Uniwersytet Wroclawski

Wydzial Matematyki i Informatyki
Instytut Informatyki

Michal Mazanik

Nowoczesne uklady
graficzne

Praca Magisterska

Praca wykonana pod kierunkiem
dr Andrzeja Lukaszewskiego

Wroclaw 2005

Spis tresSci

A1 173 o 2 9
1. Architektura....... ... 11
I R § 1 11
1.2. Sterowniki i biblioteKi 14
1.3. Ogélny schemat pracy ukladu graficznegoooia.. 18

2. Przetwarzanie wierzcholkéw 23
2.1, Transformacjeouoi i 23
2.1.1. Przestrzenie rZutOWecoiuiiiiiii i 24

2.1.2. Przeksztalcenia afiniczne......... ... 29

2.1.3. Rzut perspektywiczny i réwnolegly il 30

2.1.4. ODbCINANIE . ..ottt 34

2.2. Programowanie ukladu 36
2.2.1. Budowa PrOZTamllouuetttet ettt a i 38

2.2.2. Zestaw Instrukcji. ... 40

2.2.3. Podstawowe techniki........... ... i 43

3. Generowanie Obrazu 49
3.1. Rasteryzacja i interpolacja atrybutowo i 51
3.1.1. Interpolacja liniowao 52

3.1.2. Interpolacja hiberboliczna 53

3.2, TERSTUTY oot 57
3.2.1. Tekstury dwuwymiarowe.oueiuiieininiinnaennn.. 57

3.2.2. Tekstury kubiczne 59

3.2.3. Tekstury wolumetryczneo 61

3.2.4. Filtrowanie.o 62

3.3. Programowanie ukladu 69
3.3.1. Budowa PrOgTamllc.utntttnttitti et 71

3.3.2. Zestaw instrukcji. 71

3.3.3. Podstawowe techniki........... 72

3.4. Operacje na buforach 78
3.4.1. Wyznaczanie widoCZnoScioiuiniiiiii i 78

3.4.2. Bufor zliczania ... 79

3.4.3. Alpha-Blendingo 80

4. Techniki zaawansowane., 83
4.1. Faktura powierzchni i odwietlenie............o i 83

4.1.1. Symulacja nieréwnoSci powierzchnil 84

4.1.2. Tekstury proceduralne i 88

4.1.3. Odbicie i zalamanie §wiatta 91

O T3 (< 93
4.2.1. MapPa CIETIIA . « o . vt vttt ettt e 94

4.2.2. Cienie Wolumetryczne.ot 97

4.3. Przetwarzanie obrazulo e 101
4.3.1. Glegbia 0StroSci 101

4.3.2. Wyswietlanie obrazéw o wysokiej skali jasnosci.................... 105
Podsumowanie 109
Bibliografia 111

Spis rysunkow

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.
2.13.
2.14.
2.15.

2.16.
2.17.
2.18.
2.19.
3.20.
3.21.
3.22.
3.23.
3.24.

3.25.

3.26.

Karta graficzna z dobrze widocznym ztaczem krawedziowym 12
Dostep do funkcji uktadu graficznego z poziomu aplikacji............... 15
Rasteryzacja trojkata 16
Schemat procesu generowania obrazu. 18
Proces teksturowania oraz przyklad rzutu perspektywicznego............ 19
Oéwietlenie obliczone tylko na wierzcholkach (z lewej), oraz na

calej powierzchni tréjkatow (z prawej).oviiiii i 20
Dwa rodzaje ukladéw wspélrzednych i réznica w definicji iloczynu
WEKEOTOWEZO. .« . . ot 23
Transformacja wspétrzednych obiektu z ukladu globalnego do

ukladu obserwatora. Skala osi nie zostata zachowana. 24
Punkty wlagciwe w przestrzeni P(R?) przedstawione jako proste

w R3. Punkt (a/,y/) jest obrazem [x,y, w] po przeksztalceniu go

do Rz, . 26
Wiasciwa prosta w przestrzeni P(R?) przedstawiona jako

plaszczyzna w R3. Prosta Ax/ + By + C = 0 jest obrazem

(A, B,C) po przeksztalceniu jej do R%. i 27
Prosta i punkty niewlasciwe w przestrzeni P(R?) przedstawione w
R 28
Bryla widzenia. 31
Rzut perspektywiczny punktu p......... 32
Przyklad rzutu réwnoleglego i perspektywicznego...................... 34
Proces obcinania tréjkata na przykladzie dwuwymiarowym, z

brytg widzenia w postaci prostokata. 35
Proces przetwarzania n wierzchotkéw przy udziale m tréjkatéw. 37
Jednostka przetwarzania wierzchotkéw. 38
Kombinacja liniowa dwdéch przeksztalcen macierzowych na

wierzcholkach walca. 44
Oséwietlenie na wierzchotkach. Walec z lewej strony ma wspdlne

wektory normalne dla wszystkich §cian na krawedzi walca. 46
Uklad wspélrzednych bufora koloru......... 49
Schemat koncowej fazy procesu generowania obrazu.................... 50
Poprawna rasteryzacja dwéch tréjkatow. L. 51
Znalezienie wartosci u w Srodku piksela (7, 7) wymaga uzycia

interpolacji danych z wierzchotkéw tréjkata.o o L 52
Interpolacja liniowa parametru v w ukladzie rzutni, powoduje

bledne obliczenie parametru dla punktu p). o oL 54
Rzut perspektywiczny prostokata z nalozong tekstura. Po

lewej wspoétrzedne tekstury interpolowane sa liniowo, po prawej
hiperbolicznie. Y
Dwuwymiarowa tekstura nalozona na powierzchnie kuli. Dodano

mape nieréwnosci i oSwietlenie.. L L 58

3.27.

3.28.

3.29.
3.30.

3.31.
3.32.
3.33.
3.34.

3.35.

3.36.
3.37.

3.38.
3.39.
3.40.
3.41.
3.42.
4.43.
4.44.

4.45.

4.46.

4.47.
4.48.
4.49.

4.50.

Tekstura kubiczna zlozona z szeSciu kwadratowych tekstur
dwuwymiarowych. 59
Kubiczna tekstura odwzorowujaca otoczenie (str. lewa gérna)

wraz z wygenerowang przy jej pomocy tekstura o$wietlenia (str.

lewa dolna). Po prawej stronie obiekt o$wietlony przy jej uzyciu. 60
Tekstura wolumetryczna zlozona z kilku warstw. 61
W przypadku normalnego rysowania warstw widoczne sg

nieprawidlowosci w obrazie (géra). Na dole poprawny obraz

wygenerowany przy uzyciu tekstury wolumetrycznej. Rysowane

wielokaty moga byt ustawione prostopadle do obserwatora. 62
Obraz wygenerowany bez uzycia zadnych filtréw prébkujacych

eSSt UTE. . .o 63
Obraz wygenerowany przy uzyciu filtra dwuliniowego. 64
Uéredniane przez filtr dwuliniowy teksele.. 64

Obszar tekstury nalozonej na wielokat, ktéry jest odwzorowany
na obszarze piksela (7, 7). Bez uzycia filtra, dla piksela wybrany

bedzie kolor biaky. 65
Tekstura wraz z serig mip-map. 7 prawej strony dwie mip-mapy

pokazane W pOwiekSZeniu. 66
Obraz wygenerowany przy uzyciu mip-mappingu. 67
Obszar tekstury nalozonej na wielokat, ktéry jest odwzorowany na

obszarze piksela. O§ dy jest dwa razy dluzsza od osidx. 68
Obraz wygenerowany przy uzyciu filtra anizotropowego (16 prébek). 69
Jednostka przetwarzania pikseli. 70
Obiekt o$wietlony wedlug modelu Phonga w kazdym pikselu. 75
Obiekt z nalozong teskturg o$wietlony wedlug modelu Phonga w

kazdym pikselu. 7
Wykres rozkladu odleglosci od obserwatora w buforze-Z. 78

Wektor interpolowany na powierzchni obiektu (a) nie oddaje
natury chropowatej powierzchni (b). Przygotowana mapa

wektoréw normalnych (c) pozwala ten efekt uzyskac. 85
Wersory U i V' ukladu tekstury 7' i ich odpowiedniki Ug i Vo w
ukladzie obiektu G.. 86

Po lewej stronie normalnie o§wietlony model (ok. 1000 tréjkatéw).

Po prawej ten sam model oSwietlony przy uzyciu wczesniej

wygenerowanej mapy nieréwnosci powierzchni. Oryginalny model

jest zbudowany z 35000 tréjkatow. 88
Po lewej stronie przekrdj tekstury szuméw. Po prawej, obraz

powstaly po odpowiednim zsumowaniu szuméw o malejacych

czestotliwo$ciach. 89
Przyklad materialu proceduralnego. 90
Metoda $sledzenia promieni. 91

Przyklad wykorzystania efektu odbicia i zalamania §wiatta. Obie
sktadowe polaczone wspétczynnikiem Fresnela przedstawia dolna
CZESCI TYSUNKU.o 93
Mechanizm dzialania metody mapy cienia. Punkty p; i ps leza w

4.51.
4.52.
4.53.
4.54.
4.55.
4.56.
4.57.
4.58.

4.59.
4.60.

CIEIUITL. « o v v e e e e e e e e e e e e e e e e 94

Bledy spowodowane malg rozdzielczoScig i niedoktadnoscia mapy

63 14} = 96
Po lewej stronie scena wygenerowana przy pomocy mapy cienia.

Po prawej, normalnie o$wietlona rzezba. 97
Idea dziatania metody cieni wolumetrycznych. Punkt p; jest w

cieniu a punkt po mie. 98
Wierzchotki bryly cienia obrécone tylem do $wiatta zostaja

WYSUNIEEE. . o oot e 99
Metoda cieni wolumetrycznych generuje bardzo ostre krawedzie

63 1§ 100
Wyidealizowany model obiektywu. 101
Uklad optyczny skladajacy sie z pojedynczej soczewki skupiajacej. 102
Obraz z glebia ostro$ci wygenerowany przy uzyciu uktadu

graficznego.o 104
Przyklad obrazu o wysokiej skali jasnoSci............. 105
Przyktad zastosowania operatora skalujgcego jasnoSci punktéw. 107

Spis tablic

1.1.
2.2.
2.3.
2.4.
3.5.
3.6.

Standardy magistrali danych......... 12
Réwnania plaszczyzn uzywanych przy obcinaniu. 35
Instrukcje jednostki VSU. 41
Instrukcje jednostki VSU, ciag dalszy. 42
Dodatkowe instrukcje jednostki PSU, 72
Wspélezynniki uzywane podczas alpha-blendingu................... ... 80

Wstep

Moment powstania komputeréw osobistych w latach osiemdziesigtych wyznaczyt po-
czatek nowej ery. Przez ponad dwadzieScia lat rozwoju technologicznego moc oblicze-
niowa komputeréw wzrosta o kilka rzedéw wielkoSci. Powstaly uklady specjalizowane
w wasko okreSlonych zadaniach, miedzy innymi w wyS$wietlaniu w czasie rzeczywistym
skomplikowanych tréjwymiarowych scen.

Mozliwosc¢ interaktywnego ogladania przestrzennych scen otworzyta droge osrodkom
naukowym do wizualizacji skomplikowanych proceséw zachodzacych w przyrodzie. Po-
wstaly komputerowe maszyny szkoleniowe dla pilotéw samolotéw, mozliwe stalo sie
wirtualne zwiedzanie muzeéw oraz branie udziatu w podboju kosmosu w grach kompu-
terowych. Wszystko to dzigki malemu uktadowi scalonemu wykonujacemu wszystkie
niezbedne obliczenia, ukladowi graficznemu.

Proces generowania pojedynczej klatki obrazu jest bardzo skomplikowany i sktada sie
z wielu etapow. W kazdy z nich sg zaangazowane algorytmy przetwarzajace ogromne
ilosci danych. Praca ta ma na celu przyblizenie wszystkich krokéw, jakie musi wy-
kona¢ uklad graficzny, aby na ekranie pojawil sie pozadany obraz. Szeroko opisane
sg matematyczne podstawy funkcjonowania algorytméw ukrytych we wnetrzu uktadu
oraz metody kontrolowania calego procesu przez programiste. Oprécz podstawowych
technik opisane sa réznorodne efekty specjalne, ktére nadaja utworzonemu obrazowi
bardziej rzeczywistego charakteru.

Baza do opracowania tej pracy sa karty graficzne szeroko dostepne na rynku konsu-
menckim. Sg to uklady bardzo uniwersalne i wykorzystywane w kazdej dziedzinie, w
ktérej istotny jest czas generowania obrazu. Wiedza teoretyczna ma jednak zastoso-
wanie w kazdym rodzaju maszyn wspomagajacych rysowanie tréjwymiarowych scen,
dlatego duza czeS¢ tego opracowania moze z powodzeniem stanowi¢ podstawe do po-
znania tej dziedziny wiedzy.

Rozdziat 1

Architektura

1.1. Sprzet

Architektura komputeréw osobistych zostala zaprojektowana z my$la o jak najwiek-
szej modularnosci i prostocie rozbudowy. Takie podejscie istotnie upraszcza wymiane
poszczegdlnych komponentéw systemu, tym samym jego ulepszanie. Rdzen takiej ma-
szyny stanowi zbiér podstawowych ukladéw kontrolujacych prace, takich jak procesor
gléwny, kontroler pamieci oraz kontroler wejScia-wyjScia. Duza integracja tych uktadéw
pozwala na bardzo szybka komunikacje pomiedzy nimi, bez niej predkos¢ wykonywa-
nia obliczen bylaby bardzo mata. Idealnym rozwigzaniem, biorac pod uwage wylacznie
szybko$¢ dzialania systemu, jest umieszczenie wszystkich komponentéw na jednej ply-
cie drukowanej. Pozwala to na duza dowolnos¢ w fazie projektowania i uzyskanie
maksymalnej mocy obliczeniowej. Niestety, tak zbudowany system jest drogi a roz-
budowa niemozliwa, bez wymiany wszystkich komponentéw jednocze$nie. Rozsadnym
rozwigzaniem jest oddzielenie od rdzenia systemu tych uktadéw, ktére szybciej niz inne
ewoluuja wraz z postepem nauki, przez co czeSciej wymagaja wymiany. We wspolcze-
snych komputerach osobistych bazg jest plyta gtéwna, na ktérej umieszczone sg tylko
uktady kontrolujace i koordynujace prace pozostalych komponentéw. Do uktadéw do-
stepnych w postaci osobnych moduléw naleza procesor, pamiet operacyjna oraz wszel-
kiego rodzaju karty rozszerzajace funkcjonalnos¢ komputera. Karty rozszerzen to nic
innego jak plytki drukowane z umieszczonymi na nich wyspecjalizowanymi ukladami
scalonymi, ktére komunikuja si¢ ze rdzeniem systemu za pomocy ztacz krawedziowych
(rys. 1.1).

Podczas ponad 20-letniej historii architektury PC opracowano wiele technologii
umozliwiajacych coraz szybsza transmisje danych przez zlacza krawedziowe. Podsta-
wowg cechg danego stardardu jest maksymalna predko$¢ z jaka dane moga by¢ trans-
portowane przez szyne. PrzepustowoS¢ magistrali danych mozna obliczy¢ w prosty
sposéb, mnozac szerokoS¢ szyny przez jej taktowanie. W latach 80-tych, ze wzgledu na
niskie wymagania, wartoSci te byty bardzo mate (tab. 1.1). Wigkszo$¢ komputeréw w
tamtych czasach komunikowala sie z uzytkownikiem za pomoca interfejséw tekstowych,
nie bylo potrzeby przesyla¢ duzej ilosci danych do uktadu graficznego. Wprowadzenie
w roku 1990 systemu Windows 3.0 zmienilo te sytuacje radykalnie.

WeZzmy nastepujacy przyktad: chcemy wyswietli¢ kolorowy film animowany, o roz-
dzielczosci 640 na 480 pikseli, ktory zostal nagrany z czestotliwoScia 60 klatek na se-
kunde. Na jeden piksel przypadajg 3 bajty, po jednym na kazda skladowsg koloru RGB.

11

Rozdzial 1. Architektura

Rysunek 1.1: Karta graficzna z dobrze widocznym zlaczem krawedziowym

Standard | Rok wprowadzenia | Szeroko§¢ szyny | Taktowanie szyny | Predko$¢ transmisji
(bity) (MHz) (MB/s)

ISA-8 1981 8 8 8

ISA-16 1984 16 8 16

EISA 1988 32 8 32

VLB 1993 32 33 128

PCI 1994 32 33 128

AGP 1997 32 od 66 do 66*8 od 256 do 2048

Tablica 1.1: Standardy magistrali danych

Jedna klatka zajmuje wiec 900 kilobajtéw. Film bedzie plynnie odtwarzany, jesli be-
dziemy w stanie przestac¢ do karty graficznej 54 megabajty danych na sekunde. Dopiero
standard PCI jest w stanie podota¢ temu zadaniu. Zamiast przesytac¢ tak ogromne ilo-
Sci danych, rozsadniejszym rozwiazaniem jest zlecenie karcie wykonania jak najwiekszej
ilosci operacji, odciazy to znacznie pracg procesora oraz zmniejszy wymagang przepu-
stowo$¢ magistrali. Film najpierw kompresuje sie specjalnym programem zwanym ko-
dekiem video, ktéry zmniejsza ilo§¢ danych potrzebnych do zapamietania informacji
o obrazie nawet kilkusetkrotnie. Dopiero tak przygotowany film wysylamy do karty
graficznej. We wspélczesnych kartach powszechne sg sprzetowe dekodery video, ktére
operujg bezposrednio na skompresowanych danych. Zysk ptynacy z takiego postepowa-
nia jest oczywisty, przesylamy znacznie mniej danych a procesor gtéwny moze sie zajac
w tym czasie wykonywaniem innych zadan, zamiast ciagle przygotowywaé ogromne
ilosci danych do transmisji.

W graficznych systemach operacyjnych z rodziny Windows wszystkie informacje sa

12

1.1. Sprzet

prezentowane w tzw. oknach. Okno jest to prostokatny obszar otoczony ramka i wy-
peliony tresciag. Gdy poruszamy takim oknem po ekranie, system musi przerysowac
nie tylko calg jego zawartosc, ale réwniez wszystkie okna, ktére znajdowaly si¢ pod
nim lub na jego drodze. Operacja ta wymaga miedzy innymi wypeliania, za kazdym
razem na nowo, catego obszaru okienek kolorem ich tta. Podobnie jak w operacji opi-
sanej w poprzednim akapicie, wymaga to przestania do karty graficznej bardzo duzej
iloéci danych. Dla jednego okienka o rozmiarze 400 na 400 pikseli, bedzie to ponad 160
tysiecy pikseli o tym samym kolorze. Jest to oczywiste marnowanie czasu, wiec pro-
ducenci sprzetu postanowili doda¢ do kart graficznych specjalne uklady, ktére miaty
zajmowac sie wypelnianiem prostokatnych obszaréw oraz rysowaniem linii. Ten krok
kolosalnie przyspieszyl przerysowywanie sie okienek w Windows a karty graficzne zy-
skaly miano akceleratoréw graficznych. Wraz z uplywem lat, zakres mozliwoSci tych
maltych uktadéw scalonych zwiekszyly sie do tego stopnia, ze potrafiag animowac w cza-
sie rzeczywistym skomplikowane tréjwymiarowe sceny.

W obecnych czasach, jako podstawowy standard przesytu informacji do kart roz-
szerzen stuzy szyna PCI (ang. Peripheral Component Interconnect). Na kazdej ply-
cie gléwnej komputera jest umieszczonych kilka zlacz tego typu, w ktérych mogg by¢
umieszczone miedzy innymi modemy, karty dzwiekowe, karty sieciowe, tunery tele-
wizyjne i wszelkiego rodzaju zewnetrzne kontrolery wejScia-wyjScia. Magistrala PCI
ma niestety istotna wade, pasmo przenoszenia wynoszace 128 MB/s jest dzielone na
wszystkie urzadzenia w systemie. W praktyce oznacza to, ze akcelerator graficzny nie
bedzie mial do dyspozycji pelnej przepustowosci magistrali. Z tego powodu opraco-
wano osobne ztacze dla karty graficznej noszace nazwe AGP (ang. Accelerated Gra-
phics Port). Ma ono znacznie wieksze mozliwo$ci oraz nie dzieli pasma z innymi urza-
dzeniami. Predko$¢ dochodzaca do 2 GB/s (w wersji AGPx8) pozwala na swobodne
przesylanie ogromnej ilosci danych, bez zaklécania pracy calego systemu.

Przy generowaniu bardzo szczegétowego, dobrej jakosci obrazu, wykorzystywane sg
ogromne ilosci danych. Najbardziej pamiecio-chlonnymi elementami sa prostokatne
obrazy zwane teksturami. Opisuja one miedzy innymi fakture obiektéw znajdujacych
si¢ na scenie. Na przyktad, w przypadku drewnianego stotu bedzie to obrazek przed-
stawiajacy brazowe sloje, w przypadku Sciany w pokoju moze to by¢ zdjecie tapety.
Takich tekstur przy renderowaniu skomplikowanej sceny moze by¢ setki a ich objetos¢
liczona jest w dziesiatkach megabajtéw. Czesto na jednej teksturze, przy obliczaniu
koloru dla pojedynczego piksela, wykonuje sie kilka operacji. Pobieranie tych danych
za kazdym razem z pamieci operacyjnej przez magistrale byloby tragiczne w skutkach,
predkosc tworzenia obrazu bylaby bardzo mata. Z tego powodu, na plytce drukowanej
wraz z procesorem graficznym jest umieszczona szybka pamie¢ o pojemnosci od 32 do
256 megabajtéw. Pobieranie danych z tej pamieci przez uklad graficzny odbywa si¢ z
predkoscig dochodzaca nawet do 22 GB/s.

Standard AGP, w przeciwienstwie do poprzednich rozwigzan, oferuje dodatkowsg
funkcjonalno$¢ w postaci specjalnie zarezerwowanego obszaru pamieci operacyjnej, do
ktoérego dostep ma réwnoczeSnie procesor gtéwny oraz karta graficzna. Pozwala to
wirtualnie powiekszy¢ ilo$¢ pamieci dostepnej dla uktadu graficznego. Sama karta, co
prawda posiada wiasna pamiec, do ktérej ma bardzo szybki dostep, jednak jej ilosc jest
bardzo ograniczona kosztami produkcji. Z reguly jest to okolo 64 megabajtéw. Tam
powinny by¢ trzymane dane, ktore sa bardzo czesto wykorzystywane przy generowa-

13

Rozdzial 1. Architektura

niu obrazu. W pamieci AGP mozna przechowywaé pozostale, rzadziej uzywane dane.
Dzigki takiemu mechanizmowi mozna tez uniknaé¢ tzw. efektu migotania, czyli wielo-
krotnego tadowania do pamigci tej samej tekstury, ktéra musiala by¢ w miedzyczasie
wykasowana, z powodu braku miejsca na inne potrzebne dane. Taka sytuacja na pewno
miataby miejsce w przypadku, gdyby zbiér tekstur potrzebnych do wygenerowania jed-
nej klatki obrazu miat wigkszg objeto$¢ niz dostepna pamiet. Dzigki bezposredniemu
dostepowi uktadu graficznego do pamieci operacyjnej, odczyt odbywa sie duzo wolniej,
ale zadne dane nie muszg by¢ usuwane z pamieci karty.

Procesor znajdujacy sie na karcie graficznej dawno przestat by¢ tylko konwerterem
sygnalu cyfrowego na analogowy. Wspélczesny akcelerator to w peli programowalna
jednostka, posiadajaca wlasng pamie¢ operacyjng i dzialajaca niezaleznie od reszty
systemu. Najwazniejsza cecha jest wlasnie niezalezna asynchroniczna praca, ktéra
pozwala jednostce gléwnej w tym samym czasie wykonywac inne zadania. Sam procesor
sktada sie z setek milionéw tranzystoréw, nierzadko przewyzszajac ta liczba procesor
gtéwny. Kazdy synchroniczny uktad scalony przy duzych czestotliwos$ciach taktowania
wydziela duzo ciepta. Jest to obecnie duzy problem producentéw sprzetu, gdyz na
kartach rozszerzen nie ma po prostu miejsca na ogromne radiatory. Okupione jest to
wysokim poziomem szumow, wydobywajacych sie z wysokoobrotowych wentylatoréw
umieszczonych na uktadzie.

1.2. Sterowniki i biblioteki

W czasie powstania pierwszych akceleratoréw, dostep do ich funkcji mial tylko system
operacyjny. Dzialo sie tak, gdyz mialy one za zadanie wylacznie przyspiesza¢ dzialanie
interfejsu graficznego. Uktadéw bylo stosunkowo malo, wiec programowanie kazdego
z osobna nie sprawialo duzego problemu. Wraz z rozwojem i popularyzacja grafiki
tréjwymiarowej, mozliwoSci tych uktadéw zwigkszaly si¢ a ich ilos¢ znacznie wzrosta.
Kazdy z producentéw opracowal wlasne technologie, ktére niekoniecznie oferowaly to
samo. Niezbednym stalo sie opracowanie wspélnego modelu funkcjonowania tych urza-
dzen, oraz umozliwienie dostepu do ich funkcji przez aplikacje napisane przez zwyklych
uzytkownikéw. OczywiScie zalezato na tym réwniez producentom sprzetu. Dzigki stan-
dardom dajacym gwarancje poprawnego dziatania w danym $rodowisku, przekonanie
klienta do swojego produktu stalo si¢ znacznie latwiejsze. Programisci aplikacji w
koncu mogli skupi¢ sie na polepszaniu jakosci swoich aplikacji, zamiast marnowac czas
na pisanie osobnej éciezki kodu dla kazdej karty!.

Wspélczesny system operacyjny kontroluje prace wszystkich urzadzen w systemie
za poSrednictwem sterownikéw, napisanych przez producentéw sprzetu. Sterownik jest
specjalnym programem, ktéry poSredniczy w wymianie informacji miedzy systemem
operacyjnym a danym urzadzeniem. Tylko jemu dane jest zna¢ protokoty komunika-
cyjne, ktére sa niezbedne, aby wywota¢ jakakolwiek funkcje karty graficznej. Warstwa,
na ktérej operuje sterownik, zwana jest niskopoziomowa (rys. 1.2).

Programista ma dostep do funkcji akceleratora poprzez specjalny komponent sys-
temu, ktéry pelni role interfejsu (ang. API - Application Program Interface). W

INiestety, w obecnych czasach bardzo trudno jest napisaé uniwersalny kod dzialajacy na kazdej karcie.
Powodem tego nie sg jednak problemy opisane w tym akapicie.

14

1.2. Sterowniki i biblioteki

Aplikacja Aplikacja

A

API DirectX API OpenGL
A A

— Sterownik —
A

Karta graficzna

Rysunek 1.2: Dostep do funkcji uktadu graficznego z poziomu aplikacji

terminologii jezykow obiektowych réwniez istnieje pojecie interfejsu, jako pewnego ro-
dzaju wzorca pozbawionego implementacji. Jest to prawda réwniez w tym przypadku.
Zgodnie z przyjetym modelem, za implementacje wigkszosci funkcji zawartych w API
jest odpowiedzialny sterownik. Gléwng czeécig API sg tylko nagléwki procedur wraz
z doktadnym opisem ich funkcji oraz kryteriéw, ktére powinny spetia¢. Takie roz-
wigzanie daje duza swobode producentom uktadéw w sposobie realizacji okreSlonych
zadan. Swoboda ta jest jednak mocno ograniczona, gdyz obraz generowany przez kon-
kretng aplikacje powinien wyglada¢ tak samo na komputerach wyposazonych w rézne
karty graficzne. Z tego powodu opracowano zbiér zasad, ktére okreSlaja sposéb za-
chowania sie w sytuacjach niejednoznacznych. Przyktadem tego typu sytuacji jest
tzw. problem rasteryzacji. Podstawg pracy akceleratora jest rysowanie tréjkatéw o
zadanych wierzchotkach oraz parametrach, takich jak kolor czy faktura powierzchni.
Wspétrzedne wierzchotkéw tréjkata sa odwzorowywane na ekran, ktory sklada sie ze
skoficzonej liczby pikseli. Problem pojawia sig¢, kiedy musimy zadecydowac, ktére pik-
sele naleza a ktore nie naleza do wnetrza tréjkata. Dzieje sie tak dlatego, ze piksel
wcale nie jest punktem ale prostokatem, ktéry zajmuje bardzo malg powierzchnie. W
przypadku kiedy krawedz tréjkata przecina pojedynczy piksel, nie bardzo wiadomo
kiedy nada¢ mu kolor tréjkata a kiedy pozostawi¢ kolor tta (rys. 1.3). Istnieje kilka
sposobéw poradzenia sobie z tym problemem. To, ktéry z nich zostanie zastosowany,
zalezy wylacznie od przyjetej w konkretnym API strategii. Zauwazmy, ze same para-
metry tréjkata, ktére podajemy w procedurze rysowania, w zaden sposob nie okre§laja
jednoznacznego rozwigzania.

Obecnie, na rynku dominuja dwa standardy programowania ukladéw graficznych,
DirectX stworzony przez koncern Microsoft oraz OpenGL wprowadzony przez firme

15

Rozdzial 1. Architektura

Silicon Graphics. Oba maja swoich zwolennikéw jak i zagorzaltych przeciwnikéw. Pod-
stawowsa, cecha réznigca je od siebie jest przenosnos¢, czyli mozliwosc ich wykorzysta-
nia w réznych systemach operacyjnych. DirectX zostal stworzony z my$la wylacznie o
Windows i tak tez pozostalo do dzisiaj. Strategia firmy Microsoft jest w najlepszym
przypadku ignorowanie istnienia innych systeméw, czesto réwniez celowe ograniczanie
ich rozwoju. Dla wielu ludzi mozliwo$¢ pracy na przyktad w systemie Linux jest nie-
zbedna, chociazby ze wzgledéw finansowych. Naturalng kolejg rzeczy bylo powstanie
calej rzeszy wrogéw wielkiego monopolisty, ktérzy za wszelka ceng starali si¢ znalezc
wady w oprogramowaniu Microsoftu i podwazy¢ sens korzystania z niego. Powstato
wiele mitéw dotyczacych obu interfejséw, ktére z reguly sa nieprawdziwe a ich geneza
jest zwigzana $cile z brakiem wiedzy ich pomystodawcow.

Rysunek 1.3: Rasteryzacja tréjkata

OpenGL jest nastepca standardu IrisGl, powstalym specjalnie dla potrzeb profe-
sjonalnych stacji graficznych. W czasach, kiedy Silicon Graphics produkowal swoje
komputery, projektanci Microsoftu dopiero zastanawiali sie¢ nad mozliwoscia szerszego
wykorzystania technologii graficznych. Nie byto w tym niczego nienaturalnego, jakie-
kolwiek wyspecjalizowane uklady graficzne byly domena wylacznie profesjonalnych ma-
szyn. Zmieni¢ miat to Windows 95, ktéry w zamierzeniu twércéw mial sta¢ sie domowsg
platforma multimedialng. Skonczylo si¢ niestety na zupelnie niestabilnej platformie a
DirectX zostal pozbawiony wielu btedéw dopiero wiele lat pdznie;j.

