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Streszczenie

Celem tej pracy jest zbudowanie modelu zjawisk świetlnych zachodzących nad i pod
powierzchnią wody, oraz synteza realistycznych obrazów takiej symulacji. Praca przed-
stawia model zjawisk świetlnych zachodzących w wodzie, przykładową implementację,
oraz obrazy wygenerowane za jej pomocą.

Materiał zawarty w pracy podzielono na trzy rozdziały.
Pierwszy jest wprowadzeniem teoretycznym będącym podstawą do omawianego mo-

delu zachowania światła w wodzie.
Drugi jest opisem samej metody modelowania, algorytmów i struktur danych uży-

wanych podczas modelowania powierzchni wody i metody obliczania oświetlenia.
Ostatni rozdział jest opisem implementacji metody i przedstawia wyniki symulacji.
Do pracy dołączono płytę CD na której znajdują się źródła implementacji, oraz

wygenerowane przykładowe obrazy.
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Wstęp

Wszyscy podziwialiśmy refleksy świetlne na dnie basenu czy strumienia. Ciekawe,
dynamicznie zmieniające się wzory kaustyk przyciągają oko i można na nie patrzeć
godzinami. Nic dziwnego że chcemy je utrwalić. Zrobienie fotografii czy filmu nie jest
problemem, jednak wygenerowanie foto-realistycznych obrazów takich zjawisk w kom-
puterze nie jest łatwe. Bogactwo zjawisk fizycznych towarzyszące interakcji światła
z wodą nastręcza poważne problemy przy kreacji takich obrazów. Jednak dzięki zasto-
sowaniu opracowanej w ostatnich latach metody modelowania oświetlenia za pomocą
map fotonów, udało mi się wygenerować realistyczne obrazy wody w sensownym czasie
na zwykłym domowym komputerze.

Aby zasymulować zachowanie się światła przy interakcji z wodą trzeba najpierw
przedstawić całość zachodzących przy tym zjawisk fizycznych. Właściwe zrozumienie
ugięcia promienia światła na powierzchni obiektu przezroczystego jest kluczowe przy
modelowaniu kaustyk. Inne zjawiska optyczne zachodzące w wodzie, jak np. rozpra-
szanie światła wewnątrz cieczy są również nie do pominięcia przy opisie tego problemu.

Aby wygenerować realistyczne kaustyki należy wcześniej wygenerować realistyczną
powierzchnię wody. W tym celu zastosowałem opracowaną niedawno metodę staty-
styczną, generującą realistyczną powierzchnię wody na podstawie jej widma. Metoda
ta umożliwia również szybkie tworzenie następujących po sobie stanów powierzchni
wody, co umożliwia generowanie animacji.
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Rozdział 1

Podstawy teoretyczne

1.1. Geometria

1.1.1. Sferyczny układ współrzędnych

O

φ

θ

X

Y

Z

Φ

Rysunek 1.1: Sferyczny układ współrzędnych

Najczęściej używanym układem współrzędnych jest układ kartezjański. Jednak
w wielu zastosowaniach wygodniejszy i bardziej intuicyjny bywa układ sferyczny. Do
jego zdefiniowania potrzebny jest punkt centralny układu, oraz dwie osie – X i Z.
Osie te mają takie samo znaczenie jak w układzie kartezjańskim. Oś X jest pewnym
kierunkiem przechodzącym przez punkt centralny układu na wybranej płaszczyźnie,
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a oś Z jest kierunkiem zgodnym z wektorem normalnym tej płaszczyzny i również
przechodzi przez punkt centralny układu.

Współrzędne w tym układzie to dwa kąty: φ ∈ [0, 2π) – azymut i θ ∈ [0, π] –
nachylenie, oraz odległość od punktu centralnego r. Wektor kierunku oznaczany jest
jako Θ = (φ, θ).

Transformacja współrzędnych sferycznych do układu kartezjańskiego ma postać:

x = r cos φ sin θ
y = r sin φ sin θ
z = r cos θ

(1.1)

Odwrotnie, transformacja współrzędnych kartezjańskich do układu sferycznego wy-
gląda następująco:

r =
√

x2 + y2 + z2

φ = arctan
y

× + φ0 , φ0 =





0 dla x ≥ 0 i y ≥ 0 (I ćwiartka)
π dla x < 0 (II i III ćwiartka)
2π dla x ≥ 0 i y < 0 (IV ćwiartka)

θ = arctan

√
x2 + y2

z
+ θ0 , θ0 =

{
0 dla z ≥ 0
π dla z < 0

(1.2)

1.1.2. Kąt bryłowy

x

A

r

N

Rysunek 1.2: Kąt bryłowy

Kąt bryłowy jest to część przestrzeni ograniczona powierzchnią stożkową, odci-
nającą obszar o polu powierzchni A na powierzchni kuli o promieniu r i środku pokry-
wającym się z wierzchołkiem powierzchni stożkowej. Wartość kąta bryłowego można
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wyrazić wzorem

Ω =
A

r2
(1.3)

Kąt bryłowy wyraża się w steradianach (sr). Łatwo zauważyć, że największą wartość
jaką może mieć jakikolwiek kąt bryłowy to 4π, czyli kąt bryłowy wyznaczony przez
sferę.

W celu obliczenia kąta bryłowego w jakim jest widziana powierzchnia lub obiekt
w przestrzeni z danego punktu x, należy obliczyć wielkość rzutu na sferę jednostkową,
której centrum znajduje się w tym punkcie.

1.2. Analiza pól skalarnych i wektorowych

1.2.1. Pole skalarne i wektorowe

Dowolną funkcję o wartościach rzeczywistych zależną od położenia w czasie i przestrzeni
nazywamy polem skalarnym.

S = f(położenie, czas) (1.4)

Analogicznie, dowolną funkcję o wartościach wektorowych zależną od położenia w cza-
sie i przestrzeni nazywamy polem wektorowym.

−→
W = Φ(położenie, czas) (1.5)

1.2.2. Gradient pola skalarnego

Gradientem pola skalarnego S w punkcie u nazywamy wektor wskazujący kierunek
największego wzrostu S z tego punktu, i co do wartości równy szybkości tego wzrostu
w tym kierunku, tzn.:

grad(S) = −→n lim
ε→0

[
f(u + ε−→n )− f(u)

ε

]
(1.6)

gdzie −→n jest wektorem normalnym do powierzchni izoskalarnej (znanej też jako
powierzchnia ekwiskalarna) określonej w punkcie u. Powierzchnię tę definiuje się jako
zbiór punktów w przestrzeni, dla których funkcja S przyjmuje taką samą wartość.
Jak widać, gradient pola skalarnego jest polem wektorowym.

