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Streszczenie

Celem tej pracy jest zbudowanie modelu zjawisk swietlnych zachodzacych nad i pod
powierzchnig wody, oraz synteza realistycznych obrazéw takiej symulacji. Praca przed-
stawia model zjawisk swietlnych zachodzacych w wodzie, przyktadowa implementacje,
oraz obrazy wygenerowane za jej pomoca.

Material zawarty w pracy podzielono na trzy rozdziaty.

Pierwszy jest wprowadzeniem teoretycznym bedacym podstawa do omawianego mo-
delu zachowania $wiatta w wodzie.

Drugi jest opisem samej metody modelowania, algorytmoéw i struktur danych uzy-
wanych podczas modelowania powierzchni wody i metody obliczania o$wietlenia.

Ostatni rozdziat jest opisem implementacji metody i przedstawia wyniki symulacji.

Do pracy dotaczono ptyte CD na ktérej znajduja sie zrédta implementacji, oraz
wygenerowane przyktadowe obrazy.
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Wstep

Wszyscy podziwialismy refleksy $wietlne na dnie basenu czy strumienia. Ciekawe,
dynamicznie zmieniajace si¢ wzory kaustyk przyciggaja oko i mozna na nie patrzec¢
godzinami. Nic dziwnego ze chcemy je utrwali¢. Zrobienie fotografii czy filmu nie jest
problemem, jednak wygenerowanie foto-realistycznych obrazéw takich zjawisk w kom-
puterze nie jest latwe. Bogactwo zjawisk fizycznych towarzyszace interakcji swiatta
z woda nastrecza powazne problemy przy kreacji takich obrazow. Jednak dzigki zasto-
sowaniu opracowanej w ostatnich latach metody modelowania oswietlenia za pomoca
map fotonéw, udato mi sie wygenerowaé realistyczne obrazy wody w sensownym czasie
na zwyklym domowym komputerze.

Aby zasymulowaé zachowanie sie Swiatta przy interakcji z woda trzeba najpierw
przedstawi¢ cato$¢ zachodzacych przy tym zjawisk fizycznych. Wtasciwe zrozumienie
ugiecia promienia $wiatta na powierzchni obiektu przezroczystego jest kluczowe przy
modelowaniu kaustyk. Inne zjawiska optyczne zachodzace w wodzie, jak np. rozpra-
szanie Swiatta wewnatrz cieczy sa réwniez nie do pominiecia przy opisie tego problemu.

Aby wygenerowac realistyczne kaustyki nalezy wczeéniej wygenerowaé realistyczng
powierzchnie wody. W tym celu zastosowatem opracowang niedawno metode staty-
styczna, generujaca realistyczng powierzchnie wody na podstawie jej widma. Metoda
ta umozliwia réwniez szybkie tworzenie nastepujacych po sobie standéw powierzchni
wody, co umozliwia generowanie animacji.



Rozdziat 1

Podstawy teoretyczne

1.1. Geometria

1.1.1. Sferyczny uktad wspoéirzednych

ZA

Rysunek 1.1: Sferyczny uktad wspétrzednych

Najczesciej uzywanym uktadem wspoétrzednych jest uktad kartezjanski. Jednak
w wielu zastosowaniach wygodniejszy i bardziej intuicyjny bywa uktad sferyczny. Do
jego zdefiniowania potrzebny jest punkt centralny uktadu, oraz dwie osie — X i Z.
Osie te maja takie samo znaczenie jak w uktadzie kartezjanskim. O$ X jest pewnym
kierunkiem przechodzacym przez punkt centralny uktadu na wybranej ptaszczyznie,



a 08 7Z jest kierunkiem zgodnym z wektorem normalnym tej pltaszczyzny i réwniez
przechodzi przez punkt centralny uktadu.

Wspétrzedne w tym uktadzie to dwa katy: ¢ € [0,27) — azymut i 0 € [0, 7] —
nachylenie, oraz odlegto$¢ od punktu centralnego r. Wektor kierunku oznaczany jest
jako © = (¢,0).

Transformacja wspotrzednych sferycznych do uktadu kartezjanskiego ma postac:

x = 7T cos¢ sinf
y = r sing sind (1.1)
z = 1 cosb

Odwrotnie, transformacja wspotrzednych kartezjanskich do uktadu sferycznego wy-
glada nastepujaco:

r = [ 12 +y2 +Z2
0 dla z>0iy>0 (I éwiartka)

¢ = arctan < + ¢, do={ 7 dla z<0 (I1 i 11T éwiartka)
% 2r dla 2>0iy<0  (IV ¢éwiartka)
Va2 + y? 0 dla 2>0

2

f = arctan - dla 2 <0

+%,%:{ (1.2)

1.1.2. Kat brylowy

Rysunek 1.2: Kat brytowy

Kat brylowy jest to cze$¢ przestrzeni ograniczona powierzchnig stozkows, odci-
najaca obszar o polu powierzchni A na powierzchni kuli o promieniu r i $rodku pokry-
wajacym sie z wierzchotkiem powierzchni stozkowej. Warto$¢ kata brytowego mozna



wyrazi¢ wzorem

-4 (1.3)

r2
Kat brylowy wyraza sie w steradianach (sr). Latwo zauwazy¢, ze najwieksza wartosé
jaka moze mie¢ jakikolwiek kat brytowy to 4w, czyli kat brytowy wyznaczony przez
sfere.

W celu obliczenia kata brylowego w jakim jest widziana powierzchnia lub obiekt
w przestrzeni z danego punktu z, nalezy obliczy¢ wielko$¢ rzutu na sfere jednostkows,
ktorej centrum znajduje sie¢ w tym punkcie.

1.2. Analiza pél skalarnych i wektorowych

1.2.1. Pole skalarne i wektorowe

Dowolng funkcje o wartosciach rzeczywistych zalezng od potozenia w czasie i przestrzeni
nazywamy polem skalarnym.

S = f(potozenie, czas) (1.4)

Analogicznie, dowolng funkcje o wartosciach wektorowych zalezng od potozenia w cza-
sie i przestrzeni nazywamy polem wektorowym.

W = P (potozenie, czas) (1.5)

1.2.2. Gradient pola skalarnego

Gradientem pola skalarnego S w punkcie u nazywamy wektor wskazujacy kierunek
najwiekszego wzrostu S z tego punktu, i co do wartosci rowny szybkosci tego wzrostu
w tym kierunku, tzn.:

grad($) = 7 iy [ ETV =0

(1.6)

gdzie T jest wektorem normalnym do powierzchni izoskalarnej (znanej tez jako
powierzchnia ekwiskalarna) okre§lonej w punkcie u. Powierzchnie te definiuje sie jako
zbiér punktéw w przestrzeni, dla ktérych funkcja S przyjmuje taka sama wartosc.
Jak wida¢, gradient pola skalarnego jest polem wektorowym.

W kartezjanskim uktadzie wspotrzednych (S = f(x,y, z)) wielkosé¢ gradientu ma
szczegblnie prosta postac:

(1.7)

) - [ 21,20,

0z’ dy’ 0z



1.2.3. Operator Hamiltona ,nabla” V

W celu uporzadkowania i tatwego zapisu powyzszych poje¢ czesto stosowany jest tzw.
operator Hamiltona ,nabla” V. W ukladzie kartezjanskim jest to symboliczny
wektor, ktérego sktadowymi sa operatory rézniczkowania wzgledem poszczegdlnych

zmiennych przestrzennych
o [ o o0 0 ] (1.8)

ox’ oy’ 9z
Za pomocg operatora V mozna zapisa¢ wiele wielkosci matematycznych, w tym gra-

dient:
grad(S)=V-S (1.9)

1.2.4. Pochodna kierunkowa

Wezmy funkcje f deﬁgi}ujafca w przestrzeni pole skalarne S. Wezmy tez pewien punkt
u i pewien kierunek © z wektorem jednostkowym 6 wskazujacym w tym kierunku.