W przeciwienstwie do OpenGL, DirectX byt interfejsem niewygodnym w uzyciu,
chaotycznie zaprojektowanym i stabo znoszacym szybko rozwijajacy sie rynek sprzetu.
OpenGL zostal oparty na systemie rozszerzen, kazda dodatkowa funkcje mozna byto
dodac do istniejacej wersji bez jakiejkolwiek ingerencji w specyfikacje. Kazdy producent
mogt bez zadnego problemu wdrozy¢ nowg technologie natychmiast, nie czekajac na
zatwierdzenie kolejnej wersji API. Sytuacja zmienila si¢ na poczatku XXI wieku na
korzy$¢ Microsoftu. Paradoksalnie, przyczyna takiego stanu rzeczy nie bylo pogorszenie

16

1.2. Sterowniki i biblioteki

sie jakosci architektury OpenGL, ale wzrost liczby producentéw sprzetu. Kazdy z nich,
chcac wylansowac swoja technologie wprowadzal swoje wersje rozszerzen. Spowodowato
to sytuacje, w ktérej aby wykorzystac de facto ta sama funkcje na réznych kartach,
nalezalo napisac¢ osobng Sciezke kodu dla kazdej z nich. Powstata co prawda organizacja
OpenGL Architecture Review Board (ARB), ktéra miala kontrolowaé jego rozwdj, ale
robila to zbyt opieszale. Wykorzystal to Microsoft, udoskonalajac architekture DirectX.
Wersja numer 9 niczym nie przypomina jej poprzednikéw, jest prosta w obstudze i
elastyczna na tyle, aby nie ograniczaé¢ rozwoju sprzetu?.

Obecnie, czas tworzenia oprogramowania gra kluczows role, dlatego twércy oprogra-
mowania muszg koncentrowac si¢ na bardziej uniwersalnych rozwiazaniach. Pomimo
nieco wiekszej wygody pisania programéw w OpenGL, pozostaje on bardziej popularny
w Srodowiskach akademickich niz profesjonalnych. Dominujacy producenci procesoréw
graficznych, jak ATT czy NVIDIA, uzywaja standardu OpenGL przede wszystkim do
testowania nowych technologii. Wprowadzaja nowe rozszerzenia, aby méc szybko za-
prezentowaé nowe mozliwosci swoich uktadéw. Powstal przez to ogromny chaos a profe-
sjonalni twércy oprogramowania widza OpenGL niestety tylko jako pole walki dzialéw
marketingowych.

W API Microsoftu nie istnieje pojecie rozszerzenia, wszystkie mozliwe do wykona-
nia funkcje sa z géry ustalone. Nie oznacza to jednak zadnego przymusu, karta moze,
ale nie musi oferowa¢ okreslonych funkcji. Zestaw operacji mozliwych do wykonania
w danej wersji DirectX, jest przed jego wprowadzeniem szczegélowo analizowany. W
takich spotkaniach uczestniczg rowniez producenci sprzetu. Dzigki temu, twércy opro-
gramowania wraz z inzynierami mogga ustali¢ wspdlny kierunek rozwoju technologii w
sposéb, ktory nie godzi w interesy zadnej ze stron. Takie podejScie eliminuje poten-
cjalny chaos, spowodowany réznorodnoScig strategii rozwoju poszczegdlnych firm. W
momencie wejScia na rynek nowej wersji API, czesto znajduja sie w nim funkcje, ktére
nie mogg byt jeszcze wykonane przez zaden dostepny uktad graficzny. Dzieki planowa-
niu posunietym daleko w przysztos¢, nowe wersje specyfikacji mozna wprowadza¢ duzo
rzadziej.

Bardzo istotnym jest, aby kolejne wersje API stanowity rozwiniecie poprzedniej ar-
chitektury. Niestety, zdarzaja sie¢ sytuacje, w ktérych nie do konca przemyslane roz-
wigzania muszg zosta¢ usuniete, aby w ich miejsce wprowadzi¢ nowe. Ze wzgledu na
przymus kompatybilno§ci nowych wersji ze starymi, nie zawsze jest to mozliwe. Prowa-
dzi to do sytuacji, w ktoérej najnowsze technologie egzystujg obok swoich poprzednikéw,
powodujac dodatkowy nietad w dokumentac;ji.

W niniejszej pracy wszystkie opisy funkcji sa oparte na API DirectX w wersji 9.0c.
Jest to w tej chwili najnowsza wersja specyfikacji. Wiekszos¢ zagadnien omawianych
w nastepnych rozdzialach mozna odnie$¢ réwniez do innych interfejséw. Jedyng prze-
szkoda bedzie znalezienie odpowiednika danej funkcji w dokumentacji lub nieznaczna
zmiana w kodzie programu. Pod wzgledem merytorycznym, wszystkie zagadnienia po-
ruszane w tym opracowaniu pozostang w peli wartoSciowe, niezaleznie od wyboru
konkretnego Srodowiska programistycznego.

2W czasie, kiedy powstawal ten tekst, organizacja ARB zatwierdzila wersje 2.0 specyfikacji OpenGL. Po-
rzadkuje ona wigkszoé¢ newralgicznych rozszerzen, umieszczajac ich odpowiedniki w specyfikacji. Na razie nie
powstaly jeszcze odpowiednie sterowniki, przez co nie wiadomo czy standard zostanie szeroko przyjety przez
Srodowisko programistow.

17

Rozdzial 1. Architektura

1.3. Ogdlny schemat pracy ukladu graficznego

Generowanie obrazu przy uzyciu akceleratora graficznego, sklada sie z trzech etapow
(rys. 1.4). Pierwszy z nich wykonuje aplikacja, dwa pozostale sg realizowane przez
karte graficzng. Jedynym zadaniem procesora gtéwnego jest przygotowanie danych w

celu przestania ich do uktadu.

Rysowa¢ mozna wylacznie bryly geometryczne skladajace si¢ z trojkatow. Kazdy
tréjkat jest opisany przez trzy wierzcholtki, ktére maja okreslone wspotrzedne w prze-
strzeni tréjwymiarowej, oraz specjalne dodatkowe atrybuty. Aby zminimalizowaé ilo$¢
informacji przesytanych do karty, wierzcholki sa zapisywane w okre$lonej kolejnoSci.
Aby narysowa¢ pézniej tréjkat, nalezy podaé tylko indeksy poszczegdlnych punktéw.
Ma to istotne znaczenie wtedy, gdy trdjkaty maja wspdlne wierzchotki.
przypadku, zamiast przesyta¢ te same porcje danych kilkukrotnie, wysytane sg tylko
identyfikujace wierzcholki numery.

Aplikacja

Przetwarzanie
wierzchotkow

y
trojkaty (2D) |A——

Rasteryzacja

Zestaw bryl geometrycznych, ktéry bedzie wySwietlony na monitorze, jest zdefi-
niowany w przestrzeni tréjwymiarowej. Dzigki matematycznemu opisowi sceny, ist-
nieje mozliwo$¢ dowolnego transformowania tych obiektéw. Uktad graficzny dysponuje
specjalnie wydzielong jednostka arytmetyczna, ktéra potrafi wykonywaé obliczenia na

transformacija wspotrzednych

v

obliczanie atrybutow

rasteryzacija

obliczanie koloru

Y

wyznaczanie widoczno$ci

interpolacja atrybutéw

Rysunek 1.4: Schemat procesu generowania obrazu

18

W takim

1.3. Ogdlny schemat pracy ukladu graficznego

wspolrzednych wierzchotkéw. Procesem transformacji kieruje specjalny mikroprogram,
ktéry jest wykonywany, od poczatku do konica, dla kazdego wierzchotka. Ekran kompu-
tera sklada si¢ z dwuwymiarowej matrycy pikseli i niezbedna jest odpowiednia trans-
formacja, ktéra dokona rzutu wszystkich elementéw na dwuwymiarows, przestrzen wy-
Swietlacza. Do niedawna, wszystkie funkcje zwigzane z tym procesem byly wykonywane
bez udzialu programisty. Miat on do wyboru tylko zestaw predefiniowanych procedur,
ktore potrafity wykonac tylko podstawowe czynnosci, jak na przyklad przemnozenie
wektora przez macierz. W nowoczesnych kartach tres¢ tego mikroprogramu ustala sam
programista, ale jego podstawowa funkcja nadal jest z géry narzucona.

Proces przetwarzania wierzcholkéw nie ogranicza sie tylko do transformacji ich
wspélrzednych. Wraz z informacjami o ich potozeniu w przestrzeni, do karty mozna
przesta¢ dowolne atrybuty. Moga one stanowi¢ dodatkowe parametry obliczen lub opi-
sywaC pewna wlasnos¢, jak na przykiad kolor. Dodatkowe atrybuty, ktére sg ustalane
indywidualnie dla kazdego wierzchotka, sa w pdézZniejszym etapie generowania obrazu
liniowo interpolowane na obszarze calego tréjkata. Nadanie tréjkatowi faktury, opi-
sanej dwuwymiarows teksturg, polega na przekazaniu wspétrzednych tekstury, ktére
majg by¢ przypisane danemu wierzcholkowi. Jednostka zajmujaca sie rasteryzacja,
interpoluje te wspéirzedne na calej powierzchni, pokrywajac w ten sposéb tréjkat dwu-
wymiarowym obrazkiem (rys. 1.5). Nalezy zauwazy¢, ze atrybut jest rozlozony liniowo
tylko we wspotrzednych tréjwymiarowych. Przeksztalcenie perspektywiczne powoduje,
ze interpolacja wykonywana we wspoirzednych ekranowych wcale nie jest liniowa.

(x1,y1,z1)

(sz r

uktad globalny x/y/z ukfad tekstury u/v uktad ekranu xly

Rysunek 1.5: Proces teksturowania oraz przykiad rzutu perspektywicznego.

Nie wszystkie atrybuty koniecznie trzeba przesylat do procesora graficznego. Mikro-
program moze zajac sie¢ wygenerowaniem tych danych bezposrednio na karcie. Przykta-
dem tego typu obliczen jest pokolorowanie obiektéw w zaleznoSci od ich odleglosci od
obserwatora. Program wykona wszystkie potrzebne operacje na wspéhrzednych wierz-
chotkéw i nada im odpowiednie barwy tak, aby zasymulowac¢ zjawisko mgtly. Kolejnym
przykladem jest obliczanie natezenia o$wietlenia. Majac dang pozycje zrédla swiatla,
jego kolor oraz natezenie, mozna obliczy¢ intensywnoS¢ i barwe Swiatta odbitego w kie-

19

Rozdzial 1. Architektura

runku obserwatora. Niestety, wykonujac ta operacje tylko na wierzchotkach obiektu,
efekt bedzie niezadowalajacy. Jest to spowodowane liniowg interpolacja koloru na ob-
szarze tréjkata. Wspoélczesne uklady umozliwiajg obliczenia w kazdym narysowanym
pikselu, w tym w punktach znajdujacych si¢ w obrebie trdojkata. Daje to o wiele do-
ktadniejsze i bardziej wiarygodne wyniki (rys. 1.6).

Po obliczeniu wspéhrzednych i atrybutéw dla wierzchotkéw, przetworzone dane tra-
fiaja do jednostki zajmujacej sie¢ rasteryzacja. Rasteryzacja polega na wypelnieniu
odpowiednim kolorem tych pikseli bufora ekranu, ktére znajduja sie w obszarze wi-
docznych po transformacji tréjkatéw. Udzial programisty w tym procesie ogranicza
sie do napisania drugiego mikroprogramu, ktéry obliczy kolor aktualnie rysowanego
piksela. Cala reszta jest juz wykonywana automatycznie. Uktad sam wyznacza pik-
sele pokrywajace obszar tréjkata oraz interpoluje atrybuty z wierzchotkéw tak, aby
mozna je bylo pézniej wykorzysta¢ w mikroprogramie. Podobnie jak w jednostce prze-
twarzania wierzchotkéw, ten sam program jest uruchamiany dla kazdego generowanego
piksela.

Rysunek 1.6: O$wietlenie obliczone tylko na wierzcholkach (z lewej), oraz na calej po-
wierzchni tréjkatéw (z prawej).

Mikroprogram, ktéry wykonuje jednostka odpowiedzialna za rasteryzacje, nie wie,
ktory piksel na ekranie jest wia$nie obliczany. Jedynymi parametrami, jakimi dyspo-
nuje, sg juz przeinterpolowane atrybuty oraz stale zmienne. Waréd stalych zmiennych,
znajdujg sie miedzy innymi aktualnie wybrane przez program tekstury. Jedng z pod-
stawowych operacji, ktérg moze wykona¢ ten mikroprogram, jest pobranie z tekstury
wartoSci koloru, znajdujacego sie w punkcie o danych wspélrzednych. Wspéirzedne te
byly albo podane wcze$niej przez aplikacje, albo zostaly wygenerowane przez mikro-
program dla wierzchotkéw. Przy obliczaniu koloru jednego piksela, mozna wykorzystac
dane az z 16 tekstur jednocze$nie.

Ostatnim etapem jest wyznaczenie widoczno§ci danego piksela. Jednym z niejaw-
nych atrybutéw obecnych w kazdej fazie generowania obrazu, jest odleglo$¢ punktu
od obserwatora. Podczas interpolacji we wspétrzednych ekranowych, wartosc tej od-
legtoSci réwniez jest obliczana na biezaco. Podczas rysowania piksela, wartoS¢ ta jest

20

1.3. Ogdlny schemat pracy ukladu graficznego

wpisywana do specjalnego bufora, zwanego buforem-7. Bufor-Z ma taks sama rozdziel-
czo§¢ jak bufor koloru, w ktérym skladowane sa kolory pikseli koncowego obrazu. Jesli
wystapi sytuacja, w ktérej w tym samym miejscu ma zosta¢ narysowany piksel nalezacy
do innego tréjkata, wartos¢ jego odleglosci jest poréwnywana z juz znajdujaca sie w
tym miejscu wartoScig w buforze-Z. Jesli okaze si¢ mniejsza, czyli aktualnie generowany
piksel jest blizej obserwatora, stare wartosci w buforach koloru i Z sg nadpisywane. W
przeciwnym wypadku, aktualnie generowany piksel jest odrzucany.

Do niedawna, akcelerator oferowal wylacznie predefiniowane zestawy funkcji dla
wierzchotkéw oraz pikseli. Dla wierzchotkéw dostepne byly wylacznie proste prze-
ksztalcenia macierzowe, a dla pikseli tylko podstawowe operacje na teksturach. Wraz
ze wzrostem wymagan co do jakoSci generowanego obrazu, dodano mozliwo$¢ pro-
gramowania ukltadu graficznego. Opracowano specjalne zestawy instrukcji sterujacych
pracag procesora graficznego. W tej chwili sa juz dostepne nawet wysokopoziomowe
jezyki programowania, dzigki temu znajomo$¢ mikroinstrukcji nie jest juz konieczna.
Jednak dopiero od niedawna procesor graficzny mozna nazwa¢ w pelni programowal-
nym, poniewaz wczesne wersje jezykéw oferowaly bardzo ubogi zestaw funkcji wraz z
calg masg obostrzen i zakazéw.

W tej pracy jest opisana architektura w wersji 2.0 dla wierzchotkéw i 2.0 dla pik-
seli*. Stanowig one nierozlgczng calo§é, mimo iz sa numerowane osobno. Te wersje
mozna juz nazwac dojrzalym Srodowiskiem pracy, pozbawionym zasadniczych wad jej
poprzedniczek. Programy mozna pisa¢ swobodnie, bez zaprzatania sobie glowy utrud-
nieniami spowodowanymi przystowiowym spadkiem po nieprogramowalnych uktadach.
Poprzednie wersje, od 1.1 do 1.4, byly prébg skonstruowania zestawu instrukcji z juz
istniejacych w ukladzie predefiniowanych funkcji. Od wersji 2.0 wigkszoS$¢ operacji nie
da sie juz wykona¢ bez uzycia mikroprograméw. Do wielu zalet nowego standardu
nalezy réwniez istotnie zwiekszona precyzja wewnetrznych obliczen, przez co genero-
wany obraz jest juz pozbawiony widocznych wad. Dla uzmystowienia sobie tego faktu
warto wspomnie¢, ze do niedawna format zapisu liczb, na ktérych operowaty mikropro-
gramy mial 8-bitowa stalopozycyjna czes¢ utamkowa. W wersji 2.0 jest to juz 32-bitowy
format zmiennopozycyjny.

3W chwili obecnej, standard 2.0 obslugujg uklady firmy NVIDIA z serii Geforce FX (5xxx) i Geforce 6 (6xxx)
oraz uklady firmy ATI oznaczone symbolami Radeon 9550,9600,9700,9800 i wszystkie z serii
Radeon X.

21

Rozdziat 2

Przetwarzanie wierzcholkow

2.1. Transformacje

Bryly geometryczne, ktére sg przetwarzane przez karte graficzna, sktadajg sie z wierz-
chotkéw pogrupowanych w tréjkaty. Wierzchotki maja wspétrzedne zdefiniowane w
przestrzeni tréjwymiarowej. W przypadku, gdy uzywane jest API DirectX, uktad
wspotrzednych, w ktérym sg okreSlone wierzchotki musi by¢ lewoskretny. Réznica mie-
dzy uktadem prawoskretnym a lewoskretnym polega na wzajemnym potozeniu osi. W
obu uktadach inaczej jest zdefiniowana operacja iloczynu wektorowego (rys. 2.7).

Y Lewoskretny Y Prawoskretny

\

Z=Yx X=-(XxY) Z=XxY=-XxY) X

X 4

Rysunek 2.7: Dwa rodzaje ukladéw wspotrzednych i réznica w definicji iloczynu wekto-
rowego.

Aby wygenerowaé dwuwymiarowy obraz, w pierwszej kolejnoSci nalezy zdefiniowaé
punkt, w ktérym znajduje si¢ obserwator. Obserwatora mozna poréwna¢ do apa-
ratu fotograficznego, a prostokatny obszar pojedynczej klatki filmu do dwuwymiarowe;j
rzutni, ktéra bedzie pdézniej wySwietlona na ekranie. Z obserwatorem jest zwigzany
uktad wspétrzednych, w ktérym osie X i Y okreslaja orientacje rzuti a o§ Z jest kie-
runkiem patrzenia na sceng. Ze wzgledu na to, ze obserwator porusza si¢ po scenie,
jego uklad jest okreslony we wspétrzednych globalnych, tak jak wszystkie obiekty.

Przed dokonaniem rzutu na dwuwymiarowsa plaszczyzne, wspéhrzedne wierzchotkéw

23

Rozdziat 2. Przetwarzanie wierzchotkéw

trzeba przedstawi¢ w ukladzie obserwatora. Dopiero wtedy stosowane jest przeksztalce-
nie, odwzorowujace tréjwymiarowe bryly w ich dwuwymiarowe obrazy na plaszczyznie.
Takie podejscie znacznie upraszcza obliczenia zwigzane z rzutami perspektywicznymi,
ktére daja sie latwo sformutowaé, jesli kierunek patrzenia obserwatora pokrywa sie z
osig Z ukladu wspéhrzednych (rys. 2.8).

ZA

uktad globalny Z,4 ukfad obserwatora

X X,

Rysunek 2.8: Transformacja wspoétrzednych obiektu z ukladu globalnego do uktadu ob-
serwatora. Skala osi nie zostala zachowana.

Obiekty, a doktadniej wierzchotki je opisujace, mozna poddawa¢ dowolnym prze-
ksztalceniom. Zanim punkty beda opisane wspétrzednymi globalnymi, czesto przecho-
dza szereg transformacji w innych ukltadach. Przykladem moze by¢ obracajace sie kolo
samochodu. Jesli koto bedzie mialo wspétrzedne zdefiniowane w ukladzie lokalnym,
ktorego o§ Z jest osia obrotu kota, wystarczy zastosowac proste przeksztatcenie ob-
rotu wokét osi Z. Dopiero pézniej wspétrzedne zdefiniowane lokalnie sg zamieniane na
globalne.

Wszystkie operacje wykonywane na wspélrzednych wierzchotkéw, wymagaja spraw-
nego aparatu matematycznego, ktéry pozwoli szybko wykona¢ niezbedne obliczenia.
Macierze nadaja sie do tego doskonale, ze wzgledu na mozliwos¢ kumulacji wielu trans-
formacji w jednej macierzy. Niestety, macierze w R3 spelniajg ten warunek tylko w
przypadku przeksztalcen liniowych, ktére nie obejmujg przesunigt. Omina¢ to ograni-
czenie, mozna wykonujac obliczenia w specjalnej przestrzeni, zwang przestrzenig rzu-
towa.

2.1.1. Przestrzenie rzutowe

Geometria euklidesowa charakteryzuje sie duza przejrzystoScia oraz jest tatwo przy-
swajalna. Niektore wlasnoSci tej przestrzeni nie pozwalaja jednak na pelng swobode
wykonywania pewnych operacji. Piaty aksjomat Euklidesa méwi o tym, ze dwie proste
moga sie przecina¢ najwyzej w jednym punkcie. Podczas obliczania punktu przecie-
cia sie dwoch prostych, trzeba bardzo uwazac, aby nie doprowadzi¢ do dzielenia przez
zero. Dzielenie przez zero pojawi sie, gdy proste te sa réwnolegle, a wigc wynik tej

24

2.1. Transformacje

operacji jest nieokreSlony. Pewnego rodzaju rozszerzeniem przestrzeni euklidesowej
jest przestrzen rzutowa. Podstawowa cecha rézniacg ja od poprzedniczki, jest gwaran-
cja istnienia doktadnie jednego punktu wspélnego dla kazdych dwdéch prostych. Ma ona
rowniez wiele przydatnych dla grafiki komputerowej wlasnoSci, ktére nie majg miejsca
w geometrii euklidesowe;j.

Definicja 1 Punktami w przestrzeni rzutowej P(R?) nazywamy klasy abstrakcyi
relacyi =, zdefiniowanej na zbiorze R3\{(0,0,0)} w nastepujacy sposéb:

(p,q,7) (z,y,w) <= Ja € R\{0} : (ap, aq,ar) = (z,y,w).

Punkt [z,y, w] nazywamy wlasciwym, wtedy i tylko wtedy, gdy w # 0. Punkt |x,y, w]
nazywamy niewtasciwym, witedy @ tylko wtedy, gdy w = 0.

Relacja ™ jest relacja réwnowaznoSci, wiec klasy abstrakcji tej relacji dzielg zbior
R3\{(0,0,0)} na roztaczne podzbiory. W zwiazku z tym, kazda tréjka (p, ¢, r) € [z, y, w]
jednoznacznie wyznacza caly podzbiér. Konsekwencja tego faktu jest to, ze punkt
mozna oznaczaé dowolng tréjka z tego zbioru, na przyklad [1,1,1] 1 [2,2,2] definiuja
ten sam punkt w P(R?). Liczby x, y i w nazywamy wspélrzednymi jednorodnymi.
Jesli w = 1, sa to znormalizowane wspolrzedne jednorodne.

Istnieje bezposredni zwiazek migdzy wlasciwymi punktami w P(R?) i punktami
w R2. Je§li w # 0, okre$lamy transformacje z P(R?) — R? w nastepujacy sposéb:

(or,) = (2,2, (2.1

Y

218
SRS

Odwrotnie, obrazem punktu (u/,v/) € R? w przestrzeni P(R?) jest punkt [u/, v/, 1],
ktéry reprezentuje nieskonczony zbidr tréjek w postaci (au', av’, o), gdzie o € R\{0}.

Poniewaz wspétrzedne punktéw P(R?) sa opisywane przez trzy liczby, mozna so-
bie wyobrazi¢, ze opisuja one réwniez wspéhrzedne w R3. Przy takim zalozeniu, punkt
[z,y,w] € P(R?) stanowi w R3 prostg przechodzaca przez punkt (0,0,0) o wektorze
kierunkowym (z,y,w). Jedli jest to punkt wlasciwy, para (x/,y/) jest réwna pierw-
szym dwom wspélrzednym punktu przecigcia tej prostej z plaszczyznag w = 1. Ob-
razem punktu (a/,y/) po przeksztalceniu R? — P(R?) w wyimaginowane]j przestrzeni
R3, jest prosta przechodzaca przez punkty (z/,%/,1) i (0,0,0). Podsumowujac, punkty
przestrzeni P(R?) mozna sobie wyobrazi¢ w R? jako proste przechodzace przez rodek
uktadu wspéhrzednych, a transformacje P(R?) — R? jako przecigcie tych prostych z
plaszczyzng w = 1 (rys. 2.9).

Definicja 2 Prostq (A, B,C) w przestrzeni rzutowej P(R?) nazywamy zbior punktéw
spetniajacych réwnanie Ax+ By+Cw = 0, gdzie (A, B,C) # (0,0,0). Prostq (A, B,C)
nazywamy wtasciwa, wtedy i tylko wtedy, gdy A # OVB # 0. Prostq (A, B, C') nazywamy
niewtasciwa, wtedy i tylko wtedy, gdy A =B = 0.

Podobnie jak w przypadku punktéw, kazda tréjka liczb postaci (A, aB, aC'), gdzie
a € R\{0}, definiuje ta sama prosta (A, B, C).

25

Rozdziat 2. Przetwarzanie wierzchotkéw

Rysunek 2.9: Punkty wiasciwe w przestrzeni P(R?) przedstawione jako proste w R3.
Punkt (z7,y/) jest obrazem [z, y, w] po przeksztalceniu go do R2.

Wiasciwy punkt [z, y, w] znajduje sie na prostej (A, B, C), jesli Az + By + Cw = 0.
Proste w przestrzeni P(R?) mozemy sobie wyobrazi¢ w przestrzeni R3, jako plaszczy-
zny przechodzace przez punkt (0,0,0). Skoro w # 0, mozna zastosowaé wzor (2.1) i
podzieli¢ obie strony réwnania przez w. Otrzymujemy Az’ + By’ +C = 0. Jest to réw-
nanie prostej w przestrzeni R?. Odwzorowanie P(R?) — R? mozemy sobie wyobrazi¢
w przestrzeni R3, jako przeciecie plaszczyzny Az + By + Cw = 0 z plaszczyzng w = 1.
Wynikiem tego przeciecia jest oczywiScie prosta na plaszczyznie w =1 (rys. 2.10).

Niewlasciwy punkt [z,y,0] znajduje si¢ na prostej (A, B,C), jesli Ax + By = 0.
Wynika z tego, ze przez ten punkt w przestrzeni P(R?) przechodzi kazda wlasciwa
prosta [A, B,~], gdzie v € R. Je§li A # 0V B # 0, obrazem prostych [A, B,~] w prze-
strzeni R?, jest rodzina prostych réwnoleglych Az + By/ +~v = 0. Wniosek z tego
plyngcy jest bardzo istotny. W przestrzeni R? proste réwnolegle nie maja punktéw
wspdlnych, ale ich odpowiedniki w przestrzeni P(R?) zawsze przecinaja si¢ w pewnym
punkcie niewtasciwym. Idac dalej tym tropem, mozna przyjac, ze kazdy punkt niewta-
Sciwy [z, y, 0] reprezentuje w przestrzeni R? rodzing prostych réwnolegtych o réwnaniu
Axt + Byt +~v = 0.

W przypadku, kiedy A = B = 0, punkt [z, y, w] znajduje sie na prostej (A4, B, C), je-
§li Cw = 0. Jedynymi punktami speliajacymi tg zalezno$¢ sg punkty o wspélrzednych
[z,y,0], czyli wylacznie punkty niewlaéciwe. Prosta [0,0,C] przecina wiec wszystkie

26

2.1. Transformacje

Rysunek 2.10: Wiaéciwa prosta w przestrzeni P(R?) przedstawiona jako ptaszczyzna w
R3. Prosta Az’ + Byl + C = 0 jest obrazem (A, B, C') po przeksztalceniu jej do R2.

punkty niewlasciwe przestrzeni P(R?).Nie ma ona swojego obrazu w przestrzeni R?,
ale wyobrazajac sobie ja w R3, zobaczymy plaszczyzne o réwnaniu w = 0 (rys. 2.11).

Aby znalez¢ prosta P = (A, B, C) przechodzaca przez dwa punkty X; = [z1,y;, wi]
i Xy = [x9, Y2, we|, nalezy rozwiazaé¢ uklad réwnan:

Ax1+By1—|—C’w1:0
A:c2+By2+C’w2:O '

Rozwiazaniem tego ukladu jest prosta P = (yowq — y1wa, Waki — W1Ta, Loy — T1Ya)-
Jesli potraktowaé wspélrzedne prostej P i obu punktéw jako wektory w R3, wynik tej
operacji mozna zapisa¢ za pomocg iloczynu wektorowego:

P:X1><X2.

Bardzo podobnie wyglada procedura obliczania punktu X, w ktérym przecinajg sie
proste A i B:

X =AxB. (2.2)

W obu wzorach nie wystepuje dzielenie, co oznacza, ze obie operacje maja zawsze
dobrze okreSlony wynik. Przykladowo, dwie proste réwnolegle A’ =3x +2y+1 =101
B’ = 31+ 2y +4 = 0, okreélone w R?, majg swoje odpowiedniki w przestrzeni rzutowej
P(R?) zdefiniowane jako A = (3,2,1) oraz B = (3,2,4). Podstawiajac do wzoru
(2.2) otrzymujemy punkt przeciecia sie prostych: X = [—6,9,0] = [-2,3,0] = [1, —2].

27

Rozdzial 2. Przetwarzanie wierzcholkéw

Rysunek 2.11: Prosta i punkty niewlaéciwe w przestrzeni P(R?) przedstawione w R3.

X jest punktem niewlasciwym, a jego interpretacja w przestrzeni R? to rodzina prostych
réwnolegltych o wspoétczynniku kierunkowym —%, do ktoérej nalezg miedzy innymi A’
oraz B'.

Przestrzen rzutowa P(R3), okreslona na zbiorze R*\{(0,0,0,0)}, jest zdefiniowana
na tej samej zasadzie co przestrzen P(R?). Punkt wtasciwy o wspéhrzednych [z, y, 2, w]
mozna przeksztalci¢c w przestrzen R?, wykonujac rzut na hiperplaszczyzne w = 1 za
pomoca wzoru:

(.’13/, Y, Z/) = (

). (2.3)

Y Y

g <

SHRS
g [

Odpowiednikami prostych (A, B,C, D) € P(R?) sa plaszczyzny w przestrzeni tréj-
wymiarowej R3. Wszystkie proste wtasciwe (4, B, C,), gdzie v € R, przecinaja si¢ w
punkcie niewlasciwym [A, B, C,0]. Ten punkt jest odpowiednikiem rodziny ptaszczyzn
réwnoleglych w R3, okreslonych wzorem Az + By + Cz + v = 0.

Przestrzen P(R3) jest najbardziej interesujaca z punktu widzenia grafiki kompute-
rowej, gdyz wszystkie funkcje wykonywane na karcie graficznej operuja na geometrii
zdefiniowanej w trzech wymiarach.

28

2.1. Transformacje

2.1.2. Przeksztalcenia afiniczne

W przestrzeniach rzutowych nie zachodza wilasnosci klasycznych operacji algebraicz-
nych, nie mozna réwniez zdefiniowaé pojecia odleglo$ci ani orientacji. Nastepujacy
przyktad dobrze ilustruje brak podstawowych regut arytmetycznych w P(R?):

[17 07 2]1,1 = [27 074]1,2 1 [27 07 1]2,1 = [67 07 3]2,27 ale

[17 07 2]1,1 + [27 07 1]2,1 = [37 07 3] % [87 07 7] = [27 07 4—}1,2 + [67 07 3]2,2'

Zalety tych przestrzeni mozna wykorzysta¢ dopiero poprzez ich $cisle potaczenie z
klasycznymi odpowiednikami, za pomoca transformacji rzutujacych (2.3). NajczeSciej
wykorzystywang cechg przestrzeni rzutowych, jest mozliwos¢ zapisu duzo szerszej gamy
przeksztatcen w postaci macierzowej. Obejmuje to nie tylko wszystkie przeksztalcenia
afiniczne, ale réwniez rzuty perspektywiczne.

Aby wykorzysta¢ te mozliwoSci, nalezy postepowaé zgodnie z nastepujacym sche-
matem:

1. Wspéhrzedne punktéw w R3 przeksztalci¢ do przestrzeni P(R?), nadajac wspot-
rzednej w wartos¢ 1: (x,y, 2) — [z,y, 2, 1].

