramie
dla pikseli jest opcjonalna. Przy dobrze na÷o·zonej mapie nierównósci i odpowiednio
du·zej ilósci trójk ¾atów sk÷adaj ¾acych si¾e na obiekt, zniekszta÷cenia spowodowane inter-
polacj ¾a powinny býc niezauwa·zalne.
Interesuj ¾acym sposobem wykorzystania pierwszej z zaprezentowanych tutaj metod

jest szybkie rysowanie bardzo szczegó÷owych pod wzgl¾edem geometrii modeli. Po za-
projektowaniu modelu, który sk÷ada si¾e z kilkudziesi¾eciu lub nawet kilkuset tysi¾ecy
trójk ¾atów, generowany jest automatycznie model o znacznie mniejszej ilósci trójk ¾atów.
Jest to mo·zliwe przy zastosowaniu wielu ogólnie dost¾epnych algorytmów do reduk-
cji ilósci ścian obiektów. Nast¾epnie dla modelu o ma÷ej ilósci ścian jest generowana

87

Rozdzia÷4. Techniki zaawansowane

mapa nierównósci powierzchni, która powstaje dzi¾eki informacji pochodz ¾acej od do-
k÷adnej wersji modelu. Algorytmy wykonuj ¾ace ta operacj¾e s ¾a dóśc skomplikowane w
konstrukcji, ale efekt uzyskany dzi¾eki nim jest zdumiewaj ¾acy (rys. 4.45).

Rysunek 4.45: Po lewej stronie normalnie óswietlony model (ok. 1000 trójk ¾atów). Po
prawej ten sam model óswietlony przy u·zyciu wczésniej wygenerowanej mapy nierów-
nósci powierzchni. Oryginalny model jest zbudowany z 35000 trójk ¾atów.

Do pracy zosta÷do÷¾aczony program, z którego pochodzi powy·zsza ilustracja. Znaj-
duje si¾e on w katalogu /programy/4_1_1. Tréśc mikroprogramów u·zytych w programie
jest dost¾epna w pliku z rozszerzeniem *.fx w tym samym katalogu.

4.1.2. Tekstury proceduralne

Klasyczne materia÷y u·zywane podczas generowania obrazów s ¾a skonstruowane z dwu-
wymiarowych tekstur, nak÷adanych na powierzchni¾e trójk ¾atów. Budowa obiektu cz¾esto
uniemo·zliwia na÷o·zenie tekstury w sposób, który da zadowalaj ¾ace wyniki. Cz¾esto spo-
tykanym efektem ubocznym s ¾a nieci ¾ag÷ósci kolorów powsta÷e na styku dwóch trójk ¾atów,
na które zosta÷a na÷o·zona tekstura. Przy du·zym skomplikowaniu siatki obiektu takich

88

4.1. Faktura powierzchni i óswietlenie

miejsc mo·ze býc bardzo du·zo. Drugim problemem jest zachowanie proporcji teksela na
powierzchni obiektu. Im mniej nieci ¾ag÷ósci, tym bardziej zdeformowana i rozci ¾agni¾eta
mo·ze býc tekstura. Nie istniej ¾a automatyczne algorytmy, które w ka·zdej sytuacji b¾ed ¾a
generowác poprawne wizualnie wyniki. Co wi¾ecej, w wielu przypadkach jest to po
prostu niemo·zliwe.
Cz¾ésciowym rozwi ¾azaniem powy·zszego problemu jest stosowanie zupe÷nie innego

rodzaju opisu materia÷ów. W 1983 roku Ken Perlin wymýsli÷sposób, który umo·zliwia
opisanie koloru powierzchni za pomoc ¾a funkcji o trójwymiarowej dziedzinie [13]. Jako
argumenty tej funkcji podawane s ¾a wspó÷rz¾edne punktu w R3, dla którego ma býc
obliczony kolor. Jeden opis materia÷u wystarczy do pokrycia nim obiektów o dowolnym
kszta÷cie i topologii. Oczywíscie bardzo trudno jest opracowác tego typu funkcje dla
wszystkich materia÷ów. Metoda ta daje jednak doskona÷e wyniki dla tych zbudowanych
na bazie fraktali, a wi¾ec opartych na samopodobieństwie. Dla przyk÷adu mo·ze to býc
kamień lub drewno.
Metoda Kena Perlina opisuje tylko podstawowe mechanizmy, które stanowi ¾a niejako

aparat do konstruowania bardziej realistycznych efektów. Ostateczny kszta÷t obliczeń
zale·zy wy÷¾acznie od pomys÷owósci twórcy i nie ma tu ·zadnych ścísle obowi ¾azuj ¾acych
regu÷.
W pierwszej kolejnósci nale·zy wygenerowác trójwymiarow ¾a tekstur¾e szumu. Tek-

stura ta sk÷ada si¾e z wartósci wybranych losowo lub pseudolosowo, które s ¾a pó́zniej
rozmywane za pomoc ¾a �ltrów. Losowe liczby nale·z ¾a do przedzia÷u [0,1] i s ¾a roz÷o·zone
równomiernie na przestrzeni tekstury, niekoniecznie w ka·zdym tekselu jedna. Aby uzy-
skác szum o mniejszej ziarnistósci, losuje si¾e liczby co kilka tekseli i pó́zniej rozmywa w
taki sam sposób (lewa strona rys. 4.46). Odwrotnóśc odleg÷ósci pomi¾edzy próbkami jest
cz¾estotliwósci ¾a szumu. Filtrowanie jest przeprowadzane tak, aby naprzeciwleg÷e ściany
tekstury wolumetrycznej by÷y identyczne. Przy u·zyciu trybu powtarzania adresowa-
nia tekstury, mo·zna indeksowác j ¾a wspó÷rz¾ednymi poza przedzia÷em [0,1) zachowuj ¾ac
ci ¾ag÷óśc danych.

Rysunek 4.46: Po lewej stronie przekrój tekstury szumów. Po prawej, obraz powsta÷y
po odpowiednim zsumowaniu szumów o malej ¾acych cz¾estotliwósciach.

89

Rozdzia÷4. Techniki zaawansowane

Podstawow ¾a operacj ¾a jest sumowanie szumów o ró·znych cz¾estotliwósciach. Przyk÷a-
dowo, je·zeli szum dany jest funkcj ¾aN(x; y; z), przy obliczaniu koloru mo·zna zastosowác
nast¾epuj ¾ac ¾a zale·znóśc:

c =
nX
1

1

n
N(nx; ny; nz): (4.34)

Funkcje tego typu, ze wzgl¾edu na ich natur¾e, zwane s ¾a sumami fraktalnymi. Efekt
dzia÷ania równania (4.34) mo·zna zobaczýc po prawej stronie rys. 4.46.
Przy tworzeniu materia÷ów proceduralnych dozwolona jest pe÷na dowolnóśc kszta÷tu

obliczeń. Podczas generowania koloru w punkcie, stosuje si¾e dowolne funkcje mieszaj ¾ace
dane z tekstury szumu. Oprócz ró·znego rodzaju sum fraktalnych cz¾esto u·zywane s ¾a
�ltry dolno i górno przepustowe, funkcje mieszaj ¾ace kolory oraz tekstury pomocnicze.
Przyk÷ad materia÷u proceduralnego jest przedstawiony na rys. 4.47. Funkcja obli-

czaj ¾aca kolor pochodzi z biblioteki materia÷ów profesjonalnego systemu generowania
obrazu Renderman �rmy Pixar.

Rysunek 4.47: Przyk÷ad materia÷u proceduralnego.