Granice (o ile istnieje)
o+ e) — [
5

e—0

= folu) (1.10)

nazywamy pochodng funkcji f w kierunku Ow punkcie u, lub krétko pochodna
kierunkowg funkcji f.
Mozna ja krétko zapisa¢ za pomocg operatora Hamiltona:

fa=(OV)f (1.11)

1.3. Metoda Monte-Carlo

Przy symulowaniu zjawisk rzeczywistych czesto staje sie przed problemem zbyt duzej
ztozonosci symulowanego zjawiska. Jedna z metod radzenia sobie z tym problemem
jest uproszczenie modelu tak, aby realne stato sie jego obliczenie. Niestety otrzymane
wyniki czesto odbiegaja od realnych. Innym podejsciem do opisanego problemu jest
zastosowanie metody Monte-Carlo. Metoda ta polega na tym, iz dany problem
przedstawia sie w postaci gry losowej ktora prowadzi do rozwigzania tego problemu.
Zmienng losowa sa parametry zadania. Wyznacza si¢ N realizacji zadania dla da-
nej zmiennej losowej, a nastepnie szacuje sie warto$¢ oczekiwang zadania za pomoca
Sredniej arytmetycznej tych realizacji.

Dla przyktadu, jesli chcemy policzyé catke z funkcji f przedstawionej na rysunku 1.3,
dla ktérej umiemy policzy¢ wartosé w kazdym punkcie przedzialu catkowania (a,b).
Losujemy punkt zy z przedziatu (a,b) z rozktadem jednostajnym i obliczamy wartosé
funkcji w tym punkcie. Jako wynik przyjmujemy pole prostokata o dtugosci b — a
i wysokosci f(zg). Procedure powtarzamy N razy dla kolejno losowanych prébek od

Tstnieja lepsze metody dla liczenia calki pojedynczej, np. metoda trapezéw



Rysunek 1.3: Wykres funkcji f

xo do xy, a jako wynik ostateczny przyjmujemy srednig arytmetyczna otrzymanych
wynikéw:
b 1 Y 1 Y

[ 1@ de =53 f@)b-a) = (b - a)5 Y- f(x) (1.12)

@ i=0 i=0
Przy zwickszaniu N wynik metody dazy do wyniku doktadnego, niestety zbieznosc¢
ta jest do$¢ staba. Tak wiec potrzeba bardzo wielu probkowan aby uzyskaé¢ duza
doktadnosé.

1.3.1. Przyspieszanie zbieznosci

Zbieznos¢ metody mozna poprawi¢, na podstawie ksztaltu funkcji (lub ksztattu funk-
cji przyblizonego za pomoca znanych wartosci tej funkcji). Osiaga sie to wybierajac
z wigkszym prawdopodobienstwem te probki ktore maja wicksza istotnos¢ dla wyniku,
oraz zmniejszajac prawdopodobienstwo wyboru probek mato wnoszacych do wyniku.

W powyzszym przyktadzie na rysunku 1.3 widaé, ze na odcinku (¢, b) wyniki funkeji
sg stosunkowo mate i niewiele wnosza do ostatecznego wyniku. Jesli losowane punkty
w ktérych obliczane sa wyniki posrednie beda czesciej wybierane z przedziatu (a, ¢), niz
z przedziatu (c, b) to zbieznosé metody bedzie szybsza. Jesli zamiast losowania z rozkla-
dem jednostajnym uzyje sie losowania z rozktadem p(z) to wynik tak zmodyfikowane;j
metody wyglada nastepujaco:

/abf(;c) dr = ;ZO ﬁg)) (1.13)

Jest to ogodlniejsza wersja wzoru 1.12.
Wiecej na temat metody Monte Carlo w [18, 19].



1.4. Swiatlo

1.4.1. Natura swiatla

Swiatto widzialne jest to promieniowanie elektromagnetyczne w zakresie odbieranym
przez oko ludzkie (w przyblizeniu pomiedzy 380nm i 780nm). Badaniem zachowywania
sie Swiatta zajmuje sie gataz fizyki zwana optyka. Istnieje kilka modeli wyjasniajacych
nature swiatta [2, 3|:

optyka geometryczna Najstarszy i najprostszy model, opracowany przez Newtona,
zaktadajacy iz Swiatto porusza si¢ po liniach prostych.Ze wzgledu na swg prostote
model ten jest uzywany w grafice komputerowe;j.

optyka falowa Alternatywny model, przyjety w XIX wieku, opisujacy swiatto jako
fale. Model ten wyjasnia efekty dyfrakeji i interferencji. Zaktada on iz $wiatto
jest falg elektromagnetyczng i opisywany jest przez rownania Maxwella.

optyka kwantowa Intensywny rozwoj fizyki na przetomie XIX i XX wieku doprowa-
dzit do powstania catej nowej gatezi fizyki — fizyki kwantowej. W 1905 roku A.
Einstein stworzyl kwantowa teorie Swiatta. Zaktada ona ze $wiatto ma na-
ture dyskretng, wiec promieniowanie i pochtanianie promieniowania elektroma-
gnetycznego przez materialy odbywa si¢ porcjami — kwantami. Kwant swiatta
nazwano fotonem. Mozna pokazaé, ze modele kwantowy i falowy sg rowno-
wazne. Swiatto ma jednoczesnie nature falowa i dyskretng. Zjawisko to nazwano
dualizmem korpuskularno-falowym.

Prosty model geometryczny wystarczy aby zasymulowa¢ skomplikowane zjawisko jakim
sa kaustyki. Efektywna metoda obliczen jest metoda map fotonéw. Uzywajac metody
Monte-Carlo mozna réwniez zasymulowaé¢ bardziej skomplikowane modele — falowy
i kwantowy, jednak modele te nie sg niezbedne do symulacji zjawisk podwodnych roz-
wazanych w tej pracy.

1.4.2. Radiometria

Radiometria jest nauka zajmujaca si¢ mierzeniem energii promienistej w kazdej cze-
Sci widma elektromagnetycznego. Poniewaz swiatto jest forma energii elektromagne-
tycznej, radiometria uzywana jest w grafice komputerowej do obliczania o$wietlenia.
Radiometria uzywa nastepujacych pojec:

Energia fotonu(e,): Foton o dtugosci fali A niesie porcje (kwant) energii, definiowana
przez ey = hc/), gdzie h jest stalg Plancka (h &~ 6.626 * 1073J x 5), a ¢ jest
predkoscia $wiatta w prozni (¢ = 299 792 458m/s).

Spektralna energia promieniowania (Spectral Radiant Energy)(Q,): n, fo-
tonéw o dtugosci fali A przenosi energie Q) = nyey
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Energia promieniowania (Radiant Energy)(Q): mierzona w dzulach (J).
Laczna energia fotonow obliczana przez catkowanie energii spektralnej po
wszystkich dtugosciach fali: @ = [5° QrdA.