2. Za pomocy odpowiednio skonstruowanych macierzy R***, wykonaé wszystkie nie-
zbedne transformacje.

3. Stosujac zaleznos¢ (2.3) przeksztalci¢ wspoéhrzedne z powrotem do R3.

Przeksztalcenie afiniczne w przestrzeni R? sklada sie z macierzy A € R3%3, reprezen-
tujacej czeéé liniowa przeksztalcenia, oraz z wektora przesuniecia B € R3:

' = Az + B. (2.4)

Dwie skladowe tej transformacji uniemozliwiaja sktadanie kilku przeksztalcen afi-
nicznych w jedng macierz. Przestrzen P(R?) daje jednak nowe mozliwosci i konstruk-
cja takiej zbiorczej macierzy jest mozliwa. Operacje w P(R3) zachowaja whasno$ci
znane z przestrzeni R® pod warunkiem, ze przeksztalcany punkt oraz wynik pomno-
zenia go przez macierz, beda znajdowac sie na hiperptaszczyznie w = 1. W innym
przypadku, ze wzgledu na reguly arytmetyczne obowigzujace w P(R?), po wykona-
niu kroku trzeciego wynikiem nie bedzie punkt po przeksztalceniu afinicznym. Ogélna
posta¢ macierzy R*** spelniajgcej ten warunek jest nastepujgca:

K:{’é ?],gdzieAeR?’ﬁ‘,BeR?

Jak sie okazuje, macierze A i B bedace podmacierzami K, maja identyczng postac
jak w zaleznosci (2.4). Konstrukcja macierzy K jest wiec bardzo prosta i polega na
wstawieniu do niej w nienaruszonej formie, wyrazéw odpowiedzialnych za przeksztal-
cenie afiniczne w R3.

29

Rozdziat 2. Przetwarzanie wierzchotkéw

Macierze w przestrzeni P(R3), odpowiadajace najczeSciej wykorzystywanym prze-
ksztalceniom, przedstawione sg ponize;j.

e Przesuniecie o wektor P = (P, Py, P,).

OO O =
O O = O
O = O O
»—‘;:UQ;U;;U

e Zmiana skali ze wspoétczynnikami S, S, i S..

cooMn
coMno
onoo
—_o oo

e Obrét wokot osi A = (A,, Ay, A,), przechodzacej przez $rodek uktadu wspéirzed-
nych, o kat a. ||A]| =1, s = sin(«a), ¢ = cos(a).

(1—0)A2+c¢ cA A, —sA, cAA, + sA,

cAgAy+sA, (1—-c)A2+c cAyA, —sA,

cA A, —sA, cA A +sA, (1—c)A2+c
0 0 0

R:

_— o O O

e Transformacja wspétrzednych z ukladu L do G. Uklad L jest zdefiniowany w
ukladzie G' za pomocy czterech wektoréw: érodka ukladu O = (O, O,, O,), osi
X =(X;, X, X,),081Y = (Y,,Y,,Y.) iosi Z = (Z,,2,,2,).

Ay
o NN

Y

_ Xy O
Tpc = X, Y. 0,
0 1

2.1.3. Rzut perspektywiczny i ré6wnolegly

W celu wyéwietlenia generowanego obrazu na ekranie, niezbedna jest transformacja
bryt tréjwymiarowych w ich dwuwymiarowe odpowiedniki. Obiektyw aparatu fotogra-
ficznego sktada sig¢ z szeregu soczewek, ktére majg za zadanie skupi¢ promienie $wiatla,
biegnace z okre$lonego miejsca w przestrzeni, w pewnym punkcie btony fotograficzne;j.
Niestety, sztuczna symulacja takiego uktadu jest bardzo kosztowna obliczeniowo. W
grafice komputerowej najczesciej stosuje sie wyidealizowany model obiektywu, ktéry
daje obraz ostry niezaleznie od odlegloSci obiektu od obserwatora. Efekt glebi ostro-
Sci jest w tym przypadku nieosiggalny, ale réwnocze$nie obraz jest pozbawiony wad
klasycznego obiektywu, szczegdlnie jesli chodzi o znieksztalcenia geometrii.

30

2.1. Transformacje

Tak jak w aparacie fotograficznym, w syntetycznym modelu wystepuje pojecie kata
widzenia, ktory okresla obszar przestrzeni widoczny na ekranie. Obszar ten jest zbudo-
wany na bazie cztero$ciennego stozka o wierzchotku w Srodku uktadu wspétrzednych,
przez ktérego Srodek biegnie 0§ Z (rys. 2.12). Osie X Z oraz Y Z tworza plaszczyzny
symetrii tej brylty. Katy miedzy przeciwleglymi Scianami sg ustalane w przedziale od 0
do 180 stopni. Przyjeto, ze rozwartost stozka jest wyznaczona przez kat miedzy jego
poziomymi $cianami. Kat pomiedzy Scianami pionowymi jest wyznaczany tak, aby
proporcje obu katéw odzwierciedlaly stosunek wysokoSci do szeroko$ci ekranu.

Ze wzgledu na to, ze rzut perspektywiczny ma sens wylacznie dla punktéw o wspét-
rzednej z > 0, ustalono dwie plaszczyzny réwnolegle ograniczajace ten stozek. Plasz-
czyzny te maja réwnania z = zy oraz z = 2z, gdzie 0 < zy < zp. Plaszczyzna z = zy,
zwana rzutnia, jest odpowiednikiem blony filmowej w klasycznym aparacie. Ograni-
czony sze$cioma plaszczyznami fragment przestrzeni, ktéry wyznacza widoczny obszar,
jest zwany bryta widzenia.

Ya

T

N
NY

Rysunek 2.12: Bryta widzenia.

Rzut perspektywiczny punktu p jest zdefiniowany, jako przeciecie prostej przecho-
dzacej przez punkt p oraz Srodek ukladu wspoéirzednych, z plaszczyzna z = zy
(rys. 2.13).

. , .Y z . , .
Korzystajac z wlasnosci = = —— otrzymujemy wzor rzutu perspektywicznego:
ZN

y =N (2.5)

z

Na ekranie monitora mozna przedstawic¢ tylko prostokatny wycinek rzutni. Przyjeto,
ze wySwietlone na ekranie beda wylacznie punkty nalezace do nastepujacego przedziatu:

(-1<a/ <1,-1<y <1). (2.6)

31

Rozdziat 2. Przetwarzanie wierzchotkéw

Y
A
h
p'=(X'y',zy)
1
fov/2
zy z. 7

Rysunek 2.13: Rzut perspektywiczny punktu p.

W celu wyswietlenia na ekranie obszaru znajdujacego si¢ w bryle widzenia, wspot-
rzedne punktéw nalezacych do tego obszaru, po wykonaniu rzutu, musza by¢ zawarte
w przedziale (2.6). Aby byt spelniony ten warunek, do réwnania (2.5) nalezy dodac
wspotczynnik skalujacy, ktory sprowadzi wspétrzedne do wlasciwego przedziatu. Zgod-
nie z (rys. 2.13), poprawione réwnanie ma postac:

YzN
y =(—)/h
z
Wspélezynnik A mozna obliczy¢ korzystajac z zaleznoSci tan(fov/2) = —, gdzie fov
ZN

jest katem rozwarcia poziomych bokéw stozka widzenia. Ostatecznie otrzymujemy:

Y = M, gdzie fov € (0, 7). (2.7)

Dla wspélrzednej réwnanie wyglada niemal identycznie. Rozwartos¢ pionowych
bokéw bryly widzenia moze sie rézni¢ od rozwartoSci poziomych, dlatego do réwnania

wprowadza sie dodatkowy wspétczynnik A = —, gdzie w i h oznaczajg odpowiednio
w

szerokoS¢ i wysokoS¢ rzutni.

o X - ctg(fov/2)
z

(2.8)

Nieliniowa zalezno$¢ zmiennych w réwnaniach (2.7) i (2.8) da sie wyrazi¢ w sposéb
liniowy w przestrzeni P(R?).

32

2.1. Transformacje

Stosujac taki sam schemat postepowania jak w przypadku przeksztalcen afinicznych,
mozna wykorzysta¢ nastepujaca macierz przeksztalcenia perspektywicznego:

A-ctg(fou/2) 0 00

B 0 ctg(fov/2) 0 0
P= 0 0 10 (2.9)

0 0 10

Kazdy punkt o wspoétrzednych [z, y, 2, 1] po przemnozeniu przez macierz (2.9) bedzie
réwny [Az - ctg(fov/2),y - ctg(fov/2), z, z|. Dzielenie przez z, bedace ostatnim etapem
rzutu perspektywicznego, jest realizowane przez przeksztalcenie P(R3) — R3 (2.3),
w ktérym wspétrzedne dzielone sa przez w. Dzigki takiemu rozwiazaniu, wszystkie
transformacje wlacznie z przeksztalceniem perspektywicznym mozna zapisaé w postaci
jednej zbiorczej macierzy.

Macierz (2.9) powoduje zupela utrate informacji o odlegto$ci punktu od obserwa-
tora, po przejsciu do przestrzeni R3. Wszystkie wspéhzedne 2 sy wtedy
réwne 1. Faza rasteryzacji wymaga, aby punkty byly juz poddane rzutowi perspekty-
wicznemu. Réwnocze$nie wiasnie wtedy potrzebna jest informacja o odlegtosci punk-
téw od obserwatora, ktéra umozliwia wyznaczenie widocznosci w buforze-Z. Nalezy
wiec tak zmodyfikowaé¢ macierz (2.9), aby informacje o odlegloéci od obserwatora nie
byly bezpowrotnie tracone po transformacji z przestrzeni P(R3) do R3.

Rzut perspektywiczny jest okre§lony dla wspéhzednych z € [ay, zr| a wartosci w
buforze-Z musza by¢ w przedziale 2’ € [0, 1]. Niezbedne jest takie przeksztalcenie prze-
dziatu [ay, zr] w przedzial [0, 1], aby uwzglednione bylo dzielenie przez w, wystepujace
w przeksztalceniu do przestrzeni R?. Rozwigzaniem jest nastepujgca zaleznosé:

RF RF
z — 2

N
o = ZETEN SE AN (2.10)
z

Ostateczna macierz przeksztalcenia perspektywicznego, po uwzglednieniu poprawek
w trzecim wierszu, ma postac:

A-ctg(fou/2) 0 0 0
0 ctg(fov/2) 0 0
P= 0 0 ST (2.11)
ZF — ZN ZF — ZN
0 0 1

Po zastosowaniu macierzy (2.11) i przejéciu do przestrzeni R3, odlegloéci punktéw
od obserwatora moga by¢ w dalszym ciggu poréwnywane, ale ich proporcje nie sg juz
takie same jak przed rzutem perspektywicznym. Dzieje sie tak, poniewaz pochodna
funkcji (2.10) nie jest stala. Rozktad odlegloéci po przeksztalceniu nie jest liniowy i nie
mozna oceni¢ odleglo$ci danego wierzcholka od obserwatora. Funkcja ta jest jednak
monotoniczna i dozwolone jest poréwnywanie wartosci ze soba.

Duzo prostsza w konstrukcji jest macierz rzutu réwnolegtego. Bryta widzenia jest w
tym przypadku prostopadloscianem. Zadaniem macierzy jest sprowadzenie wspoirzed-
nych punktéw w bryle widzenia, do takich samych przedzialéw jak w przypadku rzutu

33

Rozdziat 2. Przetwarzanie wierzchotkéw

perspektywicznego. Istotng réznicg jest liniowe odwzorowanie odleglosci od obserwa-
tora w przedziale 2z’ € [0, 1]. Macierz tego przeksztalcenia jest przedstawiona ponizej,
w oraz h oznaczaja odpowiednio szerokos¢ i wysokos¢ bryly widzenia.

- 9 -
— 0 0 0
7J(l)) 2 0 0
0= h)
0 0 R
ZFp — ZN ZFp — ZN
_0 O -

Uklad graficzny wszystkie obliczenia zwigzane z geometria wykonuje w przestrzeni
P(R3), nastepnie zgodnie ze schematem na str. 29 przeksztaltca wspétrzedne z powro-
tem do R3.

Rysunek 2.14: Przyklad rzutu réwnoleglego i perspektywicznego.

2.1.4. Obcinanie

Po przeksztalceniu punktéw do przestrzeni R?, na ekranie widoczne beda wylgcznie
punkty o wspétrzednych spetniajacych ukiad réwnan:

-1<2 <1
1<y <1y, (2.12)
0<2Z<1

Te trzy przedzialy wyznaczajg w przestrzeni R3 prostopadioécian, zwany kanoniczng
bryta widzenia. Konstruujac jakiekolwiek przeksztalcenia rzutujace w P(R?), nalezy
tak budowa¢ transformacje, aby sprowadzi¢ zadany obszar, ktéry ma by¢ odwzorowany
na ekran, do przedzialéw (2.12).

Wigkszos¢ przeksztalcen rzutujacych jest dobrze okreSlona tylko na skonczonym
przedziale przestrzeni P(R3?), dlatego geometria znajdujaca si¢ poza obszarem bryty
widzenia jest obcinana i odrzucana jeszcze przed wykonaniem przejécia z P(R3) do

34

2.1. Transformacje

R3, czyli przed podzieleniem wspélrzednych przez w. Przyjeto, ze obcinane sg tréj-
katy, ktorych wierzcholki przeszly juz wszystkie zadane przeksztalcenia macierzowe,
wlacznie z transformacjami rzutujacymi (np. 2.11). Po operacji obcinania, te cze-
Sci trojkatow, ktére znajduja sie poza obszarem bryly widzenia, zostaja odrzucone
(rys. 2.15). Wielokat wypukty, ktéry pozostal w bryle widzenia, jest z powrotem dzie-
lony na tréjkaty, ktore sa poddawane dalszym operacjom.

A

Rysunek 2.15: Proces obcinania tréjkata na przykiladzie dwuwymiarowym, z bryta wi-
dzenia w postaci prostokata.

Sze$¢ plaszezyzn ograniczajacych obszar (2.12), ktéry bedzie narysowany na ekranie,
ma swoje odpowiedniki w przestrzeni P(R?). Niezaleznie od zastosowane] transformacji
rzutujacej, tuz przed wykonaniem dzielenia przez w, rownania tych plaszczyzn sa z
definicji identyczne (tab. 2.2).

| Strona [Réwnanie w P(R®) [Réwnanie w R? |
lewa r+w=0 ' =-1
prawa z—w=0 =1
gorna y—w=0 y =1
dolna y+w=0 y =-—1
przednia z2=0 =0
tylnia z—w=0 2 =1

Tablica 2.2: Réwnania plaszczyzn uzywanych przy obcinaniu.

Podstawowym elementem operacji obcinania jest znalezienie punktu przeciecia pew-
nej prostej, z jednag z plaszczyzn ograniczajacych bryle widzenia. Obciety wielobok
sktada si¢ z wierzchotkéw trojkata, ktére znajduja sie w bryle widzenia, oraz z punk-
téw nowo utworzonych przez niezbedne przecigcia. Jesli réwnanie plaszczyzny ma
postaé f(z,y,z,w) = 0, a prosta przechodzaca przez dwa punkty p i ¢ jest dana w
postaci parametrycznej p + t(q — p), to zadanie polega na znalezieniu takiej wartosci
parametru t, aby f(p + t(¢ — p)) = 0. W tym miejscu pojawia si¢ problem. W przy-
padku, kiedy punkty p i ¢ bedg mialy wspélrzedne w o przeciwnych znakach, punkt

35

Rozdzial 2. Przetwarzanie wierzcholkéw

przeciecia moze w wyniku obliczen mie¢ wspéirzedng w = 0. Nie mozna dopuscic
do takiej sytuacji, gdyz takiego punktu nie da sie przedstawi¢ w przestrzeni R3. W
zwigzku z tym, w specyfikacjach OpenGL oraz DirectX uznano za dopuszczalne wy-
lacznie te punkty, ktére po wszystkich przeksztatceniach macierzowych w P(R3) maja
wspotrzednag w > 0. Gwarantuje to zawsze dobrze okreslony wynik operacji przeciecia.

Zalozenie dodatniego w jest niezbedne réwniez do wykonania poprawnego rzutu
perspektywicznego. Zauwazmy, ze jeSli punkt [x,y, 2z, w] ma ujemne wspohzedne 2z
oraz w, to wynik przeksztalcenia 2/ = — ma znak dodatni. Oznacza to, ze punkt

znajdujacy sie z tylu za obserwatorem ml(l)]Ze sie znalez¢ w kanonicznej bryle widzenia
w R3. Zawsze dodatni znak wspétrzednej w zapobiega catkowicie takiej sytuacji.

Ostatecznie, aby sprawdzi¢ czy dany punkt znajduje si¢ w bryle widzenia w prze-
strzeni P(R?), wystarczy podstawi¢ jego wspétrzedne do nastepujacego uktadu nieréw-
nosci:

—w<z<uw
—w<y<w
0<z<w

Uklad graficzny wykonuje obcinanie catkowicie automatycznie. Podczas obcinania,
dla kazdego nowo utworzonego wierzchotka sa obliczane nowe atrybuty. Atrybuty ory-
ginalnych wierzcholkéw sg liniowo interpolowane na obszarze calego tréjkata, dzigki
temu wprowadzanie nowych punktéw wielokata odbywa si¢ bardzo szybko.

2.2. Programowanie ukladu

W celu narysowania grupy tréjkatéw, w pierwszej kolejnosci nalezy przygotowaé dane
w pamigci operacyjnej. Dane o wierzchotkach oraz tréjkatach sa umieszczone w réz-
nych obszarach pamieci i osobno przesytane do karty. Poniewaz wierzcholki tréjkatow
sa identyfikowane tylko przy pomocy indekséw, informacje o wierzcholkach sa przesy-
lane sekwencyjnie, jeden po drugim. Na kazdy wierzcholek sktada sie od jednego do
szesnastu czterowymiarowych wektoréw. Semantyczne znaczenie tych wektoréw jest
zupelnie dowolne, z reguly przynajmniej jeden z nich opisuje pozycje wierzchotka w
przestrzeni. Przestane dane trafiaja do jednostki przetwarzajacej (ang. Vertex Shader
Unit), w ktérej dla kazdego wierzchotka jest wykonywany mikroprogram (ang. Vertex
Shader). Jego zadaniem jest wygenerowanie przy pomocy danych wejsciowych przynaj-
mniej pozycji punktu, opisanej wspotrzednymi jednorodnymi. Po wszystkich oblicze-
niach nastepuje faza obcinania, w ktorej biora udzial réwniez informacje o tréjkatach.
Dopiero po obcinaniu wspétrzedne pozycji punktow sa przeksztatcane do przestrzeni
R3? (rys. 2.16).

Pracg calego uktadu steruje mikroprogram, ktéry w postaci binarnej jest réwniez
przesylany z pamieci operacyjnej do karty graficznej. W kazdym momencie mozna
zmieni¢ aktualnie obowigzujacy program, ale czynno$¢ ta powoduje duze opéznienia w
pracy ukiadu. Zupelnie nieoptacalne jest wykonywanie osobnego programu dla kazdego
wierzchotka, dlatego programy sag tak konstruowane, aby kazdy z nich mégl przetworzyc
jak najwiecej wierzchotkéw sceny. Nalezy wyraznie zaznaczy¢, ze z poziomu programu

36

2.2. Programowanie ukiadu

sg dostepne dane wylgcznie aktualnie przetwarzanego wierzchotka.

Dane wej$ciowe moga by¢ dowolne, ale proces na danym wierzchotku musi zakon-
czy¢ sie wygenerowaniem przynajmniej wspétrzednej wierzchotka w przestrzeni P(R?).
Przykladowo, aby narysowa¢ falujaca powierzchnie jeziora, wspétrzedne oraz z moga
by¢ podane bezposrednio a wysokos¢ danego punktu nad powierzchnig moze by¢ ge-
nerowana proceduralnie wewnatrz mikroprogramu, na przyklad przy pomocy funkcji
trygonometrycznych. Ogdlna strategia w tego typu sytuacjach polega na jak naj-
wiekszym odcigzeniu procesora gléwnego, kosztem pracy ukladu graficznego. Dzieki
asynchronicznej pracy obu tych elementéw mozliwa jest ich réwnolegta praca.

transformacja
do R®

Wy VSU = obcinanie —

Rysunek 2.16: Proces przetwarzania n wierzchotkéw przy udziale m tréjkatéw.

Wspdlczesne procesory graficzne posiadaja wiecej niz jedng jednostke przetwarza-
jaca wierzchotki. Dzieki temu, ze mikroprogram ma dostep wylacznie do informacji o
aktualnie przetwarzanym wierzchotku, uklad moze réwnolegle wykonywaé operacje na
kilku wierzchotkach na raz. Obecnie produkowane karty graficzne posiadaja od czterech
do szesnastu jednostek VSU.

Gléwnym zadaniem jednostki przetwarzajacej wierzchotki jest dostarczenie osta-
tecznych wspélrzednych wierzchotkéw oraz ich atrybutéw. Podczas rasteryzacji, dla
kazdego piksela sa obliczane atrybuty, ktére sa kombinacja liniowa atrybutéw z trzech
wierzchotkéw. Atrybuty dla wierzcholtkéw sa opcjonalnie generowane wcze$niej przez
mikroprogram i wszystkie maja postac czterech liczb rzeczywistych. Moga to by¢ dwa
kolory (RGBA) oraz osiem wspélrzednych dla tekstur (XY ZW). Dane te nie musza
by¢ wykorzystane zgodnie z ich nazwami, jednostka zajmujaca si¢ obliczaniem koloru
poszczegblnych pikseli moze je wykorzysta¢ dowolnie, zgodnie z my$la programisty.

Mikroprogram sktada si¢ z maksymalnie 256 instrukcji specjalnego mikroasemblera,
ktore operujg na zestawie rejestréw ukladu. Rejestry dzielg sie na wejSciowe, wyjsciowe
oraz tymczasowe (rys. 2.17). Przy kazdym uruchomieniu programu w 16 rejestrach
v0 — v15 znajduja si¢ dane wejSciowe kolejnego wierzchotka, kazda z nich skiada sie
z czterech liczb rzeczywistych (XY ZW). Oprécz tych informacji programista moze
dowolnie ustali¢ zawartosc rejestréw reprezentujacych state, ktére sg niezalezne od ko-

37

Rozdzial 2. Przetwarzanie wierzcholkéw

Wejscie Wyjscie

) rejestry tymczasowe
dane wierzchotka (r0-r11+)

(v0-v15)

v

pozycja
(oPos)

kolory
VS U (oD0-0D1)

state zmiennoprzecinkowe
(c0-c255+)
reiest adreso wspotrzedne tekstur
state catkowitoliczbowe ! (a0) Wy (0T0-0T7)
(i0-i15) o
. licznik
state logiczne (aL)
(b0-b15)

Rysunek 2.17: Jednostka przetwarzania wierzchotkéw.

lejnych uruchomien programu. Do dyspozycji jest co najmniej 256 wektorowych statych
rzeczywistych c0 — ¢255 w postaci (XY ZW), 16 wektorowych stalych catkowitoliczbo-
wych i0 — i15 w postaci (XY ZW), oraz 16 statych logicznych b0 — b15 przyjmujacych
wartosc zero lub jeden. ZawartoS¢ tych rejestréw moze by¢ zmieniana w dowolnym mo-
mencie, ale wprowadza to duze opdznienia, dlatego nie powinno si¢ zmienia¢ ich stanu
zbyt czesto. Nalezy zaznaczyc, ze wszystkie rejestry wejsciowe stuzg tylko do odczytu,
natomiast rejestry wyjsciowe mozna wylacznie zapisywac.

Rejestry tymczasowe sg dostepne wylacznie z poziomu mikroprogramu. Nalezy do
nich przynamniej 12 wektorowych rejestréow rzeczywistych r0—r11 w postaci (XY ZW),
czterokomponentowy catkowitoliczbowy rejestr adresowania posredniego a0 w postaci
(XY ZW) oraz licznik ogélnego przeznaczenia aL.

Gléwnym zadaniem programu jest wygenerowanie danych w rejestrach wyjsciowych.
Nalezy do nich rejestr pozycji oPos w postaci czterech liczb rzeczywistych (XY ZW),
dwa rejestry koloru 0oD0 — 0D1 w postaci czterech liczb rzeczywistych (RGBA) oraz
8 rejestrow dla wspotrzednych tekstur 070 — 017, réwniez w postaci czterech liczb
rzeczywistych (XY ZW). Kazdy program ma obowiazek zapisa¢ przynajmniej rejestr
pozycji oPos.

2.2.1. Budowa programu

Programowanie w jezyku maszynowym jest bardzo czasochtonne. Poniewaz rozkazy
majg bezposrednie przelozenie na kod binarny, aby wykona¢ nawet prosta operacje
arytmetyczng nalezy ich uzy¢ przynajmniej kilku. Kod programu staje si¢ mato czy-
telny i trudny w pdézniejszej modyfikacji. Wraz ze wzrostem popularnoSci w peni

38

2.2. Programowanie ukiadu

programowalnych ukladow powstaly jezyki wysokiego poziomu, ktére sa interpreto-
wane i tltumaczone na jezyk maszynowy ukladu graficznego. W tej chwili obowiazuja
trzy bardzo podobne do siebie jezyki, CG opracowany przez firme NVIDIA, ASHLI
stworzony przez firme ATI, oraz HLSL (ang. High Level Shading Language) wprowa-
dzony przez Microsoft. Wszystkie sa oparte na konstrukcjach znanych z jezyka C i bez
wigkszych zmian mogg by¢ stosowane zamiennie. Poniewaz jezyk HLSL jest wbudo-
wany w API DirectX, w tej pracy wtasnie on bedzie stanowil baze do konstruowania
mikroprogramow.

Mikroprogram sktada sie z zestawu funkcji, w ktérym jedna jest wyrézniona przy
kompilacji jako startowa. Po kompilacji program, ktéry mial weze$niej budowe struk-
turalna, jest zamieniany na pojedynczy ciag instrukcji maszynowych.

Jezyk HLSL umozliwia dowolne deklarowanie zmiennych oraz statych w kazdym
miejscu programu. Ostateczne rozmieszczenie danych w wewnetrznych rejestrach pro-
cesora graficznego jest zalezne tylko i wylacznie od kompilatora. Programista nie ma
zadnego wplywu na sposéb wykorzystania rejestréw ani ich liczbe. Ze wzgledu na bar-
dzo ograniczone zasoby jednostek VSU, kod programu musi by¢ na tyle prosty, aby
ilos¢ niezbednych rejestréw tymczasowych oraz rejestréw dla statych mieScita sie w
okre§lonych limitach. Kompilator automatycznie wykorzystuje rejestry tymczasowe w
jak najlepszy sposéb, oraz sam rozmieszcza w dostepnej pamigci stale zadeklarowane
W programie.

Stale moga byt inicjalizowane spoza mikroprogramu, stuzy do tego wygenerowana
przez kompilator tablica stalych, za pomoca ktérej mozna poprzez nazwe uzyskac do-
step do odpowiednich danych. Rola procesora giéwnego, czyli programu uruchomio-
nego na komputerze, polega na wystaniu do karty danych o wierzchotkach i tréjkatach,
wystaniu binarnego kodu mikroprogramu oraz na ustaleniu wartoSci statych. Reszte
wykonuje juz procesor graficzny, w tym jednostki VSU.

Jesli zmienna zadeklarowana w mikroprogramie ma pemi¢ funkcje rejestru wejscia
lub wyjscia, nalezy doda¢ do deklaracji dodatkowa informacje. W przypadku reje-
stréw wyjsciowych bedzie to nazwa, ktéra identyfikuje konkretny rejestr: POSITION,
COLOR0O—-COLOR1 lub TEXCOORD0—-TEXCOORDT. Nazwy te odpowiadaja
bezposrednio rejestrom wyjsciowym jednostki VSU (rys. 2.17).

Dane wejsciowe dla wierzchotka skladaja sie¢ z maksymalnie 16 wektoréw. Nie kazdy
wektor musi by¢ wypeliony w calosci, jesli potrzebna jest tylko pojedyncza wartos¢ to
pozostale trzy nie sa przesylane przez szyne. W programie gléwnym, wykonywanym
przez procesor komputera, trzeba wypemi¢ tabele, ktéra bedzie zawiera¢ informacje
o liczbie oraz formacie danych dla przesytanych wierzchotkéw. Kazdemu z maksy-
malnie 16 komponentéw jest przyporzadkowany typ oraz tekstowy identyfikator. Po
przestaniu danych do karty, poszczegélne komponenty wierzchotka sa przyporzadko-
wywane zmiennym w mikroprogramie, ktére jako dodatkows informacje posiadaja ten
sam identyfikator. W ten sposéb uniknieto bezposredniego wiazania danych z konkret-
nymi rejestrami wejsciowymi v0 —v15. Kompilator decyduje ktérg zmienng umieSci¢ w
danym rejestrze. Dla programisty wazna jest tylko zgodnos¢ identyfikatoréw zadekla-
rowanych w programie z tymi, ktére sa umieszczone przy zmiennych w mikroprogramie
dla uktadu graficznego.

Identyfikatory poszczegélnych komponentéw nie moga by¢ dowolne, jest to spowo-
dowane pozostato$ciami po poprzednich architekturach, w ktérych identyfikatory spel-

39

Rozdzial 2. Przetwarzanie wierzcholkéw

nialy réwniez funkcje okre$lajace zastosowanie konkretnych danych. W przypadku,
kiedy programista nie chce w zaden sposéb sugerowaé funkeji okreslonego komponentu,
do identyfikacji nalezy uzy¢ 16 nazw: TEXCOORDO0 do TEXCOORD15.

Ponizszy przyklad przedstawia prosty mikroprogram, ktory przetwarza wierzchotki
sktadajace sie z pozycji oraz koloru. Dane wejSciowe kazdego wierzchotka sg przesylane
pod identyfikatorami TEXCOORDO (pozycja - 3 liczby) oraz TEXCOORD1 (kolor
- 3 liczby), nastepnie w mikroprogramie sa przyporzadkowane skladowym struktury
vin. Ten program tylko przepisuje dane z rejestréow wejSciowych do wyjsciowych.

struct T_VIN // dane wierzchotka

{
float3 pos : TEXCOORDO; // pozycja
float3 col : TEXCOORD1; // kolor

}s

struct T_VOUT // dane wyjSciowe

{
float4 pos : POSITION; // pozycja
float3 col : COLORO; // kolor

¥ (Program 2.1)

T_VOUT vmain(T_VIN vin) // mikroprogram

{
T_VOUT vout;

(float3)vout.pos=vin.pos; // przepisanie danych
vout.pos.w=1;
vout.color=vin.color;

return vout;

Do podstawowych typéw danych naleza: bool (wartoS¢ logiczna true lub false), int
(liczba catkowita), float (liczba rzeczywista), half (liczba rzeczywista o zmniejszonej
precyzji) oraz double (liczba rzeczywista podwéjnej precyzji). Kazdy typ danych moze
wystepowaC w postaci pojedynczej, wektorowej lub macierzowej, na przyklad int4 ozna-
cza wektor czteroelementowy a float3x4 macierz o 3 wierszach i 4 kolumnach. Zmienne
o podstawowych typach danych moga by¢ grupowane w postaci struktur i tablic.

2.2.2. Zestaw instrukcji

Mikroprogram sktada sie z zestawu funkcji, w ktérych oprécz klasycznych predefi-
niowanych instrukcji sterujacych moga wystepowaé instrukcje wykonujace specyficzne
operacje arytmetyczne. Istnieje pewne podobiefistwo tych instrukcji do funkcji biblio-
tecznych, wchodzacych w sklad klasycznych dystrybucji jezyka C, ale ich zestaw jest
z gory okre§lony i nie moze by¢ poszerzany. Wszystkie funkcje wystepujace w wer-
sji 2.0 wraz z krétkim opisem ich dzialania znajduja si¢ w tab. 2.3 oraz w tab. 2.4.
Szczegotowe informacje mozna znalezé w dokumentacji do jezyka HLSL [2].