90

4.1. Faktura powierzchni i óswietlenie

Rola uk÷adu gra�cznego w przypadku materia÷ów proceduralnych polega na obli-
czeniu w mikroprogramie dla pikseli koloru, korzystaj ¾ac z wolumetrycznej tekstury
szumu. Dane wej́sciowe stanowi ¾a wspó÷rz¾edne wierzcho÷ków, które s ¾a interpolowane
przez uk÷ad na powierzchni ca÷ego trójk ¾ata. Pozycja wierzcho÷ka jest zapisywana w
rejestrach wyj́sciowych mikroprogramu dla wierzcho÷ków i pobierana po interpolacji z
rejestrów wej́sciowych jednostki PSU.
Model z rys. 4.47 mo·zna obejrzéc interaktywnie, uruchamiaj ¾ac do÷¾aczony do pracy

program. Znajduj¾e si¾e on w katalogu /programy/4_1_2 a mikroprogramy wykonywane
przez kart¾e gra�czn ¾a s ¾a w pliku z rozszerzeniem *.fx w tym samym katalogu.

4.1.3. Odbicie i za÷amanie świat÷a

Odbicie i za÷amanie świat÷a jest naturalnym zjawiskiem podczas rozchodzenia si¾e świa-
t÷a. Powsta÷o wiele algorytmów, które w mniejszym lub wi¾ekszym stopniu oddaj ¾a na-
tur¾e tego zjawiska. Jednym z nich jest popularna metoda śledzenia promieni. Niestety,
przy u·zyciu akceleratorów gra�cznych generowanie obrazu t ¾a technik ¾a jest niemo·zliwe.
Podczas obliczania koloru piksela przez mikroprogram, nie s ¾a dost¾epne informacje o
budowie i pozycji obiektów otaczaj ¾acych przetwarzany aktualnie trójk ¾at. Opracowane
zosta÷y jednak metody, które pozwalaj ¾a na prowizoryczne odtworzenie tych zjawisk.
Zgodnie z zasadami metody śledzenia promieni, promień (L) biegn ¾acy od obser-

watora rozdziela si¾e w momencie przeci¾ecia z powierzchni ¾a obiektu na dwie cz¾ésci,
sk÷adow ¾a odbit ¾a RL oraz sk÷adow ¾a za÷aman ¾a RF (rys. 4.48). Po przej́sciu promienia
RF przez ósrodek, rozdziela si¾e on w punkcie p2 na kolejne dwie sk÷adowe, RL(2) i RF (2):
Przy pomocy uk÷adu gra�cznego mo·zna zasymulowác wy÷¾acznie pierwsze rozdzielenie
si¾e promieni, poniewa·z mikroprogram obliczaj ¾ac kolor w punkcie p nie posiada infor-
macji o rozmieszczeniu wszystkich obiektów na scenie. Co wi¾ecej, nie jest w stanie
znaléźc dalszych punktów przeci¾ecia promieni RL i RF .

L RL

RF

RF

p2

RL(2)

RF(2)

p

Rysunek 4.48: Metoda śledzenia promieni.

91

Rozdzia÷4. Techniki zaawansowane

Wektory RL i RF mo·zna wykorzystác jako wspó÷rz¾edne tekstury kubicznej. Przy
odpowiednio spreparowanej teksturze, wartóśc pobranego koloru b¾edzie odpowiadác
kolorowi świat÷a emitowanego z tego kierunku przez dalekie otoczenie. Wi¾ecej na ten
temat mo·zna znaléźc w podrozdziale 3.2.2.
Nale·zy zauwa·zýc, ·ze sk÷adowa świat÷a odbitego b¾edzie prawid÷owa, ale za÷amanego

ju·z nie. Podczas pobierania koloru świat÷a emitowanego przez dalekie otoczenie powi-
nien býc u·zyty wektor RF (2) a nie RF (rys. 4.48).
Wektory RL i RF obliczane s ¾a wed÷ug nast¾epuj ¾acych zale·znósci [14]:

RL = L� 2(L �N)N; gdzie N to wektor normalny powierzchni,

RF = �kN +
c2
c1
(L� (L �N)N); gdzie k =

s
1�

�
c2
c1

�2
(1� (L �N)2):

Wspó÷czynniki c1 i c2 oznaczaj ¾a odpowiednio indeksy refrakcji ósrodka na zewn ¾atrz

i wewn ¾atrz obiektu. Jésli
�
c2
c1

�2
(1� (L �N)2) > 1 to świat÷o nie za÷amuje si¾e. Operacje

odbicia i za÷amania wektora s ¾a standardowo wbudowane w j¾ezyk HLSL.
Podczas obliczania ostatecznego koloru piksela, kolory obu sk÷adowych musz ¾a býc ze

sob ¾a po÷¾aczone. S÷u·zy do tego wspó÷czynnik Fresnela f [15], który okrésla ile procent
świat÷a docieraj ¾acego do obserwatora pochodzi ze sk÷adowej odbitej od powierzchni
obiektu. Im wi¾ekszy k ¾at, pod którym obserwator patrzy na powierzchni¾e, tym wi¾ecej
wk÷adu do koloru ma sk÷adowa odbita a mniej sk÷adowa za÷amana. Obliczenie dok÷ad-
nego wspó÷czynnika Fresnela jest bardzo kosztowne, dlatego trzeba u·zýc aproksymacji.
Jedno z dobrych przybli·zeń jest opisane w pracy [16], ma ono nast¾epuj ¾ac ¾a postác:

f = R + (1�R)(1 + L �N)5, gdzie R =
(1� c2

c1
)2

(1 +
c2
c1
)2
:

Ostateczny kolor piksela dany jest wzorem:

K = fKR + fKF ,

gdzie KR i KF oznaczaj ¾a odpowiednio kolory pochodz ¾ace ze sk÷adowej odbitej i
za÷amanej.
Wykorzystanie tej techniki niewiele ró·zni si¾e od zwyk÷ego óswietlania obiektu. Oprócz

wektora odbitego RL; w mikroprogramie dla pikseli jest obliczany jest równie·z wektor
za÷amania RF , oba s÷u·z ¾a jako wspó÷rz¾edne dla tektury kubicznej z map ¾a óswietlenia.
Po uwzgl¾ednieniu wspó÷czynnika Fresnela kolor wynikowy jest wpisywany do bufora.
W katalogu /programy/4_1_3 znajduje si¾e program wykorzystuj ¾acy opisan ¾a w tym

podrozdziale technik¾e (rys. 4.49). U·zytkownik mo·ze prze÷¾aczýc program na tryb ryso-
wania wy÷¾acznie sk÷adowej odbitej, rozproszonej lub obu jednoczésnie. Wykorzystane
mikroprogramy wraz z komentarzami znajduj ¾a si¾e w pliku z rozszerzeniem *.fx.

92

4.2. Cienie

Rysunek 4.49: Przyk÷ad wykorzystania efektu odbicia i za÷amania świat÷a. Obie sk÷a-
dowe po÷¾aczone wspó÷czynnikiem Fresnela przedstawia dolna cz¾ésci rysunku.

4.2. Cienie
Dynamicznie obliczane cienie nale·z ¾a do najtrudniejszych do wykonania, ale równocze-
śnie najbardziej po·z ¾adanych efektów. Nadaj ¾a scenie realistycznego wygl ¾adu i klima-
tycznósci. Architektura uk÷adów gra�cznych pozwala na symulacj¾e wy÷¾acznie świa-
te÷kierunkowych oraz punktowych, co implikuje ostre kraw¾edzie cieni. Stosowane s ¾a
metody ich wyg÷adzania, ale nie ma to nic wspólnego z rozmyciem spowodowanym
geometri ¾a źróde÷́swiat÷a.
Powszechnie stosowane s ¾a dwa sposoby wyznaczania cieni, oba s ¾a w pe÷ni realizowane

przez akceleratory. Ka·zdy z nich posiada powa·zne wady i nie nadaje si¾e do wszystkich
rodzajów scen. Oba ró·zni ¾a si¾e od siebie konstrukcj ¾a oraz wygl ¾adem wygenerowanych
cieni. Pierwsza metoda wykorzystuje tzw. map¾e cieni i jest nieco szybsza, ale za to
mniej dok÷adna od drugiej, opartej na geometrycznych bry÷ach cieni.