Strumien energii (Radiant Flux)(®): mierzony w watach (W). Energia promie-
niowania przepltywajaca przez powierzchnie na jednostke czasu, d@/dt.

Gesto$é strumienia energii (Radiant Flux Density)(d®/dA): mierzona w wa-
tach na metr kwadratowy (W/m?). Strumien energii przeplywajacy przez jed-
nostke powierzchni.

Promieniowanie wychodzace (Radiant Exitance, Radiosity)(B): mierzone
w watach na metr kwadratowy (1W/m?). Strumien energii opuszczajacy jednostke
powierzchni.

Natezenie napromieniowania (Irradiance)(E): mierzona w watach na metr kwa-
dratowy (W/m?). Strumieri energii padajacy na jednostke powierzchni obiektu.

Intensywnosé promieniowania (Radiant Intensity)(I): mierzona w watach na
steradian (WW/sr). Reprezentuje strumien energii wychodzacy z punktowego Zré-
dta w pewnym kierunku. Jest to wiec strumieni energii na kat brytowy, d®/dw.

Radiancja (Radiance)(L): mierzona w watach na steradian na metr kwadratowy
(W/(sr x m?)). Jest to strumien energii przychodzacy lub wychodzacy z po-
wierzchni w danym kierunku © na kat brytowy, na jednostke powierzchni prosto-
padlej do kierunku ©. Definiowana jest jako L(x — ©) = d?>®/(cosf dA dw) dla
danego kierunku ©. Radiancja nie zmienia sie z odlegtoscig. Jest to wielko$¢ na
jaka jest czula wiekszos¢é odbiornikow $wiatta, w tym rowniez ludzkie oko.

Notacja:

L(z < ©) — radiancja przychodzaca do punktu x z kierunku ©

L(z — ©) — radiancja opuszczajaca punkt z w kierunku ©

L(z <+ y) — radiancja przychodzaca do punktu z, a wychodzaca z punktu y
L(z — y) — radiancja opuszczajaca punkt x i docierajaca do punktu y

1.4.3. BRDF

Kiedy swiatto pada na powierzchnie w punkcie x z kierunku ©;, jego cze$¢ odbija sie
(lub ulega zalamaniu w przypadku przejscia $wiatta przez powierzchnie) w kierunku
©,. Aby okredli¢ jaka jest to cze$é Nicodemus [1] wprowadzil pojecie funkcji BRDF
(Bidirectional Reflectance Distribution Function). Funkcje ta definiuje sie jako stosu-
nek radiancji odbitej w punkcie x w kierunku ©, do radiancji padajacej na ten punkt
z kierunku ©;:

e N 1.14
fr(l'y O; @r) dE(ZU — @z) L(:[; — @z) cost df ( )

11



dE(x<-©,)

Rysunek 1.4: Funkcja BRDF

W przypadku kiedy zamiast odbicia rozpatrujemy ugiecie promienia, méwimy o funkcji
BTDF (Bidirectional Transmittance Distribution Function). Jej definicja i wlasnosci
sg analogiczne do funkcji BRDF.

Funkcja BRDF ma dwie wazne wtasnosci. Pierwsza z nich jest zasada wzajemno-
$ci Helmholtza. Mowi ona, iz funkcja BRDF jest symetryczna wzgledem kierunkéw
padania i odbicia, czyli jej wartos¢ pozostanie niezmieniona po odwréoceniu tych kie-
runkow.

fr(2,0; = 0,) = f.(2,0;, — ©,) = f.(2,0;, < O,) (1.15)

Druga z wtasnosci funkcji BRDF jest zasada zachowania energii. Zgodnie
z nig w dowolnych procesach zachodzacych w uktadzie odosobnionym catkowita energia
uktadu pozostaje stata. Wynika stad, iz ilo$¢ odbitego (i zatamanego) swiatta w da-
nym punkcie x i w dowolnym kierunku nie moze by¢ wigksza niz ilos¢ padajacego na
ten punkt $wiatta.

VO : | fr(x,0 < 60;)cos(N,0,;)dO; <1 1.16
Q

gdzie N jest wektorem normalnym w punkcie x.

1.5. Odbicie i refrakcja

Kiedy fala $wietlna pada na dowolne ciato, moze odbi¢ sie od jego powierzchni, przejsé
przez jego powierzchnie, lub zosta¢ pochtonieta.

1.5.1. Odbicie swiatla

Cze$¢ strumienia $wiatta padajacego na powierzchnie odbija sie od niej. Jesli po-
wierzchnia graniczna jest gladka, tzn. jej mikro-nieréwnosci sa wicksze od dtugosci
fali, to fala odbija sie od takiej powierzchni we wszystkich kierunkach. Mowimy wtedy

12



o rozproszeniu $wiatta na powierzchniach matowych (Lambertowskich). Jegli natomiast
mikro-nieré6wnosci sa mniejsze, to odbicie zaczyna nabiera¢ charakteru kierunkowego
i wieksza cze$¢ swiatta jest odbijana w jednym kierunku. Gdy powierzchnie sg gtad-
kie, wtedy mamy do czynienia z odbiciem lustrzanym. W takich przypadkach mozemy
operowa¢ pojeciem promienia (padajacego i odbitego).

rozproszone kierunkowe lustrzane

Rysunek 1.5: Odbicie $wiatta

1.5.2. Zalamanie Swiatla

Czes¢ swiatta padajacego na powierzchnie ciata wnika pod jego powierzchnie zgodnie
z prawem zatamania (prawo Snelliusa):
sina vy

= - = 1.17
sin vy n21 ( )

gdzie:
a — kat padania $wiatta na powierzchnie
0 — kat zatamania $wiatta
v — predkos¢ swiatta w osrodku I
vy — predkos¢ swiatta w osrodku 11
ng1 — wspoOlezynnik zatamania osrodka II wzgledem osrodka I
Wsp6tezynnik n jest wielkocig staly (chyba ze o$rodek jest dwéjlomny?). Jesli
o$rodkiem I jest proznia, to wspodtczynnik n nosi nazwe bezwzglednego

n= = (1.18)

Bieg swiatta jest odwracalny, a wiec

1
Mg = 2= — (1.19)
U1 N2

)

27 powodu specyficznej budowy krystalograficznej, w niektérych materiatach krystalicznych moze
sie rozchodzi¢ tylko $wiatlo spolaryzowane. Po przej$ciu przez taki obiekt niespolaryzowany promien
Swiatla jest rozszczepiany na dwa promienie spolaryzowane ortogonalnie wzgledem siebie. Takie krysz-
taly nosza nazwe dwdjlomnych (albo podwéjnie tamiacych). Przykladem krysztaléw dwdjlomnych
jest kaleyt, kwarc krystaliczny, czy 16d.
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Rysunek 1.6: Odbicie $wiatta

Rozwazmy sytuacje, gdy $wiatto przechodzi z osrodka I do osrodka II. Niech pierw-
szy osrodek bedzie scharakteryzowany przez bezwzgledny wspotezynnik zalamania nq,
a drugi przez nsy. Zgodnie z prawem zatamania

sina U
= = 1.20
sin vy ( )
Wykorzystujac 1.18 mamy
sina ¢/ny ng
= = — 1.21
sin  ¢/ny ( )
Mozemy wiec zapisaé
ng
= — 1.22
21 = (1.22)

Jesli wiec znamy bezwzgledne wspotezynniki zatamania $wiatta dwoch osrodkow, to
mozemy w pelni opisa¢ zatamanie promienia na ich granicy.