W standardzie 2.0 podczas przetwarzania wierzchotkow jest mozliwa tylko tzw. sta-
tyczna kontrola przeptywu w programie. Oznacza to, ze instrukcje if, for oraz while nie
moga mie¢ jako parametréw zmiennych dynamicznych, ale wylacznie stale. Nie mozna

40

2.2. Programowanie ukiadu

dynamicznie zmienia¢ iloSci powtérzen petli ani oblicza¢ kryterium dla instrukcji wa-
runkowej wewnatrz mikroprogramu. Wszystkie te parametry nalezy ustali¢c wczeSniej
w tablicy dla stalych. Powyzsze warunki mocno ograniczaja zastosowanie instrukcji
warunkowych oraz powtorzeniowych, w praktyce stuzg one wylacznie do wlaczania lub
wylaczania okreSlonych fragmentéw programu oraz do powtarzania fragmentu kodu z
géry okreslong ilos¢ razy. Dla przyktadu, jesli programista chce napisa¢ program obli-
czajacy natezenie oSwietlenia w danym wierzchotku, musi wzig¢ pod uwage, ze Swiatlo
moze padac¢ na ten punkt z kilku Zrédel jednocze$nie. Statyczna kontrola przeptywu
pozwala caly kod umiesci¢ w jednym mikroprogramie, ktéry jako stala przyjmuje iloS¢
Swiatet majacych wplyw na dany wierzcholek. W przypadku braku takiego rozwigza-
nia, programista musiatby napisa¢ osobny program dla kazdej mozliwej liczby Swiatet.

W obecnych czasach, powyzszy przyklad ma znaczenie tylko teoretyczne, poniewaz
coraz wieksze wymagania co do jakoSci generowanego obrazu wymusily na producen-
tach stosowanie o$wietlenia obliczanego w kazdym pikselu, a nie tylko na wierzchotkach.
Twércy uktadéw scalonych nie nadazajg za wymaganiami i w mikroprogramach dla pik-
seli brakuje jakiejkolwiek kontroli przeptywu, a kontrola dla wierzchotkéw stata sie w
przypadku o$wietlenia bezuzyteczna. W nastepnej generacji akceleratoréw ten fakt ma
si¢ zmienic¢ i dla pikseli ma by¢ juz wprowadzona statyczna kontrola przeptywu.

| Instrukcja | Opis |
abs(x) warto$¢ bezwzgledna x
acos(x) arcus cosinus x
all(x) testuje czy wszystkie komponenty x sg # 0
any (x) testuje czy ktorykolwiek komponent x jest # 0
asin(x) arcus sinus x
atan(x) arcus tangens x
atan2(x,y) arcus tangens warto$ci ¥
ceil(x) najmniejsza liczba catkowita > x
clamp(x,min,max) | obcina x do przedzialu [min,max]
cos(x) cosinus x
cosh(x) cosinus hiperboliczny x
cross(x,y) iloczyn wektorowy x X y
degrees(x) przelicza radiany na stopnie
determinant(m) wyznacznik macierzy kwadratowej m
distance(x,y) odleglo$¢ miedzy punktami x iy
dot(x,y) iloczyn skalarny wektoréow x iy
exp(x) e’
exp2(x) 27
faceforward(i,j,k) oblicza -i-sign(dot(j,k))
floor(x) najwieksza liczba catkowita < x
fmod(x,y) reszta z dzielenia x przez y

Tablica 2.3: Instrukcje jednostki VSU.

41

Rozdzial 2. Przetwarzanie wierzcholkéw

Instrukcja Opis

frac(x) cze$¢ utamkowa x

frexp zwraca czeS¢ catkowita i utamkows danej liczby
isfinite(x) true jesli x jest skonczone

isinf(x) true jesli x réwne -INF lub INF

isnan(x) true jesli x rowne NAN lub QNAN
ldexp(x,exp) X-29%P

length(x) dhugos¢ wektora x

lerp(x,y,s) x+s(y-x)

lit(L,h,m) zwraca wektor [1,1<0?70:1,1<0|[h<070:hm]
log(x) log. (x)

Tog2(x) Togs(x)

log10(x) logio(x)

max(x,y) X>y?7x:y

min(x,y) X<y?x:y

modf oblicza dzielenie catkowitoliczbowe

mul(x,y) mnozy elementy

normalize(x) Tength(a]

pow(x.y) X

radians(x) przelicza stopnie na radiany

reflect(i,n) i-2-dot(i,n)-n (wektor odbicia i od plaszczyzny n)
refract oblicza wektor przejscia migdzy dwoma osrodkami
round(x) zaokragla x do najblizszej liczby catkowitej
rsqrt(x) Sqr—l(m)

saturate(x) clamp(x,0,1)

sign(x) 0 jesli x=0, 1 jesli x>0, -1 jesli x<0

sin(x) sinus x

sincos oblicza sinus i cosinus x

sinh(x) sinus hiperboliczny x

smoothstep oblicza interpolacje Hermite’a

sqrt(x) pierwiastek kwadratowy x

step(x) (x>y)?71:0

tan(x) tangens x

tanh(x) tangens hiperboliczny x

transpose(k) transponuje macierz k

Tablica 2.4: Instrukcje jednostki VSU, ciag dalszy.

42

2.2. Programowanie ukiadu

2.2.3. Podstawowe techniki

Mimo iz zestaw instrukcji jednostek VSU jest duzy, uklad graficzny nie moze wykonac
wszystkich niezbednych operacji zwigzanych z wierzchotkami. Podstawowym proble-
mem jest dostepno$¢ informacji tylko o pojedynczych wierzchotkach, przez co jakie-
kolwiek czynnoS$ci obejmujace topologie obiektu musi przeprowadzac procesor gtéwny.
Nalezy réwniez pamigtac, ze niektére konstrukcje w programie mogg nie zosta¢ skom-
pilowane nawet, jeSli program jest semantycznie poprawny. Wynika to z duzych ob-
ostrzen, przede wszystkim dotyczacych dostepnych zasobéw rejestréw i pamieci.

Do podstawowych i najwazniejszych zastosowan jednostek przetwarzajacych wierz-
chotki naleza transformacje macierzowe. Odcigzenie procesora gléwnego nawet tylko
jednym mnozeniem macierzy na wierzcholek daje ogromne oszczednoSci czasowe. W
typowych aplikacjach wystepuje wiele obiektéw ruchomych, przez co ilo§¢ niezbednych
transformacji ukladéw odniesienia oraz innych przeksztalcen jest na tyle duza, ze po-
moc ukladu graficznego jest nieoceniona.

Ponizszy program przedstawia najczeSciej wykonywang operacje, przemnozenia wspol-
rzednych kazdego wierzchotka przez macierz, ktéra odpowiada transformacji wspétrzed-
nych z ukladu obiektu do ukladu obserwatora. Uktad obiektu czesto jest nazywany
uktadem lokalnym, w przeciwienstwie do ukladu globalnego, w ktérym okreSlane sa
ostateczne pozycje wszystkich elementéw sceny. W macierzy mxLocalToView musi
by¢ réwniez zawarty rzut perspektywiczny lub réwnolegty.

float4x4 mxLocalToView; // macierz transformacji

struct T_VIN // dane wierzchotka

{
float3 pos : TEXCOORDO; // pozycja
};
struct T_VOUT // dane wyjSciowe
{
float4 pos : POSITION; // pozycja
};
T_VOUT vmain(T_VIN vin) (Program 2.2)
{
T_VOUT vout;

float4 wpos;

(float3)wpos=vin.pos;
wpos.w=1;

// transformcja wierzchotka
vout . pos=mul (mxLocalToView,wpos) ;

return vout;

W typowej scenie jest umieszczona pewna ilos¢ obiektéw, kazdy z nich sklada sie
z okreslonej ilosci tréjkatéw oraz wierzchotkéw. Animowaél obiekty w calo$ci mozna
poprzez zmiane macierzy transformujacej go do uktadu globalnego. Przy takiej technice

43

Rozdzial 2. Przetwarzanie wierzcholkéw

animacji, w pamieci procesora graficznego wystarczy umiesci¢ program (2.2) i przy
rozpoczynaniu przetwarzania kazdego nowego obiektu zmienia¢ tylko postac macierzy
mxLocalToView, przesylajac do karty caly czas te same wspétrzedne wierzchotkow.

W programie (2.2) wspélrzedne wierzchotkéw sa przesytane w postaci trzech (XYZ)
a nie czterech komponentéw (XYZW). Dzieje sie tak dlatego, ze przede wszystkim
nalezy unika¢ przesytania zbednych informacji przez szyne, w tym przypadku bytaby to
wspotrzedna w, domys$lnie réwna 1. Konsekwencja takiego postepowania jest konwersja
na typ czterokomponenetowy tuz przed przemnozeniem przez macierz. Za wspotrzedna
w podstawia sie wtedy 1.

Interesujace efekty mozna uzyskaé stosujac kombinacje liniowa miedzy wynikami
przemnozenia tego samego wierzchotka przez kilka réznych macierzy. W taki wiasnie
spos6b w programach graficznych i grach symuluje sie efekt napinania sie skéry na
stawach postaci (rys. 2.18).

Rysunek 2.18: Kombinacja liniowa dwéch przeksztalcen macierzowych na wierzchotkach
walca.

Pierwszym etapem jest przygotowanie modelu i przyporzadkowanie wierzchotkom
odpowiednich koSci. Czynnosc ta jest przeprowadzana, gdy model jest w stanie spo-
czynku (goérna czes¢ rys. 2.18) a kazdy wierzchotek ma swoje wspéhrzedne przedsta-
wione w uktadzie globalnym G. W $rodku modelu umieszcza sie polaczone ze soba
odcinki, ktore odpowiadaja prawdziwym koSciom. Kazdy odcinek wyznacza pewien
uklad wspétrzednych znajdujacy sie w G.

Niech macierz M oznacza dowolne przeksztalcenie afiniczne, ktére odpowiada trans-
formacji kosci. Jesli wspétrzedne dowolnego wierzchotka przemnozymy przez macierz
M, wierzchotek w stosunku do przeksztalconej przez M kosci bedzie doktadnie w tej
samej pozycji co wezesniej. W przypadku przyktadu z walcem, wierzchotki na koncach

44

2.2. Programowanie ukiadu

powinny poruszac sie razem z koScig a wierzchotki w poblizu stawu muszg zostac¢ usred-
nione tak, aby wplyw na nie mialy obie przylaczone do stawu kosci. Ten efekt mozna
uzyska¢ poprzez kombinacje liniowa wspotrzednych uzyskanych po przemnozeniu wierz-
chotka przez macierze M} i M2z, odpowiadajace obu ko$ciom. Warunkiem uzyskania
poprawnych wizualnie wynikéw jest sumowanie sie wspolczynnikéw przy kombinacji
do 1. Ogdlne réwnanie przeksztalcenia wierzchotka przy uzyciu n kosci wyglada naste-
pujaco:

v = Z a; - M}, - v, gdzie Zai =1 (2.13)
i=1

=1

Dla dwéch kosci, wagi o w poblizu stawu zblizaja sie do % W $rodku kosci jeden
z nich zbliza si¢ do 1 a drugi do 0. Wagi sa przyporzadkowywane poszczegdlnym
wierzchotkom na stale w specjalnym programie graficznym, ktéry wspomaga ten proces.

Zadaniem mikroprogramu jest przeprowadzenie operacji zwigzanych z réwnaniem
(2.13). Do danych przesylanych do karty dodaje si¢ wagi wierzchotkéw a macierze M
wprowadza si¢ jako stale. Dla kazdego wierzchotka moze byt kilka wspoétczynnikow
wagowych, w zaleznosci od iloSci kosci majacych wplyw na jego pozycje. Poniewaz
w mikroprogramach mozna adresowac poSrednio tylko rejestry statych rzeczywistych,
trzeba niestety pisa¢ osobny program dla kazdej mozliwej ilosci kosci. 7Z tego wzgledu,
aby nie zmienia¢ programu zbyt czesto, wierzchotki wysyta sie do karty pogrupowane
wedlug iloSci kosci do nich przyporzadkowanych. Ponizszy program demonstruje ta
technike dla trzech kosci.

float3x4 bones[3]; // macierze kosci
float4x4 mx_Global2View;

struct T_VIN // dane wierzchotka

{
float3 pos : TEXCOORDO; // pozycja
float w[2] : TEXCOORD1; // wagi

I
struct T_VOUT // dane wyjS$ciowe
{
float4 pos : POSITION; (Program 2.3)
I
T_VOUT vmain(T_VIN vin) // mikroprogram
{
T_VOUT vout;

float3 pl,p2,p3;
float4 pos2;

// 3 pozycje wierzchotka
pl=mul (bones[0] ,vin.pos);

45

Rozdzial 2. Przetwarzanie wierzcholkéw

p2=mul (bones[1] ,vin.pos) ;
p3=mul (bones[2] ,vin.pos) ;

// wagowanie
(float3)pos2=vin.w[0] *pl+vin.w[1]*p2+(1-vin.w[0]-vin.w[1])*p3;
pos2.w=1.0f; (Program 2.3)

// transformacja
vout . pos=mul (mx_Global2View,pos2) ;

return vout;

Réwniez w tym przypadku, ze wzgledu na jak najmniejsza ilos¢ przesytanych infor-
macji, ostatnia waga dla wierzchotka nie jest przesylana. Mozna ja w prosty sposéb
obliczy¢, odejmujac od jedynki pozostale wagi.

Ostatnim z podstawowych sposobéw wykorzystania jednostki VSU jest oblicza-
nie natezenia o$wietlenia padajacego na wierzchotki. Kazdy wierzcholek jest czescia
wspdlng kilku tréjkatéw, ktére maja wektory normalne do swojej powierzchni. Aby
obliczy¢ oSwietlenie, nalezy okreslic wektor normalny do powierzchni obiektu w kazdym
z wierzcholkéw. NajczeSciej wektory z otaczajacych wierzchotek tréjkatéow sa usred-
niane. Dzigki temu o§wietlenie bedzie ptynnie zmienialo intensywno§¢ na wierzchotkach
mimo tego, ze obiekt jest w rzeczywistoSci kanciasty. Nalezy pamietac, ze ostatecznie
obliczony kolor oswietlenia bedzie w obrebie tréjkata interpolowany liniowo i przy matlej
ilosci trojkatow efekt nie bedzie zadowalajacy (lewa strona rys. 1.6).

Rysunek 2.19: Oséwietlenie na wierzchotkach. Walec z lewej strony ma wspdlne wektory
normalne dla wszystkich Scian na krawedzi walca.

Przy obliczaniu wektora normalnego na wierzchotkach sg uzywane réwniez bardziej
zaawansowane techniki, uwzgledniajace na przykiad rozmiar poszczegdlnych trojkatow.
Czasami wierzcholek nalezy do ostrej krawedzi, ktéra nie powinna zostaé o§wietlona

46

2.2. Programowanie ukiadu

w sposéb gladki. Poniewaz kolor wierzchotka bedzie interpolowany na kazda ze $cian,
z ktoérg ten wierzcholek jest potaczony, nalezy skopiowac jego pozycje i stworzy¢ nowe
wierzchotki w tym samym miejscu. W ten sposéb w punkcie, gdzie lezatl pierwotny
wierzcholek, spotkaja sie rézne kolory (rys. 2.19).

W przypadku obliczania intensywnoS$ci z wielu zrédel $wiatta, wystarczy napisac
tylko jeden mikroprogram, ktéry bedzie dziatal niezaleznie od ich liczby. Jest to moz-
liwe, poniewaz dane o $§wiattach sa umieszczone w przestrzeni przeznaczonej na stale, a
stale mozna indeksowa¢ posrednio. Informacje o wierzchotkach skladaja sie z pozycji,
wektora normalnego i koloru powierzchni. Program (2.4) oblicza kolor odbity od wierz-
chotka w kierunku obserwatora, przy czym liczba Swiatetl jest ograniczona wylacznie
iloécig dozwolonych statych. W programie zastosowano model Phonga [8]:

k = kscos(N, L) + kqcos"(R, E), (2.14)

gdzie k, oznacza sktadows rozproszona Swiatta, k,; - skladowa zwierciadlang, N -
wektor normalny do powierzchni, L - kierunek padania $wiatla, R to wektor L od-
bity od powierzchni, E - kierunek patrzenia obserwatora, n - wspdélczynnik gladkoSci
powierzchni.

struct T_LIGHT // dane &wiatta

{
float3 pos; // pozycja Swiatta
float3 col_diff; // sktadowa rozproszona
float3 col_spec; // skt. zwieciadlana
float pn; // wsp. gtadkosci

ig;

int n_lights; // ilosC Swiate
T_LIGHT lights([8]; // &wiatta (maks. 8)

float4x4 mxLocalToView; // macierz transformacji
float3 eye_pos; // pozycja obserwatora

struct T_VIN // dane wierzchotka

{
float3 pos : TEXCOORDO; // pozycja (Program 2.4)
float3 n : TEXCOORD1; // wektor normalny
float3 col : TEXCOORD2; // kolor

I3

struct T_VOUT // dane wyj&ciowe

{
float4 pos : POSITION; // pozycja
float3 col : COLORO; // kolor

};

T_VOUT vmain(T_VIN vin) // mikroprogram

{
T_VOUT vout;
int i;
float3 eye,eye_rfl,light;
1

47

Rozdzial 2. Przetwarzanie wierzcholkéw

float 1p;
float4 pos={0,0,0,1};

vout.col=(float3)pos;
eye=normalize(eye_pos-vin.pos);
eye_rfl=reflect(eye,vin.n);

// obliczenie nategzenia swiatta
for(i=0;i<n_lights;i++)
{

light=normalize(lights[i] .pos-vin.pos);

// sktadowa rozproszona
lp=max(0,dot(vin.n,light));
P 24
vout.col+=lights[i].col_diff*lp; (Program 2.4)
// sktadowa zwierciadlana
1p=max (0,pow(dot (eye_rfl,light),lights[i].pn));
vout.col+=1lights[i].col_specx*lp;
}

// kolor powierzchni
vout.col*=vin.col;

// pozycja

(float3)pos=vin.pos;

vout . pos=mul (mxLocalToView,pos) ;

return vout;

W celu przyspieszenia obliczen, pozycje $wiatel oraz obserwatora sa podane w tym
samym ukladzie wspétrzednych, co wierzchotki obiektu. Réwniez w celach optymaliza-
cyjnych zamiast odbija¢ od powierzchni wektory kierunku $wiatet, odbijany jest wektor
kierunku patrzenia obserwatora.

48

Rozdziat 3

(zenerowanie obrazu

Po zakonczeniu procesu przetwarzania wierzchotkéw, informacje o scenie skiadaja sig
ze wspolrzednych wierzchotkéw w przestrzeni R3, pogrupowanych w tréjkaty. Wspot-
rzedne te sa obrazem obiektéw po przeksztalceniach rzutujacych (z,y, z, w) — (2,1, 2')
i wszystkie naleza do tzw. kanonicznej bryly widzenia. Pary (2/,7/) € ([-1,1],[-1,1])
sa wspolrzednymi na plaszczyznie rzutni a 2z € [0,1] jest dodatkowa informacja o
wzajemnej odlegloéci punktéw od obserwatora. Wspéhrzedne ' i y' muszg by¢ prze-
ksztalcone tak, aby widoczny obszar sceny pokryl zadane prostokatne okno w buforze
koloru (z',y') — (z, 7). Polozenie oraz rozmiary okna sa dowolne.

Bufor koloru niekoniecznie musi by¢ odwzorowany bezposrednio na ekran monitora.
Moze by¢ réwniez tekstura, ktéra zostanie pdézniej natozona na kilka tréjkatéow na
scenie, na przyklad w charakterze ekranu telewizora.

X
PR uktad bufora koloru
\U,V)
)\0’ V'O)
YI
h,
W, P
uktad kanonicznej
bryty widzenia
_‘ yé .4 3\
Y (Wy-1,h,-1)

Rysunek 3.20: Uktad wspoétrzednych bufora koloru.

Srodek lewego goérnego piksela ma w ukladzie bufora koloru wspétrzedng (0,0) a
srodek prawego dolnego (wy, — 1, hy — 1), gdzie wy i hy, oznaczaja odpowiednio szerokosé

49

Rozdzial 3. Generowanie obrazu

i wysokos¢ bufora w pikselach (rys. 3.20).

Transformacja, ktéra zamienia wspétrzedne kanoniczne na wspolrzedne bufora jest

przedstawiona ponizej:
z Yo 0 0 x’} |:%+i'o]
| = + g 3.15
004 R e

gdzie w, i h, okreslaja odpowiednio szerokos¢ i wysokoS¢ okna w pikselach a punkt
(Zo, Yo) Wyznacza polozenie lewego gérnego rogu okna. W takiej postaci dane trafiaja
do czesci ukladu, ktora kazdemu tréjkatowi przyporzadkowuje piksele, ktére skladaja
si¢ na jego obraz. Proces ten zwany jest rasteryzacja.

W nastepnej kolejnosci, dla kazdego piksela sg obliczane atrybuty, ktére poczatkowo
majg wartoSci wylacznie dla wierzchotkéw aktualnie przetwarzanego tréjkata. Kolory,
wspotrzedne dla tekstur oraz informacje o odleglosci od obserwatora sg interpolowane
w sposob dyskretny na obrazie caltego tréjkata. Od tego momentu, kazdy piksel jest
autonomicznym elementem obrazu, posiadajacym wiasne atrybuty i wspétrzedne. Po-
zostale informacje, miedzy innymi o topologii sceny, nie sg juz do niczego potrzebne.

Kazdy wyodrebniony piksel jest przetwarzany przez specjalng jednostke uktadu gra-
ficznego (ang. Pixel Shader Unit). Dla kazdego piksela jest wykonywany mikropro-
gram, ktérego zadaniem jest obliczenie wartoSci, ktéra bedzie umieszczona w buforze
koloru. Poza atrybutami, mikroprogram moze wykorzystac, poprzez specjalne instruk-
cje probkujace, dane pochodzace z maksymalnie kilkunastu tekstur.

Po obliczeniu koloru piksela, uktad wykonuje kilka czynnosci zwigzanych z buforami,
w ktoérych sg zapisane dane o poprzednio generowanych pikselach. Oprécz bufora koloru
i bufora-Z, ktory stuzy do wyznaczenia widocznosci, programista moze wykorzystac
bufor zliczania (ang. stencil buffer). W typowych zastosowaniach, znajduja sie w nim
informacje o ilosci wygenerowanych pikseli o tych samych wspélrzednych.

Na buforach mozna wykona¢ kilka predefiniowanych funkcji, ktére jako argumenty
przyjmuja dane w buforze i informacje o aktualnie przetwarzanym pikselu. Dopiero po
wykonaniu tych czynnosci w buforach sa potencjalnie zapisywane nowe wartosci.

tranzformgacja
oR operacje
P P
R L PSU na buforach
‘ rasteryzacja ‘

interpolacja

Rysunek 3.21: Schemat koncowej fazy procesu generowania obrazu.

50

3.1. Rasteryzacja i interpolacja atrybutéw

3.1. Rasteryzacja i interpolacja atrybutow

Reguty dotyczace procesu rasteryzacji sg SciSle zdefiniowane, gwarantuje to identycz-
nie wygenerowane obrazy tej samej sceny na réznych akceleratorach. W rozdziale
pierwszym przedstawiona jest metoda, ktéra przyporzadkowuje do tréjkata kazdy pik-
sel, ktéry ma nawet najmniejsza czeS¢ wspélng z obszarem zajmowanym przez trojkat
(rys. 1.3). W przypadku, kiedy dwa tréjkaty maja wspolng krawedz, doprowadzi to
do sytuacji, w ktorej grupa pikseli na krawedzi zostanie przyporzadkowana do oby-
dwu trdjkatéw. W konsekwencji niektore piksele zostang narysowane dwa razy, co
niepotrzebnie zwigksza koszt obliczen. Przy duzej iloSci maltych tréjkatéw, wiekszose
miejsca na ekranie bedzie zajmowana przez tego typu piksele a zbedne obliczenia moga
zajac blisko polowe czasu poSwieconego na generowanie obrazu. Problem ten zostal
skutecznie rozwiazany przez wprowadzenie takich zasad rasteryzacji, aby kazde dwa
geometrycznie spdjne tréjkaty nie miaty wspdlnych pikseli.

Rysunek 3.22: Poprawna rasteryzacja dwoch tréjkatow.

Piksel stanowi cze$¢ obrazu tréjkata na ekranie tylko wtedy, gdy jego geometryczny
srodek znajduje si¢ w polu trojkata. W przypadku, kiedy $rodek piksela znajduje sig
na krawedzi, stosowane sg specjalne warunki. Krawedzie dzielone sa na gérne, dolne,
lewe oraz prawe. Gorne i dolne to krawedzie poziome, lewe oraz prawe to pozostale
krawedzie odpowiednio z lewej oraz z prawej strony trdjkata. Piksel lezacy na obrzezu
jest przyporzadkowywany tréjkatowi tylko wtedy, gdy nie lezy na jego dolnej lub prawej
krawedzi (rys. 3.22).

Przynalezno$¢ pikseli wyznacza sie za pomocg odpowiednio zmodyfikowanych algo-
rytmoéw rysowania linii. NajczeSciej stosowany jest algorytm Bresenhama [1]. Po po-
dzieleniu krawedzi na grupy, wyznaczane sa wspolrzedne pikseli nalezacych do lewych

51

Rozdzial 3. Generowanie obrazu

i prawych krawedzi. Warunki specjalne sg czeSciowo realizowane podczas generowa-
nia linii a czesciowo poprzez dodatkowe sprawdzenia. Powierzchnie¢ tréjkata stanowia
piksele pomiedzy obliczonymi wspoétrzednymi. Implementacja tego mechanizmu zalezy
wylacznie od projektanta ukladu graficznego.

3.1.1. Interpolacja liniowa

Po przeksztalceniach rzutujacych, wspoéilrzedne wierzchotkéw kazdego tréjkata sa przed-
stawione w dwuwymiarowym uktadzie bufora. Wartosci atrybutéw, ktére sg zdefinio-
wane dla wierzchotkéw, musza byt w szybki sposéb obliczone we wszystkich pikselach
sktadajacych sie na obraz tréjkata (rys. 3.23). Przy zalozeniu, ze wartoSci atrybutéw
majg by¢ interpolowane liniowo we wspotrzednych bufora, mozna zastosowaé bardzo
szybka metode obliczen, niewymagajaca czasochtonnych operacji arytmetycznych.

X

uktad bufora koloru

(Xm)—/o’uo)

<]

(X.,Y,u,)

(iz’Ymuz)

Rysunek 3.23: Znalezienie wartosci u w érodku piksela (Z, §) wymaga uzycia interpolacji
danych z wierzchotkéw tréjkata.

Poszukiwanym rozwigzaniem sg wspétczynniki A, B i C' nastepujacej funkcji linio-
wej:

u=f(z,y)=A-2+ B -y+C. (3.16)

Istnieje tylko jedno rozwiazanie tego problemu, poniewaz warto$¢ atrybutu v mozna
wyobrazi¢ sobie jako wspélrzedng z w przestrzeni R3. Po liniowej interpolacji tej wspot-
rzednej, wynikiem beda trzy wierzcholki (Zo, 9o, 20), (Z1, 91, 21) 1 (Z2, Ye, 22) polaczone

plaszczyzng w R3.

52

3.1. Rasteryzacja i interpolacja atrybutéw

Wspoétezynniki funkeji (3.16) mozna uzyskaé poprzez rozwiazanie uktadu réwnan
liniowych:

To o 1| |A (0
ZZ‘l gl 1 B| = Uy | ,
Ty 2 1] |C U
stad
. duldyg — d'LLQd’yl
dxidys — dzadiys dx1 =Ty — Zo, dy1 = Y1 — Yo, dur = uy — ug
, gdzie
B dusdzy — duydxs dry = Ty — To, dys = Yo — Yo, duy = Uy — Ug
dxidys — dxody;
. o L . . S of . of
Wspdtezynniki A i B oblicza sie raz na kazdy tréjkat. Poniewaz A = 7 iB= 75
T Y
funkcje f mozna obliczaé w prosty sposéb bez uzycia parametru C' :
u= f(z,y) = A(— Zo) + B(§ — %) + vo- (3.17)

Interpolacja liniowa pozwala bardzo szybko oblicza¢ wartoSci atrybutow dla sasia-
dujacych pikseli. Przesuwajac sie o jeden piksel w prawo lub w dét, do juz obliczonego
parametru v wystarczy doda¢ odpowiednio A lub B. Jesli scena sklada sie z duzej
ilosci tréjkatow, wyeliminowanie z obliczen parametru C' znacznie zmniejsza koszt ob-
liczeniowy. Uklad graficzny korzysta z sekwencyjnego obliczania wartoSci atrybutow,
wiec obliczanie funkcji f w postaci (3.17) jest szybsze niz tej w postaci (3.16).

Dla uzupekienia, parametr C' jest réwny:

O — .i’o(dlbgdyl — duldyg) + go(duldl'g — dU2d371> + Uo(dl’ldyg — dl‘gdyl)
dxidyy — dxody, .

3.1.2. Interpolacja hiberboliczna

Jesli rozklad wartosci atrybutéw pomiedzy wierzchotkami jest liniowy w przestrzeni
P(R?), to po przejsciu do R3 rozklad moze by¢ juz nieliniowy. Dla przykladu, jezeli
jeden z atrybutéw bedzie odpowiadal kolorowi tréjkata, to liniowa interpolacja ko-
loru pomiedzy wierzchotkami wygeneruje bledny obraz sceny, jesli operacja ta bedzie
wykonana po rzucie perspektywicznym.

Na rys. 3.24 przedstawiony jest rzut perspektywiczny odcinka o koncach w punktach
po 1 p1. Do kazdego wierzcholka przyporzadkowany jest atrybut u, ktory jest liniowo
rozlozony na calej dtugosci odcinka. Punkt p,, lezy w polowie dtugosci miedzy punktami

1

Po 1 p1 a wartos¢ atrybutu wynosi dla niego u,, = juo+ %ul. Punkty pj i p} sa obrazami

punktéw pg i p; po rzucie perspektywicznym. Oczywiscie w punktach pf i p| wartodci

53

Rozdzial 3. Generowanie obrazu

atrybutéw pozostaly niezmienione. Obrazem punktu ps na rzutni jest punkt p, ktéry
lezy doktadnie w polowie odlegloSci miedzy punktami pj i pj. WartoS¢ atrybutu w py
wynosi uy 1 taka powinna by¢ tez w punkcie p),. Niestety, przy zastosowaniu liniowej
interpolacji atrybutu w pomiedzy punktami pf i p}, wartos¢ w punkcie pj wyniesie
%uo + %ul = Uy, €O jest rézne od us.

rzutnia

Po(Uo)

Pn=(Ps*+P1)/2
u,=(uystu,)/2 p,(u,)

pL=(p%+pP4)/2

»
»

N VA

Rysunek 3.24: Interpolacja liniowa parametru u w uktadzie rzutni, powoduje biledne
obliczenie parametru dla punktu pb.

Rozwigzaniem powyzszego problemu jest uzycie bardziej skomplikowanej metody in-
terpolacji w ukladzie rzutni. Niech punkty po = (xo, Yo, 20, wo) 1 p1 = (21,Y1, 21, W1)
stanowig kofice odcinka w przestrzeni P(R3). Po wykonaniu rzutu perspektywicz-

x Z
nego, wierzcholki beda mialy wspéhrzedne pj = (z(, v}, 25) = (_07@7_0) ip), =
Wo Wo Wo
x z
(), 9y, 21) = (—1, ﬂ, —1) Interpolacja liniowa wspétrzednej y' miedzy punktami pj i

wp w1 Wy
P} przed wykonaniem rzutu perspektywicznego jest okreSlona wzorem:

Yo(l —t) + it

dzie ¢ 1]. d
T g Set e 01 (3.18)

yi(t) =

Interpolacja liniowa wspohrzednej iy’ po rzucie perspektywicznym ma postaé wzoru:

yu(s) = &(1 —3s)+ ﬂ5, gdzie s € [0, 1]. (3.19)
Wo wi

o4

3.1. Rasteryzacja i interpolacja atrybutéw

Funkcje (3.18) i (3.19) sa ciagle i monotoniczne na przedziale [0, 1] oraz maja takie
same dziedziny i przeciwdziedziny. Parametry s i ¢ nie laczy jednak zaleznos¢ liniowa.