W kartezjańskim układzie współrzędnych (S = f(x, y, z)) wielkość gradientu ma
szczególnie prostą postać:

grad(S) =

[
∂f

∂x
,
∂f

∂y
,
∂f

∂z

]
(1.7)
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1.2.3. Operator Hamiltona „nabla” ∇
W celu uporządkowania i łatwego zapisu powyższych pojęć często stosowany jest tzw.
operator Hamiltona „nabla” ∇. W układzie kartezjańskim jest to symboliczny
wektor, którego składowymi są operatory różniczkowania względem poszczególnych
zmiennych przestrzennych

∇ =

[
∂

∂x
,

∂

∂y
,

∂

∂z

]
(1.8)

Za pomocą operatora ∇ można zapisać wiele wielkości matematycznych, w tym gra-
dient:

grad(S) = ∇ · S (1.9)

1.2.4. Pochodna kierunkowa

Weźmy funkcję f definiującą w przestrzeni pole skalarne S. Weźmy też pewien punkt
u i pewien kierunek

−→
Θ z wektorem jednostkowym θ wskazującym w tym kierunku.

Granicę (o ile istnieje)

lim
ε→0

f(u + εθ)− f(u)

ε
= f ′θ(u) (1.10)

nazywamy pochodną funkcji f w kierunku
−→
Θ w punkcie u, lub krótko pochodną

kierunkową funkcji f .
Można ją krótko zapisać za pomocą operatora Hamiltona:

f ′θ = (
−→
Θ∇)f (1.11)

1.3. Metoda Monte-Carlo

Przy symulowaniu zjawisk rzeczywistych często staje się przed problemem zbyt dużej
złożoności symulowanego zjawiska. Jedną z metod radzenia sobie z tym problemem
jest uproszczenie modelu tak, aby realne stało się jego obliczenie. Niestety otrzymane
wyniki często odbiegają od realnych. Innym podejściem do opisanego problemu jest
zastosowanie metody Monte-Carlo. Metoda ta polega na tym, iż dany problem
przedstawia się w postaci gry losowej która prowadzi do rozwiązania tego problemu.
Zmienną losową są parametry zadania. Wyznacza się N realizacji zadania dla da-
nej zmiennej losowej, a następnie szacuje się wartość oczekiwaną zadania za pomocą
średniej arytmetycznej tych realizacji.

Dla przykładu, jeśli chcemy policzyć całkę z funkcji f przedstawionej na rysunku 1.31,
dla której umiemy policzyć wartość w każdym punkcie przedziału całkowania (a, b).
Losujemy punkt x0 z przedziału (a, b) z rozkładem jednostajnym i obliczamy wartość
funkcji w tym punkcie. Jako wynik przyjmujemy pole prostokąta o długości b − a
i wysokości f(x0). Procedurę powtarzamy N razy dla kolejno losowanych próbek od

1Istnieją lepsze metody dla liczenia całki pojedynczej, np. metoda trapezów
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a bc

f

Rysunek 1.3: Wykres funkcji f

x0 do xN , a jako wynik ostateczny przyjmujemy średnią arytmetyczną otrzymanych
wyników:

∫ b

a
f(x) dx =

1

N

N∑

i=0

f(xi)(b− a) = (b− a)
1

N

N∑

i=0

f(xi) (1.12)

Przy zwiększaniu N wynik metody dąży do wyniku dokładnego, niestety zbieżność
ta jest dość słaba. Tak więc potrzeba bardzo wielu próbkowań aby uzyskać dużą
dokładność.

1.3.1. Przyspieszanie zbieżności

Zbieżność metody można poprawić, na podstawie kształtu funkcji (lub kształtu funk-
cji przybliżonego za pomocą znanych wartości tej funkcji). Osiąga się to wybierając
z większym prawdopodobieństwem te próbki które mają większą istotność dla wyniku,
oraz zmniejszając prawdopodobieństwo wyboru próbek mało wnoszących do wyniku.

W powyższym przykładzie na rysunku 1.3 widać, że na odcinku (c, b) wyniki funkcji
są stosunkowo małe i niewiele wnoszą do ostatecznego wyniku. Jeśli losowane punkty
w których obliczane są wyniki pośrednie będą częściej wybierane z przedziału (a, c), niż
z przedziału (c, b) to zbieżność metody będzie szybsza. Jeśli zamiast losowania z rozkła-
dem jednostajnym użyje się losowania z rozkładem p(x) to wynik tak zmodyfikowanej
metody wygląda następująco:

∫ b

a
f(x) dx =

1

N

N∑

i=0

f(xi)

p(xi)
(1.13)

Jest to ogólniejsza wersja wzoru 1.12.
Więcej na temat metody Monte Carlo w [18, 19].
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1.4. Światło

1.4.1. Natura światła

Światło widzialne jest to promieniowanie elektromagnetyczne w zakresie odbieranym
przez oko ludzkie (w przybliżeniu pomiędzy 380nm i 780nm). Badaniem zachowywania
się światła zajmuje się gałąź fizyki zwana optyką. Istnieje kilka modeli wyjaśniających
naturę światła [2, 3]:

optyka geometryczna Najstarszy i najprostszy model, opracowany przez Newtona,
zakładający iż światło porusza się po liniach prostych.Ze względu na swą prostotę
model ten jest używany w grafice komputerowej.

optyka falowa Alternatywny model, przyjęty w XIX wieku, opisujący światło jako
fale. Model ten wyjaśnia efekty dyfrakcji i interferencji. Zakłada on iż światło
jest falą elektromagnetyczną i opisywany jest przez równania Maxwella.

optyka kwantowa Intensywny rozwój fizyki na przełomie XIX i XX wieku doprowa-
dził do powstania całej nowej gałęzi fizyki – fizyki kwantowej. W 1905 roku A.
Einstein stworzył kwantową teorię światła. Zakłada ona że światło ma na-
turę dyskretną, więc promieniowanie i pochłanianie promieniowania elektroma-
gnetycznego przez materiały odbywa się porcjami – kwantami. Kwant światła
nazwano fotonem. Można pokazać, że modele kwantowy i falowy są równo-
ważne. Światło ma jednocześnie naturę falową i dyskretną. Zjawisko to nazwano
dualizmem korpuskularno-falowym.