93

Rozdzia÷4. Techniki zaawansowane

Wady obu technik wynikaj ¾a bezpósrednio z ograniczonych zasobów i niedostatecznej
mocy obliczeniowej karty. Dla przyk÷adu, mapa cienia bardzo du·zej rozdzielczósci jest
stosowana w profesjonalnych systemach generowania obrazu, takich jak Renderman.
Wysoka rozdzielczóśc gwarantuje bardzo dobr ¾a jakóśc obrazu, ale tego typu efekt jest
na razie nieosi ¾agalny w systemach czasu rzeczywistego. Rozmyte kraw¾edzie cieni mo·zna
bardzo ÷atwo uzyskác stosuj ¾ac kilkadziesi ¾at punktowych źróde÷́swiat÷a, imituj ¾acych
jedno źród÷o w kszta÷cie na przyk÷ad kuli. Býc mo·ze przysz÷ej generacji karty b¾ed ¾a w
stanie podo÷ác takiemu wyzwaniu.

4.2.1. Mapa cienia

Metoda mapy cienia jest realizowana w dwóch przebiegach. Pierwszy z nich rysuje ca÷¾a
scen¾e z perspektywy źród÷a świat÷a, wype÷niaj ¾ac bufor koloru wartósciami odleg÷ósci
od świat÷a rysowanych punktów. W ten sposób powstaje mapa g÷¾ebokósci, w której
s ¾a zapisane odleg÷ósci najbli·zszych świat÷u punktów sceny w danym kierunku. Bufor
koloru ma kszta÷t prostok ¾ata, wi¾ec obszar óswietlany b¾edzie musia÷miéc postác sto·zka
lub prostopad÷óscianu, w zale·znósci od przekszta÷cenia rzutuj ¾acego u·zytego podczas
rysowania.
W drugim etapie scena jest ju·z rysowana z perspektywy obserwatora. Dla ka·zdego

generowanego piksela, wspó÷rz¾edne punktu na trójk ¾acie s ¾a tak przekszta÷cane, aby po-
równác jego odleg÷óśc od świat÷a. Porównanie jest wykonywane przy pomocy wartósci
we wczésniej wygenerowanej mapie g÷¾ebokósci (mapy cienia). Je·zeli odleg÷óśc punktu
od świat÷a jest mniejsza lub równa ni·z ta zapisana w mapie cienia, to punkt nie jest w
cieniu. W przeciwnym wypadku punkt le·zy w cieniu i jest rysowany wy÷¾acznie kolorem
globalnego óswietlenia (rys. 4.50).

p1

p2

p3

Rysunek 4.50: Mechanizm dzia÷ania metody mapy cienia. Punkty p1 i p2 le·z ¾a w cieniu.

94

4.2. Cienie

Niech macierz MO reprezentuje przekszta÷cenie z uk÷adu sceny do uk÷adu obserwa-
tora, wraz z przekszta÷ceniem rzutuj ¾acym. Macierz ML równie·z ma podobn ¾a postác,
ale z punktu widzenia świat÷a. Ós Z uk÷adu źród÷a świat÷a pokrywa si¾e z kierun-
kiem jego padania na scen¾e. W pierwszej kolejnósci, obiekty sceny s ¾a rysowane przy
u·zyciu macierzy ML: Program dla wierzcho÷ków, jako jeden z atrybutów wyj́sciowych
przekazuje wspó÷rz¾edn ¾a z oraz w do mikroprogramu dla pikseli. Wspó÷rz¾edne te s ¾a
wynikiem pomno·zenia wspó÷rz¾ednych wierzcho÷ka przez macierz ML: Po interpolacji
obu tych atrybutów na powierzchni trójk ¾ata przez uk÷ad, w mikroprogramie dla pik-
seli wyznaczana jest wartóśc odleg÷ósci punktu poprzez podzielenie z przez w: z0 =

z

w
:

Nale·zy zauwa·zýc, ·ze równoczésnie t ¾a sam ¾a operacj¾e wykona÷niejawnie w mi¾edzycza-
sie uk÷ad, w celu wyznaczenia widocznósci w buforze-Z oraz pozycji we wspó÷rz¾ednych
kanonicznych: 0@x0y0

z0

1A =

0@x=wy=w
z=w

1A :
Oprócz tego, uk÷ad przekszta÷ci÷wspó÷rz¾edne kanoniczne do uk÷adu bufora koloru,

stosuj ¾ac zale·znóśc (3.15):�
�x
�y

�
=

�
wo
2

0 0
0 �ho

2
0

� �
x0

y0

�
+

�
wo
2
+ �xo

ho
2
+ �yo

�
(4.35)

Mikroprogram wpisuje do bufora koloru pod wspó÷rz¾ednymi (�x; �y) wartóśc z0: Jest
to specjalnie utworzony bufor koloru, który mo·ze býc pó́zniej wykorzystany jako tek-
stura. Jego format jest z regu÷y jednokomponentowy i o jak najwi¾ekszej dok÷adnósci,
na przyk÷ad 32 bitowej liczby rzeczywistej na piksel. Dok÷adnie t ¾a sam ¾a operacj¾e prze-
prowadzi÷uk÷ad w buforze-Z. Niestety, w API DirectX nie ma mo·zliwósci skopiowania
bufora-Z do tekstury w celu pó́zniejszych operacji, wi¾ec praktycznie te same dane s ¾a
wpisywane dwukrotnie. Oczywíscie to bufor-Z wykonuje testy widocznósci, w mikro-
programie nie s ¾a wykonywane ·zadne porównania. W ten sposób stworzona zosta÷a
mapa cienia.
Nast¾epnym krokiem jest narysowanie sceny przy u·zyciu macierzy MO z punktu

widzenia obserwatora. Przed wykonaniem tego kroku, bufor koloru jest ustawiany na
normalny a mapa cienia jako tekstura zostaje pod÷¾aczona do rejestru próbkuj ¾acego
tekstury.
Mikroprogram dla wierzcho÷ków wykonuje najpierw wszystkie operacje potrzebne

do narysowania obiektów, czyli mno·zy wspó÷rz¾edne wierzcho÷ka przez macierzMO: Na-
st¾epnie generuje drug ¾a kopi¾e wspó÷rz¾ednych, ale tym razem przemna·zaj ¾ac wspó÷rz¾edne
wierzcho÷ka przez macierzML. Wszystkie 4 otrzymane liczby (xL; yL; zL; wL) umieszcza
w atrybutach przeznaczonych do interpolacji (na przyk÷ad w rejestrze TEXCOORD0).
Mikroprogram dla pikseli otrzymuje przeinterpolowane wspó÷rz¾edne i wykonuje dzie-

lenie przez wL: 0@x0Ly0L
z0L

1A =

0@xL=wLyL=wL
zL=wL

1A :
95

Rozdzia÷4. Techniki zaawansowane

Po tej operacji, wartóśc z0L jest ju·z gotowa do porównania, ale nie jest jeszcze znana
pozycja tego punktu na mapie cienia. Po przeanalizowaniu drogi, jak ¾a przeby÷punkt
rysowany do mapy cienia, jedyn ¾a potrzebn ¾a jeszcze operacj ¾a jest transformacja wspó÷-
rz¾ednych kanonicznych (x0L; y