Yi(t) = yi(s),

czyli

yo(l —1) +yit o Y1
= =(1-— Z—s. 3.20
wo(l—t)+w1t U)()(S)+ wls ()

Poddajac réwnanie (3.20) serii nastepujacych przeksztatcen:

y()(l — t) + ylt _ yow1(1 — S) + Yi1wos
U)()(]. — t) + wlt WoW1

?

[Yo(1 —t) + yrtjwowy = [wo(1 —t) + wit][yow: (1 — $) + y1wos],

YoWowy 8 — YoWowy St — Yowit + Yowist + yrwowst — y1wew; st — yrwgs + yrwgst = 0,

2
—YoWoW1S + Y1WHS

t= ,
—YoWow1s — Yow} + YowTs + yrwowy — Y1wows + Y1wgs
_ wos(—yowr + Yy1wo)
[wos + w1 (1 — 5)](—=yowr + y1wo)’
otrzymujemy
t = o (3.21)

wos + wy (1 —s)

Podstawiajac (3.21) do réwnania y(t) = yo(1 — t) 4+ y1t otrzymujemy:

WoS WoS

)+ (3.22)

y(s) = yo(1 —

wos + wi(1 —s) y1w08+w1(1—s)'

55

Rozdzial 3. Generowanie obrazu

Po przeksztalceniu réwnania (3.22):

_ Yowos +yowi (1 — 8) — yowos + Yyr1wos

y(s) wos + wi(1 —s) ’
y(s) = yowi (1 —) + y1wos
wos +wi(1—s)
1 1
WoWy yowl(l - S) + Y1Wwos WoW1
y(s) - 1 — — T
wos + wi (1 —s)
Wol1 Wow1
otrzymujemy
@(1 —5)+ LAy
w w
y(s) = 10 11 . (3.23)
—(1—8)+—s
Wo wy

Interpolujac liniowo parametr s na przedziale [0, 1] i réwnocze$nie przebiegajac li-
niowo przedzial [y, ;] mozna za pomoca wzoru (3.23) dowiedzie¢ sig, jaka wspohrzedna
y miat dany punkt p’ przed rzutem perspektywicznym. Poniewaz parametryzacja (3.21)
jest zalezna wylacznie od wspétrzednej w, mozna za jej pomoca poznaé nie tylko wspét-
rzedng y punktu p’ przed rzutem, ale takze jakakolwiek wartosé, ktéra miata liniowy
rozklad na przedziale [pg, p1]. Odpowiedni wzér na poprawna interpolacje atrybutu u
w ukladzie rzutni, a wiec juz po rzucie perspektywicznym, ma postac:

@(1 —s)+ Wy

u(s) = T dlas € [0,1]. (3.24)
—(1—s)+ —s
Wo wy

Aby znalezé bezpo$rednig, zalezno$é parametru v od wspolrzednej ' wystarczy pod-

Y — v
R
1~ %

stawi¢ za s wyrazenie w ten sposéb s bedzie réwne 0 dla ' =y i réwne 1 dla

Y =y
W celu poprawnego obliczenia wartoSci atrybutu v w kazdym punkcie nalezacym do
U

obrazu tréjkata, nalezy liniowo interpolowa¢ po powierzchni obrazu dwie wartosci: —
w

1
oraz — (licznik i mianownik 3.24). Kiedy warto$¢ u jest potrzeba w konkretnym punk-
w

1
cie, nalezy wykona¢ dzielenie v’ = “ /— (3.24). Interpolacja we wspéhrzednych bufora
w’ w

ekranu bedzie miata identyczng postac, wystarczy tylko przyporzadkowac poszczegdlne
atrybuty i wspéhrzedne w odpowiednio przeksztalconym wierzchotkom (3.15). W ten
sposéb mozna poprawnie obliczy¢ wartoS¢ wszystkich atrybutéow w kazdym pikselu,

56

3.2. 'Tekstury

nalezacym do obrazu tréjkata w buforze koloru. Ten rodzaj interpolacji, ze wzgledu
na nature funkcji (3.24), jest nazywany interpolacja hiperboliczna.

Poprawna interpolacja pojedynczej wartoSci wymaga jednej operacji dzielenia na
kazdy obliczany piksel obrazu. W poréwnaniu ze zwykla liniowsg interpolacja jest to
bardzo duzy koszt, poniewaz wykonanie dzielenia jest najwolniej wykonywana przez
procesory operacja arytmetyczna.

Rysunek 3.25: Rzut perspektywiczny prostokata z nalozong tekstura. Po lewej wspot-
rzedne tekstury interpolowane sg liniowo, po prawej hiperbolicznie.

Interpolacja liniowa da zblizone do poprawnych wyniki tylko wtedy, gdy wspdtrzedne
w wierzcholkéw nie réznig sie duzo od siebie. JeSli wy = wy zwiazek (3.21) zredukuje
sie do t = s. Jesli scena sktada sie¢ z bardzo matych tréjkatéw, wtedy wspoétrzedne w
wierzchotkéw bedg do siebie zblizone i bledy interpolacji nie bedg az tak widoczne jak
na rys. 3.25.

Obecnie produkowane uklady graficzne nie pozwalaja juz na wilaczenie interpolacji
liniowej. Wszystkie wartoSci atrybutéw sg zawsze interpolowane hiperbolicznie.

3.2. Tekstury

3.2.1. Tekstury dwuwymiarowe

Najczesciej uzywanym rodzajem tekstur sa prostokatne zbiory tekseli, ktére reprezen-
tujg fakture powierzchni obiektéw. Kazdy teksel sktada sie z danych opisujacych kolor
powierzchni, trzech komponentéw w przypadku modelu RGB. Dane sa umieszczone w
dwuwymiarowej tablicy, ktora indeksuje sie poprzez wspétrzedne u € R oraz v € R.
Rozmiary tekstury w poziomie i w pionie musza byé¢ réwne odpowiednio m = 2% i
n = 2!, gdzie k i [nalezg do liczb calkowitych nieujemnych a m i n oznaczajg od-
powiednio szeroko$¢ i wysokos¢ tekstury mierzong w tekselach. Jest to spowodowane
mozliwoscig szybszego dostepu do kolejnych wierszy tablicy, gdyz mnozenie przez po-
tegi dwdjki wymaga wylacznie operacji przesuniet bitéw.

W API DirectX zwigzek miedzy wspélrzednymi v i v a wspélrzedna adresowanego

57

Rozdzial 3. Generowanie obrazu

teksela (t,,t,) € ({0..m — 1},{0..n — 1}) zalezy od wybranego trybu postepowania,
gdy wspoétrzedna u lub v wykracza poza przedzial [0, 1). Dostepne sa trzy podstawowe
tryby adresowania:

e Tryb ramki, w ktérym pobranie teksela o wspétrzednych (u,v) lezacych poza
przedzialem ([0, 1),[0,1)) powoduje zwrécenie koloru ramki. Kolor ramki jest
podawany jako parametr konkretnej tekstury. Wspoétrzedne lezace w powyzszym
przedziale wyznaczaja teksel o wspélrzednych:

(tu,ty) = (lum], |vn]). (3.25)

e Tryb powtarzania, w ktérym wspéhrzedne poza przedzialem sg sprowadzane do
niego z powrotem za pomocg wzoru:

(tu, to) = ([(u = [u])m], [(v = [v])n]). (3.26)

e Tryb lustrzanego odbicia:

_ S l(u = [u])m] jedli |u] jest parzyste lub réwne 0
by = { [(1 = (u—[u]))m] jesli [u] jest nieparzyste }) (3.27)

. {[(v — |v])n] jedli |v] jest parzyste lub réwne 0}

|(1—(v—|v]))n] jesli |v] jest nieparzyste

Rysunek 3.26: Dwuwymiarowa tekstura nalozona na powierzchni¢ kuli. Dodano mape
nieréwnosci i oSwietlenie.

58

3.2. 'Tekstury

Po przyporzadkowaniu odpowiednich wspétrzednych u i v wierzchotkom modelu,
wartoSci te sg interpolowane na obszarze tréjkatow. W kazdym wygenerowanym pikselu
obrazu, przy pomocy wspéhrzednych u i v, uklad pobiera dane konkretnego teksela.
Informacje te stuza pézniej do obliczenia ostatecznego koloru piksela w buforze koloru
(rys. 1.5). Format danych tekseli r6zni sie nie tylko iloscia komponentéw (od 1 do 4)
ale tez ilocig bajtow przeznaczonych dla pojedynczego komponentu. W zaleznosci od
zadanej dokladnosci moze to by¢ liczba catkowita 8 lub 16 bitowa oraz 16 lub 32 bitowa
liczba rzeczywista.

3.2.2. Tekstury kubiczne

Tekstura kubiczna skiada si¢ z szeSciu zwyklych kwadratowych tekstur dwuwymiaro-
wych. Kazda z nich reprezentuje jedng Sciange prostopadio$cianu rozpietego pomiedzy
punktami (—1,—1,—1) i (1,1,1). Przy pobieraniu danych z tekstury kubicznej uzy-
wane sg trzy wspéhrzedne (z,y, z), ktére mozna interpretowaé jako wektor zaczepiony
w punkcie (0,0,0), czyli w srodku sze$cianu (rys. 3.27).

> U
Z T2
1,1,1)
+Y
+I X
~ Y T1|y T4 Y T0| Y 5
< > X X Z
z X z X
z v z T3
(-1-1,-1)
X
v
V

Rysunek 3.27: Tekstura kubiczna zlozona z szesciu kwadratowych tekstur dwuwymia-
rowych.

Wynikiem operacji pobrania danych o wspoétrzednych d = (z,y, z) jest teksel prze-
cinany przez polprosta o poczatku w punkcie (0,0,0) i zwrocie (z,vy, z). W pierwszej
kolejnosci uktad wybiera najdluzszg sktadowa wektora kierunkowego d. BezpoSrednio
wyznacza ona $ciane (teksture), na ktérej wystapi przeciecie. Dla przykladu, jesli naj-
dtuzsza sktadowa wektora jest wspolrzedna z i jest ona dodatnia to wybierana jest

59

Rozdzial 3. Generowanie obrazu

tekstura T'4. Poniewaz wszystkie $ciany sa oddalone od $rodka dokladnie o 1, punkt
przeciecia dany jest wzorem:

%, %). (3.28)

(@p, Yp) = (
Do poprawnego odwotania si¢ do tekstury dwuwymiarowej niezbedna jest transfor-
macja wspétrzednych (z,,y,) do ukltadu tekstury U/V:

1 -y, 1
=(=—+-,—+ <) 2
(wo)= (5 +5 5 +3) (3.29)

W przypadku, kiedy najdtuzsza wspoélrzedna nie jest z, w réwnaniu (3.28) wspolh-
rzedne zamieniaja sie miejscami a w zaleznoéci (3.29) znaki przy wspoéhrzednych dopa-
sowuja si¢ tak, aby transformacja do ukladu U/V byla prawidtowa (rys. 3.27).

Tekstury kubiczne mogg stuzy¢ jako mapa odwzorowujaca w punkcie pewna war-
toS¢, ktora zmienia si¢ wraz z katem patrzenia z tego punktu. Dobrym przykladem
jest intensywnos$¢ promieniowania padajacego na punkt z okreslonego kierunku. Po
obliczeniu tych wartoSci w okreslonym miejscu sceny, na przyktad metoda raytracingu,
wygenerowang teksture kubiczng mozna wykorzysta¢ do oswietlenia matego modelu w
czasie rzeczywistym.

Rysunek 3.28: Kubiczna tekstura odwzorowujaca otoczenie (str. lewa gérna) wraz z
wygenerowana przy jej pomocy tekstura o$wietlenia (str. lewa dolna). Po prawej
stronie obiekt oSwietlony przy jej uzyciu.

Przy zalozeniu, ze model jest maly a Srodowisko jest znacznie od niego oddalone,
pozycje wierzchotkéw modelu mozna potraktowac jako punkt. W ten sposéb kie-

60

3.2. 'Tekstury

runek wektora normalnego do powierzchni wyznaczy sktadows rozproszong swiatta
(rys. 3.28). Wektor normalny do powierzchni zostaje zakodowany na wierzchotkach
w trzech wspélrzednych dla tekstury i interpolowany przez uktad na powierzchni troj-
katéw. Wszystkie niezbedne obliczenia zwigzane z pobraniem wartosci intensywnosci
z tekstury kubicznej wykona mikroprogram dla pikseli.

3.2.3. Tekstury wolumetryczne

Tekstura wolumetryczna sklada sie z k tekstur dwuwymiarowych m x n ulozonych
réwnolegle w ksztalt prostopadioScianu. Taka teksture mozna potraktowac jako tréj-
wymiarowy zbior tekseli, ktéry mozna indeksowa¢ za pomoca trzech wspélrzednych
(1,9,2) € R3. Pierwsze dwie sa odpowiednikami wspétrzednych v i v w przypadku
dwuwymiarowym i okre$laja polozenie teksela na konkretnej warstwie. Trzecia wyzna-
cza indeks warstwy, ktéra ma by¢ uzyta do odczytania danych teksela. W taki sposéb
zapisywane sg dane na przyktad z aparatury medycznej, ktéra wykonuje serie zdjec
organu o réznej glebokosci penetracji (rys. 3.29).

Rysunek 3.29: Tekstura wolumetryczna ztozona z kilku warstw.

Przejécie ze wspéhrzednych z i y do indeksu teksela i-tej warstwy (¢, t;) odbywa sie
identycznie jak w przypadku dwuwymiarowym (réwnania 3.25 - 3.27). Do wyznaczenia
numeru warstwy uzywane sa takie same zaleznoéci, ale dla jednej zmiennej: @ =¢,.

Uklad graficzny pozwala na rysowanie wylacznie dwuwymiarowych elementéw (tréj-
katéw), nie jest mozliwe narysowanie w pehni tréjwymiarowego obiektu. Pierwszym na-
suwajacym sie rozwigzaniem jest narysowanie wszystkich warstw w postaci czeSciowo
przezroczystej. Niestety na wygenerowanym obrazie bedzie wida¢ wyrazne nieciaglo-
Sci pomiedzy warstwami. Najwieksze przerwy beda widoczne, gdy kierunek patrzenia
obserwatora bedzie réwnolegly do ktérej$ z warstw (rys. 3.30).

Uzywajac tekstur wolumetrycznych mozna rysowaé warstwy dowolnie zorientowane

61

Rozdzial 3. Generowanie obrazu

Rysunek 3.30: W przypadku normalnego rysowania warstw widoczne sg nieprawidlo-
woSci w obrazie (géra). Na dole poprawny obraz wygenerowany przy uzyciu tekstury
wolumetrycznej. Rysowane wielokaty moga byt ustawione prostopadle do obserwatora.

i o dowolnym ksztalcie. Kazda warstwa sklada sie z pewnej ilosci tréjkatéw, na ktérych
wierzchotkach sg przyporzadkowane wspotrzedne punktow w teksturze wolumetryczne;j.
W czasie rasteryzacji uklad interpoluje te wspélrzedne i dla kazdego piksela generowa-
nego obrazu stosuje réwnania (3.25 - 3.27), ktére pozwalajg obliczyé numer warstwy
oraz pozycje teksela na teksturze wolumetrycznej. Je§li wspotrzedne tekstury, ryso-
wanych z tréjkatow warstw, beda wypekiaé prostopadioscian oraz beda zorientowane
réwnolegle do obserwatora, to obraz bedzie wypelniony w pelni i praktycznie pozba-
wiony nieciaglosci (rys. 3.30).

3.2.4. Filtrowanie

Bufor koloru posiada okreslong rozdzielczos¢ mierzong w pikselach. Kazdy piksel jest
bardzo malym prostokatem, ktéry moze by¢ zabarwiony w calo$ci pojedynczym kolo-
rem. Kazda tekstura réwniez jest zlozona ze skonczonej liczby prostokatnych tekseli.
Wielokat po wszystkich przeksztalceniach zostaje zamieniony na zbiér pikseli odwzo-

62

3.2. 'Tekstury

rowujacych go buforze. Jezeli na wielokat zostala nalozona tekstura, to w kazdym
pikselu zostanie pobrana wartos$¢ koloru odpowiedniego teksela, zgodnie z obliczonymi
wspotrzednymi.

T X

Rysunek 3.31: Obraz wygenerowany bez uzycia zadnych filtréw prébkujacych teksture.

Kolor kazdego piksela powinien nie§¢ ze sobg informacje o wszystkich tekselach,
ktore sa widoczne przez male prostokatne tworzone przez niego okienko. Podane w
poprzednim podrozdziale metody pobierania danych z tekstur nie uwzgledniaja tego
faktu. Kazdy piksel przyjmie kolor tylko jednego teksela, ktéry jest wyznaczony przez
przeciecie polprostej, biegnacej od obserwatora przez $rodek piksela, z plaszczyzna
tekstury nalozonej na wielokat. Jesli rozmiar teksela po rzucie perspektywicznym jest
maty w stosunku do rozmiaru piksela, pojawig sie widoczne artefakty obrazu (gérna
czeSC rys. 3.31).

Podobnie jest w przypadku, kiedy rozmiar teksela jest duzo wiekszy w poréwna-
niu do rozmiaru piksela. W takich miejscach pojawia sie ’zeby’ bedace konsekwencja
skonczonej rozdzielczosci obrazu (dolna czgs¢ rys. 3.31). Jezeli rozdzielczo$¢ zostanie
znacznie zwigkszona, to krawedzie miedzy tekselami beda gladkie.

Czesciowym rozwiazaniem powyzszych probleméw sa specjalne filtry, ktére biorg
udzial przy operacji probkowania danych z tekstury. Rozrézniane sg dwa rodzaje
filtréw. Pierwsza grupe stanowig filtry przeciwdzialajace powstawaniu ’zebow’ przy
duzych powigkszeniach, druga filtry obliczajace kolor piksela przy uzyciu wiecej niz
jednego teksela w przypadku duzych pomniejszen.

Filtrowanie dwuliniowe

Filtr dwuliniowy nalezy do pierwszej grupy i jego dzialanie mozna poréwnac do lekkiego
rozmazania tekstury na wielokacie (rys. 3.32). Je§li z réwnan (3.25 - 3.27) zostanie
usunieta ostatnia operacja, czyli sprowadzanie wyniku do dziedziny liczb catkowitych,
otrzymane wspéhrzedne (¢, t!) wyznacza dokladna pozycje (u, v) na teksturze. (t/,t)
przebiegaja teksture plynnie wraz ze zmiana wspétrzednych v i v. Dla przyktadu, jesli
tekstura ma rozmiary 2 x 2 teksele, to dla u = 0 — ¢/, = 0 (lewa krawedz pierwszej

kolumny tekseli) a dla u = 0.25 — ¢/, = 0.5 (Srodek pierwszej kolumny tekseli). Filtr

63

Rozdzial 3. Generowanie obrazu

dwuliniowy zamiast pobiera¢ kolor tylko z jednego teksela (t,,t,) uérednia kolory z

czterech tekseli najblizszych punktowi (¢,) na teksturze.

St

Rysunek 3.32: Obraz wygenerowany przy uzyciu filtra dwuliniowego.

Niech 7(u,v) oznacza kolor teksela o wspéhrzednych (,,t,). Jesli wspétrzedne tek-
stury w $srodku generowanego piksela sg réwne u i v, to filtr dwuliniowy usredni dane
z nastepujacych 4 sasiadujacych ze soba tekseli:

¢ (1 1) ¢ (n 1 1)
= u - — v — — — u _) — —
00 =7 om’ on) 0T om’ on’’
t (L + 1) ti1=7(u+ ! + 1)
10 = THY 2m’v on’’ 11 = T 2m’v on’’

>

U
too tos
" (t,t)
tl,O tl,l

Vv
Rysunek 3.33: Usredniane przez filtr dwuliniowy teksele.

3.2. 'Tekstury

Niech:

S lum— 3
a=um——-— |um— =
2 247

1 1

ﬂzvn—g—tvn—?.

Ostateczny kolor piksela przy uzyciu filtra dwuliniowego dany jest wzorem:

TL(u,v) = (1 = a)(1 = B)too + a(l = B)tos + (1 — a)Btio + aftrs.

Dla tekstur wolumetrycznych metoda jest podobna, ale usredniane jest 8 najbliz-
szych wspotrzednym (¢t t') tekseli pochodzacych z 2 warstw, po 4 na warstwe.

z) Yy Yz
Mip-mapping

Mip-mapping (z taciniskiego: multum in parvo, ttum.: wiele w malym) jest technika,
ktora nalezy do drugiej grupy filtréw, poprawiajacych jakoS¢ tekstur wyswietlanych w
malych skalach. Czarno-biata szachownica, ustawiona prostopadle do obserwatora w
duzej odleglosci, powinna zamieni¢ sie w maly szary prostokat. Dzieje sie tak, ponie-
waz czarne i biale pola lezg wtedy w bardzo matych odlegtosciach od siebie, usredniajac
sie w kolor szary. Niestety, dysponujac skoniczong rozdzielczoscia bufora ekranu, kom-
puterowa symulacja tego zjawiska nie bedzie prawidlowa. Przez mate okno kazdego
piksela, skladajacego sie na obraz oddalonego prostokata, bedzie wida¢ duza grupe
czarnych i bialych tekseli. Podczas operacji pobierania koloru teksela wybrany zosta-
nie kolor bialy albo czarny. Tak wygenerowany obraz bedzie sie skltadat tylko z bialych
i czarnych pikseli.

v piksele tekstura

wielokat

(xy+1)

Rysunek 3.34: Obszar tekstury nalozonej na wielokat, ktéry jest odwzorowany na ob-
szarze piksela (Z, 7). Bez uzycia filtra, dla piksela wybrany bedzie kolor bialy.

65

Rozdzial 3. Generowanie obrazu

Rozwiazat ten problem mozna stosujac uSrednianie koloréw wszystkich tekseli wi-
docznych przez okienko piksela (rys. 3.34). Takie podejscie jest bardzo kosztowne, gdyz
na jeden piksel obrazu moze przypada¢ dowolna ilos¢ réznych tekseli. Mip-mapping
pozwala na generowanie obrazéw przyblizonych do poprawnego. Dla kazdej tekstury
jest generowany ciag log,(min{m,n}) tzw. mip-map, czyli tekstur powstatych przez
dwukrotne zmniejszenie kazdej poprzedniej. Dla tekstury 7 o rozmiarze 128 x 128
wygenerowane beda mip-mapy 77..77 o rozmiarach 64 x 64, 32 x 32, ..., 1 x 1 tekseli.
Kolor teksela mip-mapy Ty o wspéhzednych (p, q), gdzie {p,q} € Z, jest wynikiem
udrednienia 4 tekseli tekstury 7)1 o wspotrzednych (2p, 2q), (2p + 1,2q), (2p,2¢ + 1) i
(2p+1,2¢+ 1) (rys. 3.35).

e 8x8

64x64

o
A
e i

32x32 16x16 8x8

128x128 4x4 2x2 1x1 4x4

Rysunek 3.35: Tekstura wraz z seria mip-map. 7 prawej strony dwie mip-mapy poka-
zane w powigkszeniu.

Pobierajac kolor tekstury w konkretnym pikselu uklad decyduje, ktérej wersji tek-
stury uzy¢. Im wigkszy jest rozmiar piksela w stosunku do rozmiaru teksela, tym
wiekszy indeks mip-mapy, ktora bedzie uzyta do odczytu koloru. W celu obliczenia
przyblizonego stosunku rozmiaréw uzywa si¢ nastepujacej zaleznosci:

-l GGV -G} o

Jdu Jv, . Ju v
Wektory dr = (%,£) idy = (8_33’8_3])
szar tekstury, ktéry jest rzutowany do okienka piksela. Nie jest to wartos¢ doktadna,
gdyz wektory zmieniaja si¢ na obszarze pojedynczego piksela ze wzgledu na nieliniowy
charakter przeksztalcen rzutujacych.

w przyblizeniu rozpinaja na sobie ob-

66

3.2. 'Tekstury

Warto$¢ p(Z,y) opisuje szerokosé kwadratu (w tekselach), ktory trzeba udrednic,
aby uzyska¢ w przyblizeniu poprawny kolor piksela. Do dyspozycji jest kilka réznych
wersji tekstury. W kazdej sa uérednione bloki tekseli o wielkosci od 1 do min{m,n},
przy czym blok usrednionych tekseli w mip-mapie T} jest dwa razy szerszy i dihuzszy
od tego w Tj_1. Przyjeto, ze indeks mip-mapy jest obliczany za pomocg wzoru:

kE(Z,y,\) = min{ [A], logy(min{m,n}) }, gdzie A = log,[p(Z,7)].

Jezeli rozmiar teksela bedzie nie wiecej niz dwukrotnie mniejszy od rozmiaru pik-
sela, to wybrana bedzie tekstura Tj. Jezeli bedzie nie wiecej niz czterokrotnie mniejszy
to bedzie wybrana tekstura 77, itd.. Pobieranie koloru z wybranej juz wersji tekstury
jest wykonywane przy uzyciu filtra dwuliniowego. W celu ukrycia momentu podmiany
tekstury w czasie oddalania si¢ od obserwatora, stosuje si¢ podobne do filtra dwulinio-
wego rozwiazanie. Wybierane sa dwie mip-mapy najblizsze wartosci A, kolory pobiera
si¢ z obydwu i u$rednia przy pomocy interpolacji dwuliniowej. Ten sposéb postepo-
wania nazywany jest interpolacja tréjliniowa, gdyz przy usrednianiu bierze udzial 8
tekseli, po 4 na mip-mape (rys. 3.36).

Niech 71 (u,v, k) oznacza kolor teksela o wspéhrzednych (t,,t,), pobranego z mip-
mapy T}, przy uzyciu filtra dwuliniowego. Ostateczny kolor tekstury przy uzyciu mip-
mappingu dany jest wzorem:

TM(“? U) = [1 B)\/] ' TL(”?”) kl) + N TL(u7U7 k2)7

gdzie

N=X= |\, b1 =k(Z,9,A), ka = k(Z,7, A+ 1).

Rysunek 3.36: Obraz wygenerowany przy uzyciu mip-mappingu.

Rozdzial 3. Generowanie obrazu

Filtrowanie anizotropowe

ou Ov ou Ov
sie od siebie znacznie r6zni¢. Oznacza to, ze obraz piksela na teksturze jest wydtuzony
w kierunku ktérej$ z osi. W tym przypadku uklad wyznaczy mip-mape kierujac sie
dhuzsza skltadows, przez co usredniony zostanie kwadrat o boku 8 x 8 tekseli (rys. 3.37).

Spowoduje to rozmazanie obrazu (gérna czes¢ rys. 3.36).

Dtugosci wektoréw skladowych réwnania (3.30): dx =

tekstura

Rysunek 3.37: Obszar tekstury nalozonej na wielokat, ktéry jest odwzorowany na ob-
szarze piksela. O$ dy jest dwa razy dluzsza od osi dx.

Prawidtowo usrednione powinny by¢ piksele w obrebie prostokata o dtugosciach bo-
kéw odpowiadajacych liczbom |dz| i |dy|. Filtr anizotropowy rozwiazuje ten problem
wybierajac mip-mape, ktéra odpowiada kroétszej osi i usredniajac nie jeden, ale kilka
tekseli w obrebie prostokata (rys. 3.38).

SR (CRERERC)

[los¢ prébek wacha sie od 1 do 16 a ich ulozenie jest $cile zalezne od implementacji.
Z reguly wybierane sg teksele réwnomiernie roztozone na odcinku diuzszej z osi. Liczba
prébek zmienia si¢ w zaleznoSci od stosunku dlugosci obu osi. W sytuacji pokazanej
na (rys. 3.37) wybrana bedzie mip-mapa Ty 2 X 2 teksele. Stosunek dlugosci osi
wynosi 2 do 1, wiec uktad usredni 2 prébki roztozone réwnomiernie na osi dy. Filtr
anizotropowy jest rozszerzeniem techniki mip-mappingu, ale moze by¢ uzywany i bez
niego. W takim przypadku, aby uzyska¢ zadowalajace rezultaty, ilo$¢ prébek musi by¢
znacznie wieksza. W praktyce najbardziej sensowne jest uzycie mniejszej ilosci prébek
z wlaczonym mip-mappingiem.

68

3.3. Programowanie ukfadu

Rysunek 3.38: Obraz wygenerowany przy uzyciu filtra anizotropowego (16 prébek).

3.3. Programowanie ukiadu

Po zakonczeniu procesu interpolacji atrybutéw i rasteryzacji jednostka przetwarzania
pikseli wykonuje mikroprogram dla kazdego piksela sktadajacego sie na obraz tréj-
kata. Tres¢ programu jest ustalana przez programiste i przesytana do ukladu przed
rozpoczeciem procesu generowania obrazu. Program moze by¢ zmieniany w dowolnym
momencie, ale jest to bardzo kosztowna czasowo operacja. Dla kazdego piksela, przy
pomocy danych wejsciowych, musi by¢ wygenerowany jeden kolor, ktory bierze udzial
w czynno$ciach zwigzanych z buforami.

Kazdy piksel ma dostep wylacznie do wiasnych danych wejsciowych i tymczasowych.
Dzigki temu w tym samym czasie moze by¢ przetwarzana wigksza ilos¢ pikseli. Obec-
nie, uklady graficzne posiadaja od 1 do 16 jednostek przetwarzana pikseli, zwanych
potokami.

Kazdy program sklada si¢ z maksymalnie 96 instrukcji specjalnego mikroasemblera,
w tym maksymalnie 64 instrukcji arytmetycznych i 32 prébkujacych tekstury. Rejestry
ukladu dzielg sie na wejsciowe, wyjSciowe, tymczasowe i rejestry tekstur (rys. 3.39).
Przy kazdym uruchomieniu programu w rejestrach wejSciowych znajduje sie 8 prze-
interpolowanych wspéhrzednych tekstur (t0 — t7) oraz dwa kolory (v0 — vl). Kazdy
rejestr wejsciowy sklada sie z 4 liczb rzeczywistych (XY ZW). Oprécez tych informacji
programista moze dowolnie ustali¢ zawartoS¢ rejestréw reprezentujacych state, ktére sa
niezalezne od kolejnych uruchomien programu. Do dyspozycji sg 32 rejestry wektorowe
c0 — 31, kazdy w postaci czterech liczb rzeczywistych (XY ZW). Tak jak w przypadku
jednostki dla wierzchotkéw, kazda zmiana zawartoSci rejestréw tymczasowych wprowa-
dza bardzo duze opdznienia. Nalezy zaznaczyc¢, ze stale moga by¢ zmieniane wylacznie
przez procesor giéwny spoza poziomu mikroprogramu. Rejestry wejsciowe, stalych oraz
tekstur mozna jedynie odczytywac a rejestry wyjsciowe zapisywac.

Rejestry tymczasowe sg dostepne tylko z poziomu mikroprogramu. Nalezy do nich
od 12 do 32 rejestréw wektorowych r0 — r31, kazdy w postaci 4 liczb rzeczywistych
(XY ZW).

69

Rozdzial 3. Generowanie obrazu

Zadaniem mikroprogramu jest wygenerowanie koloru w rejestrze wyjsciowym oC0,
ktoéry sklada sie z czterech komponentéw nalezacych do liczb rzeczywistych (XY ZW).