Prosty model geometryczny wystarczy aby zasymulować skomplikowane zjawisko jakim
są kaustyki. Efektywną metodą obliczeń jest metoda map fotonów. Używając metody
Monte-Carlo można również zasymulować bardziej skomplikowane modele – falowy
i kwantowy, jednak modele te nie są niezbędne do symulacji zjawisk podwodnych roz-
ważanych w tej pracy.

1.4.2. Radiometria

Radiometria jest nauką zajmującą się mierzeniem energii promienistej w każdej czę-
ści widma elektromagnetycznego. Ponieważ światło jest formą energii elektromagne-
tycznej, radiometria używana jest w grafice komputerowej do obliczania oświetlenia.
Radiometria używa następujących pojęć:

Energia fotonu(eλ): Foton o długości fali λ niesie porcję (kwant) energii, definiowaną
przez eλ = hc/λ, gdzie h jest stałą Plancka (h ≈ 6.626 ∗ 10−34J ∗ s), a c jest
prędkością światła w próżni (c = 299 792 458m/s).

Spektralna energia promieniowania (Spectral Radiant Energy)(Qλ): nλ fo-
tonów o długości fali λ przenosi energię Qλ = nλeλ
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Energia promieniowania (Radiant Energy)(Q): mierzona w dżulach (J).
Łączna energia fotonów obliczana przez całkowanie energii spektralnej po
wszystkich długościach fali: Q =

∫∞
0 Qλdλ.

Strumień energii (Radiant Flux)(Φ): mierzony w watach (W ). Energia promie-
niowania przepływająca przez powierzchnię na jednostkę czasu, dQ/dt.

Gęstość strumienia energii (Radiant Flux Density)(dΦ/dA): mierzona w wa-
tach na metr kwadratowy (W/m2). Strumień energii przepływający przez jed-
nostkę powierzchni.

Promieniowanie wychodzące (Radiant Exitance, Radiosity)(B): mierzone
w watach na metr kwadratowy (W/m2). Strumień energii opuszczający jednostkę
powierzchni.

Natężenie napromieniowania (Irradiance)(E): mierzona w watach na metr kwa-
dratowy (W/m2). Strumień energii padający na jednostkę powierzchni obiektu.

Intensywność promieniowania (Radiant Intensity)(I): mierzona w watach na
steradian (W/sr). Reprezentuje strumień energii wychodzący z punktowego źró-
dła w pewnym kierunku. Jest to więc strumień energii na kąt bryłowy, dΦ/dω.

Radiancja (Radiance)(L): mierzona w watach na steradian na metr kwadratowy
(W/(sr ∗ m2)). Jest to strumień energii przychodzący lub wychodzący z po-
wierzchni w danym kierunku Θ na kąt bryłowy, na jednostkę powierzchni prosto-
padłej do kierunku Θ. Definiowana jest jako L(x→ Θ) = d2Φ/(cosθ dA dω) dla
danego kierunku Θ. Radiancja nie zmienia się z odległością. Jest to wielkość na
jaką jest czuła większość odbiorników światła, w tym również ludzkie oko.

Notacja:
L(x← Θ) – radiancja przychodząca do punktu x z kierunku Θ
L(x→ Θ) – radiancja opuszczająca punkt x w kierunku Θ
L(x← y) – radiancja przychodząca do punktu x, a wychodząca z punktu y
L(x→ y) – radiancja opuszczająca punkt x i docierająca do punktu y

1.4.3. BRDF

Kiedy światło pada na powierzchnię w punkcie x z kierunku Θi, jego część odbija się
(lub ulega załamaniu w przypadku przejścia światła przez powierzchnię) w kierunku
Θr. Aby określić jaka jest to część Nicodemus [1] wprowadził pojęcie funkcji BRDF
(Bidirectional Reflectance Distribution Function). Funkcję tą definiuje się jako stosu-
nek radiancji odbitej w punkcie x w kierunku Θr do radiancji padającej na ten punkt
z kierunku Θi:

fr(x, Θi → Θr) =
dL(x→ Θr)

dE(x← Θi)
=

dL(x→ Θr)

L(x← Θi) cosθ dθ
(1.14)
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Rysunek 1.4: Funkcja BRDF

W przypadku kiedy zamiast odbicia rozpatrujemy ugięcie promienia, mówimy o funkcji
BTDF (Bidirectional Transmittance Distribution Function). Jej definicja i własności
są analogiczne do funkcji BRDF.

Funkcja BRDF ma dwie ważne własności. Pierwszą z nich jest zasada wzajemno-
ści Helmholtza. Mówi ona, iż funkcja BRDF jest symetryczna względem kierunków
padania i odbicia, czyli jej wartość pozostanie niezmieniona po odwróceniu tych kie-
runków.

fr(x, Θi → Θr) = fr(x, Θi ← Θr) = fr(x, Θi ↔ Θr) (1.15)

Drugą z własności funkcji BRDF jest zasada zachowania energii. Zgodnie
z nią w dowolnych procesach zachodzących w układzie odosobnionym całkowita energia
układu pozostaje stała. Wynika stąd, iż ilość odbitego (i załamanego) światła w da-
nym punkcie x i w dowolnym kierunku nie może być większa niż ilość padającego na
ten punkt światła.

∀Θ :
∫

Ω
fr(x, Θ↔ Θi)cos(N, Θi)dΘi ≤ 1 (1.16)

gdzie N jest wektorem normalnym w punkcie x.

1.5. Odbicie i refrakcja

Kiedy fala świetlna pada na dowolne ciało, może odbić się od jego powierzchni, przejść
przez jego powierzchnię, lub zostać pochłonięta.

1.5.1. Odbicie światła

Część strumienia światła padającego na powierzchnię odbija się od niej. Jeśli po-
wierzchnia graniczna jest gładka, tzn. jej mikro-nierówności są większe od długości
fali, to fala odbija się od takiej powierzchni we wszystkich kierunkach. Mówimy wtedy
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o rozproszeniu światła na powierzchniach matowych (Lambertowskich). Jeśli natomiast
mikro-nierówności są mniejsze, to odbicie zaczyna nabierać charakteru kierunkowego
i większa część światła jest odbijana w jednym kierunku. Gdy powierzchnie są gład-
kie, wtedy mamy do czynienia z odbiciem lustrzanym. W takich przypadkach możemy
operować pojęciem promienia (padającego i odbitego).