1.6. Efekty wolumetryczne

W kazdym punkcie osrodka x przez ktory przechodzi strumien swiatta, moze zosta¢ on
ostabiony poprzez absorpcje fotonéw przez osrodek (rysunek 1.7) lub rozpraszanie foto-
now przez czasteczki osrodka (rysunek 1.8). W zamian strumien moze zostaé zasilony
fotonami rozpraszanymi z innych kierunkéw (rysunek 1.9), albo fotonami powstatymi
na skutek emisji w osrodku (np. w plomieniu, czy na skutek zjawisk kwantowych).
Poniewaz rozpatrywanym w tej pracy osrodkiem jest woda, w ktérej emisja zachodzi
w stopniu zaniedbywalnym, wiec zjawisko emisji zostanie pominigte w tych rozwaza-
niach.

Prawdopodobienstwo absorpcji fotonu podczas przechodzenia przez osrodek dane
jest poprzez wspoétezynnik o,, a prawdopodobienstwo zmiany kierunku przez wspot-
czynnik 0.
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Rysunek 1.7: Absorpcja swiatta Rysunek 1.8: Rozproszenie $wia-
tla

\/K/
Rysunek 1.9: Zasilenie strumienia swiatta przez rozproszenie $wiatta z innych kierun-
kow

Zmiana radiancji L wzdhuz $ciezki wywotana pochtanianiem fotonéw przez osrodek
wyraza si¢ nastepujacym rownaniem

(6 -V)L(z — ©) = —0,L(z — ©,) (1.23)
Podobnie, zmiana radiancji wywotana rozpraszaniem fotonéow wyglada nastepujaco
(6 -V)L(z — 0) = —0,L(z — ©,) (1.24)

W kazdym punkcie osrodka przechodzace przezen promienie swiatta zostaja rozpro-
szone, a czeS¢ ich energii rozproszona zostaje w kierunku obserwatora

(6 -V)L(z — O) = 05/ p(z, 0, 0) Lz — ©,)dO, (1.25)
4

gdzie p jest funkcja fazowa osrodka opisujaca sposéb rozpraszania (pelny opis w 1.6.1).
Wynika stad, iz im dluzsza droge przechodzi $wiatto przez osrodek, tym mniej za-
chowuje pierwotnej informacji. Dlatego kolor oddalonych obrazéw gor jest przesuniety
w strone niebieskiego — koloru nieba. Z tego samego powodu gesta mgta czy chmura jest
nieprzejrzysta, poniewaz $wiatto ulega catkowitemu rozproszeniu wewnatrz obiektu.
Do obserwatora dochodzi jedynie $wiatto pochodzace z wielokrotnych wewnetrznych
odbi¢ i zataman.
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1.6.1. Funkcja fazowa

Strumien fotondéw ulega rozproszeniu wewnatrz obiektu zgodnie z rozktadem charakte-
rystycznym dla tego obiektu. Rozklad ten opisywany jest przez funkcje fazowa p.
Jest ona bezwymiarowa. Catka po sferze z funkcji fazowej musi réwnac si¢ jednosci:

/Q p(z,0;,0) do; =1 (1.26)

Funkcja fazowa czesto zalezy tylko od kata 6 € [0, 7] pomiedzy promieniem przy-
chodzacym a rozproszonym. Moze by¢ wowczas zapisana jako p(6). Dla 8 = 0 promien
nie ulega rozproszeniu, a dla § = 7 promien rozproszony ma kierunek przeciwny do
przychodzacego.

Rozproszenie izotropowe

Przy rozpraszaniu izotropowym prawdopodobienstwa rozproszenia fotonu beda dla kaz-
dego kierunku identyczne. Tak wiec funkcja fazowa jest stala:

p(0) = — (1.27)

Funkcja fazowa Heyney’a-Greenstein’a

Najczesciej uzywana funkcja fazowa jest funkcja fazowa Heyney’a-Greenstein’a [4]. Jest
ona opracowana empirycznie dla wyjasnienia rozpraszania swiatta w pyle miedzygalak-
tycznym, ale dobrze si¢ sprawdza dla wiekszosci innych osrodkéw, w tym réwniez wody.
Funkcja fazowa Heyney’a-Greenstein’a definiowana jest nastepujaco:
1—g¢°

— 1.
p(f) 4 (1 + g% — 2g cosf)> (1.28)

gdzie g € [—1,1) jest parametrem asymetrycznosci osrodka, réwnym usrednionemu
kosinusowi kierunkow rozpraszania:

g= /Oﬂp(G) cost do (1.29)
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Rozdziat 2

Synteza obrazu i model powierzchni

2.1. Metody Sledzenia promieni

Podstawa do generowania realistycznych obrazow za pomoca komputera jest rownanie
o$wietlenia [7].

L(z — 0,) = /er(a:, ©; < 0,) L(z «— ©;,) cosb; dO; (2.1)

2.1.1. Sledzenie promieni

Podstawowa metodg modelowania Swiatta za pomoca komputera jest zaproponowany
przez Whitted’a [16] ray tracing (metoda Sledzenia promieni). W metodzie tej mamy
ustalong scene¢ z rozmieszczonymi obiektami, oraz punkt z ktorego scena jest obser-
wowana. Nastepnie przez kazdy piksel wirtualnego ekranu od punktu obserwacji pro-
wadzony jest promien przebiegajacy przez scene. Dokonuje sie sprawdzenia z ktorym
obiektem sceny promien przecina sie jako pierwszym. Dla tego obiektu ustala sie jaki
kolor ma $wiatto odbijajace sie¢ od obiektu w kierunku kamery w punkcie przeciecia.
W tym celu generuje sie nowe promienie w kierunku swiatel (tzw. shadow-rays) spraw-
dzajace czy obiekt jest bezposrednio oswietlony, a nastepnie wykorzystuje sie lokalne
modele o$wietlenia (np. prosty model Phonga [5], czy oparty na wtasnosciach fizycz-
nych materialu model Cook’a-Torrance’a [6]), w celu obliczenia koloru i intensywnosci
swiatta odbijajacego sie od obiektu w kierunku obserwatora. Aby uzyska¢ bardziej
realistyczne efekty, jak odbicia i przezroczystosé, generuje sie nowe promienie z punktu
przeciecia: odbity i ugiety. Dla kazdego z nich obliczenia sg identyczne jak dla promie-
nia pierwotnego. Swiatlo odbite i ugiete traktuje sie jak nowe zrédta $wiatla i postepuje
analogicznie jak poprzednio. Po dokonaniu wszystkich obliczen kolor promienia jest
zapisywany.
Roéwnanie oswietlenia dla metody $ledzenia promieni wyglada nastepujaco:

Lz —0,) = f(z,0;,<06,) L(x «— 6,) cost;+
fr(z,0; < ©,) L(z «— ©;) cost,+ (2.2)
fr(z,0; < ©,) L(x «— ©,) cosb,
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gdzie:

O, — jest kierunkiem promienia odbitego
0O, — jest kierunkiem do zrédia swiatta
©; — jest kierunkiem promienia ugietego

Rysunek 2.1: Metoda $ledzenia promieni

2.1.2. Sledzenie $ciezek

Obrazy generowane za pomocg metody ray tracing sg mato realistyczne. Brak spoty-
kanych na co dzien efektéw rozmytych cieni, w zamian wystepuja niepozadane efekty
aliasingu, a powierzchnie wygladaja nienaturalnie. Spowodowane jest to tym, ze w na-
turze swiatto dobiega do punktu ze wszystkich stron i odbija si¢ rowniez we wszystkich
kierunkach. Oczywiscie niektore kierunki odbicia sa bardziej prawdopodobne niz inne,
jednak idealne odbicie lustrzane zachodzi tylko dla niektérych materiatow.