0
L) do uk÷adu mapy cienia (4.35). Otrzyman ¾a par¾e (�xL; �yL)

mikroprogram wykorzystuje jako wspó÷rz¾edne do pobrania wartósci odleg÷ósci z tek-
stury cienia. Po wykonaniu porównania z z0L mikroprogram uzyska÷informacj¾e czy
punkt ten le·zy w cieniu czy nie.
Technika ta ma dwie powa·zne wady. Mapa cienia ma ograniczon ¾a rozdzielczóśc

i dok÷adnóśc. Objawia si¾e to powa·znymi b÷¾edami w wygenerowanym obrazie (rys.
4.51). Cienie maj ¾a z¾ebate kraw¾edzie (rozdzielczóśc) oraz nie przechodz ¾a p÷ynnie przez
wszystkie trójk ¾aty w czasie ruchu świat÷a (dok÷adnóśc).
Zwi¾ekszýc dok÷adnóśc wartósci odleg÷ósci mo·zna zapisuj ¾ac do mapy cienia nie war-

tóśc z0 =
z

w
; ale zwyk÷¾a odleg÷óśc punktu od źród÷a świat÷a. Wartóśc t ¾a mo·zna uzyskác

po pomno·zeniu wspó÷rz¾ednych wierzcho÷ka przez macierz ML pozbawion ¾a przekszta÷-
ceń rzutuj ¾acych. W ten sposób odleg÷óśc b¾edzie równomiernie wykorzystywa÷a ca÷¾a
przestrzeń liczb zmiennopozycyjnych.
Z¾eby na kraw¾edziach zostan ¾a cz¾ésciowo wyeliminowane, jésli wykonane zostan ¾a

cztery porównania odleg÷ósci z liczb ¾a z0. Po obliczeniu wspó÷rz¾ednych (�xL; �yL) porów-
nane b¾ed ¾a odleg÷ósci mapy cienia o wspó÷rz¾ednych (�xL; �yL); (�xL + 1; �yL); (�xL; �yL + 1),
oraz (�xL + 1; �yL + 1): Zerojedynkowe wyniki tych porównań s ¾a pó́zniej úsredniane. W
ten sposób cień na kraw¾edziach przechodzi p÷ynniej i z¾eby nie s ¾a a·z tak ostre.

Rysunek 4.51: B÷¾edy spowodowane ma÷¾a rozdzielczósci ¾a i niedok÷adnósci ¾a mapy cienia.

Program znajduj ¾acy si¾e w katalogu /programy/4_2_1 demonstruje dzia÷anie metody
mapy cienia (rys. 4.52). Wraz z nim w pliku z rozszerzeniem *.fx s ¾a umieszczone
mikroprogramy z komentarzami.

96

4.2. Cienie

Rysunek 4.52: Po lewej stronie scena wygenerowana przy pomocy mapy cienia. Po
prawej, normalnie óswietlona rzézba.

4.2.2. Cienie wolumetryczne

Metoda cieni wolumetrycznych opiera si¾e na w÷asnósciach tzw. bry÷cienia. Bry÷a
cienia to wycinek bry÷y podobnej do ści¾etego sto·zka. Jego mniejsza podstawa sk÷ada
si¾e z odwróconych przodem do źród÷a świat÷a ścian obiektu. Ściany boczne s ¾a oparte
na wierzcho÷kach brzegowych podstawy i rozci ¾agni¾ete w kierunku padania świat÷a (rys.
4.53). Ka·zdy punkt, który znajduje si¾e we wn¾etrzu bry÷y cienia znajduje si¾e w cieniu
obiektu. Dla uproszczenia algorytmu zak÷ada si¾e, ·ze ka·zdy obiekt jest bry÷¾a zamkni¾et ¾a,
dlatego środek obiektu mo·zna równie·z uznác za obszar znajduj ¾acy si¾e w cieniu.
W celu sprawdzenia czy rysowany punkt le·zy w cieniu, nale·zy poprowadzíc pó÷prost ¾a

biegn ¾ac ¾a od rysowanego punktu do nieskończonósci, w kierunku zgodnym z kierunkiem
patrzenia obserwatora (rys. 4.53). Zaczynaj ¾ac od cz¾ésci pó÷prostej znajduj ¾acej si¾e w
nieskończonósci, nale·zy poruszác si¾e w kierunku rysowanego aktualnie punktu, oblicza-
j ¾ac liczb¾e ścian bry÷cienia przecinanych przez t ¾a pó÷prost ¾a. Jésli ró·znica liczby ścian
zwróconych ty÷em do obserwatora i zwróconych przodem do niego jest wi¾eksza od zera,
to punkt jest w cieniu.

97

Rozdzia÷4. Techniki zaawansowane

0

1()+1

2()+1

1()­1

1
p1

0

1()+1

0()­1

0p2

Rysunek 4.53: Idea dzia÷ania metody cieni wolumetrycznych. Punkt p1 jest w cieniu a
punkt p2 nie.

Obiekty musz ¾a býc zamkni¾ete, ale nie musz ¾a býc wypuk÷e. W takim przypadku,
ka·zdy obiekt b¾edzie posiada÷wi¾ecej ni·z jedn ¾a sto·zkowat ¾a bry÷¾e cienia.
Do poprawnego funkcjonowania algorytmu, niezb¾edne jest zamkni¾ecie bry÷y cienia

z obu stron. Pierwsz ¾a stron¾e zamykaj ¾a ściany obiektu zwrócone przodem do źród÷a
świat÷a. Drug ¾a mo·ze zamykác dowolny kszta÷t, ale najcz¾ésciej wykorzystuje si¾e do tego
wysuni¾ete na odpowiednio du·z ¾a odleg÷óśc te ściany obiektu, które s ¾a zwrócone ty÷em
do źród÷a świat÷a.
Na potrzeby sprz¾etowej realizacji tego pomys÷u, zosta÷a wymýslona sprytna metoda

konstrukcji bry÷cienia. W pierwszej kolejnósci wszystkie modele s ¾a kopiowane. Ka·zda
kraw¾ed́z kopii obiektu jest rozspajana i ÷¾aczona przez dwa trójk ¾aty o zerowym polu
(rys. 4.54). Ka·zdemu wierzcho÷kowi jest przyporz ¾adkowywany wektor normalny ory-
ginalnego trójk ¾ata, którego cz¾ésci ¾a jest ten wierzcho÷ek. W takiej postaci obie wersje
obiektu s ¾a zapisywane w pami¾eci.
W celu obliczenia kszta÷tu bry÷y cienia dla konkretnej pozycji świat÷a, wierzcho÷ki

wszystkich tych ścian, które s ¾a zwrócone ty÷em do źród÷a świat÷a, s ¾a wysuwane na
znaczn ¾a odleg÷óśc. Aby sprawdzíc, które to s ¾a wierzcho÷ki, nale·zy wykonác iloczyn
skalarny wektora kierunkowego świat÷a z wektorem normalnym zapisanym w wierz-
cho÷ku. W ten sposób zostan ¾a wysuni¾ete tylko niezb¾edne ściany a obiekt nie zostanie
rozspojony. W przypadku, kiedy oba s ¾asiaduj ¾ace ze sob ¾a trójk ¾aty zostan ¾a wysuni¾ete
lub oba nie zostan ¾a wysuni¾ete, dwa spajaj ¾ace je na kraw¾edzi trójk ¾aty nadal b¾ed ¾a mia÷y

98

4.2. Cienie

zerowe pole. Pozosta÷e trójk ¾aty spajaj ¾ace b¾ed ¾a stanowi÷y ściany boczne bry÷y cienia
(czerwone trójk ¾aty na rys. 4.54).

Rysunek 4.54: Wierzcho÷ki bry÷y cienia obrócone ty÷em do świat÷a zostaj ¾a wysuni¾ete.