Rejestréw prébkujacych teksture sO— s15 (ang. texture sampler register) nie mozna
odczytywaé ani zapisywac. Stuza one jedynie do identyfikacji tekstury, ktéra ma by¢
uzyta do pobrania koloru teksela. Konkretne tekstury sa przyporzadkowywane do tych
rejestréw spoza mikroprogramu, przed jego wykonaniem. Kazda instrukcja prébkujaca
wymaga podania przynajmniej jednego rejestru tekstury oraz wspotrzednych, ktoére
wyznaczaja pozycje teksela.

Wejscie Wyjscie
rejestry tymczasowe
kolory (r0-r31)
(vO-v1)
wspotrzedne tekstur]
(t0-t7)

kolor
PSU (0CO)

stale zmiennoprzecinkowe rejestry tekstur
(c0-c31) > (s0-s15)

Rysunek 3.39: Jednostka przetwarzania pikseli.

Podczas opisywania wiasciwosci uktadu producenci czesto postuguja sie pojeciami
jednostki teksturujacej (ang. Texture Mapping Unit) oraz iloSci tych jednostek na po-
tok. Jednostka teksturujaca jest fizyczng czescig ukladu scalonego, odpowiedzialng
za operacje dostepu oraz pobierania danych z tekstur. Pojecia te pozwalaja na osza-
cowanie liczby pikseli, ktére uktad jest w stanie obliczy¢ w tym samym momencie.
Niech przykladowy ukiad dysponuje 8 potokami i 16 jednostkami teksturujacymi w
tym dwoma na potok. Uklad bedzie w stanie przetwarzac 8 pikseli na potok tylko pod
warunkiem, ze liczba tekstur, z ktérych pobierane sg dane dla pojedynczego piksela,
nie przekracza liczby jednostek teksturujacych na potok. Jesli liczba ta bedzie wigksza,
to potok musi 'pozyczy¢’ jednostki z innego potoku, wylaczajac go jednoczesnie z pro-
cesu przetwarzania. Jezeli mikroprogram uzywa danych z 2 tekstur, to ukilad przeliczy
8 pikseli jednocze$nie (tyle ile ma potokéw). Jesli uzywa 3 lub 4 tekstury, to przeliczy
tylko 4 piksele jednocze$nie.

70

3.3. Programowanie ukfadu

3.3.1. Budowa programu

Mikroprogramy dla pikseli mozna pisa¢ takze w jezyku HLSL. Wszystkie obostrzenia,
limity i budowa programu sg takie same jak w przypadku programéw dla wierzchot-
kéw. Inne sg liczby rejestréw i ich identyfikatory. Do rejestréow wejSciowych t0 — ¢7
program odwotuje sie poprzez identyfikatory TEXCOORD0O — TEXCOORDT, do
v0 — vl poprzez nazwy COLOR0— COLOR]1. Rejestr wyjsciowy oC0 ma identyfikator
COLORQ. Liczba dostepnych koloréw i wspétrzednych dla tekstur zalezy od danych
wygenerowanych przez jednostke przetwarzania wierzchotkéw. Rejestry wyjSciowe tejze
sa bezpoSrednio skojarzone z rejestrami wejsciowymi dla jednostki PSU.

Rejestry prébkujace tekstury maja swoje odpowiedniki w HLSL w postaci nowych
typow danych: sampler1D (tekstura jednowymiarowa), sampler2D (dwuwymiarowa),
sampler3D (wolumetryczna) i samplerCUBE (kubiczna). Kazda zmienna tego typu
zadeklarowana w programie zostanie skojarzona z pewnym rejestrem probkujacym.
Nazwa zmiennej jest uzywana poza mikroprogramem w celu przyporzadkowania do
niej konkretnej tekstury, okreslenia typu adresowania i rodzaju filtra. Typ zmiennej
jednoznacznie definiuje rodzaj tekstury do niej przyporzadkowanej.

Ponizszy program kopiuje kolor z rejestru wejsciowego do wyjsciowego. W ten sposéb
kazdy piksel otrzyma kolor bedacy wynikiem liniowej interpolacji koloréw pomiedzy
trzema wierzchotkami (cieniowanie Gourauda).

struct T_PIN // dane interpolowane miedzy wierzchotkami

{

float4 col : COLORO; // kolor wejSciowy
};
struct T_POUT // dane wyjSciowe
{

float4 col: COLORO; // kolor wynikowy
};

(Program 3.1)

T_POUT PShader (T_PIN pin) // mikroprogram
{
T_POUT pout;

pout.col=pin.col; // przepisanie danych

return pout;

}

3.3.2. Zestaw instrukcji

W standardzie 2.0 dla jezyka HLSL programy dla pikseli nie moga uzywac¢ zadnych
instrukcji sterujacych przeptywem. Niedozwolone sg instrukcje warunkowe oraz wyko-
nywanie petli. Zestaw instrukcji sklada sie z wszystkich rozkazéw dla jednostki prze-
twarzania wierzchotkéw (tab. 2.3 i tab. 2.4) i dodatkowych prébkujacych tekstury
(tab. 3.5).

71

Rozdzial 3. Generowanie obrazu

Instrukcja \ Opis

tex1D(s,t) Pobiera kolor o wspétrzednej t, z tekstury
jednowymiarowej s .

3
tex1Dproj(s,t) Pobiera kolor o wspélrzedne;j ti z tekstury

w
jednowymiarowej s.

tex2D(s,t) Pobiera kolor o wspéhrzednej (t,,t,) z tekstury
dwuwymiarowej s.

i, 1
tex2Dproj(s,t) Pobiera kolor o wspétrzednej (-, %) z tekstury
w w

dwuwymiarowej s.
tex3D(s,t) Pobiera kolor o wspéhrzednej (tg,1ty,t.) z tekstury
wolumetrycznej s.

tex3Dproj(s,t) Pobiera kolor o wspéhrzednej () z tekstury

R
t"lU ’ tw ’ tul
wolumetrycznej s.

texCUBE(s,t) Pobiera kolor o wspélrzednej (t5,t,,t.) z tekstury

kubicznej s.

~
‘ ~H

:z:ty z

texCUBEproj(s,t) | Pobiera kolor o wspétrzednej (t—, 7

) z tekstury

~

. . w
kubicznej s.

Tablica 3.5: Dodatkowe instrukcje jednostki PSU

3.3.3. Podstawowe techniki

Programowanie jednostki przetwarzajacej piksele sprowadza si¢ do obliczenia jednego
wyjsciowego koloru. Do dyspozycji sa stale, dane wejsciowe pochodzace od wierzchol-
kéw oraz tekstury. Przeprowadzanie skomplikowanych obliczen podczas generowania
kazdego piksela, pozwala na uzyskanie znacznie bardziej realistycznych efektéw niz
opisane wczeSniej metody. Przede wszystkim chodzi tu o algorytmy symulujace rézne
wladciwosci powierzchni, w tym charakterystyki odbijania $wiatla. WartoSci liniowo
interpolowane miedzy wierzchotkami nigdy nie beda w stanie poprawnie odda¢ zmian
funkcji, ktére zachodza we wnetrzu obszaru tréjkata.

Dysponujac mozliwoscig przeprowadzenia obliczen bezpoSrednio dla kazdego pik-
sela, programy dla wierzchotkéw tylko przygotowuja dane wejSciowe. Wektory nor-
malne, kierunek patrzenia obserwatora i inne wartoSci wektorowe sg interpolowane
liniowo przez uklad. Program dla pikseli pobiera wektory i w zaleznosci od potrzeb
normalizuje je, aby zastosowane przeksztalcenia mialy takie same dzialanie w kaz-
dym miejscu tréjkata. Wektory sa umieszczane w 8 rejestrach wyjsciowych jednostki
VSU: TEXCOORDO-TEXCOORDT, potem interpolowane przez uktad i pobierane
przez mikroprogram dla pikseli. Oczywiscie interpolacja liniowa wspélrzednych wek-
tora kierunkowego nie jest poprawng metoda. Interpolowany liniowo powinien by¢ kat
nachylenia wektora a nie jego wspolrzedne. Bledy te nie sa jednak bardzo widoczne a
ilos¢ oszczedzonego na obliczeniach czasu jest ogromna. Nalezy zauwazyc, ze powyzsza
metode stosuje sie tylko dla wektoréw miedzy ktérymi kat jest mniejszy od 180°.

Ponizszy program dla wierzchotkéw jest przygotowaniem danych do o$wietlenia
obiektu metodg Phonga (2.14) w kazdym generowanym pikselu (Program 3.2). Oblicza
on jedynie wektory kierunkowe obserwatora oraz $wiatta w kazdym z wierzcholkéw.

72

3.3. Programowanie ukfadu

float4x4 mxLocalToView; // macierz transformacji
float3 eye_pos; // pozycja obserwatora
float3 light_pos; // pozycja Swiatta

struct T_VIN // dane wejSciowe

{
float3 pos : TEXCOORDO; // pozycja wierzchotka
float3 n : TEXCOORD1; // wektor normalny

i

struct T_VOUT // dane wyjSciowe
{

float4 pos : POSITION; // pozycja

float3 eye : TEXCOORDO; // kierunek patrz. obserwatora

float3 light : TEXCOORD1; // kierunek padania Swiatta
}‘floatB n : TEXCOORD2; // wektor normalny (Program 3.2)
T_VOUT VShader(T_VIN vin) // mikroprogram dla wierzchotkéw
{

T_VOUT vout;

float4 pos={0,0,0,1};

(float3)pos=vin.pos; // pozycja
vout .pos=mul (mxLocalToView,pos) ;

vout.eye=eye_pos-vin.pos; // wektor kierunkowy
vout.light=1light_pos-vin.pos; // wektor kierunkowy
vout.n=vin.n; // przepisanie

return vout;

Po zakonczeniu fazy przetwarzania wierzchotkéw, kazdy uruchomiony dla piksela
program bedzie mial do dyspozycji przeinterpolowany wektor normalny, kierunek z
ktorego patrzy obserwator oraz kierunek z ktérego pada $wiatto (Program 3.3).

// dane §wiatta

float3 light_col_diff; // sktadowa rozproszona
float3 light_col_spec; // sk*. zwieciadlana
float light_pn; // wsp. gtadkosci

float3 scol; // kolor powierzchni obiektu
struct T_PIN // dane wejSciowe (Program 3.3)
{
float3 eye : TEXCOORDO; // kierunek patrzenia obserwatora
float3 light : TEXCOORD1; // kier. padania Swiatka
float3 n : TEXCOORD2; // wektor normalny |n|!=1
5
!

73

Rozdzial 3. Generowanie obrazu

1
struct T_POUT // dane wyjSciowe

{
float4 col : COLORO; // kolor

3

T_POUT PShader(T_PIN pin) // mikroprogram dla pikseli
{

T_POUT pout;

float3 eye,eye_rfl,light,n,col;

float 1p;

// normalizacja wektoréw po interpolacji
eye=normalize(pin.eye) ;
light=normalize(pin.light);
n=normalize(pin.n);

P .
eye_rfl=reflect(eye,n); // odbicie wektora wzgledem n (Program 3.3)

// sktadowa rozproszona
lp=max(0,dot(n,light));
col=light_col_diffx*lp;

// sktadowa zwierciadlana
1p=max (0,pow(dot (eye_rfl,light),light_pn));
col+=light_col_spec*lp;

col*=scol; // kolor powierzchni

(float3)pout.col=col;
pout.col.w=0.0f;

return pout;

s

Efekt dziatania powyzszych programéw jest przedstawiony na rys. 3.40.

Znormalizowanie 3 wektoréw oznacza obliczenie 3 pierwiastkéw kwadratowych na
piksel. Pierwiastek jest operacja arytmetyczng, ktéra zuzywa bardzo duzo czasu pro-
cesora graficznego. Istnieje metoda, ktéra pozwala przyblizy¢ wartosc pierwiastka przy
pomocy odwotania do tekstury kubicznej. Dla kazdego teksela tekstury kubicznej o

wspotrzednych d = (z,y, z), zamiast koloru nalezy zakodowaé wartos¢ Uzywajac

m.
tak przygotowanej tekstury, program dla pikseli moze znormalizowa¢ wektor d wyko-
nujac nastepujaca operacje:

dy = texCUBE(s,d) * d.

W ten sposéb obliczenie pierwiastka kwadratowego zostalo zamienione na jedno
pobranie wartosci z tekstury. Optacalno$¢ tej techniki jest uzalezniona od predkoSci
dzialania uktadu. W najnowoczes$niejszych kartach moze si¢ zdarzy¢ przypadek, ze po-
branie koloru z tekstury bedzie trwalo dtuzej niz obliczenie pierwiastka. Przyczyna jest
pamie¢ cache, w ktérej procesor umieszcza caly blok tekseli otaczajacych ten o wspot-
rzednych (z,y, z) zakladajac, ze bedzie sie do nich odwolywal w nastepnej kolejnosci.

74

3.3. Programowanie ukfadu

Pamie¢ cache jest duzo szybsza od podstawowej, ale jest jej bardzo malo. Dlatego
zaladowanie bloku w celu pobrania tylko jednej wartoSci moze si¢ okazac¢ nieoptacalne.

Rysunek 3.40: Obiekt oswietlony wedtug modelu Phonga w kazdym pikselu.

Ponizsze dwa mikroprogramy prezentuja rowniez technike o§wietlenia modelem Phonga,
ale zamiast jednolitego koloru obiektu zostata nalozona dwuwymiarowa tekstura. W
programie zastosowano tez normalizacje przy uzyciu mapy kubiczne;.

float4x4 mxLocalToView; // macierz transformacji
float3 eye_pos; // pozycja obserwatora
float3 light_pos; // pozycja Swiatta

struct T_VIN // dane wejSciowe

{
float3 pos : TEXCOORDO; // pozycja wierzchotka
float3 n : TEXCOORD1; // wektor normalny
float2 uv : TEXCOORD2; // wsp. tesktury

g

(Program 3.4)

struct T_VOUT // dane wyjSciowe

{
float4 pos : POSITION; // pozycja
float3 eye : TEXCOORDO; // kierunek patrz. obserwatora
float3 light : TEXCOORD1; // kierunek padania &wiatia
float3 n : TEXCOORD2; // wektor normalny
float2 uv : TEXCOORD3; // wsp. tekstury

};

!

5

Rozdzial 3. Generowanie obrazu

1
T_VOUT VShader(T_VIN vin) // mikroprogram dla wierzchotkéw

{
T_VOUT vout;
float4 pos={0,0,0,1};

(float3)pos=vin.pos; // pozycja
vout .pos=mul (mxLocalToView,pos) ; (Program 3.4)
vout.eye=eye_pos-vin.pos; // wektor kierunkowy

vout.light=1light_pos-vin.pos; // wektor kierunkowy

vout.n=vin.n; // przepisanie

vout.uv=vin.uv // przepisanie

return vout;

Powyzszy mikroprogram jest wykonywany przez jednostke VSU. Ponizej znajduje
sie mikroprogram dla jednostki PSU.

float3 light_col_diff; // sk*adowa rozproszona
float3 light_col_spec; // skt. zwieciadlana
float light_pn; // wsp. gtadkosci

sampler2D tex; // textura dwuwymiarowa
samplerCUBE nmap; // textura normalizujaca

struct T_PIN
{
float3 eye : TEXCOORDO; // kier. patrzenia obserwatora
float3 light : TEXCOORD1; // kier. padania Swiatta
float3 n : TEXCOORD2; // wektor normalny |n|!=1
float2 : TEXCOORD3; . tekst
N oat2 uv // wsp ekstury (Program 3.5)
struct T_POUT // dane wyjSciowe
{
float4 col : COLORO; // kolor
};

T_POUT PShader (T_PIN pin) // mikroprogram dla pikseli
{
T_POUT pout;
float3 eye,eye_rfl,light,n,col,tcol;
float 1p;
!

76

3.3. Programowanie ukfadu

1

// normalizacja wektoréw po interpolacji
eye=texCUBE (nmap,pin.eye) *pin.eye;
light=texCUBE (nmap,pin.light)*pin.light;
n=texCUBE (nmap,pin.n)*pin.n;

eye_rfl=reflect(eye,n); // odbicie wektora wzgledem n

// sktadowa rozproszona
lp=max(0,dot (n,light));
col=light_col_diff*lp;
(Program 3.5)
// sktadowa zwierciadlana
lp=max (0, pow(dot (eye_rfl,light),light_pn));
col+=light_col_spec*lp;

colx=tex2D(tex,pin.uv); // kolor powierzchni

(float3)pout.col=col;
pout.col.w=0.0f;

return pout;

3

Rysunek 3.41: Obiekt z nalozong tesktura oéwietlony wedtug modelu Phonga w kazdym
pikselu.

7

Rozdzial 3. Generowanie obrazu

3.4. Operacje na buforach

3.4.1. Wyznaczanie widocznoSci

W rozdziale pierwszym zostala wyjasniona idea pracy bufora-Z. Po obliczeniu koloru
piksela, jego odleglos¢ od obserwatora jest poréwnywana z wartoscig juz znajdujaca sie
w buforze-Z. W przypadku, kiedy test da wynik negatywny, piksel nie jest poddawany
dalszym operacjom i kolor nie jest zapisywany do bufora koloru. Jesli wynik jest
pozytywny, to piksel bierze udzial w dalszych operacjach a stara wartos¢ w buforze Z
jest nadpisywana. Bufor-Z ma zawsze taka samg rozdzielczo$¢ jak bufor koloru.
W poréwnaniach bierze udzial wspéhzedna 2’, odpowiadajaca odlegloéci od obser-
watora aktualnie generowanego piksela:
ZF RF
z — ZN

o — _FF AN “E AN odzie 2 € [0, 1] (3.31)
2

Odleglos¢ z jest interpolowana na obszarze trdjkata metoda hiperboliczng. Ze
wzgledu na to, ze 2’ juz jest funkcja hiperboliczng ze wzgledu na z, prawidlowa in-
terpolacja przyjmuje postac liniowa 2z’ = (1 — a)z] + azb.

‘. . 3 . .
Zalozmy, ze zy <K zp, wtedy ~1azy ~ zy. Rownanie (3.31)
RF — AN RF — AN
przyjmie wowczas postac:
ZN
Z=1-=.
z

Wykres tej zaleznosci dla zy = 1 wyglada nastepujaco:

Z'1

0,9

0,8

0,7

0,6 4

0,5+

04 |

0,3

0,2

0,1

0 : : : : :
0 10 20 30 40 50 60 70 80 90 10C

z

Rysunek 3.42: Wykres rozktadu odlegtosci od obserwatora w buforze-Z.

78

3.4. Operacje na buforach

Dla z = 2 warto$¢ 2’ jest réwna %, czyli 50% zakresu bufora-Z jest zuzywane na

wartosci odlegloSci, ktore lezg bardzo blisko obserwatora. Kazda liczba rzeczywista za-
pisana na komputerze ma skonczong doktadnosc¢ i potowa dostepnych mozliwych liczb
jest pochlaniana przez bardzo malg czeS¢ zakresu zmiennej z. Odbija si¢ to bezposred-
nio na dokladnosci poréwnan dla odleglosci tylko troche dalszych od minimalnej zy.
Stopien zaburzen bedzie tym wiekszy im blizsze zera bedzie zy. Bledy objawiaja sie
w postaci przenikania sie trojkatéw, ktore lezg bardzo blisko siebie. Odjecie od siebie
ich odleglosci daje wlasciwie warto$¢ przypadkows. Warto$¢ maksymalna zp nie ma
praktycznie zadnego wplywu na doktadno$¢ poréwnan.

Bufor-Z daje satysfakcjonujace wyniki tylko wtedy, gdy wartoS¢ zy jest ustawiona na
najwyzsza akceptowalna dla obserwatora. Wiaze si¢ z tym brak mozliwosci podejscia
do obiektu bardzo blisko, gdyz tréjkaty beda ucinane przez plaszczyzne z = zy.

Liniowy rozklad mozna uzyskaé¢ stosujac tzw. bufor-W. Zamiast wspéhrzednej 2/,
miarg odlegloSci jest wtedy przeskalowana wspoélrzedna w: w’' = aw + (. Interpolacja

Jest jednak bardzo kosztowna, gdyz interpolowana liniowo musi by¢ wartos¢ —. W celu
w

poréwnania odleglosci, w kazdym pikselu wartos¢ ta musi by¢ odwrécona, co wymusza
wykonanie jednego dzielenia na piksel.

Bufor-w nie jest jednak lepszym rozwigzaniem ze wzgledu na rzut perspektywiczny.
Obiekty lezace bardzo blisko obserwatora beda poréwnywane z duzo mniejsza doktad-
noécig niz w przypadku bufora-Z. Tym razem bledy pojawia sie nie w dalszych odleglo-
Sciach, ale w blizszych. Decyzja wyboru bufora powinna wiagza¢ sie z rodzajem sceny i
wymaganiami stawianymi jej wygladowi.

Problem ten nie wystepuje, jeSli macierz przeksztalcen dla wierzchotkéw nie jest
osobliwa. Jedli dolny wiersz macierzy M jest réwny [0,0,0,1], to w = 1 i wartosci
odleglosci w buforze-Z rozktadaja si¢ liniowo.

Test widocznoSci obejmuje wykonanie poréwnania nowej wartoSci glebokoSci ze
stara. Wiele efektéow specjalnych korzysta z mozliwosci zmiany rodzaju poréwnania.
Standardowo test daje wynik pozytywny, jesli nowa wartos¢ jest mniejsza badz réwna
starej. DirectX umozliwia stosowanie dowolnego rodzaju operacji poréwnania wraz z
mozliwoScig wylaczenia zapisywania nowych wartosci do bufora.

3.4.2. Bufor zliczania

Bufor zliczania (ang. stencil buffer) jest zawsze takiej samej rozdzielczoSci, co bufor
koloru. Kazdemu pikselowi jest przyporzadkowana jedna liczba calkowita nieujemna,
znajdujaca sie w buforze zliczania. Najbardziej popularna jest wersja 8-bitowa, mogaca
przechowywa¢ liczby od 0 do 255.

Po tescie widocznosci, kazdy piksel moze przejsé test z buforem zliczania. W pierw-
szej kolejnosci, jeszcze przed wystaniem jakiejkolwiek geometrii do karty, programi-
sta ustala wartoS$¢ jednej stalej catkowitoliczbowej S.. Podczas generowania obrazu,
dla kazdego wygenerowanego piksela jest przeprowadzany test, ktérego wynikiem jest
prawda albo falsz. Piksel nie zostanie narysowany, jesli test bedzie mial wynik ne-
gatywny. Test sklada si¢ z poréwnania wartosci S, z wartoscig, ktéra znajduje sie
w buforze zliczania pod wspéhrzednymi aktualnie przetwarzanego piksela. Tak jak w
buforze-Z, operacja poréwnania moze by¢ dowolna.

Dla kazdego z dwéch mozliwych wynikéw testu, programista ustala jak zmieni sie¢

79

Rozdzial 3. Generowanie obrazu

warto$¢ w buforze zliczania. Moze pozostawic ja bez zmian, dodac lub odjac 1, zastapic
warto$cia S, lub wykona¢ inwersje bitéw. Dodatkowo, operacja poréwnania i reakcji
na nie, moze by¢ wykonana na argumentach z wylaczeniem zadanych bitéw. Maski
podaje si¢ przed generowaniem obrazu sceny.

Przykladem uzycia bufora zliczania jest testowanie algorytméw wyznaczania wi-
docznosci. Funkcja poréwnania ustawiona jest wtedy na zwracanie zawsze prawdy a
wartosci w buforze po wykonaniu testu zwickszane sa o 1. Po narysowaniu calej sceny,
w kazdym miejscu bufora zliczania bedzie znajdowa¢ si¢ liczba narysowanych w tym
miejscu pikseli. Bufor zliczana stanowi tez niezbedny element jednej z bardzo popu-
larnych technik rysowania cieni, ktéra zostala opisana w nastepnym rozdziale.

3.4.3. Alpha-Blending

Alpha-blending jest ostatnim etapem generowania obrazu. Obliczony kolor piksela
staje sie¢ jednym z argumentéw funkcji, ktérej wynikiem jest kolor ostatecznie wpi-
sywany do bufora koloru. Nazwa tej techniki pochodzi od czwartego komponentu
wektora koloru, zwanego wspéteczynnikiem alpha. Dla przyktadu model RGBA ozna-
cza, ze pierwsze trzy skladowe opisuja kolor a czwarta dodatkowy wspdlczynnik alpha.
Wspétezynnik alpha ma z reguly taki sam format jak pozostale komponenty, najpopu-
larniejszy jest format 8-8-8-8, czyli 8 bitéw na kazda sktadows.
Funkcja, o ktérej mowa w poprzednim akapicie ma nastepujaca postac:

K =F¢Kqg+ FpKp, (332)

gdzie K oznacza ostateczny kolor wpisywany do bufora, Kg - obliczony przez jed-
nostke PSU kolor piksela a K - stary kolor znajdujacy si¢ w buforze koloru. Fjs i
Fp sa wspélczynnikami, z ktorych kazdy moze przyjac jedng z podanych w tab. 3.6
postaci. K¢ oznacza wartoS¢ koloru, ktory jest stalym parametrem ustalanym przed
generowaniem obrazu.

INVBLENDFACTOR

] Nazwa \ Wartosc ‘
ZERO (0,0, 0, 0)
ONE (1,1, 1, 1)
SRCCOLOR (Kg.r, Ks.g, K35, Ks. a)
INVSRCCOLOR (1—K5’r l—KS g,l—Ksb 1—KS CL)
SRCALPHA (Kga Ksa, Ksa KS CL)
INVSRCALPHA (1—Ks.a,1-Kg.a, 1— Ks.a, 1 — Ks.a)
DESTALPHA (KD(I KDCL KDCL KDCL)
INVDESTALPHA (1-Kp.a,1-—Kp.a,1—Kp.a,1—Kp.a)
DESTCOLOR (KDT KD g, KDb KD a)
INVDESTCOLOR (I1-Kpr 1-Kpg,1-Kpb, 1—Kp.a)
SRCALPHASAT (F, F. I,), gdzie f = min{Ks.a, I — Kp.a)
BLENDFACTOR (Kor, Ko.g, Kob, Kc.a)

(

17Kc7" 17Kog,17ch 17Kca)

Tablica 3.6: Wspdlezynniki uzywane podczas alpha-blendingu.

80

3.4. Operacje na buforach

Sktadowe koloru (r, g, b,) moga by¢ uzywane w mikroprogramach zamiennie z ozna-
czeniami wektora (z,y, z,w).

Podstawowym zastosowaniem alpha-blendingu jest symulacja przezroczystosci po-
wierzchni. W sktadowej alpha koloru powierzchni umieszcza si¢ wspélczynnik prze-
zroczystoSci i rysuje powierzchnie ze wspétczynnikami Fs = SRCALPHA i Fp =
INVSRCALPHA. W ten sposéb funkcja (3.32) interpoluje liniowo kolory Kg i K ze
wspélczynnikiem Kg.a. Przy stopniach przezroczystoSci réznych od % wszystkie obiekty
poélprzezroczyste nalezy rysowaé na ekranie od tytu do przodu. W przeciwnym wypadku
obraz wynikowy nie bedzie prawidlowy. Niestety sa przypadki, kiedy nie uda si¢ posor-
towac tréjkatéw w caloSci i trzeba stosowac bardziej zaawansowane techniki zeby ten
porzadek utrzymac.

Drugim przyktadem jest tzw. rendering wieloprzebiegowy. Obliczanie w mikropro-
gramie dla pikseli natezenia z kilku zrédet Swiatla jednocze$Snie moze okazac sie nie-
wykonalne. Brakuje kontroli przeptywu a ilo§¢ rozkazéw jest ograniczona. Pozostaje
wtedy narysowac tg samg geometrie kilka razy, ale umieszczajac w buforze koloru inne
wartosci. Najpierw rysuje sie natezenia pierwszego $wiatta. Przy kazdym kolejnym,
rysuje sie ten sam obiekt ze wspétczynnikami Fs = ONE i Fp = ONE. W ten spo-
s6b w buforze koloru znajdzie sie suma wszystkich natezen Swiatta. Ostatnim etapem
jest narysowanie obiektu kolorem powierzchni z parametrami Fs = DESTCOLOR i
Fp = ZERO, czyli mnozac kolor powierzchni przez natezenie Swiatla.

Takie podejScie ma jednak powazng wade. Doktadno$¢ liczb umieszczonych w
buforze koloru jest duzo mniejsza niz uzywanych bezposrednio w mikroprogramach.
Powstaja ogromne przeklamania w gradientach koloréw. Standardowy bufor koloru
ma dokladnos¢ 8 bitéw na sktadowa, co oznacza, ze kazda skladowa moze przyjac
maksymalnie 256 wartoSci. Rozwigzaniem moze by¢ rysowanie do tekstury w forma-
tach zmiennopozycyjnych, ale na nieszczeScie wspolczesne akceleratory nie umozliwiaja
alpha-blendingu wraz z formatami zmiennopozycyjnymi.

Nalezy wyraznie zaznaczy¢, ze kazda sktadowa koloru obliczonego przez jednostke
PSU jest obcinana do przedziatu [0, 1]. W buforze koloru odwzorowywanym na ekranie
nie mogg sie znalez¢& wartosci spoza niego. Bezposrednim powodem jest zakres inten-
sywnosci koloréw, ktéry jest w stanie wyswietlic monitor. Jesli rysujemy do tekstury,
to jest to mozliwe, ale tylko przy teksturach o formacie zmiennopozycyjnym.

81

Rozdziat 4

Technikil zaawansowane

Wyglad wygenerowanej sceny zalezy od stopnia skomplikowania metod uzytych do ob-
liczania koloru poszczegoélnych pikseli. Proste techniki, ktére uwzgledniajg kilka tekstur
i lokalny model o$wietlenia czesto nie wystarczaja, aby obraz byl zadowalajacej jakoSci.
W tym rozdziale sa przedstawione bardziej zaawansowane sposoby generowania obrazu,
ktore pozwalaja na nadanie scenie bardziej realistycznego oblicza. Nalezy pamigtac,
ze przedstawione tu metody nie maja na celu jak najlepszego odwzorowania rzeczywi-
stoSci, ale jedynie wywotanie u obserwatora wrazenia, ze obraz jest faktycznie zblizony
do rzeczywistego. Aby osiggnaé ten cel, czesto uzywane sg metody, ktére nie maja
podloza fizycznego a jedynie dajg optyczne podobienstwo do zjawisk zachodzacych w
realnym S$wiecie.

Opisane w tym rozdziale techniki sg jedynie skromnym wycinkiem mozliwo$ci, jakie
oferuja uklady graficzne. Wybrane zostaly te efekty, ktére demonstruja wykorzystanie
szerokiego zakresu mozliwoSci uktadu w mozliwie jak najbardziej r6znorodny sposéb.
Do kazdego podrozdziatu jest dotaczony program, ktéry demonstruje dzialanie opisy-
wanej techniki. Do jego uruchomienia jest potrzebny uklad graficzny, ktéry obstuguje
w pelni model mikroprograméw w wersji 2.0. W przypadku nie dysponowania tego
typu sprzetem, fragment dzialania kazdego z programoéw zostal nagrany do pliku AVI.

4.1. Faktura powierzchni i oSwietlenie

Kolor kazdego piksela jest obliczany wewnatrz mikroprogramu. Danymi wejSciowymi
sg atrybuty pochodzace z wierzchotkéw oraz ograniczona ilo$¢ stalych rzeczywistych.
Przy pomocy takiego mechanizmu nie jest mozliwa symulacja w czasie rzeczywistym
globalnych modeli o§wietlenia, gdyz informacje o wygladzie calej sceny nie zmieszcza sie
w rejestrach stalych. W typowych zastosowaniach miejsca wystarcza tylko na zapisanie
pozycji i atrybutéw punktowych zZrédet Swiatla.