Aby oddac¢ te efekty, kolor zwracany przez promien powinien byé¢ obliczany przy
uwzglednieniu catego sSwiatta jakie pada na dany punkt. Z powodoéw praktycznych nie
jest mozliwe doktadne obliczenie réwnania 2.1. Mozna jednak uzyskac¢ dobre przybli-
zenie wyniku za pomoca metody Monte Carlo. Generuje sie skonczona ilosé¢ przykta-
dowych promieni, a nastepnie usrednia wyniki. Metoda Sledzenia promieni z zastoso-
waniem metod Monte Carlo nazywa si¢ metoda path tracing [17] (metoda §ledzenia
Sciezek). Istnieje wiele podej$¢ do implementacji metody Monte Carlo. W tej pracy
zastosowano nastepujace podejscie: dla kazdego piksela obrazu generowana jest pewna
ilos¢ promieni, roztozonych jednostajnie w obrebie powierzchni piksela. Przy przecie-
ciu z obiektem losowane jest zZrodto swiatta, oraz losowany jest punkt na tym Zrodle,
a nastepnie sprawdza sie czy punkt przeciecia jest oswietlony bezposrednio. Nastepnie
sprawdza sie czy nastapi odbicie/ugiecie promienia. W tym celu wykorzystuje sie tzw.
rosyjska ruletke. Kazdy materiat ma cztery wspotczynniki — kg, kg, ks, kg takie ze
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ks 4+ kg + kis + kg < 1. opisujg one odpowiednio prawdopodobienstwo odbicia lustrza-
nego, rozproszonego, ugiecia i ugiecia rozproszonego. Losowana jest liczba & € [0, 1]
z rozktadu jednostajnego. W zaleznosci od wielkosci liczby & kontynuuje sie obliczenia
dla promienia odbitego/ugietego, lub koniczy sie rekursje:

kierunek
¢ e [0 , k) = odbity
£ € ks ks + kq) = odbity rozproszony
£ € [ks+ ky ks + kg kis) = ugiety
£ € lks+ kgt Fus . ks + kg + ks + kig) = ugiety rozproszony
€ € |ks+kqg+kis+ kg , 1] = koniec rekursji

Jedli rekursja jest kontynuowana, oblicza sie kierunek promienia. Dla odbicia/ugiecia
oblicza sie kierunek idealnego odbicia/ugiecia zaburzony w niewielkim stopniu z rozkla-
dem p(0©) = "T*:cos”@, gdzie n € [0, 1] jest miarg ,szorstkosci” powierzchni, im gtadsza
powierzchnia tym mniejsze n; dla wody wartoé¢ ta jest rzedu 104, Dla odbicia/ugiecia
rozproszonego oblicza si¢ kierunek z rozkladu p(©) = % [8]. Dla wybranego kierunku
rekurencyjnie oblicza sie kolor jaki ma S$wiatto z tego kierunku. Nastepnie, zgodnie
z lokalnym modelem oswietlenia, oblicza sie kolor jaki bedzie miato swiatto zwracane
w kierunku obserwatora. Przy rosnacej liczbie promieni mozna pokazaé, ze metoda
Monte Carlo jest zbiezna do rozwigzania doktadnego.
Réwnanie oswietlenia przybiera w tym przypadku nastepujaca postac:

1 ifT(:c, ©; < 0,) L(xz «— ©;) cosb;
L(z— ) =~ ; ’ 0 (©)

gdzie k, jest wlasciwym wspotczynnikiem sposrod ks, kg, ks, kg dla danej probki, np.
dla odbicia bedzie to ks, a p.(©) jest odpowiadajacym rozktadem.

(2.3)

2.2. Metoda mapy fotonéw

Kiedy $wiatto przeswieca przez przezroczyste obiekty, takie jak szklany kieliszek, czy
powierzchnia wody, ulega ono zatamaniu. Kat zalamywanego $wiatta zalezy od ksztattu
przezroczystego obiektu, tak wiec rozktad strumienia Swiatta po przejéciu przez obiekt
nie jest jednorodny. Pewne miejsca sg oswietlone silniej niz inne. Efekty te zwane sa
kaustykami. Skrajnym przypadkiem kaustyk jest skupienie wiazki swiatta w jeden
punkt za pomocg soczewki. Efekty te moga by¢ wymodelowane za pomocg metody
path tracing, jednak wymaga to olbrzymiej iloéci przyktadowych promieni, a co za tym
idzie duzego czasu obliczen.

W celu przyspieszenia obliczen Jensen [9] zaproponowal nowy globalny model o$wie-
tlenia — photon mapping (metoda mapy fotonéw). Metoda ta polega na tym, iz
zrodla swiatta generuja fotony, ktore przechodza przez scene podobnie jak w metodzie
path tracing. Miejsca interakcji fotonow z obiektami sceny sg zapamietywane. Na-
stepnie uzywajac jednej z metod renderowania sceny mozna wykorzystaé¢ zapamietane
informacje uzyskujac efekty kaustyk i miekkich cieni. W tej pracy metoda map fotondéw
zostata potaczony z metoda Sledzenia Sciezek.
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Rysunek 2.2: Metoda mapowania fotonéw

Liczba fotonéw generowanych przez zrodla swiatta jest ograniczona. Prawdopo-
dobienstwo, ze promien przebiegajacy scene trafi w zapamietany foton, jest skrajnie
niskie. Dlatego w celu obliczenia o$wietlenia otrzymanego dzieki metodzie mapowania
fotonow nalezy uwzglednié¢ gesto$é¢ fotondéw lezacych w bezposrednim sgsiedztwie od
badanego punktu. Ilos¢ fotonow lezacych w bliskiej odleglosci od punktu x, wyznacza
strumien swiatta ® jaki pada na powierzchnie w otoczeniu punktu x. Znajac strumien
Swiatta mozna policzy¢ radiancje zgodnie z definicja:

2P(x, ;)
L 0,)=——-"""_ 2.4
(x =6 cost; dA dO; (24)
gdzie A jest powierzchnig z ktérej zbiera sie fotony.
Roéwnanie oswietlenia przybiera w tym przypadku nastepujaca forme:
d*®(x, @)
Le—=0,) = | fi(a,0; 0s; dO;
(z—=©) fr(=, )0059 dAd@ s
(2.5)
dQ(I)(JJ, @@)
= JyHn O )=

Strumien ® przybliza sie uzywajac mapy fotonéow znajdujac n fotonéw najblizszych x.
Kazdy foton p ma kolor A®,(0;). Zakladajac ze foton ten przecina interesujaca nas
powierzchnie w okolicy x otrzymujemy:

" AD ;
L(z — ©,) Z x@i(_)@r)zm

(2.6)

Fotony najczesciej zbiera sie ze sfery lezacej dookota interesujacego nas punktu, tak
wiec

AA = 7r? (2.7)
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gdzie r jest odleglo$cig pomiedzy x a najdalszym fotonem uzywanym w obliczeniach.
Tak wiec otrzymuje si¢ réwnanie:

Lz — ©,) ~ ;2 S £(2,0;  ©,)AD,(z,0)) (2.8)

p=1

Trzeba przy tym zadbaé, aby fotony zbierane z przeciwnej strony obiektu nie byty
uwzgledniane (chyba zZe obiekt jest przezroczysty). Dodatkowo, jesli interesujacy nas
punkt potozony jest blisko innego obiektu, to fotony lezace na drugim obiekcie moga
by¢ uwzglednione przy liczeniu strumienia padajacego na pierwszy obiekt. Powoduje
to efekt nienaturalnego rozjasnienia krawedzi obiektéw. Problem ten mozna rozwigzaé
filtrujac fotony (np. zmniejszajac ich moc im dalej od punktu z), albo splaszczajac
sfere przeszukiwan w kierunku normalnej, uzyskujac pltasks elipsoide. Zapewnia to
zbieranie fotonéw tylko z obiektu na ktérym znajduje sie interesujacy nas punkt (o ile
powierzchnia tego obiektu jest ptaska). Niestety znaczaco zwieksza to czas obliczen.

2.2.1. Struktura danych

Przy uzywaniu map fotonéw czesto wykonywang operacja jest wyszukiwanie map fo-
tonéw. Z tego powodu operacja ta powinna by¢ wykonywana jak najszybciej. Jen-
sen [9] zaproponowal, aby w celu zapamietywania fotonéw uzywaé struktury zwanej
kd-drzewo [11, 12, 13]. Jest to wielowymiarowe drzewo przeszukiwan binarnych, kté-
rego kazdy wezel jest uzywany do podziatu jednego z wymiaréw. Mapa fotonoéw jest
tréjwymiarowym zbiorem, wigc uzywane jest tréjwymiarowe kd-drzewo. Kazdy wezet
zawiera jeden foton i wskazniki na lewe i prawe poddrzewa. Kazdy wezetl z wyjatkiem
lisci reprezentuje ptaszczyzne prostopadly do jednej z osi uktadu wspotrzednych ktéra
zawiera foton i tnie jeden z wymiaréw na dwie czesci. Wszystkie fotony w jednym
poddrzewie lezg po jednej stronie dzielacej ptaszczyzny, a fotony z drugiego poddrzewa
leza po drugiej stronie. Mozliwe jest wyszukanie pojedynczego fotonu w kd-drzewie z n
fotonami w $rednim czasie O(log n). Pesymistyczny czas wynosi O(n), ale jesli drzewo
jest zbalansowane, to najgorszy czas rowniez wynosi O(log n). Pokazano réwniez, ze
czas wyszukania k najblizszych sasiadéw jest rzedu O(k + log n) [12].

Drzewo daje si¢ zbalansowaé¢ w czasie O(n log n). Procedura polega na znale-
zieniu mediany w zbiorze fotonéw, podziatu przestrzeni, a nastepnie rekurencyjnego
powtorzenia operacji dla otrzymanych podzbioréw.

kd-drzewo daje sie zaimplementowaé w postaci kopca [14]. Pozwala to na oszczed-
nos¢ pamieci, poniewaz nie uzywa sie wskaznikow.

2.2.2. Efekty kaustyczne

Jednym z celéw stosowania map fotonéw jest wizualizacja kaustyk. Jesli jednak be-
dziemy rozsiewaé fotony rownomiernie po caltej scenie, to najprawdopodobniej niewiele
z nich przejdzie przez obiekty przezroczyste. Aby zwiekszy¢ efektywnosé tej metody
generuje sie dodatkowe fotony od zrédet Swiatta ktore kierowane sg bezposrednio na
obiekty kaustyczne. Fotondéw tych generuje si¢ zwykle znaczaco wigcej (np. o jeden
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rzad wiecej) niz fotonéw rozsiewanych réwnomiernie po calej scenie. Nowe fotony zapa-
mietywane sa w oddzielnej mapie fotonéw. Do obliczen oSwietlenia lokalnego dochodzi
wiec nowy czton odpowiedzialny za obliczanie o$wietlenia kaustycznego.

Rysunek 2.3: Mapa fotonéw kaustycznych

2.2.3. Efekty wolumetryczne

Za pomoca map fotondéw da sie réwniez modelowaé zjawiska absorpcji i rozpraszania
wewnatrz obiektow. Kiedy foton przechodzi przez osrodek moze zaj$¢ interakcja miedzy
nim i oérodkiem. Sredni dystans jaki foton pokonuje pomiedzy interakcjami w osrodku
WYNOosi:
d= - (2.9)

gdzie:
0y = 0440, — jest wspotczynnikiem ekstynkcji, charakterystycznym dla danego osrodka
0, — jest wspotezynnikiem absorpcji tego osrodka
05 — jest wspotezynnikiem rozpraszania tego osrodka.
Aby modelowaé zachowanie fotonu w o$rodku oblicza sie dystans jaki przebywa on
wewnatrz osrodka:

q— o8¢ (2.10)

O

gdzie £ € [0,1] jest liczba z rozkladu jednostajnego. Jesli obliczona odlegtosé jest
wieksza niz droga fotonu do wyjscia z oérodka, to zaktada sie ze nie zaszto zdarzenie
pomiedzy fotonem a osrodkiem. W przeciwnym wypadku w punkcie w ktérym zachodzi
interakcja moze nastapi¢ rozproszenie fotonu, albo jego absorpcja. Prawdopodobien-
stwo rozproszenia dane jest przez albedo:

A=2 (2.11)

Ot
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Aby sprawdzi¢ ktore ze zdarzen bedzie rozpatrywane stosuje sie rosyjska ruletke. Lo-
sowana jest liczba £ € [0, 1] z rozktadu jednostajnego. Nastepnie poréwnuje sie liczbe
¢ z albedo A:

¢ < A foton zostanie rozproszony

¢ > A foton zostanie zaabsorbowany (2.12)

Jesli foton zostanie rozproszony, to losowany jest dla niego nowy kierunek zgodnie
z funkcjg fazowa, a nastepnie kontynuuje sie sledzenie fotonu, tak jakby punkt roz-
proszenia byt nowym zrodtem swiatta. Miejsce kazdej interakcji fotonu z osrodkiem
(zaréwno absorpcji jak i rozproszenia) jest umieszczane w wolumetrycznej mapie
fotonow. Jest to kolejna mapa fotonéw, taka jak kaustyczna, czy ogdlna, w tej jednak
fotony nie leza na powierzchniach obiektow, lecz sa punktami umieszczonymi wewnatrz
obiektow.

Podczas modelowania o$rodkéw przezroczystych nalezy wzia¢ pod uwage, iz swia-
tto ulega w nich rozproszeniu. Intensywno$¢ strumienia Swiatta przechodzacego przez
o$rodek na dystansie s zmniejszana jest o e~ ?**. W zamian Swiatto zostaje wzmoc-
nione dzieki rozproszeniom z innych kierunkéw. Aby zamodelowaé to zjawisko stosuje
sie technike zwang ray marching. Promien $§wiatta biegnacy przez osrodek dzielony
jest na mniejsze odcinki dlugosci Azx. Zaktada sie przy tym ze na tym odcinku wta-
snosci medium sg homogeniczne. Dla kazdego z segmentéw wybiera sie jeden punkt x,
najczesciej srodkowy. Sprawdza sie wzajemng widocznosé ze zrodtami $wiatta, jednak
powierzchnie przezroczyste sa w tym przypadku ignorowane. To tylko przyblizenie
zachodzacych zjawisk, a nie w pelni fizyczne modelowanie, jednak wystarczajace do
oddania sytuacji. Cze$¢ bezposredniego o$wietlenia ze zrodta swiatta jest rozpraszana
w kierunku obserwatora © zgodnie z rozktadem funkcji fazowe;j.