Podczas generowania cieni przez uk÷ad gra�czny, intensywnie wykorzystywany jest
bufor zliczania. Jest on elementem niezb¾ednym do narysowania cieni metod ¾a wolume-
tryczn ¾a.
Proces nak÷adania cieni sk÷ada si¾e z trzech etapów. W pierwszym, scena jest ry-

sowana przy u·zyciu wy÷¾acznie globalnej sk÷adowej óswietlenia. Sk÷adowa rozproszona
oraz zwierciadlana b¾ed ¾a narysowane pó́zniej. Po wykonaniu tego kroku, w buforze
koloru znajduj ¾a si¾e obiekty w takim kolorze, w jakim by÷yby w cieniu. Bufor-Z zo-
sta÷wype÷niony i zawiera odleg÷ósci najbli·zszych obserwatorowi punktów, w ka·zdym z
kierunków wyznaczonych przez pozycje pikseli.
W drugim etapie rysowane s ¾a wy÷¾acznie bry÷y cienia. Wysuwaniem wierzcho÷ków

zajmuje si¾e ca÷kowicie uk÷ad gra�czny. W mikroprogramie dla wierzcho÷ków jest prze-
prowadzany test, który daje liczb¾e 0 lub 1; w zale·znósci od wartósci iloczynu skalar-
nego wektora normalnego i kierunkowego świat÷a. Ka·zdy wierzcho÷ek jest wysuwany
o pewn ¾a ustalon ¾a odleg÷óśc pomno·zon ¾a przez wynik testu. W ten sposób wysuni¾ete
zostan ¾a wierzcho÷ki tylko tych ścian, które s ¾a zwrócone w kierunku padania świat÷a.
Bry÷y cienia nie s ¾a rysowane do bufora koloru, ale wy÷¾acznie do bufora zliczania.

Zapisywanie do bufora koloru zostaje wczésniej zabronione. Bufor-Z jest wykorzysty-
wany tylko do odczytu i rysowane s ¾a wy÷¾acznie te punkty, które le·z ¾a nie bli·zej ni·z te
narysowane w poprzednim etapie. Dzieje si¾e tak, gdy·z algorytm nie potrzebuje spraw-
dzác zacienienia punktów le·z ¾acych przed obiektami sceny, tym samym nie s ¾a istotne
informacje o ścianach bry÷cienia znajduj ¾acych si¾e przed nimi.
Test kontroluj ¾acy bufor zliczania jest ustawiany na zwracanie zawsze prawdy, wi¾ec

ka·zdy narysowany piksel b¾edzie zmienia÷wartósci w buforze. Je·zeli ściana bry÷y cienia

99

Rozdzia÷4. Techniki zaawansowane

jest zwrócona ty÷em do obserwatora, to wartóśc dla piksela w buforze zliczania jest
zwi¾ekszana o jeden. Jésli ściana jest zwrócona przodem, to wartóśc w buforze jest
zmniejszana o jeden. Po wykonaniu tego kroku, w ka·zdym pikselu bufora zliczania
znajdzie si¾e wspomniana wczésniej ró·znica liczb ścian. Jest to dok÷adne odwzorowanie
procesu pokazanego na rys. 4.53.
Przed rozpocz¾eciem trzeciego etapu, w buforze zliczania ka·zdemu pikselowi jest przy-

porz ¾adkowana liczba, okréslaj ¾aca czy znajduje si¾e on w cieniu. Je·zeli wartóśc ta jest
równa zero, to punkt powinien býc normalnie óswietlony. Pozostaje tylko narysowác
ca÷¾a scen¾e, dodaj ¾ac do bufora koloru sk÷adow ¾a rozproszon ¾a oraz zwierciadlan ¾a. Test
bufora zliczania jest ustawiany tak, aby zwracác prawd¾e wy÷¾acznie wtedy, gdy wartóśc
znajduj ¾aca si¾e w nim jest równa zero. W przeciwnym razie piksel nie jest rysowany.
Tym sposobem do bufora koloru zostan ¾a dodane pozosta÷e sk÷adowe jedynie wtedy,
kiedy rysowany punkt nie znajduje si¾e w cieniu.
Opisana powy·zej metoda generowania cieni jest pozbawiona wad jej poprzedniczki.

Cienie s ¾a zawsze doskona÷ej jakósci, ale ich kraw¾edzie mog ¾a wydawác si¾e bardziej ostre.
Powodem jest to, ·ze o stopniu zacienienia piksela decyduje tylko jedna próbka, wi¾ec
jest to wartóśc zerojedynkowa. Nie jest mo·zliwe jakiekolwiek �ltrowanie kraw¾edzi (rys.
4.55).
Cz¾esto ze wzgl¾edu na du·ze skomplikowanie sceny, cienie wolumetryczne s ¾a du·zo

wolniejsze od tych wygenerowanych przy pomocy mapy cienia. Bry÷y cienia s ¾a rysowane
jedna na drugiej, przez co ich ilóśc i rozpi¾etóśc ma decyduj ¾ace znaczenie dla pr¾edkósci
dzia÷ania programu.

Rysunek 4.55: Metoda cieni wolumetrycznych generuje bardzo ostre kraw¾edzie cieni.

Program demonstruj ¾acy technik¾e cieni wolumetrycznych znajduje si¾e w katalogu
/programy/4_2_2. Źród÷a mikroprogramów dla uk÷adu gra�cznego s ¾a w pliku z roz-
szerzeniem *.fx w tym samym katalogu.

100

4.3. Przetwarzanie obrazu

4.3. Przetwarzanie obrazu
W tym podrozdziale opisane s ¾a dwa wybrane procesy przetwarzania obrazu. Ope-
ruj ¾a one na danych znajduj ¾acych si¾e w buforach ju·z po wygenerowaniu ca÷ej sceny.
Do niedawna wszelkiego rodzaju �ltry pe÷noekranowe by÷y niemo·zliwe do wykonania,
g÷ównie ze wzgl¾edu na bardzo ma÷¾a pr¾edkóśc uk÷adów gra�cznych. Nawet najprost-
szy �ltr pe÷noekranowy wymaga ogromnej liczby operacji pobierania danych na ka·zdy
przetwarzany piksel obrazu.
Najwi¾ekszy problem pozosta÷jednak aktualny do dzís. W czasie obliczania koloru

nie ma mo·zliwósci korzystania z informacji o s ¾asiednich pikselach. Jest to spowodo-
wane wielopotokow ¾a architektur ¾a, która przyspieszaj ¾ac wielokrotnie dzia÷anie uk÷adu,
równoczésnie utrudnia wykonanie nawet najprostszego rozmycia obrazu.
Cz¾ésciowym rozwi ¾azaniem jest rysowanie sceny do tekstury i wygenerowanie osta-

tecznego obrazu w dodatkowym przebiegu. Takie podej́scie pozwala co prawda korzy-
stác z danych o kilku pikselach jednoczésnie, ale szybko okazuje si¾e, ·ze uk÷ady nie s ¾a
w stanie przetworzýc takiej ilósci danych w rozs ¾adnym czasie. Dopiero akceleratory z
najwy·zszej pó÷ki mog ¾a pochwalíc si¾e na tyle krótkim czasem generowania jednej klatki
obrazu, aby mo·zliwe sta÷o si¾e zaadoptowanie tego typu �ltrów w powa·znych przedsi¾e-
wzi¾eciach.

4.3.1. G÷¾ebia ostrósci

W gra�ce komputerowej najcz¾ésciej stosuje si¾e wyidealizowany model uk÷adu optycz-
nego. Promienie świat÷a przechodz ¾a przez nieskończenie ma÷y otwór a odwrócony obraz
powstaje na rzutni po drugiej stronie. Dla uproszczenia, na rysunkach rzutni¾e umiesz-
cza si¾e w tej samej odleg÷ósci przed sztucznym obiektywem, aby powsta÷y obraz nie by÷
odwrócony. Wszystkie obiekty niezale·znie od odleg÷ósci b¾ed ¾a widziane jako ostre, gdy·z
do ka·zdego punktu na rzutni dochodzi promień świat÷a z dok÷adnie jednego kierunku
(rys. 4.56).