Globalne modele o$wietlenia moga by¢ zastosowane, ale tylko pod warunkiem, ze nie
zaleza one od pozycji obserwatora na scenie. W takim przypadku, dane przeliczonego
wczesniej przez procesor gléwny oSwietlenia sg zapisywane w postaci tekstur i p6zniej
naktadane przez uklad statycznie na obiekty. W ten sposéb na powierzchni kazdego
tréjkata beda dostepne dane o intensywnoSci i kolorze rozproszonej skladowej oswie-
tlenia. Niestety, iloS¢ miejsca na tekstury réwniez jest ograniczona i ma to zasadniczy
wpltyw na dokladno$¢ tych danych (mata rozdzielczo$é tekstur).

Do niedawna, nawet symulacja lokalnych modeli o$wietlenia pozostawiala wiele do
zyczenia. Dopiero uktady w pelni programowalne i dostatecznie szybkie pozwolily na

83

Rozdziat 4. Techniki zaawansowane

stosowanie bardziej skomplikowanych metod. Wraz z lepszymi uktadami pojawity sie
réwniez mozliwoSci doktadniejszego symulowania optycznych wiaSciwosci materialow,
z ktérych skladaja sie poszczegdlne obiekty.

4.1.1. Symulacja nieré6wnosci powierzchni

Obiekty sceny skladaja sie z siatki potgczonych ze soba tréjkatéw. Bardzo szczegdtowe
odtworzenie obiektu wymaga ogromnej iloSci tréjkatéw, ktore opisuja jego ksztatt. W
przypadku, kiedy obiekt jest zbudowany z materiatu, ktérego powierzchnia jest nie-
réwna i chropowata, opisanie tych malych odksztalcen za pomoca osobnych tréjkatow
pociaga za soba bardzo duze koszty obliczeniowe. Ze wzgledu na stosunkowo nieduza
moc obliczeniowa wspotczesnych ukladéw graficznych, wszystkie elementy sceny musza,
sktadac si¢ z jak najmniejszej iloSci tréjkatéw.

Rozwigzaniem powyzszego problemu jest technika symulowania malych nieréwnosci
powierzchni za pomoca odpowiednio przygotowanych tekstur (ang. Bump Mapping).
Pomyst pochodzi z roku 1978, w ktérym James Blinn zaprezentowal te technike po raz
pierwszy [12].

Podstawowym komponentem obliczen zwiazanych z o$wietleniem jest wektor pro-
stopadly do powierzchni, zwany wektorem normalnym. Standardowo, wektor ten jest
obliczany na wierzcholkach obiektu i interpolowany na obszarze tréjkata. W celu do-
ktadnego odwzorowania nieréwnosci powierzchni, wektor normalny (x,y, z) jest zapi-
sany w teksturze pod trzema skladowymi koloru (r,g,b). Tekstura ta pokrywa cala
powierzchnie obiektu, wiec mikroprogram dla pikseli moze pobra¢ z tekstury wartoSc
wektora normalnego i uzy¢ go zamiast tego interpolowanego pomiedzy wierzchotkami
(rys. 4.43).

Jedynym problemem, jaki pojawia sie przy zastosowaniu powyzszej techniki jest
zgodno$¢ ukladéw odniesienia, w ktérych sa zapisane wektory normalne oraz wek-
tor kierunkowy Swiatla i obserwatora. Do poprawnego obliczenia wartosci natezenia
Swiatta wszystkie te wektory musza by¢ okreslone w tym samym ukladzie odniesienia.
Istnieja dwie metody rozwigzania tego problemu, z ktérych kazda ma swoje zalety i
wady.

Pierwsza z metod jest wygenerowanie tekstury w taki sposéb, aby wektory nor-
malne byly zapisane w tym samym ukladzie wspélrzednych, co wierzchotki obiektu
(ang. object space bump mapping). Obliczenie natezenia Swiatla nie pociaga za soba
koniecznosci zadnych dodatkowych obliczen. W stalych dla mikroprogramu podaje sie
wowcezas wspolrzedne obserwatora i pozycje Swiatta w uktadzie obiektu. Nastepnie mi-
kroprogram dla wierzchotkéw oblicza wektory kierunkowe obserwatora i Swiatta, ktére
sg pozniej interpolowane i normalizowane na powierzchni tréjkatéw. Mikroprogram dla
pikseli pobiera wektor normalny z tekstury za pomocg wspétrzednych, ktére na etapie
generowania mapy wektoréw normalnych zostaly przyporzadkowane do poszczegdlnych
wierzchotkéw. Pozostaje juz tylko obliczy¢ natezenie $wiatta wedlug wybranego mo-
delu.

Istotng wada tego rozwigzanie jest to, ze kazdemu punktowi na powierzchni obiektu
musi odpowiada¢ dokladnie jeden punkt na teksturze wektoréw normalnych. Dla przy-
kladu, jesli obiekt ma imitowa¢ mur i jego powierzchnia sklada si¢ z powtarzajacego sie
obok siebie wzoru cegly, to tekstura dla wektoréw normalnych bedzie niestety musiata

84

4.1. Faktura powierzchni i oswietlenie

a) b)

Rysunek 4.43: Wektor interpolowany na powierzchni obiektu (a) nie oddaje natury chro-
powatej powierzchni (b). Przygotowana mapa wektoréw normalnych (c) pozwala ten
efekt uzyskac.

zawiera¢ wzory nieréwnosci dla kazdej cegly. Jest to marnowanie miejsca w pamieci
karty graficznej, gdyz wystarczy jeden wzér nieréwnosci dla pojedynczej cegly, ktéry
bedzie powielany na obszarze muru przy pomocy jednego z trybéw adresowania tek-
stury (str. 58).

Jezeli priorytetem jest iloS¢ pamieci zajmowanej przez tekstury, mozna zapisac
wspohrzedne wektoréw normalnych w ukladzie tekstury (ang. texture space bump
mapping). W odréznieniu od poprzedniej metody, przygotowanie mapy nieréwnosci nie
wymaga znajomosci wygladu obiektu, na ktéry zostanie ona nalozona. Niech G ozna-
cza uktad wspétrzednych obiektu a T' uklad wspoétrzednych tekstury. Wersory uktadu
T pokrywaja si¢ z osiami U i V tekstury, czyli sa réwne odpowiednio U = (1,0,0),
V =1(0,1,0) i W = (0,0,1). Wersor W jest prostopadly do plaszczyzny tekstury. Je-
zeli na powierzchni nie ma by¢ zadnych chropowatosci, to wszystkie elementy tekstury
beda réwne (0,0, 1), czyli bedzie to wektor normalny skierowany prostopadle do plasz-
czyzny tekstury. Na prostokatnej powierzchni mapy nieréwnoSci mozna odwzorowac
powierzchnie na przyktad pojedynczej cegly.

W nastepnej kolejnosci mapa nieréwnosci jest naktadana na powierzchnie obiektu.
Kazdemu wierzchotkowi zostaje przyporzadkowana para wspétrzednych v € Riv € R,
ktére okreslaja polozenie wierzchotka na mapie nieréwnosci. W ten sposéb w kaz-
dym punkcie na powierzchni tréjkata sa znane wspétrzedne, pod ktérymi znajduje sie

85

Rozdziat 4. Techniki zaawansowane

wektor normalny Nr(u,v) zapisany w ukladzie odniesienia tekstury. Nalezy zauwa-
zy¢, ze pojedynczy wektor normalny moze byt przyporzadkowany wielu punktom na
powierzchni obiektu. Mozna to osiagnac stosujac adresowanie w trybie powtarzania,
wtedy kazdy punkt z przyporzadkowanymi wspotrzednymi (i+p, j+q), gdzie {i,j} € Z
i{p,q} €{[0,1),[0,1)}, bedzie mial identyczny wektor normalny (w ukladzie T').

Oprécz tych wspétrzednych, potrzebne sa jeszcze informacje o orientacji uktadu tek-
stury wzgledem ukladu odniesienia obiektu G. Macierz My_,o € R3%3, ktéra odpowiada
transformacji wektora kierunkowego z uktadu 7' do G, moze by¢ inna dla kazdego tréj-
kata. Z zalozenia, plaszczyzna U/V ukladu T pokrywa si¢ z plaszczyzna wyznaczona
przez powierzchnie tréjkata (rys. 4.44). Postaé macierzy Mr_ jest przedstawiona
ponizej:

Mr_¢= (Us Vo Ne),

gdzie Ug 1 Vg oznaczaja wersory ukladu 7' o wspélrzednych zapisanych w ukladzie

G:

oxr Oy 0z ox 0Oy az)
U= 2L ZZ), Vo= =22 ZZ), Ng=VexUg. 4.33
“ <0u ou 8u> “ (8v ov Ov “ G e (4.33)
(Xl’yl,zl)

V

G UG

(X3iy3,23) (XZ’yZ,ZZ)

uktad G

Rysunek 4.44: Wersory U i V' ukladu tekstury 7' i ich odpowiedniki U i Vi w ukladzie
obiektu G.

Ze wzgledu na bledy podczas nakladania tekstury z wektorami normalnymi na
obiekt, wektory Ugs i Vi moga mie¢ dlugosci rézne od 1 i mogg tez nie by¢ do sie-
bie prostopadle (rys. 4.44). Podczas transformacji wektoréw kierunkowych spowoduje
to niepozadane znieksztalcenia ich kierunku i dlugosci. Sa one niepozadane, poniewaz
zasada obowigzujacag podczas nakladania jakiejkolwiek tekstury na obiekt jest zacho-
wanie proporcji i kwadratowego ksztaltu tekseli na powierzchni tréjkatéow. Waszelkie
odstepstwa od tej reguly sa wynikiem bledéw i nie powinny mie¢ wplywu na kierunek

86

4.1. Faktura powierzchni i oswietlenie

transformowanych wektoréw. Wektory skladajace sie na macierz Mr_.g sa w pierwszej
kolejnosci normalizowane a pdzniej ortogonalizowane, na przyktad metoda Grahama-
Shmidta:

Us = Ug— (Ng-Ug)Ng,
Ve — (Ng - Ve)Ng — (Ug - V) Ug,
Ne¢ = Ng

3
[

ktéra w przypadku zaleznoéci (4.33) redukuje si¢ do:

UG = UG:
Vo = Vo— (Ug-Ve)Ug,
NG = Ng.

Macierz Mg .7, ktéra odpowiada transformacji wektora kierunkowego z uktadu G
do uktadu tekstury 7', ma postac:

Mo r= | VZ

Przy pomocy macierzy Mg _,r mozna dokona¢ transformacji wektoréw kierunkowych
Swiatta i obserwatora do ukladu tekstury 7. Po wykonaniu tej operacji i pobraniu z
tekstury wektora normalnego Nr(u,v) mozliwe jest juz obliczenie natezenia $wiatta.

Podobnie jak w przypadku zwyklego oSwietlania obiektow, wektory skladajace sie
na macierz Mqg_,r sa uSredniane na wierzchotkach, ortogonalizowane i interpolowane
na powierzchni tréjkatéw. Daje to wrazenie wygladzenia o$wietlenia na krawedziach
pomiedzy tréjkatami.

Schemat pracy uktadu graficznego w przypadku tej metody sprowadza si¢ do in-
terpolacji wektoréw Ug, Vi i Ng pomiedzy wierzchotkami tréjkatéw by nastepnie w
mikroprogramie dla pikseli znormalizowac je i zlozy¢ w macierz Mq_.p. Dla kazdego
generowanego piksela wektory kierunkowe $wiatel i obserwatora sa transformowane do
uktadu 7', po czym nastepuje obliczenie natezenia Swiatta przy pomocy wektora normal-
nego Nr(u,v). Ponowna ortogonalizacja wektoréw macierzy Mq_.r w mikroprogramie
dla pikseli jest opcjonalna. Przy dobrze nalozonej mapie nieréwnosci i odpowiednio
duzej ilosci tréjkatéow sktadajacych sie na obiekt, znieksztatcenia spowodowane inter-
polacja powinny by¢ niezauwazalne.

Interesujacym sposobem wykorzystania pierwszej z zaprezentowanych tutaj metod
jest szybkie rysowanie bardzo szczegélowych pod wzgledem geometrii modeli. Po za-
projektowaniu modelu, ktéry sklada sie z kilkudziesieciu lub nawet kilkuset tysiecy
tréjkatéw, generowany jest automatycznie model o znacznie mniejszej iloSci tréjkatow.
Jest to mozliwe przy zastosowaniu wielu ogélnie dostepnych algorytmoéw do reduk-
cji ilosci Scian obiektow. Nastepnie dla modelu o malej ilosci Scian jest generowana

87

Rozdziat 4. Techniki zaawansowane

mapa nieréwnoSci powierzchni, ktéra powstaje dzigki informacji pochodzacej od do-
kladnej wersji modelu. Algorytmy wykonujace ta operacje sa dos¢ skomplikowane w
konstrukgji, ale efekt uzyskany dzigki nim jest zdumiewajacy (rys. 4.45).

Rysunek 4.45: Po lewej stronie normalnie o$wietlony model (ok. 1000 tréjkatéw). Po
prawej ten sam model o§wietlony przy uzyciu wcze$niej wygenerowanej mapy nierow-
noSci powierzchni. Oryginalny model jest zbudowany z 35000 tréjkatéw.

Do pracy zostal dotaczony program, z ktérego pochodzi powyzsza ilustracja. Znaj-
duje sie on w katalogu /programy/4 1 1. Tre$¢ mikroprograméw uzytych w programie
jest dostepna w pliku z rozszerzeniem *.fx w tym samym katalogu.

4.1.2. Tekstury proceduralne

Klasyczne materialy uzywane podczas generowania obrazéw sa skonstruowane z dwu-
wymiarowych tekstur, nakladanych na powierzchnie tréjkatéw. Budowa obiektu czesto
uniemozliwia nalozenie tekstury w sposéb, ktory da zadowalajace wyniki. Czesto spo-
tykanym efektem ubocznym sg nieciggtoéci koloréw powstale na styku dwoéch tréjkatéw,
na ktoére zostata natozona tekstura. Przy duzym skomplikowaniu siatki obiektu takich

88

4.1. Faktura powierzchni i oswietlenie

miejsc moze by¢ bardzo duzo. Drugim problemem jest zachowanie proporcji teksela na
powierzchni obiektu. Im mniej nieciggloSci, tym bardziej zdeformowana i rozciagnieta
moze by¢ tekstura. Nie istnieja automatyczne algorytmy, ktére w kazdej sytuacji beda
generowaé poprawne wizualnie wyniki. Co wiecej, w wielu przypadkach jest to po
prostu niemozliwe.

Czesciowym rozwigzaniem powyzszego problemu jest stosowanie zupelnie innego
rodzaju opisu materialéw. W 1983 roku Ken Perlin wymyslit sposéb, ktéry umozliwia
opisanie koloru powierzchni za pomoca funkeji o tréjwymiarowej dziedzinie [13]. Jako
argumenty tej funkcji podawane sg wspélrzedne punktu w R3, dla ktérego ma byé
obliczony kolor. Jeden opis materiatu wystarczy do pokrycia nim obiektéw o dowolnym
ksztalcie i topologii. Oczywiscie bardzo trudno jest opracowac tego typu funkcje dla
wszystkich materialéw. Metoda ta daje jednak doskonate wyniki dla tych zbudowanych
na bazie fraktali, a wiec opartych na samopodobienstwie. Dla przyktadu moze to by¢
kamien lub drewno.

Metoda Kena Perlina opisuje tylko podstawowe mechanizmy, ktére stanowig niejako
aparat do konstruowania bardziej realistycznych efektéw. Ostateczny ksztalt obliczen
zalezy wylacznie od pomystowosci twércy i nie ma tu zadnych $cisle obowigzujacych
regut.

W pierwszej kolejnosci nalezy wygenerowaé trojwymiarows teksture szumu. Tek-
stura ta sktada si¢ z wartoSci wybranych losowo lub pseudolosowo, ktore sa pdzniej
rozmywane za pomoca filtréw. Losowe liczby naleza do przedziatu [0,1] i sa roztozone
rownomiernie na przestrzeni tekstury, niekoniecznie w kazdym tekselu jedna. Aby uzy-
ska¢ szum o mniejszej ziarnistoSci, losuje sie liczby co kilka tekseli i péZniej rozmywa w
taki sam sposéb (lewa strona rys. 4.46). Odwrotno$¢ odleglosci pomiedzy probkami jest
czestotliwoscig szumu. Filtrowanie jest przeprowadzane tak, aby naprzeciwlegle Sciany
tekstury wolumetrycznej byly identyczne. Przy uzyciu trybu powtarzania adresowa-
nia tekstury, mozna indeksowaé ja wspéhzednymi poza przedziatem [0,1) zachowujac
ciaglos§¢ danych.

Rysunek 4.46: Po lewej stronie przekréj tekstury szuméw. Po prawej, obraz powstaly
po odpowiednim zsumowaniu szumoéw o malejacych czestotliwosciach.

89

Rozdziat 4. Techniki zaawansowane

Podstawowa operacja jest sumowanie szumow o réznych czestotliwoSciach. Przykta-
dowo, jezeli szum dany jest funkcja N(z, vy, 2), przy obliczaniu koloru mozna zastosowaé
nastepujaca zaleznosc:

1
c= Z EN(na;, ny,nz). (4.34)
1

Funkcje tego typu, ze wzgledu na ich nature, zwane sa sumami fraktalnymi. Efekt
dzialania réwnania (4.34) mozna zobaczy¢ po prawej stronie rys. 4.46.

Przy tworzeniu materialéw proceduralnych dozwolona jest pelna dowolnos¢ ksztattu
obliczen. Podczas generowania koloru w punkcie, stosuje sie dowolne funkcje mieszajace
dane z tekstury szumu. Oproécz réznego rodzaju sum fraktalnych czesto uzywane sa
filtry dolno i gérno przepustowe, funkcje mieszajace kolory oraz tekstury pomocnicze.

Przyktad materialu proceduralnego jest przedstawiony na rys. 4.47. Funkcja obli-
czajaca kolor pochodzi z biblioteki materialéw profesjonalnego systemu generowania
obrazu Renderman firmy Pixar.

Rysunek 4.47: Przykilad materialu proceduralnego.

90

4.1. Faktura powierzchni i oswietlenie

Rola uktadu graficznego w przypadku materialéw proceduralnych polega na obli-
czeniu w mikroprogramie dla pikseli koloru, korzystajac z wolumetrycznej tekstury
szumu. Dane wejSciowe stanowia wspoélrzedne wierzchotkow, ktére sg interpolowane
przez uklad na powierzchni calego tréjkata. Pozycja wierzchotka jest zapisywana w
rejestrach wyjsciowych mikroprogramu dla wierzchotkéw i pobierana po interpolacji z
rejestréw wejsciowych jednostki PSU.

Model z rys. 4.47 mozna obejrze¢ interaktywnie, uruchamiajac dotaczony do pracy
program. Znajduje sie on w katalogu /programy/4 1 2 a mikroprogramy wykonywane
przez karte graficzng sg w pliku z rozszerzeniem *.fx w tym samym katalogu.

4.1.3. Odbicie i zalamanie Swiatla

Odbicie i zalamanie $wiatta jest naturalnym zjawiskiem podczas rozchodzenia si¢ $wia-
tla. Powstalo wiele algorytmoéw, ktére w mniejszym lub wigkszym stopniu oddaja na-
ture tego zjawiska. Jednym z nich jest popularna metoda §ledzenia promieni. Niestety,
przy uzyciu akceleratoréw graficznych generowanie obrazu ta technika jest niemozliwe.
Podczas obliczania koloru piksela przez mikroprogram, nie sa dostepne informacje o
budowie i pozycji obiektéw otaczajacych przetwarzany aktualnie tréjkat. Opracowane
zostaly jednak metody, ktére pozwalajg na prowizoryczne odtworzenie tych zjawisk.

Zgodnie z zasadami metody $ledzenia promieni, promien (L) biegnacy od obser-
watora rozdziela sie w momencie przeciecia z powierzchnig obiektu na dwie czeSci,
sktadowa odbita R; oraz skladows zalamana Rp (rys. 4.48). Po przejSciu promienia
Rp przez osrodek, rozdziela si¢ on w punkcie p, na kolejne dwie sktadowe, Ry o) i Rp(2).
Przy pomocy ukladu graficznego mozna zasymulowa¢ wylacznie pierwsze rozdzielenie
sie promieni, poniewaz mikroprogram obliczajac kolor w punkcie p nie posiada infor-
macji o rozmieszczeniu wszystkich obiektéw na scenie. Co wiecej, nie jest w stanie
znalez¢ dalszych punktéw przecigcia promieni Ry i Rp.

0L R,

RF(Z)

Rysunek 4.48: Metoda $ledzenia promieni.

91

Rozdziat 4. Techniki zaawansowane

Wektory R; i Rp mozna wykorzystac jako wspolrzedne tekstury kubicznej. Przy
odpowiednio spreparowanej teksturze, warto$¢ pobranego koloru bedzie odpowiadac
kolorowi $§wiatta emitowanego z tego kierunku przez dalekie otoczenie. Wigcej na ten
temat mozna znalez¢ w podrozdziale 3.2.2.

Nalezy zauwazyc¢, ze sktadowa Swiatta odbitego bedzie prawidlowa, ale zalamanego
juz nie. Podczas pobierania koloru $wiatla emitowanego przez dalekie otoczenie powi-
nien by¢ uzyty wektor Rp(2) a nie Rp (rys. 4.48).

Wektory Ry, i Rp obliczane sa wedlug nastepujacych zalezno§ci [14]:

Ry, =L —2(L-N)N, gdzie N to wektor normalny powierzchni,

Rp = —kN + (L — (L - N)N), gdzie k = \/1 - (9>2(1 —(L-N)).

C1 1

Wspdtezynniki ¢; i ¢o oznaczaja odpowiednio indeksy refrakcji oérodka na zewnatrz

i wewnatrz obiektu. Jesli % (1—(L-N)?) > 1 to $wiatlo nie zalamuje si¢. Operacje
1
odbicia i zalamania wektora sg standardowo wbudowane w jezyk HLSL.

Podczas obliczania ostatecznego koloru piksela, kolory obu sktadowych musza by¢ ze
soba polaczone. Shuzy do tego wspoélezynnik Fresnela f [15], ktéry okreéla ile procent
Swiatta docierajacego do obserwatora pochodzi ze sktadowej odbitej od powierzchni
obiektu. Im wigkszy kat, pod ktérym obserwator patrzy na powierzchnie, tym wiecej
wktadu do koloru ma sktadowa odbita a mniej sktadowa zalamana. Obliczenie doktad-
nego wspolczynnika Fresnela jest bardzo kosztowne, dlatego trzeba uzy¢ aproksymacji.
Jedno z dobrych przyblizen jest opisane w pracy [16], ma ono nastepujaca postac:

f=R+(1-R)(1+L-N)°, gdzie R = ———

Ostateczny kolor piksela dany jest wzorem:

K:fKR+fKF7

gdzie Kr i Kr oznaczaja odpowiednio kolory pochodzace ze sktadowej odbitej i
zalamane;j.

Wykorzystanie tej techniki niewiele rézni si¢ od zwyktego oSwietlania obiektu. Oprécz
wektora odbitego Ry, w mikroprogramie dla pikseli jest obliczany jest réwniez wektor
zalamania Rp, oba stuzg jako wspétrzedne dla tektury kubicznej z mapa oSwietlenia.
Po uwzglednieniu wspétezynnika Fresnela kolor wynikowy jest wpisywany do bufora.

W katalogu /programy/4 1 3 znajduje si¢ program wykorzystujacy opisang w tym
podrozdziale technike (rys. 4.49). Uzytkownik moze przetaczy¢ program na tryb ryso-
wania wylacznie skladowej odbitej, rozproszonej lub obu jednocze$nie. Wykorzystane
mikroprogramy wraz z komentarzami znajdujg si¢ w pliku z rozszerzeniem * fx.

92

4.2. Clienie

Rysunek 4.49: Przykilad wykorzystania efektu odbicia i zalamania $wiatta. Obie skla-
dowe potaczone wspotczynnikiem Fresnela przedstawia dolna czeSci rysunku.

4.2. Cienie

Dynamicznie obliczane cienie naleza do najtrudniejszych do wykonania, ale réwnocze-
$nie najbardziej pozadanych efektéw. Nadaja scenie realistycznego wygladu i klima-
tycznodci. Architektura ukladéw graficznych pozwala na symulacje wylacznie $wia-
tet kierunkowych oraz punktowych, co implikuje ostre krawedzie cieni. Stosowane sa
metody ich wygladzania, ale nie ma to nic wspélnego z rozmyciem spowodowanym
geometrig zrodel Swiatla.

Powszechnie stosowane sg dwa sposoby wyznaczania cieni, oba sa w pelni realizowane
przez akceleratory. Kazdy z nich posiada powazne wady i nie nadaje si¢ do wszystkich
rodzajéw scen. Oba réznig sie od siebie konstrukcjg oraz wygladem wygenerowanych
cieni. Pierwsza metoda wykorzystuje tzw. mape cieni i jest nieco szybsza, ale za to
mniej dokladna od drugiej, opartej na geometrycznych brytach cieni.

93

Rozdzial 4. Techniki zaawansowane

Wady obu technik wynikaja bezposrednio z ograniczonych zasob6w i niedostatecznej
mocy obliczeniowej karty. Dla przykladu, mapa cienia bardzo duzej rozdzielczoSci jest
stosowana w profesjonalnych systemach generowania obrazu, takich jak Renderman.
Wysoka rozdzielczo$té gwarantuje bardzo dobra jakoS¢ obrazu, ale tego typu efekt jest
na razie nieosiagalny w systemach czasu rzeczywistego. Rozmyte krawedzie cieni mozna
bardzo tatwo uzyska¢ stosujac kilkadziesiat punktowych zrédet $wiatta, imitujacych
jedno zrédlo w ksztalcie na przyktad kuli. By¢ moze przysziej generacji karty beda w
stanie podola¢ takiemu wyzwaniu.

4.2.1. Mapa cienia

Metoda mapy cienia jest realizowana w dwéch przebiegach. Pierwszy z nich rysuje cala
scene z perspektywy zrédla $wiatla, wypehiajac bufor koloru warto$ciami odlegtosci
od $§wiatla rysowanych punktéw. W ten sposéb powstaje mapa glebokoSci, w ktorej
sg zapisane odlegtosci najblizszych §wiattu punktéw sceny w danym kierunku. Bufor
koloru ma ksztalt prostokata, wiec obszar o$wietlany bedzie musial mie¢ posta¢ stozka
lub prostopadloscianu, w zaleznosci od przeksztalcenia rzutujacego uzytego podczas
rysowania.

W drugim etapie scena jest juz rysowana z perspektywy obserwatora. Dla kazdego
generowanego piksela, wspotrzedne punktu na trdjkacie sa tak przeksztalcane, aby po-
réwnac jego odleglosc¢ od swiatta. Poréwnanie jest wykonywane przy pomocy wartoSci
we wezedniej wygenerowanej mapie glebokoSci (mapy cienia). Jezeli odleglto$¢ punktu
od $wiatla jest mniejsza lub réwna niz ta zapisana w mapie cienia, to punkt nie jest w
cieniu. W przeciwnym wypadku punkt lezy w cieniu i jest rysowany wylacznie kolorem
globalnego o$wietlenia (rys. 4.50).

Rysunek 4.50: Mechanizm dzialania metody mapy cienia. Punkty p; i ps leza w cieniu.

94

4.2. Clienie

Niech macierz My reprezentuje przeksztalcenie z uktadu sceny do uktadu obserwa-
tora, wraz z przeksztalceniem rzutujacym. Macierz M réwniez ma podobng postac,
ale z punktu widzenia $wiatlta. O$§ Z ukladu zrédila Swiatla pokrywa sie z kierun-
kiem jego padania na scene. W pierwszej kolejnoSci, obiekty sceny sg rysowane przy
uzyciu macierzy M. Program dla wierzchotkéw, jako jeden z atrybutéw wyjsciowych
przekazuje wspoélrzedng z oraz w do mikroprogramu dla pikseli. Wspélrzedne te sg
wynikiem pomnozenia wspétrzednych wierzchotka przez macierz Mp. Po interpolacji
obu tych atrybutéw na powierzchni tréjkata przez ukitad, w mikroprogramie dla pik-

seli wyznaczana jest warto$¢ odleglo$ci punktu poprzez podzielenie z przez w: 2/ = —.
w
Nalezy zauwazy¢, ze rownocze$nie ta sama operacje wykonal niejawnie w miedzycza-

sie uklad, w celu wyznaczenia widocznosci w buforze-Z oraz pozycji we wspétrzednych
kanonicznych:

x x/w
v | =1v/w
z' z/w

Oprécez tego, uklad przeksztalcit wspoétrzedne kanoniczne do uktadu bufora koloru,
stosujac zaleznos¢ (3.15):

| |5 0 0O | e 47,
AR [2 I

Mikroprogram wpisuje do bufora koloru pod wspéhzednymi (Z,y) warto$é 2’. Jest
to specjalnie utworzony bufor koloru, ktéry moze byt pézniej wykorzystany jako tek-
stura. Jego format jest z reguly jednokomponentowy i o jak najwigkszej dokladnosci,
na przyktad 32 bitowej liczby rzeczywistej na piksel. Dokladnie tg sama operacje prze-
prowadzit uktad w buforze-Z. Niestety, w API DirectX nie ma mozliwosci skopiowania
bufora-Z do tekstury w celu pézniejszych operacji, wiec praktycznie te same dane sa
wpisywane dwukrotnie. OczywiScie to bufor-Z wykonuje testy widocznosci, w mikro-
programie nie sa wykonywane zadne poréwnania. W ten sposéb stworzona zostala
mapa cienia.

Nastepnym krokiem jest narysowanie sceny przy uzyciu macierzy Mo z punktu
widzenia obserwatora. Przed wykonaniem tego kroku, bufor koloru jest ustawiany na
normalny a mapa cienia jako tekstura zostaje podiaczona do rejestru probkujacego
tekstury.

Mikroprogram dla wierzchotkéw wykonuje najpierw wszystkie operacje potrzebne
do narysowania obiektéw, czyli mnozy wspélrzedne wierzchotka przez macierz Mp. Na-
stepnie generuje drugg kopie wspotrzednych, ale tym razem przemnazajac wspétrzedne
wierzchotka przez macierz M. Wszystkie 4 otrzymane liczby (x 1, yr, 21, wr) umieszcza
w atrybutach przeznaczonych do interpolacji (na przyktad w rejestrze TEX COORDO).

Mikroprogram dla pikseli otrzymuje przeinterpolowane wspotrzedne i wykonuje dzie-
lenie przez wp:

' xp/wyg
?/L = yL/wL
27 zr/wy,

95

Rozdzial 4. Techniki zaawansowane

Po tej operacji, warto$¢ 2 jest juz gotowa do poréwnania, ale nie jest jeszcze znana
pozycja tego punktu na mapie cienia. Po przeanalizowaniu drogi, jaka przebyt punkt
rysowany do mapy cienia, jedyng potrzebna jeszcze operacja jest transformacja wspot-
rzednych kanonicznych (2 , v}) do ukltadu mapy cienia (4.35). Otrzymang pare (T, 9r,)
mikroprogram wykorzystuje jako wspéirzedne do pobrania wartosci odleglosci z tek-
stury cienia. Po wykonaniu poréwnania z 27 mikroprogram uzyskal informacje czy
punkt ten lezy w cieniu czy nie.

Technika ta ma dwie powazne wady. Mapa cienia ma ograniczong rozdzielczosc
i dokladno$é. Objawia si¢ to powaznymi bledami w wygenerowanym obrazie (rys.
4.51). Cienie maja zebate krawedzie (rozdzielczoéé) oraz nie przechodza plynnie przez
wszystkie tréjkaty w czasie ruchu $wiatta (dokladnosc).

Zwigkszy¢ doktadnos¢ wartoSci odlegloSci mozna zapisujac do mapy cienia nie war-

Z
to$¢ 2/ = —, ale zwykla odleglo$¢ punktu od Zrédia $wiatta. WartoS¢ ta mozna uzyskaé
w

po pomnozeniu wspétrzednych wierzchotka przez macierz M pozbawiong przeksztal-
cen rzutujacych. W ten sposéb odleglo$¢ bedzie réwnomiernie wykorzystywata calg
przestrzen liczb zmiennopozycyjnych.