rozproszone kierunkowe lustrzane

Rysunek 1.5: Odbicie światła

1.5.2. Załamanie światła

Część światła padającego na powierzchnię ciała wnika pod jego powierzchnię zgodnie
z prawem załamania (prawo Snelliusa):

sinα

sinβ
=

υ1

υ2

= n2,1 (1.17)

gdzie:
α – kąt padania światła na powierzchnię
β – kąt załamania światła
υ1 – prędkość światła w ośrodku I
υ2 – prędkość światła w ośrodku II
n2,1 – współczynnik załamania ośrodka II względem ośrodka I

Współczynnik n jest wielkością stałą (chyba że ośrodek jest dwójłomny2). Jeśli
ośrodkiem I jest próżnia, to współczynnik n nosi nazwę bezwzględnego

n =
c

υ
(1.18)

Bieg światła jest odwracalny, a więc

n1,2 =
υ2

υ1

=
1

n2,1

(1.19)

2Z powodu specyficznej budowy krystalograficznej, w niektórych materiałach krystalicznych może
się rozchodzić tylko światło spolaryzowane. Po przejściu przez taki obiekt niespolaryzowany promień
światła jest rozszczepiany na dwa promienie spolaryzowane ortogonalnie względem siebie. Takie krysz-
tały noszą nazwę dwójłomnych (albo podwójnie łamiących). Przykładem kryształów dwójłomnych
jest kalcyt, kwarc krystaliczny, czy lód.
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Rysunek 1.6: Odbicie światła

Rozważmy sytuację, gdy światło przechodzi z ośrodka I do ośrodka II. Niech pierw-
szy ośrodek będzie scharakteryzowany przez bezwzględny współczynnik załamania n1,
a drugi przez n2. Zgodnie z prawem załamania

sinα

sinβ
=

υ1

υ2

(1.20)

Wykorzystując 1.18 mamy
sinα

sinβ
=

c/n1

c/n2

=
n2

n1

(1.21)

Możemy więc zapisać
n2,1 =

n2

n1

(1.22)

Jeśli więc znamy bezwzględne współczynniki załamania światła dwóch ośrodków, to
możemy w pełni opisać załamanie promienia na ich granicy.

1.6. Efekty wolumetryczne

W każdym punkcie ośrodka x przez który przechodzi strumień światła, może zostać on
osłabiony poprzez absorpcję fotonów przez ośrodek (rysunek 1.7) lub rozpraszanie foto-
nów przez cząsteczki ośrodka (rysunek 1.8). W zamian strumień może zostać zasilony
fotonami rozpraszanymi z innych kierunków (rysunek 1.9), albo fotonami powstałymi
na skutek emisji w ośrodku (np. w płomieniu, czy na skutek zjawisk kwantowych).
Ponieważ rozpatrywanym w tej pracy ośrodkiem jest woda, w której emisja zachodzi
w stopniu zaniedbywalnym, więc zjawisko emisji zostanie pominięte w tych rozważa-
niach.

Prawdopodobieństwo absorpcji fotonu podczas przechodzenia przez ośrodek dane
jest poprzez współczynnik σa, a prawdopodobieństwo zmiany kierunku przez współ-
czynnik σs.
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Rysunek 1.7: Absorpcja światła Rysunek 1.8: Rozproszenie świa-
tła

Rysunek 1.9: Zasilenie strumienia światła przez rozproszenie światła z innych kierun-
ków

Zmiana radiancji L wzdłuż ścieżki wywołana pochłanianiem fotonów przez ośrodek
wyraża się następującym równaniem

(
−→
Θ · ∇)L(x→ Θ) = −σaL(x← Θi) (1.23)

Podobnie, zmiana radiancji wywołana rozpraszaniem fotonów wygląda następująco

(
−→
Θ · ∇)L(x→ Θ) = −σsL(x← Θi) (1.24)

W każdym punkcie ośrodka przechodzące przezeń promienie światła zostają rozpro-
szone, a część ich energii rozproszona zostaje w kierunku obserwatora

(
−→
Θ · ∇)L(x→ Θ) = σs

∫

Ω4π

p(x, Θi, Θ)Li(x← Θi)dΘi (1.25)

gdzie p jest funkcją fazową ośrodka opisującą sposób rozpraszania (pełny opis w 1.6.1).
Wynika stąd, iż im dłuższą drogę przechodzi światło przez ośrodek, tym mniej za-
chowuje pierwotnej informacji. Dlatego kolor oddalonych obrazów gór jest przesunięty
w stronę niebieskiego – koloru nieba. Z tego samego powodu gęsta mgła czy chmura jest
nieprzejrzysta, ponieważ światło ulega całkowitemu rozproszeniu wewnątrz obiektu.
Do obserwatora dochodzi jedynie światło pochodzące z wielokrotnych wewnętrznych
odbić i załamań.
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1.6.1. Funkcja fazowa

Strumień fotonów ulega rozproszeniu wewnątrz obiektu zgodnie z rozkładem charakte-
rystycznym dla tego obiektu. Rozkład ten opisywany jest przez funkcję fazową p.
Jest ona bezwymiarowa. Całka po sferze z funkcji fazowej musi równać się jedności:

∫

Ω4π

p(x, Θi, Θ) d
−→
Θi = 1 (1.26)

Funkcja fazowa często zależy tylko od kąta θ ∈ [0, π] pomiędzy promieniem przy-
chodzącym a rozproszonym. Może być wówczas zapisana jako p(θ). Dla θ = 0 promień
nie ulega rozproszeniu, a dla θ = π promień rozproszony ma kierunek przeciwny do
przychodzącego.

Rozproszenie izotropowe

Przy rozpraszaniu izotropowym prawdopodobieństwa rozproszenia fotonu będą dla każ-
dego kierunku identyczne. Tak więc funkcja fazowa jest stałą:

p(θ) =
1

4π
(1.27)

Funkcja fazowa Heyney’a-Greenstein’a

Najczęściej używaną funkcją fazową jest funkcja fazowa Heyney’a-Greenstein’a [4]. Jest
ona opracowana empirycznie dla wyjaśnienia rozpraszania światła w pyle międzygalak-
tycznym, ale dobrze się sprawdza dla większości innych ośrodków, w tym również wody.

Funkcja fazowa Heyney’a-Greenstein’a definiowana jest następująco:

p(θ) =
1− g2

4π(1 + g2 − 2g cosθ)1.5
(1.28)

gdzie g ∈ [−1, 1) jest parametrem asymetryczności ośrodka, równym uśrednionemu
kosinusowi kierunków rozpraszania:

g =
∫ π

0
p(θ) cosθ dθ (1.29)
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Rozdział 2

Synteza obrazu i model powierzchni

2.1. Metody śledzenia promieni

Podstawą do generowania realistycznych obrazów za pomocą komputera jest równanie
oświetlenia [7].