Rysunek 4.56: Wyidealizowany model obiektywu.

W rzeczywistósci taki uk÷ad optycznie nie istnieje. Rol¾e otworu stanowi ¾a uk÷ady so-
czewek skupiaj ¾acych promienie świat÷a na rzutni (rys. 4.57). Ka·zdy zestaw soczewek
jest w stanie odwzorowác w akceptowalnej ostrósci tylko skończony zakres odleg÷ósci,

101

Rozdzia÷4. Techniki zaawansowane

który jest zwany g÷¾ebi ¾a ostrósci. Najostrzejszy b¾edzie obraz obiektu znajduj ¾acego si¾e w
odleg÷ósci zwanej ogniskow ¾a. W klasycznym aparacie fotogra�cznym ogniskow ¾a zmie-
nia si¾e pokr¾et÷em nastawy ostrósci. Im dalej od tego punktu znajduje si¾e obiekt, tym
mniej ostry b¾edzie jego obraz na rzutni. Powy·zsze cechy ma ka·zdy wyst¾epuj ¾acy w
przyrodzie mechanizm, który odwzorowuje trójwymiarowe obiekty na dwuwymiarowej
p÷aszczýznie.

c

FD

FR
0

FR

Rysunek 4.57: Uk÷ad optyczny sk÷adaj ¾acy si¾e z pojedynczej soczewki skupiaj ¾acej.

Dok÷adna symulacja zjawiska g÷¾ebi ostrósci jest bardzo skomplikowana. Wymaga
ona śledzenia ka·zdego pojedynczego promienia świat÷a przechodz ¾acego przez uk÷ad so-
czewek, co jest niemo·zliwe przy u·zyciu obecnej architektury kart gra�cznych. Mo·zna
jednak zastosowác bardzo uproszczony model, który generuje obrazy posiadaj ¾ace pod-
stawowe cechy zdj¾éc wykonywanych prawdziwym obiektywem [19].
Niech FD oznacza ogniskow ¾a (ang. focal distance) a FR odleg÷óśc od ogniskowej (ang.

focal range), przy której obraz jest ju·z bardzo zamazany. Ze wzgl¾edu na ograniczone
mo·zliwósci �ltrowania przez uk÷ad, obiekty znajduj ¾ace si¾e dalej b¾ed ¾a zamazane w takim
samym stopniu jak przy odleg÷ósci FR: Stopień rozmycia obrazu w tym modelu jest
zale·zny liniowo od wartósci odleg÷ósci od ogniskowej.
Promienie świat÷a pochodz ¾ace z pewnego punktu w przestrzeni, po przej́sciu przez

uproszczony uk÷ad optyczny, padaj ¾a na rzutni¾e w obszarze ko÷a zwanego ko÷em rozpro-
szenia. Niech średnica C ko÷a b¾edzie zale·zna liniowo od odleg÷ósci punktu od ogniskowej
(rys. 4.57):

C = sat[j(z � FD)j=FR] � Cmax; (4.36)

gdzie z jest odleg÷ósci ¾a punktu od obserwatora a Cmax jest sta÷¾a, okréslaj ¾ac ¾a mak-
symalne rozmiary ko÷a rozproszenia. Sat jest funkcj ¾a, która obcina liczby do zakresu

102

4.3. Przetwarzanie obrazu

[0; 1] w nast¾epuj ¾acy sposób:

sat(x) =

0@0; jésli x < 01; jésli x > 1
x w p.p.

1A .

Rysowanie obrazu z uwzgl¾ednieniem g÷¾ebi ostrósci sk÷ada si¾e z dwóch etapów. W
pierwszym, scena jest rysowana normalnie do bufora koloru, pe÷ni ¾acego równie·z rol¾e
tekstury. Do sk÷adowej alpha ka·zdego piksela jest wpisywana wartóśc sat[j(z�FD)j=FR]:
W ten sposób, dla ka·zdego piksela znany jest wspó÷czynnik okréslaj ¾acy stopień rozma-
zania zale·zny od odleg÷ósci od ogniskowej. Dzi¾eki temu, ·ze wartóśc ta nale·zy do prze-
dzia÷u [0; 1]; nie trzeba stosowác zmiennopozycyjnych formatów tekstury. Niestety 8
bitów na sk÷adow ¾a nie wystarczy do tego, aby uzyskác zadowalaj ¾ac ¾a dok÷adnóśc obli-
czeń. Dla zwi¾ekszenia dok÷adnósci u·zywa si¾e formatu o 16 bitach na ka·zd ¾a sk÷adow ¾a
koloru.
Drugi etap to rozmazanie obrazu. Bufor koloru u·zyty w poprzednim kroku jest

pod÷¾aczany jako tekstura. Do normalnego bufora koloru jest rysowany prostok ¾at, po-
krywaj ¾acy w ca÷ósci jego obszar. Do naro·zników przyporz ¾adkowuje si¾e wspó÷rz¾edne
dla tekstury w taki sposób, aby ka·zdy teksel pokry÷dok÷adnie jeden piksel. Jésli mi-
kroprogram zawiera÷by wy÷¾acznie pobranie wartósci z tekstury i wstawienie jej do reje-
stru wyj́sciowego, to ostatecznie wygenerowany obraz wygl ¾ada÷by identycznie, jak ten z
pierwszego etapu. Rysowanie prostok ¾ata pokrywaj ¾acego ca÷y ekran jest jedyn ¾a metod ¾a
przeprowadzenia jakiejkolwiek operacji przetwarzania obrazu przy u·zyciu akceleratora.
Rozmazanie obrazu jest wykonywane poprzez kombinacj¾e wagow ¾a kolorów pikseli,

które le·z ¾a w otoczeniu aktualnie przetwarzanego piksela. Otoczenie to jest ko÷em o
promieniu Cr = 1

2
C. Mikroprogram dla pikseli w pierwszej kolejnósci pobiera z tekstury

dane teksela �(u; v), którego wspó÷rz¾edne odpowiadaj ¾a pikselowi obliczanemu przez
program. Przy pomocy sk÷adowej alpha i zale·znósci (4.36) oblicza pó́zniej średnic¾e
ko÷a rozproszenia w pikselach:

C = �(u; v)a � Cmax:

W rejestrach dla sta÷ych jest umieszczonych n par wspó÷rz¾ednych (dui; dvi); które s ¾a
wartósciami wybranymi losowo na obszarze ko÷a o promieniu równym 1. Ostateczny
kolor piksela � 0(u; v)k dany jest wzorem:

� 0(u; v)k =

�(u; v)k +
nX
i=1

�(u+ Crdui; v + Crdvi)k � �(u+ Crdui; v + Crdvi)a

1 +

nX
i=1

�(u+ Crdui; v + Crdvi)a

: (4.37)

Na prawdziwym zdj¾eciu wykonanym aparatem fotogra�cznym cz¾éśc obiektów jest
idealnie ostra a pozosta÷e s ¾a rozmazane w taki sposób, ·ze obiekty na ostrym planie nie
maj ¾a wp÷ywu na kolor rozmazanej cz¾ésci. Powy·zsza metoda w du·zym stopniu spe÷nia
te warunki.