Zeby na krawedziach zostang czeSciowo wyeliminowane, jesli wykonane zostang
cztery poréwnania odleglosci z liczbg 2’. Po obliczeniu wspéhrzednych (zp,, 3j1,) poréw-
nane beda odleglo$ci mapy cienia o wspotrzednych (Z, 1), (T + 1,91), (Tr, g + 1),
oraz (Tp + 1,9, + 1). Zerojedynkowe wyniki tych poréwnan sa pézniej uéredniane. W
ten sposob cien na krawedziach przechodzi plynniej i zgby nie sa az tak ostre.

09

Rysunek 4.51: Bledy spowodowane mata rozdzielczoScig i niedokladnosciag mapy cienia.

Program znajdujacy sie w katalogu /programy/4 2 1 demonstruje dzialanie metody
mapy cienia (rys. 4.52). Wraz z nim w pliku z rozszerzeniem *.fx s umieszczone
mikroprogramy z komentarzami.

96

4.2. Cienie

T

Rysunek 4.52: Po lewej stronie scena wygenerowana przy pomocy mapy cienia. Po
prawej, normalnie o$wietlona rzezba.

4.2.2. Cienie wolumetryczne

Metoda cieni wolumetrycznych opiera sie na wlasnosciach tzw. bryl cienia. Bryla
cienia to wycinek bryly podobnej do Scigtego stozka. Jego mniejsza podstawa sklada
sie z odwréconych przodem do zrédia §wiatla Scian obiektu. Sciany boczne sa oparte
na wierzchotkach brzegowych podstawy i rozciagniete w kierunku padania §wiatla (rys.
4.53). Kazdy punkt, ktéry znajduje sie¢ we wnetrzu bryly cienia znajduje si¢ w cieniu
obiektu. Dla uproszczenia algorytmu zaklada sie, ze kazdy obiekt jest bryla zamknieta,
dlatego srodek obiektu mozna réwniez uznac¢ za obszar znajdujacy si¢ w cieniu.

W celu sprawdzenia czy rysowany punkt lezy w cieniu, nalezy poprowadzi¢ pélprosta
biegnaca od rysowanego punktu do nieskonczonosci, w kierunku zgodnym z kierunkiem
patrzenia obserwatora (rys. 4.53). Zaczynajac od czeSci polprostej znajdujacej sie w
nieskonczonosci, nalezy poruszac sie¢ w kierunku rysowanego aktualnie punktu, oblicza-
jac liczbe §cian bryt cienia przecinanych przez ta polprosta. JeSli réznica liczby Scian
zwréconych tytem do obserwatora i zwréconych przodem do niego jest wieksza od zera,
to punkt jest w cieniu.

97

Rozdzial 4. Techniki zaawansowane

Rysunek 4.53: Idea dziatania metody cieni wolumetrycznych. Punkt p, jest w cieniu a
punkt ps nie.

Obiekty musza by¢ zamkniete, ale nie musza by¢ wypukte. W takim przypadku,
kazdy obiekt bedzie posiadatl wigcej niz jedna stozkowatg bryte cienia.

Do poprawnego funkcjonowania algorytmu, niezbedne jest zamkniecie bryly cienia
z obu stron. Pierwszg strone zamykaja Sciany obiektu zwrécone przodem do Zrédia
Swiatta. Drugg moze zamyka¢ dowolny ksztalt, ale najczesciej wykorzystuje sie do tego
wysuniete na odpowiednio duza odleglos¢ te Sciany obiektu, ktére sg zwrdcone tytem
do Zrédta swiatla.

Na potrzeby sprzetowej realizacji tego pomystu, zostala wymyslona sprytna metoda
konstrukeji bryt cienia. W pierwszej kolejnoSci wszystkie modele sg kopiowane. Kazda
krawedz kopii obiektu jest rozspajana i taczona przez dwa tréjkaty o zerowym polu
(rys. 4.54). Kazdemu wierzchotkowi jest przyporzadkowywany wektor normalny ory-
ginalnego tréjkata, ktorego czedcig jest ten wierzchotek. W takiej postaci obie wersje
obiektu sa zapisywane w pamieci.

W celu obliczenia ksztaltu bryly cienia dla konkretnej pozycji swiatta, wierzchotki
wszystkich tych Scian, ktére sa zwrécone tylem do zrédia Swiatla, sa wysuwane na
znaczng odlegltos¢. Aby sprawdzi¢, ktére to sa wierzcholki, nalezy wykona¢ iloczyn
skalarny wektora kierunkowego $wiatla z wektorem normalnym zapisanym w wierz-
chotku. W ten sposéb zostang wysuniete tylko niezbedne Sciany a obiekt nie zostanie
rozspojony. W przypadku, kiedy oba sasiadujace ze soba trdjkaty zostang wysuniete
lub oba nie zostang wysuniete, dwa spajajace je na krawedzi tréjkaty nadal beda miaty

98

4.2. Clienie

zerowe pole. Pozostale trojkaty spajajace beda stanowily Sciany boczne bryly cienia
(czerwone tréjkaty na rys. 4.54).

Rysunek 4.54: Wierzcholki bryly cienia obrécone tytem do $wiatla zostaja wysuniete.

Podczas generowania cieni przez uklad graficzny, intensywnie wykorzystywany jest
bufor zliczania. Jest on elementem niezbednym do narysowania cieni metoda wolume-
tryczna.

Proces nakladania cieni sklada si¢ z trzech etapéw. W pierwszym, scena jest ry-
sowana przy uzyciu wylacznie globalnej sktadowej oSwietlenia. Sktadowa rozproszona
oraz zwierciadlana beda narysowane pézniej. Po wykonaniu tego kroku, w buforze
koloru znajduja sie obiekty w takim kolorze, w jakim bylyby w cieniu. Bufor-Z zo-
stal wypelniony i zawiera odlegtosci najblizszych obserwatorowi punktéw, w kazdym z
kierunkéw wyznaczonych przez pozycje pikseli.

W drugim etapie rysowane sa wylacznie bryly cienia. Wysuwaniem wierzchotkéw
zajmuje sie catkowicie uktad graficzny. W mikroprogramie dla wierzchotkéw jest prze-
prowadzany test, ktéry daje liczbe 0 lub 1, w zaleznosci od wartosci iloczynu skalar-
nego wektora normalnego i kierunkowego $wiatla. Kazdy wierzchotek jest wysuwany
o pewng ustalong odleglo$¢ pomnozong przez wynik testu. W ten sposéb wysuniete
zostang wierzcholki tylko tych Scian, ktére sa zwrécone w kierunku padania Swiatta.

Bryly cienia nie sg rysowane do bufora koloru, ale wylacznie do bufora zliczania.
Zapisywanie do bufora koloru zostaje wcze$niej zabronione. Bufor-Z jest wykorzysty-
wany tylko do odczytu i rysowane sg wylacznie te punkty, ktére leza nie blizej niz te
narysowane w poprzednim etapie. Dzieje sie tak, gdyz algorytm nie potrzebuje spraw-
dza¢ zacienienia punktéw lezacych przed obiektami sceny, tym samym nie sg istotne
informacje o Scianach bryl cienia znajdujacych sie przed nimi.

Test kontrolujacy bufor zliczania jest ustawiany na zwracanie zawsze prawdy, wiec
kazdy narysowany piksel bedzie zmieniat wartosci w buforze. Jezeli éciana bryly cienia

99

Rozdzial 4. Techniki zaawansowane

jest zwrécona tylem do obserwatora, to warto$¢ dla piksela w buforze zliczania jest
zwigkszana o jeden. Je§li $ciana jest zwrécona przodem, to warto$¢ w buforze jest
zmniejszana o jeden. Po wykonaniu tego kroku, w kazdym pikselu bufora zliczania
znajdzie sie wspomniana wczedniej réznica liczb $cian. Jest to doktadne odwzorowanie
procesu pokazanego na rys. 4.53.

Przed rozpoczeciem trzeciego etapu, w buforze zliczania kazdemu pikselowi jest przy-
porzadkowana liczba, okreslajaca czy znajduje sie on w cieniu. Jezeli wartos$¢ ta jest
réwna zero, to punkt powinien by¢ normalnie o$wietlony. Pozostaje tylko narysowac
cala sceng, dodajac do bufora koloru sktadowsa rozproszong oraz zwierciadlang. Test
bufora zliczania jest ustawiany tak, aby zwraca¢ prawde wytacznie wtedy, gdy wartosc
znajdujaca sie w nim jest rowna zero. W przeciwnym razie piksel nie jest rysowany.
Tym sposobem do bufora koloru zostana dodane pozostale skladowe jedynie wtedy,
kiedy rysowany punkt nie znajduje si¢ w cieniu.

Opisana powyzej metoda generowania cieni jest pozbawiona wad jej poprzedniczki.
Cienie sg zawsze doskonalej jakoSci, ale ich krawedzie moga wydawac sie bardziej ostre.
Powodem jest to, ze o stopniu zacienienia piksela decyduje tylko jedna prébka, wiec
jest to warto$¢ zerojedynkowa. Nie jest mozliwe jakiekolwiek filtrowanie krawedzi (rys.
4.55).

Czesto ze wzgledu na duze skomplikowanie sceny, cienie wolumetryczne sa duzo
wolniejsze od tych wygenerowanych przy pomocy mapy cienia. Bryly cienia sg rysowane
jedna na drugiej, przez co ich ilos¢ i rozpietos¢ ma decydujace znaczenie dla predkoSci
dziatania programu.

Rysunek 4.55: Metoda cieni wolumetrycznych generuje bardzo ostre krawedzie cieni.

Program demonstrujacy technike cieni wolumetrycznych znajduje si¢ w katalogu
/programy/4 2 2. Zrédta mikroprograméw dla ukladu graficznego sa w pliku z roz-
szerzeniem *.fx w tym samym katalogu.

100

4.3. Przetwarzanie obrazu

4.3. Przetwarzanie obrazu

W tym podrozdziale opisane s3 dwa wybrane procesy przetwarzania obrazu. Ope-
ruja one na danych znajdujacych sie w buforach juz po wygenerowaniu calej sceny.
Do niedawna wszelkiego rodzaju filtry pelmoekranowe bylty niemozliwe do wykonania,
gléwnie ze wzgledu na bardzo malta predkos¢ ukladéw graficznych. Nawet najprost-
szy filtr pelnoekranowy wymaga ogromnej liczby operacji pobierania danych na kazdy
przetwarzany piksel obrazu.

Najwiekszy problem pozostal jednak aktualny do dzi§. W czasie obliczania koloru
nie ma mozliwosci korzystania z informacji o sasiednich pikselach. Jest to spowodo-
wane wielopotokowa architektura, ktéra przyspieszajac wielokrotnie dziatanie uktadu,
réwnocze$nie utrudnia wykonanie nawet najprostszego rozmycia obrazu.

CzeSciowym rozwigzaniem jest rysowanie sceny do tekstury i wygenerowanie osta-
tecznego obrazu w dodatkowym przebiegu. Takie podejscie pozwala co prawda korzy-
sta¢ z danych o kilku pikselach jednoczesnie, ale szybko okazuje sie, ze uklady nie sa
w stanie przetworzy¢ takiej ilosci danych w rozsadnym czasie. Dopiero akceleratory z
najwyzszej potki moga pochwali¢ si¢ na tyle krétkim czasem generowania jednej klatki
obrazu, aby mozliwe stalo sie zaadoptowanie tego typu filtréw w powaznych przedsie-
wzieciach.

4.3.1. Glebia ostrosci

W grafice komputerowej najczesciej stosuje sie wyidealizowany model uktadu optycz-
nego. Promienie §wiatta przechodza przez nieskonczenie maly otwér a odwrécony obraz
powstaje na rzutni po drugiej stronie. Dla uproszczenia, na rysunkach rzutnie umiesz-
cza sie w tej samej odlegloSci przed sztucznym obiektywem, aby powstaly obraz nie byt
odwrécony. Wszystkie obiekty niezaleznie od odlegloSci beda widziane jako ostre, gdyz
do kazdego punktu na rzutni dochodzi promien $wiatla z dokladnie jednego kierunku

(rys. 4.56).

Rysunek 4.56: Wyidealizowany model obiektywu.

W rzeczywistosci taki uktad optycznie nie istnieje. Role otworu stanowia uktady so-
czewek skupiajacych promienie $wiatla na rzutni (rys. 4.57). Kazdy zestaw soczewek
jest w stanie odwzorowa¢ w akceptowalnej ostrosci tylko skonczony zakres odlegtosci,

101

Rozdzial 4. Techniki zaawansowane

ktory jest zwany glebia ostrosci. Najostrzejszy bedzie obraz obiektu znajdujacego sie w
odleglosci zwanej ogniskowa. W klasycznym aparacie fotograficznym ogniskowa, zmie-
nia si¢ pokrettem nastawy ostrosci. Im dalej od tego punktu znajduje si¢ obiekt, tym
mniej ostry bedzie jego obraz na rzutni. Powyzsze cechy ma kazdy wystepujacy w
przyrodzie mechanizm, ktéry odwzorowuje tréjwymiarowe obiekty na dwuwymiarowej
plaszczyznie.

®

=W

Fr | Fe |
= 0

Rysunek 4.57: Uklad optyczny skladajacy sie z pojedynczej soczewki skupiajace;j.

Doktadna symulacja zjawiska glebi ostroSci jest bardzo skomplikowana. Wymaga
ona $ledzenia kazdego pojedynczego promienia $wiatta przechodzacego przez uktad so-
czewek, co jest niemozliwe przy uzyciu obecnej architektury kart graficznych. Mozna
jednak zastosowaé bardzo uproszczony model, ktéry generuje obrazy posiadajace pod-
stawowe cechy zdje¢ wykonywanych prawdziwym obiektywem [19].

Niech F'p oznacza ogniskows (ang. focal distance) a Fr odleglo$¢ od ogniskowej (ang.
focal range), przy ktérej obraz jest juz bardzo zamazany. Ze wzgledu na ograniczone
mozliwoSci filtrowania przez uklad, obiekty znajdujace sie dalej beda zamazane w takim
samym stopniu jak przy odleglosci F. Stopien rozmycia obrazu w tym modelu jest
zalezny liniowo od wartoSci odleglo$ci od ogniskowe;j.

Promienie $wiatla pochodzace z pewnego punktu w przestrzeni, po przejéciu przez
uproszczony uktad optyczny, padaja na rzutnie w obszarze kota zwanego kotem rozpro-
szenia. Niech §rednica C' kota bedzie zalezna liniowo od odleglo$ci punktu od ogniskowej
(rys. 4.57):

C = sat[|(z — Fp)|/Fr] - Ciax, (4.36)

gdzie z jest odleglo$ciag punktu od obserwatora a Ci,., jest stala, okreSlajaca mak-
symalne rozmiary kola rozproszenia. Sat jest funkcja, ktéra obcina liczby do zakresu

102

4.3. Przetwarzanie obrazu

[0, 1] w nastepujacy sposéb:

0, jedli z < 0
sat(x) = | 1, jeSli x > 1
T W p.p.

Rysowanie obrazu z uwzglednieniem gtebi ostrosci sklada sie z dwéch etapéow. W
pierwszym, scena jest rysowana normalnie do bufora koloru, pelmiacego réwniez role
tekstury. Do skladowej alpha kazdego piksela jest wpisywana warto$¢ sat[|(z—Fp)|/ Fr].
W ten sposoéb, dla kazdego piksela znany jest wspolczynnik okreslajacy stopien rozma-
zania zalezny od odleglosci od ogniskowej. Dzigki temu, ze wartos¢ ta nalezy do prze-
dziatu [0, 1], nie trzeba stosowa¢ zmiennopozycyjnych formatéw tekstury. Niestety 8
bitéw na sktadowsg nie wystarczy do tego, aby uzyska¢ zadowalajaca doktadnos¢ obli-
czen. Dla zwigkszenia dokladnosci uzywa sie formatu o 16 bitach na kazda skladowsa
koloru.

Drugi etap to rozmazanie obrazu. Bufor koloru uzyty w poprzednim kroku jest
podlaczany jako tekstura. Do normalnego bufora koloru jest rysowany prostokat, po-
krywajacy w calosci jego obszar. Do naroznikéw przyporzadkowuje sie wspéirzedne
dla tekstury w taki sposéb, aby kazdy teksel pokryl doktadnie jeden piksel. Jesli mi-
kroprogram zawieratby wylacznie pobranie wartoSci z tekstury i wstawienie jej do reje-
stru wyjSciowego, to ostatecznie wygenerowany obraz wygladatby identycznie, jak ten z
pierwszego etapu. Rysowanie prostokata pokrywajacego caly ekran jest jedyna metoda
przeprowadzenia jakiejkolwiek operacji przetwarzania obrazu przy uzyciu akceleratora.

Rozmazanie obrazu jest wykonywane poprzez kombinacje wagows koloréow pikseli,
ktore lezg w otoczeniu aktualnie przetwarzanego piksela. Otoczenie to jest kotem o
promieniu C, = %C’ . Mikroprogram dla pikseli w pierwszej kolejnoSci pobiera z tekstury
dane teksela 7(u,v), ktérego wspéhrzedne odpowiadaja pikselowi obliczanemu przez
program. Przy pomocy skladowej alpha i zaleznosci (4.36) oblicza pézniej $rednice
kota rozproszenia w pikselach:

C' =7(u,v)q - Criax-

W rejestrach dla statych jest umieszczonych n par wspéhrzednych (du;, dv;), ktére sa
wartoSciami wybranymi losowo na obszarze kota o promieniu réwnym 1. Ostateczny
kolor piksela 7/(u, v); dany jest wzorem:

T('LL, U)k + Z T(u + Crduia v+ Crdvi>k * T(U + Crdui7 v+ Crdvi)a
7 (u,v)p = =1 — . (4.37)
1+ Z T(u + Crdu;, v + Crdv;),

=1

Na prawdziwym zdjeciu wykonanym aparatem fotograficznym czes¢ obiektéw jest
idealnie ostra a pozostale sa rozmazane w taki sposob, ze obiekty na ostrym planie nie
maja wplywu na kolor rozmazanej czesci. Powyzsza metoda w duzym stopniu spelnia
te warunki.

103

Rozdzial 4. Techniki zaawansowane

Wzér (4.37) zwréci kolor teksela 7(u, v)y, jezeli lezy on w poblizu ogniskowej. War-
tos¢ 7(u,v), bedzie wtedy bliska zeru, tym samym promien kola rozproszenia bedzie
bardzo maty. Pozostale teksele wniosa najwyzej nieznaczne zaburzenia do oryginalnego
koloru.

Jezeli oryginalny teksel lezy w znacznej odlegloSci od ogniskowej, wspoéiczynnik
7(u,v), bedzie bliski liczbie 1. Promien kola rozproszenia bedzie duzy, ale teksele
z ostrego planu i tak nie bedg miaty wpltywu na kolor 7/(u,v)x, gdyz ich waga 7(u +
Cyrdu;, v + Cydv;), bedzie wtedy bliska zeru.

Ze wzgledu na limit liczby instrukcji w mikroprogramie dla pikseli, ilo$¢ probek moze
siegna¢ najwyzej 12. Na konicowym obrazie beda widoczne niepozadane wzory, ktore sa
wynikiem matej liczby préobek usrednianych w duzym promieniu. Poméc w tej sytuacji
moze jedynie wieksza ilo$é przebiegéw filtra (4.37). Przy kazdym powtérzeniu operacji
rozmazywania, obrazem zréodlowym staje sie poprzednio wypeliany bufor. Nalezy
Zwroci¢ uwage, ze wartoSci wag 7(u,v), w kazdym z przebiegéw musza pozostaé takie
same jak na poczatku.

Do pracy zostat dotaczony program demonstrujacy powyzsza metode (rys. 4.58).
Znajduje si¢ on w katalogu /programy/4 3 1 wraz z mikroprogramami (plik z roz-
szerzeniem *.fx). W programie wykonywane sa trzy przebiegi filtra, kazdy z innym
zestawem 12 wspéirzednych dla prébek.

Rysunek 4.58: Obraz z glebia ostrosci wygenerowany przy uzyciu uktadu graficznego.

104

4.3. Przetwarzanie obrazu

4.3.2. WysSwietlanie obrazéw o wysokiej skali jasnoSci

Monitor jest w stanie wySwietli¢ tylko skonczony zakres jasnosci, ktére sg spotykane
w przyrodzie. Wartosci sktadowe koloru RGB odwzorowujg jasno$¢ koloréw w bardzo
malym przedziale. Istniejg jednak formaty danych, ktére przechowuja dane o pelnej
skali jasnosci poszczegélnych punktéw. Obraz taki mozna otrzymac poprzez sfoto-
grafowanie otoczenia specjalnym aparatem lub zlozenie jednego obrazu z kilku zdjec,
wykonanych z réznym czasem na$wietlania [20].

Przyktadem takiego zdjecia moze by¢ witraz w koSciele, na ktéry od zewnatrz pa-
daja bezpoSrednio promienie stoneczne. Chcac sfotografowaé doktadnie witraz, czas
ekspozycji bedzie musial byt bardzo krétki. W takim przypadku ciemne otoczenie
wnetrza kosciota nie bedzie widoczne na zdjeciu. Odwrotnie, checac sfotografowaé wne-
trze kosciola, witraz bedzie tak jasny, ze calg jego powierzchnie przykryje biala plama.
Powodem tych probleméw jest bardzo duza réznica jasnoSci $wiatta docierajacego do
obserwatora. Swiatlo przenikajace przez witraz moze by¢ kilkadziesiat tysiecy razy
jadniejsze niz to wystepujace we wnetrzu koSciota (rys. 4.59).

Rysunek 4.59: Przyklad obrazu o wysokiej skali jasnosci.

Format obrazu o wysokiej skali jasnoci (ang. high dynamic range) sklada sie z da-
nych o barwie punktu i osobnej informacji o jasnosci. Dysponujac takim obrazem nie
mozna go wyswietlic na monitorze tak, aby wszystkie jego szczegdly byly widoczne.
Potrzebny jest operator, ktéry dokona transformacji calego zakresu jasnoSci wyste-
pujacej na fotografii, do przedzialu akceptowalnego przez urzadzenia wySwietlajace.
Istnieje wiele takich operatoréw, ale nie wszystkie nadaja sie do uzycia przez uktady
graficzne, ze wzgledu na predko$¢ wykonywania przeksztalcen. W tej pracy zostat wy-
korzystany bardzo prosty i szybki operator [21], ktéry daje przyzwoite pod wzgledem
jakosci wyniki.

105

Rozdzial 4. Techniki zaawansowane

Niech L,, oznacza $rednig logarytmiczna jasnosci wszystkich NV pikseli obrazu:

1

L= 5 exp(Y loglo + L(z. 7).

gdzie L(x,y) oznacza jasnoS¢ piksela o wspéhrzednych (Z,7) a d jest bardzo malg
liczbg dodatnig, ktéra gwarantuje istnienie logarytmu. W pierwszej kolejnosci, jasnoSci
sg liniowo skalowane tak, aby jasno$¢ o wartosci L,, zostala sprowadzona do liczby a:

(4.38)

Wspélczynnik a jest parametrem operatora i kontroluje subiektywng jasnos$¢ obrazu
wynikowego, z reguly jest liczba mniejsza od 1.

Najczesciej jasnosci wszystkich punktéw sceny maja rozktad nieliniowy, ktory dzieli
punkty na dwie grupy. W pierwszej znajduja sie obszary o jasnosci malej, natomiast w
drugiej o jasno§ci nieporéwnywalnie wigkszej. Operator wykorzystuje ten fakt podczas
obliczania ostatecznej jasnosci pikseli:

L(z,y) = % (4.39)

Piksele o bardzo wysokiej jasnoSci sa znacznie Sciemniane a te o malej jasnosci
pozostaja praktycznie niezmienione.

Wykorzystanie tego operatora przy uzyciu akceleratora nie sprawia wiekszych trud-
noSci. W pierwszej kolejnosci, obraz wejsciowy jest zapisywany do tekstury o formacie
zmiennopozycyjnym. W drugim przebiegu, bufor koloru jest wypekiany teksturg za
pomoca pelnoekranowego prostokata, ta sama metoda, co w poprzednim podrozdziale.
W mikroprogramie stosuje sie wyrazenia (4.38) i (4.39) w celu transformacji jasnoSci
pikseli.

Model RGB (ang. Red Green Blue) nie nadaje sie¢ do zmieniania jasnoéci obrazu.
Skalujac liniowo kazda ze skltadowych zwiekszy sie jasnos¢ koloru, ale przy okazji jego
barwa moze ulega¢ znacznym znieksztatceniom. 7 tego powodu lepiej jest uzywac
na przyktad modelu HSL (ang. Hue Saturation Lightness). Sktadowe modelu HSL
przechowuja osobno informacje o barwie i jasnoSci [22].

Do pracy zostal dotaczony program, ktéry demonstruje uzycie opisanego tutaj ope-
ratora (rys. 4.60). Wykorzystany zostal model koloru HSL. Poniewaz obrazy Zrédlowe
sg zapisywane w modelu RGB, mikroprogramy dokonujg konwersji modeli koloréw w
czasie rzeczywistym. Jest to najbardziej czasochlonna cze$¢ calej operacji. Po wyko-
naniu skalowania jasnoSci, wartoSci koloréw sa zamieniane z powrotem na model RGB
i wySwietlane na ekranie. Program znajduje si¢ w katalogu /programy/4 3 2 wraz z
tre$cig mikroprograméw (plik z rozszerzeniem *.fx).

106

4.3. Przetwarzanie obrazu

Rysunek 4.60: Przyklad zastosowania operatora skalujacego jasnoSci punktéw.

107

Podsumowanie

Gléwnym motorem rozwoju ukladéw graficznych jest branza rozrywkowa. To ona
mobilizuje producentéw sprzetu do szybkiego wdrazania nowych technologii. Niektére
z zaprezentowanych w poprzednim rozdziale technik, na przyklad glebi ostrosci, beda
szeroko wykorzystywane w momencie pojawienia si¢ na rynku odpowiednio szybkiego, a
zarazem taniego sprzetu. Wszystkie programy dotaczone do pracy generuja powyzej 30
klatek na sekunde w rozdzielczosci 1024 na 768 pikseli, przy uzyciu karty wyposazonej
w uklad ATI Radeon 9800 Pro. Niestety, koszt zakupu takiej karty jest duzy i we
wspélczesnych grach komputerowych tego typu efekty sa jeszcze rzadko spotykane.
Zmieni sie to w najblizszej przysztosci.

Mimo znacznego opoéznienia produkcji oprogramowania wykorzystujacego bardzo
zaawansowane metody generowania obrazu, caly czas opracowywane sa nowe techniki,
ktére wymagaja jeszcze szybszych akceleratorow. Uklady takie sa dostepne od razu w
sklepach, ale ich cena przekracza zasobno§¢ portfela zwyktego konsumenta. Caly ten
proces shuzy do wypromowania okreslonej technologii i firmy, ktéra ja opracowala.

Opracowywane w tej chwili technologie zmierzaja w kierunku coraz szybszego gene-
rowania obrazu, przy uzyciu obecnie juz gotowych algorytmoéw. Dla przykiladu, cienie
i wszelkiego rodzaju filtry wymagaja ogromnej mocy obliczeniowej jednostek przetwa-
rzajacych piksele oraz bardzo krotkiego czasu dostepu do pamieci karty. Uklad Radeon
9800 Pro posiada 8 jednostek PSU. Zaprezentowane w tym roku na targach Electronic
Entertainment Expo uktady firmy ATI, maja by¢ wyposazone w az 48 tego typu jed-
nostek. Ten przyktad wyraznie pokazuje, ze obecne technologie sg wystarczajace do
wiekszosci zastosowan a producenci skupiaja sie gtéwnie na mocy obliczeniowej swoich
ukladow.

Architektura mikroprograméw w wersji 2.0 jest w pelni dojrzala specyfikacja progra-
mowania uktadéw graficznych. W czasie powstawania tego opracowania, gotowe byty
juz uktady wyposazone w wersje 3.0, w ktorej rozkazy maszynowe wraz z zestawem re-
jestréw zostaly nieco zmodyfikowane. Zmiany te nie sa jednak duze, o czym $wiadczy
prawie niezmieniona specyfikacja jezyka HLSL. Interesujacym pomyslem jest wpro-
wadzenie mozliwosci dostepu do tekstur z poziomu mikroprogramu dla wierzchotkéw.
Pozwoli to na obliczanie pozycji wierzchotkéw, przy uzyciu wczesniej wygenerowanych
przez uklad tekstur. Nieréwnosci powierzchni symulowane tg technika, beda widoczne
rowniez na konturach obiektéw.

7, obecnie dostepnych informacji wynika, ze przyszto§¢ uktadéw graficznych lezy
przede wszystkim w lepszej jakoSci generowanego obrazu. Rysowanie do buforéw w for-
matach zmiennoprzecinkowych oraz alpha-blending przy ich uzyciu, pozwoli na znacz-
nie lepsze odwzorowanie barw i przej$¢ tonalnych. Wraz z coraz szybszymi ukladami
scalonymi powstang metody generowania miekkich cieni oraz swobodnego filtrowania
koncowego obrazu. Wszystkie te elementy stanowig obiecujaca wizje przysziosci.

109

Bibliografia

[9]

J.D.Foley, A.van Dam, S.K.Feinerm, J.F.Hughes, R.L.Philips: Wprowadzenie do
grafiki komputerowej, Wydawnictwo Naukowo-Techniczne, Warszawa 1995

Microsoft DirectX 9.0 Software Development Kit, Microsoft Corporation, Update
(April 2005)

The OpenGL Graphics System: A Specification - Version 2.0, Silicon Graphics,
Inc., September 7, 2004

Randy Fernando, Mark Harris, Matthias Wloka, Cyril Zeller: Programming Gra-
phics Hardware, Eurogaphics 2004

Chris Seitz: Evolution of GPUs, Nvidia Corporation, 2004

Projective Geometry, University of Maryland Experimental Geometry Lab,
http://www.math.umd.edu/ " lidador/Affine/

Jules Bloomenthal, Jon Rokne: Homogeneous Coordinates, Department of Com-
puter Science, The University of Calgary, 1997

Maciej Falski: Przeglad modeli o$wietlenia w grafice komputerowej, Uniwersytet
Wroctawski, 2004

Real-Time Volume Graphics, Siggraph 2004

[10] ATT Software Development Kit, ATT Technologies Inc., Update (July 2004)

[11] NVIDIA Software Development Kit 8.0, NVIDIA Corporation, 2004

[12] J. F. Blinn: Simulation of Wrinkled Surfaces, Siggraph 1978

[13] Ken Perlin: Making Noise, http://www.noisemachine.com/talkl/index.html, 1999

[14] Ron Goldman: Recursive Ray Tracing, Department of Computer Science, Rice

University, 2004

[15] Philip Dutre: Global Illumination Compendium, Cornell University, 2001

[16] Fresnel Reflection Technical Report, NVIDIA Corporation, 2004

[17] Cass Everitt,Mark J. Kilgard: Practical and Robust Stenciled Shadow Volumes

111

Bibliografia

for Hardware-Accelerated Rendering, NVIDIA Corporation, 2002

[18] Mark J. Kilgard: Shadow Mapping with Today’s OpenGL Hardware, Game Deve-
lopers Conference, 2000

[19] Thorsten Scheuermann: Advanced Depth of Field, ATT Research Inc., 2004

[20] Paul E. Debevec, Jitendra Malik: Recovering High Dynamic Range Radiance Maps
from Photographs, Siggraph 1997

[21] Erik Reinhard, Michael Stark, Peter Shirley, James Ferwerda: Photographic Tone
Reproduction for Digital Images, 2002

[22] Norman Koren: Light and color: an introduction, http://www.normankoren.com

112