L(x→ Θr) =
∫

Ω
fr(x, Θi ↔ Θr) L(x← Θi) cosθi dΘi (2.1)

2.1.1. Śledzenie promieni

Podstawową metodą modelowania światła za pomocą komputera jest zaproponowany
przez Whitted’a [16] ray tracing (metoda śledzenia promieni). W metodzie tej mamy
ustaloną scenę z rozmieszczonymi obiektami, oraz punkt z którego scena jest obser-
wowana. Następnie przez każdy piksel wirtualnego ekranu od punktu obserwacji pro-
wadzony jest promień przebiegający przez scenę. Dokonuje się sprawdzenia z którym
obiektem sceny promień przecina się jako pierwszym. Dla tego obiektu ustala się jaki
kolor ma światło odbijające się od obiektu w kierunku kamery w punkcie przecięcia.
W tym celu generuje się nowe promienie w kierunku świateł (tzw. shadow-rays) spraw-
dzające czy obiekt jest bezpośrednio oświetlony, a następnie wykorzystuje się lokalne
modele oświetlenia (np. prosty model Phonga [5], czy oparty na własnościach fizycz-
nych materiału model Cook’a-Torrance’a [6]), w celu obliczenia koloru i intensywności
światła odbijającego się od obiektu w kierunku obserwatora. Aby uzyskać bardziej
realistyczne efekty, jak odbicia i przezroczystość, generuje się nowe promienie z punktu
przecięcia: odbity i ugięty. Dla każdego z nich obliczenia są identyczne jak dla promie-
nia pierwotnego. Światło odbite i ugięte traktuje się jak nowe źródła światła i postępuje
analogicznie jak poprzednio. Po dokonaniu wszystkich obliczeń kolor promienia jest
zapisywany.

Równanie oświetlenia dla metody śledzenia promieni wygląda następująco:

L(x→ Θr) = fr(x, Θi ↔ Θr) L(x← Θi) cosθi+
fr(x, Θl ↔ Θr) L(x← Θl) cosθl+
fr(x, Θt ↔ Θr) L(x← Θt) cosθt

(2.2)
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gdzie:
Θi – jest kierunkiem promienia odbitego
Θl – jest kierunkiem do źródła światła
Θt – jest kierunkiem promienia ugiętego

Rysunek 2.1: Metoda śledzenia promieni

2.1.2. Śledzenie ścieżek

Obrazy generowane za pomocą metody ray tracing są mało realistyczne. Brak spoty-
kanych na co dzień efektów rozmytych cieni, w zamian występują niepożądane efekty
aliasingu, a powierzchnie wyglądają nienaturalnie. Spowodowane jest to tym, że w na-
turze światło dobiega do punktu ze wszystkich stron i odbija się również we wszystkich
kierunkach. Oczywiście niektóre kierunki odbicia są bardziej prawdopodobne niż inne,
jednak idealne odbicie lustrzane zachodzi tylko dla niektórych materiałów.

Aby oddać te efekty, kolor zwracany przez promień powinien być obliczany przy
uwzględnieniu całego światła jakie pada na dany punkt. Z powodów praktycznych nie
jest możliwe dokładne obliczenie równania 2.1. Można jednak uzyskać dobre przybli-
żenie wyniku za pomocą metody Monte Carlo. Generuje się skończoną ilość przykła-
dowych promieni, a następnie uśrednia wyniki. Metoda śledzenia promieni z zastoso-
waniem metod Monte Carlo nazywa się metodą path tracing [17] (metoda śledzenia
ścieżek). Istnieje wiele podejść do implementacji metody Monte Carlo. W tej pracy
zastosowano następujące podejście: dla każdego piksela obrazu generowana jest pewna
ilość promieni, rozłożonych jednostajnie w obrębie powierzchni piksela. Przy przecię-
ciu z obiektem losowane jest źródło światła, oraz losowany jest punkt na tym źródle,
a następnie sprawdza się czy punkt przecięcia jest oświetlony bezpośrednio. Następnie
sprawdza się czy nastąpi odbicie/ugięcie promienia. W tym celu wykorzystuje się tzw.
rosyjską ruletkę. Każdy materiał ma cztery współczynniki – ks, kd, kts, ktd takie że
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ks + kd + kts + ktd ≤ 1. opisują one odpowiednio prawdopodobieństwo odbicia lustrza-
nego, rozproszonego, ugięcia i ugięcia rozproszonego. Losowana jest liczba ξ ∈ [0, 1]
z rozkładu jednostajnego. W zależności od wielkości liczby ξ kontynuuje się obliczenia
dla promienia odbitego/ugiętego, lub kończy się rekursję:

kierunek
ξ ∈ [0 , ks) ⇒ odbity
ξ ∈ [ks , ks + kd) ⇒ odbity rozproszony
ξ ∈ [ks + kd , ks + kd + kts) ⇒ ugięty
ξ ∈ [ks + kd + kts , ks + kd + kts + ktd) ⇒ ugięty rozproszony
ξ ∈ [ks + kd + kts + ktd , 1] ⇒ koniec rekursji

Jeśli rekursja jest kontynuowana, oblicza się kierunek promienia. Dla odbicia/ugięcia
oblicza się kierunek idealnego odbicia/ugięcia zaburzony w niewielkim stopniu z rozkła-
dem p(Θ) = n+1

2π
cosnθ, gdzie n ∈ [0, 1] jest miarą „szorstkości” powierzchni, im gładsza

powierzchnia tym mniejsze n; dla wody wartość ta jest rzędu 10−4. Dla odbicia/ugięcia
rozproszonego oblicza się kierunek z rozkładu p(Θ) = cosθ

π
[8]. Dla wybranego kierunku

rekurencyjnie oblicza się kolor jaki ma światło z tego kierunku. Następnie, zgodnie
z lokalnym modelem oświetlenia, oblicza się kolor jaki będzie miało światło zwracane
w kierunku obserwatora. Przy rosnącej liczbie promieni można pokazać, że metoda
Monte Carlo jest zbieżna do rozwiązania dokładnego.

Równanie oświetlenia przybiera w tym przypadku następującą postać:

L(x→ Θr) =
1

n

n∑

i=1

1

kr

fr(x, Θi ↔ Θr) L(x← Θi) cosθi

pr(Θ)
(2.3)

gdzie kr jest właściwym współczynnikiem spośród ks, kd, kts, ktd dla danej próbki, np.
dla odbicia będzie to ks, a pr(Θ) jest odpowiadającym rozkładem.