Rysunek 2.4: Ray marching

N
Lz —0)=L(O; —»z)+ Y Lz« 6,) p(z,0,,0) 0, Az (2.13)
=1
gdzie N jest ilodcig zrodet swiatta, ©; jest kierunkiem przeciwnym do O, a ©; kierun-
kiem od punktu x do [-tego Zrodta Swiatta.
Dodatkowo z punktu x generowane sg kolejne promienie w réznych kierunkach.
Czes¢ swiatta ktore przychodzi z tych kierunkéw réwniez zostanie rozproszona w kie-
runku obserwatora.

1.8
Lz —0©)=L(06; - )+ {S Z L(z « ©y) p(z, O, @)} os Az (2.14)
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gdzie S jest iloscia wygenerowanych promieni rozproszonych, a ©, kierunkiem s-tego
promienia.

Oblicza sie réwniez strumien $wiatta jaki dochodzi do otoczenia punktu x, wyko-
rzystujac w tym celu wolumetryczng mape fotonow.

d*V(z,0)
d*¥(x,©
Lz —0) = o /94 p(z, @i’@)adi/d@) dO
d2\IJ(I, @) (2.16)

= /Q47Tp(x7®i7®> dV

Nastepnie powtarza sie obliczenia dla kolejnego odcinka, a uzyskane obliczenia sa pod-
stawg do kolejnych. Poniewaz jednak $wiatto przebylo droge rowng Az, ulega ono
ostabieniu:

Lopyi(z 4 Az «— x) = e 2L (2 — O) (2.17)

2.3. Powierzchnia wody

Efekty $wietlne widoczne na dnie zbiornikow wodnych sg efektem przejscia Swiatta
przez dynamicznie zmieniajaca sie powierzchnie wody. Tak wiec, aby modelowaé za-
chowanie si¢ $wiatta pod woda, nalezy réwniez modelowac jej powierzchnie. Istnieje
kilka podej$¢ do tego problemu, np. matematyczne przyblizenie ksztaltéw fal za po-
moca prostych funkcji, czy modelowanie wlasnosci fizycznych wody przy uzyciu skom-
plikowanych rownan Navier’a-Stokes’a. W tej pracy wykorzystany zostal model staty-
styczny opisany m.in. przez Tessendorf’a [10]. Model ten nie jest oparty na fizycznych
podstawach, w zamian uzywa statystycznych obserwacji morza.

Kiedy do pewnej powierzchni zastosuje sie Transformate Fourier’a (FT), otrzyma
sie jej charakterystyczne widmo. Po zastosowaniu odwrotnej transformacji otrzymuje
sie powierzchnie wyjsciowa. Idea metody statystycznej polega na wygenerowaniu od-
powiedniego widma, a nastepnie poprzez zastosowanie F'T otrzymaniu realistycznej
powierzchni wody. W celu szybkiego i efektywnego liczenia transformaty uzywana jest
szybka transformata Fourier’a (FFT) [15].

Tessendorf [10] proponuje uzycie widma Philipsa do widma fal powstatych na skutek
wiatru. Widmo to definiowane jest nastepujacym réwnaniem:

eV
S |K - (2.18)

Ph(K) =aQa

Po obliczeniu widma nalezy obliczy¢ amplitudy i fazy fal w chwili poczatkowej. Obli-
czenia te wykorzystuja nastepujace rownanie:

o(K) = (6 + i€y () (2.19)
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[ =1v%/g najwieksza mozliwa fala powstala przy ciggltym
wietrze o predkosci v, g jest przyspieszeniem ziem-
skim
w kierunek wiatru
K kierunek fali
X horyzontalna pozycja punktu w ktérym liczymy
wysokos¢
a pewna stata dobierana eksperymentalnie, oddzia-
tujaca na wszystkie fale

k=2m/\ amplituda fali zalezna od dtugosci fali A
K = (ky, k) = (2mn/s,2mm/s) | dwuwymiarowy wektor, gdzie s jest wielkoscia
pola, r rozdzielczoscia siatki, a n i m wyznaczaja
punkty siatki —r/2 < mn,m < r/2

& 1§ zmienne losowe z rozktadu normalnego o wartosci
sredniej réwnej 0 i odchyleniu standardowym réw-
nym 1
* operator sprzezenia

Rysunek 2.5: Wielko$ci uzywane przy obliczaniu powierzchni wody

Nastepnie, majac czas t, liczone jest pole amplitud czestotliwosci:
h(K,t) = ho(K)e“t 4 ¥ (— K)e ™t (2.20)

gdzie w — jest katowa czestotliwoscig fali k, reprezentujaca predkosé z jaka fala porusza
si¢ po powierzchni. Mozna policzy¢ ja z rOwnania:

(K) = gl K| (2.21)

gdzie | K| jest dtugoscia wektora K. Dla plytkich wéd mozna wziaé¢ pod uwage glebo-
kos¢ d:

wi(K) = g|K| tanh(kd) (2.22)

Tak przygotowane pole zostaje nastepnie zamienione na mape wysokosci odpowia-

dajaca powierzchni wody. Uzywa si¢ w tym celu FF'T, aby szybko obliczy¢ nastepujaca

T WX, t) =Y h(K,t)e™X (2.23)

Wszystkie obliczenia wykonywane sa na liczbach zespolonych, jako wynikowa wysokos¢
bierze sie jednak tylko czes¢ rzeczywistg sumy.

Zalety tej metody jest to, ze mozna wyznaczy¢ wektory normalnych w punktach
siatki uzywajac kolejny raz FFT:

Vh(X,t) =Y iKh(K,t)e™* (2.24)

K
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Uzywajac tej metody mozna tatwo otrzymacé realistyczng animacje powierzchni
wody. Zostata ona wykorzystana komercyjnie przy produkcji takich filmow jak , Tita-
nic”, czy ,Waterworld”.

Ponizej przedstawiono obrazy przedstawiajace mapy wysokosci powierzchni wody.
Uwaga: z powodu utraty jakosci podczas drukowania obrazy te wygladaja lepiej w wer-
sji elektronicznej.
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Rysunek 2.6: Wyrenderowana powierzchnia wody



Rozdziat 3

Podsumowanie

3.1. Wyniki

Efekt zastosowania map fotonéw wida¢ na zamieszczonych ponizej obrazkach. Otrzy-
mane kaustyki sa zblizone do naturalnych (rys. 3.4). Uwaga: z powodu utraty jakosci
podczas drukowania obrazy te wygladaja lepiej w wersji elektronicznej.