103

Rozdzia÷4. Techniki zaawansowane

Wzór (4.37) zwróci kolor teksela �(u; v)k; je·zeli le·zy on w pobli·zu ogniskowej. War-
tóśc �(u; v)a b¾edzie wtedy bliska zeru, tym samym promień ko÷a rozproszenia b¾edzie
bardzo ma÷y. Pozosta÷e teksele wnios ¾a najwy·zej nieznaczne zaburzenia do oryginalnego
koloru.
Je·zeli oryginalny teksel le·zy w znacznej odleg÷ósci od ogniskowej, wspó÷czynnik

�(u; v)a b¾edzie bliski liczbie 1. Promień ko÷a rozproszenia b¾edzie du·zy, ale teksele
z ostrego planu i tak nie b¾ed ¾a mia÷y wp÷ywu na kolor � 0(u; v)k; gdy·z ich waga �(u +
Crdui; v + Crdvi)a b¾edzie wtedy bliska zeru.
Ze wzgl¾edu na limit liczby instrukcji w mikroprogramie dla pikseli, ilóśc próbek mo·ze

si¾egn ¾ác najwy·zej 12. Na końcowym obrazie b¾ed ¾a widoczne niepo·z ¾adane wzory, które s ¾a
wynikiem ma÷ej liczby próbek úsrednianych w du·zym promieniu. Pomóc w tej sytuacji
mo·ze jedynie wi¾eksza ilóśc przebiegów �ltra (4.37). Przy ka·zdym powtórzeniu operacji
rozmazywania, obrazem źród÷owym staje si¾e poprzednio wype÷niany bufor. Nale·zy
zwrócíc uwag¾e, ·ze wartósci wag �(u; v)a w ka·zdym z przebiegów musz ¾a pozostác takie
same jak na pocz ¾atku.
Do pracy zosta÷do÷¾aczony program demonstruj ¾acy powy·zsz ¾a metod¾e (rys. 4.58).

Znajduje si¾e on w katalogu /programy/4_3_1 wraz z mikroprogramami (plik z roz-
szerzeniem *.fx). W programie wykonywane s ¾a trzy przebiegi �ltra, ka·zdy z innym
zestawem 12 wspó÷rz¾ednych dla próbek.

Rysunek 4.58: Obraz z g÷¾ebi ¾a ostrósci wygenerowany przy u·zyciu uk÷adu gra�cznego.

104

4.3. Przetwarzanie obrazu

4.3.2. Wýswietlanie obrazów o wysokiej skali jasnósci

Monitor jest w stanie wýswietlíc tylko skończony zakres jasnósci, które s ¾a spotykane
w przyrodzie. Wartósci sk÷adowe koloru RGB odwzorowuj ¾a jasnóśc kolorów w bardzo
ma÷ym przedziale. Istniej ¾a jednak formaty danych, które przechowuj ¾a dane o pe÷nej
skali jasnósci poszczególnych punktów. Obraz taki mo·zna otrzymác poprzez sfoto-
grafowanie otoczenia specjalnym aparatem lub z÷o·zenie jednego obrazu z kilku zdj¾éc,
wykonanych z ró·znym czasem náswietlania [20].
Przyk÷adem takiego zdj¾ecia mo·ze býc witra·z w kósciele, na który od zewn ¾atrz pa-

daj ¾a bezpósrednio promienie s÷oneczne. Chc ¾ac sfotografowác dok÷adnie witra·z, czas
ekspozycji b¾edzie musia÷býc bardzo krótki. W takim przypadku ciemne otoczenie
wn¾etrza kóscio÷a nie b¾edzie widoczne na zdj¾eciu. Odwrotnie, chc ¾ac sfotografowác wn¾e-
trze kóscio÷a, witra·z b¾edzie tak jasny, ·ze ca÷¾a jego powierzchni¾e przykryje bia÷a plama.
Powodem tych problemów jest bardzo du·za ró·znica jasnósci świat÷a docieraj ¾acego do
obserwatora. Świat÷o przenikaj ¾ace przez witra·z mo·ze býc kilkadziesi ¾at tysi¾ecy razy
jásniejsze ni·z to wyst¾epuj ¾ace we wn¾etrzu kóscio÷a (rys. 4.59).

Rysunek 4.59: Przyk÷ad obrazu o wysokiej skali jasnósci.

Format obrazu o wysokiej skali jasnósci (ang. high dynamic range) sk÷ada si¾e z da-
nych o barwie punktu i osobnej informacji o jasnósci. Dysponuj ¾ac takim obrazem nie
mo·zna go wýswietlíc na monitorze tak, aby wszystkie jego szczegó÷y by÷y widoczne.
Potrzebny jest operator, który dokona transformacji ca÷ego zakresu jasnósci wyst¾e-
puj ¾acej na fotogra�i, do przedzia÷u akceptowalnego przez urz ¾adzenia wýswietlaj ¾ace.
Istnieje wiele takich operatorów, ale nie wszystkie nadaj ¾a si¾e do u·zycia przez uk÷ady
gra�czne, ze wzgl¾edu na pr¾edkóśc wykonywania przekszta÷ceń. W tej pracy zosta÷wy-
korzystany bardzo prosty i szybki operator [21], który daje przyzwoite pod wzgl¾edem
jakósci wyniki.

105

Rozdzia÷4. Techniki zaawansowane

Niech Lw oznacza średni ¾a logarytmiczn ¾a jasnósci wszystkich N pikseli obrazu:

Lw =
1

N
exp(

X
�x;�y

log[� + L(�x; �y)]);

gdzie L(x; y) oznacza jasnóśc piksela o wspó÷rz¾ednych (�x; �y) a � jest bardzo ma÷¾a
liczb ¾a dodatni ¾a, która gwarantuje istnienie logarytmu. W pierwszej kolejnósci, jasnósci
s ¾a liniowo skalowane tak, aby jasnóśc o wartósci Lw zosta÷a sprowadzona do liczby a:

L0(x; y) = a
L(x; y)

Lw
: (4.38)

Wspó÷czynnik a jest parametrem operatora i kontroluje subiektywn ¾a jasnóśc obrazu
wynikowego, z regu÷y jest liczb ¾a mniejsz ¾a od 1.
Najcz¾ésciej jasnósci wszystkich punktów sceny maj ¾a rozk÷ad nieliniowy, który dzieli

punkty na dwie grupy. W pierwszej znajduj ¾a si¾e obszary o jasnósci ma÷ej, natomiast w
drugiej o jasnósci nieporównywalnie wi¾ekszej. Operator wykorzystuje ten fakt podczas
obliczania ostatecznej jasnósci pikseli:

�L(x; y) =
L0(x; y)

1 + L0(x; y)
: (4.39)

Piksele o bardzo wysokiej jasnósci s ¾a znacznie ściemniane a te o ma÷ej jasnósci
pozostaj ¾a praktycznie niezmienione.
Wykorzystanie tego operatora przy u·zyciu akceleratora nie sprawia wi¾ekszych trud-

nósci. W pierwszej kolejnósci, obraz wej́sciowy jest zapisywany do tekstury o formacie
zmiennopozycyjnym. W drugim przebiegu, bufor koloru jest wype÷niany tekstur ¾a za
pomoc ¾a pe÷noekranowego prostok ¾ata, t ¾a sam ¾a metod ¾a, co w poprzednim podrozdziale.
W mikroprogramie stosuje si¾e wyra·zenia (4.38) i (4.39) w celu transformacji jasnósci
pikseli.
Model RGB (ang. Red Green Blue) nie nadaje si¾e do zmieniania jasnósci obrazu.

Skaluj ¾ac liniowo ka·zd ¾a ze sk÷adowych zwi¾ekszy si¾e jasnóśc koloru, ale przy okazji jego
barwa mo·ze ulegác znacznym zniekszta÷ceniom. Z tego powodu lepiej jest u·zywác
na przyk÷ad modelu HSL (ang. Hue Saturation Lightness). Sk÷adowe modelu HSL
przechowuj ¾a osobno informacje o barwie i jasnósci [22].
Do pracy zosta÷do÷¾aczony program, który demonstruje u·zycie opisanego tutaj ope-

ratora (rys. 4.60). Wykorzystany zosta÷model koloru HSL. Poniewa·z obrazy źród÷owe
s ¾a zapisywane w modelu RGB, mikroprogramy dokonuj ¾a konwersji modeli kolorów w
czasie rzeczywistym. Jest to najbardziej czasoch÷onna cz¾éśc ca÷ej operacji. Po wyko-
naniu skalowania jasnósci, wartósci kolorów s ¾a zamieniane z powrotem na model RGB
i wýswietlane na ekranie. Program znajduje si¾e w katalogu /programy/4_3_2 wraz z
trésci ¾a mikroprogramów (plik z rozszerzeniem *.fx).