2.2. Metoda mapy fotonów

Kiedy światło prześwieca przez przezroczyste obiekty, takie jak szklany kieliszek, czy
powierzchnia wody, ulega ono załamaniu. Kąt załamywanego światła zależy od kształtu
przezroczystego obiektu, tak więc rozkład strumienia światła po przejściu przez obiekt
nie jest jednorodny. Pewne miejsca są oświetlone silniej niż inne. Efekty te zwane są
kaustykami. Skrajnym przypadkiem kaustyk jest skupienie wiązki światła w jeden
punkt za pomocą soczewki. Efekty te mogą być wymodelowane za pomocą metody
path tracing, jednak wymaga to olbrzymiej ilości przykładowych promieni, a co za tym
idzie dużego czasu obliczeń.

W celu przyspieszenia obliczeń Jensen [9] zaproponował nowy globalny model oświe-
tlenia – photon mapping (metoda mapy fotonów). Metoda ta polega na tym, iż
źródła światła generują fotony, które przechodzą przez scenę podobnie jak w metodzie
path tracing. Miejsca interakcji fotonów z obiektami sceny są zapamiętywane. Na-
stępnie używając jednej z metod renderowania sceny można wykorzystać zapamiętane
informacje uzyskując efekty kaustyk i miękkich cieni. W tej pracy metoda map fotonów
została połączony z metodą śledzenia ścieżek.
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Rysunek 2.2: Metoda mapowania fotonów

Liczba fotonów generowanych przez źródła światła jest ograniczona. Prawdopo-
dobieństwo, że promień przebiegający scenę trafi w zapamiętany foton, jest skrajnie
niskie. Dlatego w celu obliczenia oświetlenia otrzymanego dzięki metodzie mapowania
fotonów należy uwzględnić gęstość fotonów leżących w bezpośrednim sąsiedztwie od
badanego punktu. Ilość fotonów leżących w bliskiej odległości od punktu x, wyznacza
strumień światła Φ jaki pada na powierzchnię w otoczeniu punktu x. Znając strumień
światła można policzyć radiancję zgodnie z definicją:

L(x← Θr) =
d2Φ(x, Θi)

cosθi dA dΘi

(2.4)

gdzie A jest powierzchnią z której zbiera się fotony.
Równanie oświetlenia przybiera w tym przypadku następującą formę:

L(x→ Θr) =
∫

Ω
fr(x, Θi ↔ Θr)

d2Φ(x, Θi)

cosθi dA dΘi

cosθi dΘi

=
∫

Ω
fr(x, Θi ↔ Θr)

d2Φ(x, Θi)

dA

(2.5)

Strumień Φ przybliża się używając mapy fotonów znajdując n fotonów najbliższych x.
Każdy foton p ma kolor ∆Φp(Θi). Zakładając że foton ten przecina interesującą nas
powierzchnię w okolicy x otrzymujemy:

L(x← Θr) ≈
n∑

p=1

fr(x, Θi ↔ Θr)
∆Φp(x, Θi)

∆A
(2.6)

Fotony najczęściej zbiera się ze sfery leżącej dookoła interesującego nas punktu, tak
więc

∆A = πr2 (2.7)
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gdzie r jest odległością pomiędzy x a najdalszym fotonem używanym w obliczeniach.
Tak więc otrzymuje się równanie:

L(x← Θr) ≈ 1

πr2

n∑

p=1

fr(x, Θi ↔ Θr)∆Φp(x, Θi) (2.8)

Trzeba przy tym zadbać, aby fotony zbierane z przeciwnej strony obiektu nie były
uwzględniane (chyba że obiekt jest przezroczysty). Dodatkowo, jeśli interesujący nas
punkt położony jest blisko innego obiektu, to fotony leżące na drugim obiekcie mogą
być uwzględnione przy liczeniu strumienia padającego na pierwszy obiekt. Powoduje
to efekt nienaturalnego rozjaśnienia krawędzi obiektów. Problem ten można rozwiązać
filtrując fotony (np. zmniejszając ich moc im dalej od punktu x), albo spłaszczając
sferę przeszukiwań w kierunku normalnej, uzyskując płaską elipsoidę. Zapewnia to
zbieranie fotonów tylko z obiektu na którym znajduje się interesujący nas punkt (o ile
powierzchnia tego obiektu jest płaska). Niestety znacząco zwiększa to czas obliczeń.

2.2.1. Struktura danych

Przy używaniu map fotonów często wykonywaną operacją jest wyszukiwanie map fo-
tonów. Z tego powodu operacja ta powinna być wykonywana jak najszybciej. Jen-
sen [9] zaproponował, aby w celu zapamiętywania fotonów używać struktury zwanej
kd-drzewo [11, 12, 13]. Jest to wielowymiarowe drzewo przeszukiwań binarnych, któ-
rego każdy węzeł jest używany do podziału jednego z wymiarów. Mapa fotonów jest
trójwymiarowym zbiorem, więc używane jest trójwymiarowe kd-drzewo. Każdy węzeł
zawiera jeden foton i wskaźniki na lewe i prawe poddrzewa. Każdy węzeł z wyjątkiem
liści reprezentuje płaszczyznę prostopadłą do jednej z osi układu współrzędnych która
zawiera foton i tnie jeden z wymiarów na dwie części. Wszystkie fotony w jednym
poddrzewie leżą po jednej stronie dzielącej płaszczyzny, a fotony z drugiego poddrzewa
leżą po drugiej stronie. Możliwe jest wyszukanie pojedynczego fotonu w kd-drzewie z n
fotonami w średnim czasie O(log n). Pesymistyczny czas wynosi O(n), ale jeśli drzewo
jest zbalansowane, to najgorszy czas również wynosi O(log n). Pokazano również, że
czas wyszukania k najbliższych sąsiadów jest rzędu O(k + log n) [12].

Drzewo daje się zbalansować w czasie O(n log n). Procedura polega na znale-
zieniu mediany w zbiorze fotonów, podziału przestrzeni, a następnie rekurencyjnego
powtórzenia operacji dla otrzymanych podzbiorów.

kd-drzewo daje się zaimplementować w postaci kopca [14]. Pozwala to na oszczęd-
ność pamięci, ponieważ nie używa się wskaźników.