Przebieg programu wyglada nastepujaco:
Ustalany jest sposob patrzenia na scen¢. Podczas ewentualnej animacji kamera nie
porusza si¢, dlatego ten element programu zostat wytaczony przed petle animacji.
Wykonywana jest petla wykonywania kolejnych klatek animacji. Wewnatrz petli gene-
rowana jest scena wtasciwa dla danej klatki filmu, generuje si¢ fotony ktére przebiegaja
scene i sg zapamietywane w mapach fotonéw. Nastepnie generuje sie obraz, ktory jest
na koncu zapisywany do pliku.
Generacja obrazu dokonuje sie metoda sledzenia $ciezek (patrz 2.1.2) i wyglada naste-
pujaco:
Dla kazdego piksela obrazu generuje sie predefiniowang ilo$¢ Sciezek ktore wychodza
z punktu potozenia kamery i przechodzg przez ten piksel. Dla kazdej Sciezki oblicza
sie punkt przecigcia ze scena, oraz oblicza kolor jaki widzi obserwator z tego kierunku.
Kolory ktére zostaly zwrocona usrednia si¢ dla pojedynczego piksela, a wynik jest za-
pamietywany.
Kolor oblicza sie nastepujaco:
Sprawdza sie czy obiekt z ktorym nastapito przeciecie z promieniem jest oSwietlony
przez losowo wybrane zrodto Swiatta w punkcie przeciecia. Jesli obiekt jest oswie-
tlony, to uzywany jest lokalny model oswietlenia wlasciwy dla materiatu skojarzonego
z obiektem w celu wyznaczenia koloru jaki dociera do obserwatora.
Nastepnie dokonuje si¢ estymacji radiancji z map fotonéw (wzér 2.8) (normalnej i kau-
stycznej; ze wzgledu na olbrzymi przyrost obliczen i niezauwazalne efekty zrezygnowano
w tej pracy z map wolumetrycznych).
W kolejnym kroku dokonuje sie rosyjskiej ruletki (patrz 2.1.2) w celu stwierdzenia czy
nastepuje odbicie/ugiecie promienia i jesli tak to rekursywnie oblicza sie kolor z odbi-
tego/ugietego kierunku.
Otrzymane kolory sa sumowane i zwracane jako kolor wynikowy.
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Zastosowany algorytm metody map fotondéw jest niestety kosztowny obliczeniowo.
Tabela ponizej przedstawia poréwnanie czaséw generowania prostej sceny zawierajacej
powierzchnie wody z uzyciem map fotonéw i bez. Scena zawiera 130062 trojkatow.
Rozdzielczos¢ obrazu wynosi 500 na 500 pikseli, dla kazdego piksela wygenerowano 100
Sciezek. Obliczenia wykonano na maszynie z procesorem Athlon XP 1600+ (1750MHz),
512 pamieci RAM, na systemie operacyjnym Linux Mandriva LE 2005. Wygenerowane
sceny wida¢ na obrazach ponizej.

Metoda Czas renderowania
Sledzenie Sciezek $rednio 20 min
Sledzenie $ciezek + mapy fotonéw (okoto 2.2 miliona fotonéw) srednio 23 h

Rysunek 3.1: Scena wyrenderowana za pomoca metody sledzenia $ciezek

3.2. Opis implementacji

Do implementacji symulacji wykorzystany zostal algorytm $ledzenia Sciezek, wsparty
metoda map fotonow.

Jadrem projektu jest klasa RayTracer. Wewnatrz tej klasy wykonuje sie¢ gléwna
petla programu wykonujaca obliczenia. Klasa ta rowniez zapisuje wygenerowany obraz
w formacie PPM.

Klasa Scene zawiera liste obiektow obecnych w obrazowanej przestrzeni.
Klasa Camera odpowiada za ustawienie kamery w stosunku do sceny.
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Za symulowany promien swiatta odpowiada klasa Ray. Wszelkie interakcje obiektow
ze Swiattem odbywaja sie przy uzyciu tej klasy.

Abstrakcyjna klasa Primitive zawiera parametry ktore musi posiada¢ kazdy obiekt
obecny na scenie. Wszystkie obiekty dziedzicza po tej klasie. Przyktadem jest klasa
Triangle opisujaca trojkat.

Za ksztalt powierzchni wody odpowiedzialna jest klasa StatisticalWater. Klasa ta
jest napisana w oparciu o implementacje Gottfrieda Chena. Wykorzystuje ona szybka
transformate Fouriera (klasa Fft2D) do wygenerowania mapy wysokosci (klasa He-
ightMap) powierzchni wody. Na podstawie tej mapy generowana jest lista trojkatow
odwzorowujaca powierzchnie wody. Z powodu duzej liczby trojkatow sktadajacych sie
na ta liste upakowywane one sa do struktury zwanej Quad Tree (klasa QuadTree).
Drzieli ona przestrzen zajmowang przez trojkaty na 4 czedci, nastepnie kazda z pod-
przestrzeni jest rekurencyjnie dzielona na mniejsze czesci, az w kazdej pozostaje nie
wiecej niz ustalona liczba obiektow. Pozwala to na znaczne przyspieszenie wyszukiwa-
nia przecie¢ promienia z obiektami.

Abstrakeyjna klasa Material opisuje kolor obiektu, oraz wtasnosci fizyczne jakie po-
siada dany obiekt. Po tej klasie dziedziczy klasa Lambertian, opisujaca powierzchnie
lambertowska (idealnie rozpraszajaca swiatto). Dziedziczy po niej takze klasa Cook-
TorranceMaterial, wykorzystywana w tej implementacji do opisu powierzchni wody.
Material opisujacy zrédlo $wiatta (klasa Light) réwniez dziedziczy po klasie Mate-
rial.

Scena renderowana w tej pracy zbudowana jest z pieciu Scian (kazda sktada si¢ z dwoch
tréjkatéow), o powierzchniach lambertowskich. Poza tym na scenie jest zrodto $wiatta
(dwa trdjkaty), o powierzchni Zrédta $wiatta. Scena zawiera réwniez powierzchnie
wody (zbiér tréjkatéw generowany za pomoca klasy StatisticalWater). Powierzch-
nia wody jest opisywana przez model Cook’a-Torrance’a. Scena konstruowana jest
wewnatrz klasy Scene.

Spos6b patrzenia na scene (rozdzielczo$¢é wynikowego obrazu, punkt z ktérego obser-
wuje sie scene, kierunek i katy patrzenia) jest opisuje klasa Camera. Klasa Photon
opisuje parametry fotonu. Fotony gromadzone sa w mapie fotonéw (klasa Photon-
Map).

W funkcji uruchamiajacej program (funkcja main w pliku rt.cpp) znajduje sie petla
dzieki ktérej mozna tworzy¢ animacje ruszajacej sie wody.

W pliku defs.h znajduja sie makroinstrukcje sterujace zachowaniem programu. Mozna
dzigki nim ustawia¢ takie parametry jak rozdzielczosé wynikowego obrazu, jakosé prob-
kowania sceny, wlaczaé/wytaczaé i ustawiaé¢ parametry mapowania fotonéw, oraz kilka
innych.
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Rysunek 3.2: Sceny wyrenderowane za pomocg metody $ledzenia Sciezek i metody
mapowania fotonéw (okoto 2.2 milionéw fotonéw)
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Rysunek 3.3: Scena widziana pod innym katem

Rysunek 3.4: Rzeczywista scena podwodna
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Dodatek — plyta CD

Zawartos¢ ptyty CD:

W katalogu src/ znajduja sie zrédla programu.

W katalogu bin/ znajduje sie skompilowany program gotowy do uruchomienia.

W katalogu pic/ znajduja sie przyktadowe obrazy i animacje wygenerowane za pomoca
programu stworzonego na potrzeby tej pracy.

W katalogu doc/ znajduje sie tresé pracy w formacie PDF.
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