106

4.3. Przetwarzanie obrazu

Rysunek 4.60: Przyk÷ad zastosowania operatora skaluj ¾acego jasnósci punktów.

107

Podsumowanie

G÷ównym motorem rozwoju uk÷adów gra�cznych jest bran·za rozrywkowa. To ona
mobilizuje producentów sprz¾etu do szybkiego wdra·zania nowych technologii. Niektóre
z zaprezentowanych w poprzednim rozdziale technik, na przyk÷ad g÷¾ebi ostrósci, b¾ed ¾a
szeroko wykorzystywane wmomencie pojawienia si¾e na rynku odpowiednio szybkiego, a
zarazem taniego sprz¾etu. Wszystkie programy do÷¾aczone do pracy generuj ¾a powy·zej 30
klatek na sekund¾e w rozdzielczósci 1024 na 768 pikseli, przy u·zyciu karty wyposa·zonej
w uk÷ad ATI Radeon 9800 Pro. Niestety, koszt zakupu takiej karty jest du·zy i we
wspó÷czesnych grach komputerowych tego typu efekty s ¾a jeszcze rzadko spotykane.
Zmieni si¾e to w najbli·zszej przysz÷ósci.
Mimo znacznego opó́znienia produkcji oprogramowania wykorzystuj ¾acego bardzo

zaawansowane metody generowania obrazu, ca÷y czas opracowywane s ¾a nowe techniki,
które wymagaj ¾a jeszcze szybszych akceleratorów. Uk÷ady takie s ¾a dost¾epne od razu w
sklepach, ale ich cena przekracza zasobnóśc portfela zwyk÷ego konsumenta. Ca÷y ten
proces s÷u·zy do wypromowania okréslonej technologii i �rmy, która j ¾a opracowa÷a.
Opracowywane w tej chwili technologie zmierzaj ¾a w kierunku coraz szybszego gene-

rowania obrazu, przy u·zyciu obecnie ju·z gotowych algorytmów. Dla przyk÷adu, cienie
i wszelkiego rodzaju �ltry wymagaj ¾a ogromnej mocy obliczeniowej jednostek przetwa-
rzaj ¾acych piksele oraz bardzo krótkiego czasu dost¾epu do pami¾eci karty. Uk÷ad Radeon
9800 Pro posiada 8 jednostek PSU. Zaprezentowane w tym roku na targach Electronic
Entertainment Expo uk÷ady �rmy ATI, maj ¾a býc wyposa·zone w a·z 48 tego typu jed-
nostek. Ten przyk÷ad wyráznie pokazuje, ·ze obecne technologie s ¾a wystarczaj ¾ace do
wi¾ekszósci zastosowań a producenci skupiaj ¾a si¾e g÷ównie na mocy obliczeniowej swoich
uk÷adów.
Architektura mikroprogramów w wersji 2:0 jest w pe÷ni dojrza÷¾a specy�kacj ¾a progra-

mowania uk÷adów gra�cznych. W czasie powstawania tego opracowania, gotowe by÷y
ju·z uk÷ady wyposa·zone w wersj¾e 3:0, w której rozkazy maszynowe wraz z zestawem re-
jestrów zosta÷y nieco zmody�kowane. Zmiany te nie s ¾a jednak du·ze, o czym świadczy
prawie niezmieniona specy�kacja j¾ezyka HLSL. Interesuj ¾acym pomys÷em jest wpro-
wadzenie mo·zliwósci dost¾epu do tekstur z poziomu mikroprogramu dla wierzcho÷ków.
Pozwoli to na obliczanie pozycji wierzcho÷ków, przy u·zyciu wczésniej wygenerowanych
przez uk÷ad tekstur. Nierównósci powierzchni symulowane t ¾a technik ¾a, b¾ed ¾a widoczne
równie·z na konturach obiektów.
Z obecnie dost¾epnych informacji wynika, ·ze przysz÷óśc uk÷adów gra�cznych le·zy

przede wszystkim w lepszej jakósci generowanego obrazu. Rysowanie do buforów w for-
matach zmiennoprzecinkowych oraz alpha-blending przy ich u·zyciu, pozwoli na znacz-
nie lepsze odwzorowanie barw i przej́śc tonalnych. Wraz z coraz szybszymi uk÷adami
scalonymi powstan ¾a metody generowania mi¾ekkich cieni oraz swobodnego �ltrowania
końcowego obrazu. Wszystkie te elementy stanowi ¾a obiecuj ¾ac ¾a wizj¾e przysz÷ósci.

109

Bibliogra�a

[1] J.D.Foley, A.van Dam, S.K.Feinerm, J.F.Hughes, R.L.Philips: Wprowadzenie do
gra�ki komputerowej, Wydawnictwo Naukowo-Techniczne, Warszawa 1995

[2] Microsoft DirectX 9.0 Software Development Kit, Microsoft Corporation, Update
(April 2005)

[3] The OpenGL Graphics System: A Speci�cation - Version 2.0, Silicon Graphics,
Inc., September 7, 2004

[4] Randy Fernando, Mark Harris, Matthias Wloka, Cyril Zeller: Programming Gra-
phics Hardware, Eurogaphics 2004

[5] Chris Seitz: Evolution of GPUs, Nvidia Corporation, 2004

[6] Projective Geometry, University of Maryland Experimental Geometry Lab,
http://www.math.umd.edu/~lidador/A¢ ne/

[7] Jules Bloomenthal, Jon Rokne: Homogeneous Coordinates, Department of Com-
puter Science, The University of Calgary, 1997

[8] Maciej Falski: Przegl ¾ad modeli óswietlenia w gra�ce komputerowej, Uniwersytet
Wroc÷awski, 2004

[9] Real-Time Volume Graphics, Siggraph 2004

[10] ATI Software Development Kit, ATI Technologies Inc., Update (July 2004)

[11] NVIDIA Software Development Kit 8.0, NVIDIA Corporation, 2004

[12] J. F. Blinn: Simulation of Wrinkled Surfaces, Siggraph 1978

[13] Ken Perlin: Making Noise, http://www.noisemachine.com/talk1/index.html, 1999

[14] Ron Goldman: Recursive Ray Tracing, Department of Computer Science, Rice
University, 2004

[15] Philip Dutre: Global Illumination Compendium, Cornell University, 2001

[16] Fresnel Re�ection Technical Report, NVIDIA Corporation, 2004

[17] Cass Everitt,Mark J. Kilgard: Practical and Robust Stenciled Shadow Volumes

111

Bibliogra�a

for Hardware-Accelerated Rendering, NVIDIA Corporation, 2002

[18] Mark J. Kilgard: Shadow Mapping with Today�s OpenGL Hardware, Game Deve-
lopers Conference, 2000

[19] Thorsten Scheuermann: Advanced Depth of Field, ATI Research Inc., 2004

[20] Paul E. Debevec, Jitendra Malik: Recovering High Dynamic Range Radiance Maps
from Photographs, Siggraph 1997

[21] Erik Reinhard, Michael Stark, Peter Shirley, James Ferwerda: Photographic Tone
Reproduction for Digital Images, 2002

[22] Norman Koren: Light and color: an introduction, http://www.normankoren.com

112