2.2.2. Efekty kaustyczne

Jednym z celów stosowania map fotonów jest wizualizacja kaustyk. Jeśli jednak bę-
dziemy rozsiewać fotony równomiernie po całej scenie, to najprawdopodobniej niewiele
z nich przejdzie przez obiekty przezroczyste. Aby zwiększyć efektywność tej metody
generuje się dodatkowe fotony od źródeł światła które kierowane są bezpośrednio na
obiekty kaustyczne. Fotonów tych generuje się zwykle znacząco więcej (np. o jeden
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rząd więcej) niż fotonów rozsiewanych równomiernie po calej scenie. Nowe fotony zapa-
miętywane są w oddzielnej mapie fotonów. Do obliczeń oświetlenia lokalnego dochodzi
więc nowy człon odpowiedzialny za obliczanie oświetlenia kaustycznego.

Rysunek 2.3: Mapa fotonów kaustycznych

2.2.3. Efekty wolumetryczne

Za pomocą map fotonów da się również modelować zjawiska absorpcji i rozpraszania
wewnątrz obiektów. Kiedy foton przechodzi przez ośrodek może zajść interakcja między
nim i ośrodkiem. Średni dystans jaki foton pokonuje pomiędzy interakcjami w ośrodku
wynosi:

d =
1

σt

(2.9)

gdzie:
σt = σa+σs – jest współczynnikiem ekstynkcji, charakterystycznym dla danego ośrodka
σa – jest współczynnikiem absorpcji tego ośrodka
σs – jest współczynnikiem rozpraszania tego ośrodka.
Aby modelować zachowanie fotonu w ośrodku oblicza się dystans jaki przebywa on
wewnątrz ośrodka:

d =
log ξ

σt

(2.10)

gdzie ξ ∈ [0, 1] jest liczbą z rozkładu jednostajnego. Jeśli obliczona odległość jest
większa niż droga fotonu do wyjścia z ośrodka, to zakłada się że nie zaszło zdarzenie
pomiędzy fotonem a ośrodkiem. W przeciwnym wypadku w punkcie w którym zachodzi
interakcja może nastąpić rozproszenie fotonu, albo jego absorpcja. Prawdopodobień-
stwo rozproszenia dane jest przez albedo:

Λ =
σs

σt

(2.11)
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Aby sprawdzić które ze zdarzeń będzie rozpatrywane stosuje się rosyjską ruletkę. Lo-
sowana jest liczba ξ ∈ [0, 1] z rozkładu jednostajnego. Następnie porównuje się liczbę
ξ z albedo Λ:

ξ ≤ Λ foton zostanie rozproszony
ξ > Λ foton zostanie zaabsorbowany

(2.12)

Jeśli foton zostanie rozproszony, to losowany jest dla niego nowy kierunek zgodnie
z funkcją fazową, a następnie kontynuuje się śledzenie fotonu, tak jakby punkt roz-
proszenia był nowym źródłem światła. Miejsce każdej interakcji fotonu z ośrodkiem
(zarówno absorpcji jak i rozproszenia) jest umieszczane w wolumetrycznej mapie
fotonów. Jest to kolejna mapa fotonów, taka jak kaustyczna, czy ogólna, w tej jednak
fotony nie leżą na powierzchniach obiektów, lecz są punktami umieszczonymi wewnątrz
obiektów.

Podczas modelowania ośrodków przezroczystych należy wziąć pod uwagę, iż świa-
tło ulega w nich rozproszeniu. Intensywność strumienia światła przechodzącego przez
ośrodek na dystansie s zmniejszana jest o e−σts. W zamian światło zostaje wzmoc-
nione dzięki rozproszeniom z innych kierunków. Aby zamodelować to zjawisko stosuje
się technikę zwaną ray marching. Promień światła biegnący przez ośrodek dzielony
jest na mniejsze odcinki długości ∆x. Zakłada się przy tym że na tym odcinku wła-
sności medium są homogeniczne. Dla każdego z segmentów wybiera się jeden punkt x,
najczęściej środkowy. Sprawdza się wzajemną widoczność ze źródłami światła, jednak
powierzchnie przezroczyste są w tym przypadku ignorowane. To tylko przybliżenie
zachodzących zjawisk, a nie w pełni fizyczne modelowanie, jednak wystarczające do
oddania sytuacji. Część bezpośredniego oświetlenia ze źródła światła jest rozpraszana
w kierunku obserwatora Θ zgodnie z rozkładem funkcji fazowej.

Rysunek 2.4: Ray marching

L(x→ Θ) = L(Θi → x) +
N∑

l=1

L(x← Θl) p(x, Θl, Θ) σs ∆x (2.13)

gdzie N jest ilością źródeł światła, Θi jest kierunkiem przeciwnym do Θ, a Θl kierun-
kiem od punktu x do l-tego źródła światła.

Dodatkowo z punktu x generowane są kolejne promienie w różnych kierunkach.
Część światła które przychodzi z tych kierunków również zostanie rozproszona w kie-
runku obserwatora.

L(x→ Θ) = L(Θi → x) +

{
1

S

S∑

s=1

L(x← Θs) p(x, Θs, Θ)

}
σs ∆x (2.14)
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gdzie S jest ilością wygenerowanych promieni rozproszonych, a Θs kierunkiem s-tego
promienia.

Oblicza się również strumień światła jaki dochodzi do otoczenia punktu x, wyko-
rzystując w tym celu wolumetryczną mapę fotonów.

L(x← Θ) =
d2Ψ(x, Θ)

σs dV dΘ
(2.15)

L(x→ Θ) = σs

∫

Ω4π

p(x, Θi, Θ)
d2Ψ(x, Θ)

σs dV dΘ
dΘ

=
∫

Ω4π

p(x, Θi, Θ)
d2Ψ(x, Θ)

dV

(2.16)

Następnie powtarza się obliczenia dla kolejnego odcinka, a uzyskane obliczenia są pod-
stawą do kolejnych. Ponieważ jednak światło przebyło drogę równą ∆x, ulega ono
osłabieniu:

Ln+1(x + ∆x← x) = e−σt∆xLn(x→ Θ) (2.17)

2.3. Powierzchnia wody

Efekty świetlne widoczne na dnie zbiorników wodnych są efektem przejścia światła
przez dynamicznie zmieniającą się powierzchnię wody. Tak więc, aby modelować za-
chowanie się światła pod wodą, należy również modelować jej powierzchnię. Istnieje
kilka podejść do tego problemu, np. matematyczne przybliżenie kształtów fal za po-
mocą prostych funkcji, czy modelowanie własności fizycznych wody przy użyciu skom-
plikowanych równań Navier’a-Stokes’a. W tej pracy wykorzystany został model staty-
styczny opisany m.in. przez Tessendorf’a [10]. Model ten nie jest oparty na fizycznych
podstawach, w zamian używa statystycznych obserwacji morza.

Kiedy do pewnej powierzchni zastosuje się Transformatę Fourier’a (FT), otrzyma
się jej charakterystyczne widmo. Po zastosowaniu odwrotnej transformacji otrzymuje
się powierzchnię wyjściową. Idea metody statystycznej polega na wygenerowaniu od-
powiedniego widma, a następnie poprzez zastosowanie FT otrzymaniu realistycznej
powierzchni wody. W celu szybkiego i efektywnego liczenia transformaty używana jest
szybka transformata Fourier’a (FFT) [15].

Tessendorf [10] proponuje użycie widma Philipsa do widma fal powstałych na skutek
wiatru. Widmo to definiowane jest następującym równaniem:

Ph(K) = a
e−1/(kl)2

k4
|K̂ · Ŵ |2 (2.18)

Po obliczeniu widma należy obliczyć amplitudy i fazy fal w chwili początkowej. Obli-
czenia te wykorzystują następujące równanie:

h̃0(K) =
1√
2
(ξr + iξi)

√
Ph(K) (2.19)
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l = v2/g największa możliwa fala powstała przy ciągłym
wietrze o prędkości v, g jest przyspieszeniem ziem-
skim

Ŵ kierunek wiatru
K̂ kierunek fali
X horyzontalna pozycja punktu w którym liczymy

wysokość
a pewna stała dobierana eksperymentalnie, oddzia-

łująca na wszystkie fale
k = 2π/λ amplituda fali zależna od długości fali λ

K = (kx, kz) = (2πn/s, 2πm/s) dwuwymiarowy wektor, gdzie s jest wielkością
pola, r rozdzielczością siatki, a n i m wyznaczają
punkty siatki −r/2 ≤ n,m < r/2

ξr i ξi zmienne losowe z rozkładu normalnego o wartości
średniej równej 0 i odchyleniu standardowym rów-
nym 1

∗ operator sprzężenia

Rysunek 2.5: Wielkości używane przy obliczaniu powierzchni wody

Następnie, mając czas t, liczone jest pole amplitud częstotliwości:

h̃(K, t) = h̃0(K)eiω(K)t + h̃∗0(−K)e−iω(K)t (2.20)

gdzie ω – jest kątową częstotliwością fali k, reprezentującą prędkość z jaką fala porusza
się po powierzchni. Można policzyć ją z równania:

ω2(K) = g|K| (2.21)

gdzie |K| jest długością wektora K. Dla płytkich wód można wziąć pod uwagę głębo-
kość d:

ω2(K) = g|K| tanh(kd) (2.22)

Tak przygotowane pole zostaje następnie zamienione na mapę wysokości odpowia-
dającą powierzchni wody. Używa się w tym celu FFT, aby szybko obliczyć następującą
sumę:

h(X, t) =
∑

K

h̃(K, t)eiK·X (2.23)

Wszystkie obliczenia wykonywane są na liczbach zespolonych, jako wynikową wysokość
bierze się jednak tylko część rzeczywistą sumy.

Zaletą tej metody jest to, że można wyznaczyć wektory normalnych w punktach
siatki używając kolejny raz FFT:

∇h(X, t) =
∑

K

iKh̃(K, t)eiK·X (2.24)
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Używając tej metody można łatwo otrzymać realistyczną animację powierzchni
wody. Została ona wykorzystana komercyjnie przy produkcji takich filmów jak „Tita-
nic”, czy „Waterworld”.

Poniżej przedstawiono obrazy przedstawiające mapy wysokości powierzchni wody.
Uwaga: z powodu utraty jakości podczas drukowania obrazy te wyglądają lepiej w wer-
sji elektronicznej.
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Rysunek 2.6: Wyrenderowana powierzchnia wody
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Rozdział 3

Podsumowanie

3.1. Wyniki

Efekt zastosowania map fotonów widać na zamieszczonych poniżej obrazkach. Otrzy-
mane kaustyki są zbliżone do naturalnych (rys. 3.4). Uwaga: z powodu utraty jakości
podczas drukowania obrazy te wyglądają lepiej w wersji elektronicznej.

Przebieg programu wygląda następująco:
Ustalany jest sposób patrzenia na scenę. Podczas ewentualnej animacji kamera nie
porusza się, dlatego ten element programu został wyłączony przed pętlę animacji.
Wykonywana jest pętla wykonywania kolejnych klatek animacji. Wewnątrz pętli gene-
rowana jest scena właściwa dla danej klatki filmu, generuje się fotony które przebiegają
scenę i są zapamiętywane w mapach fotonów. Następnie generuje się obraz, który jest
na końcu zapisywany do pliku.
Generacja obrazu dokonuje się metodą śledzenia ścieżek (patrz 2.1.2) i wygląda nastę-
pująco:
Dla każdego piksela obrazu generuje się predefiniowaną ilość ścieżek które wychodzą
z punktu położenia kamery i przechodzą przez ten piksel. Dla każdej ścieżki oblicza
się punkt przecięcia ze sceną, oraz oblicza kolor jaki widzi obserwator z tego kierunku.
Kolory które zostały zwrócona uśrednia się dla pojedynczego piksela, a wynik jest za-
pamiętywany.
Kolor oblicza się następująco:
Sprawdza się czy obiekt z którym nastąpiło przecięcie z promieniem jest oświetlony
przez losowo wybrane źródło światła w punkcie przecięcia. Jeśli obiekt jest oświe-
tlony, to używany jest lokalny model oświetlenia właściwy dla materiału skojarzonego
z obiektem w celu wyznaczenia koloru jaki dociera do obserwatora.
Następnie dokonuje się estymacji radiancji z map fotonów (wzór 2.8) (normalnej i kau-
stycznej; ze względu na olbrzymi przyrost obliczeń i niezauważalne efekty zrezygnowano
w tej pracy z map wolumetrycznych).
W kolejnym kroku dokonuje się rosyjskiej ruletki (patrz 2.1.2) w celu stwierdzenia czy
następuje odbicie/ugięcie promienia i jeśli tak to rekursywnie oblicza się kolor z odbi-
tego/ugiętego kierunku.
Otrzymane kolory są sumowane i zwracane jako kolor wynikowy.

28



Zastosowany algorytm metody map fotonów jest niestety kosztowny obliczeniowo.
Tabela poniżej przedstawia porównanie czasów generowania prostej sceny zawierającej
powierzchnię wody z użyciem map fotonów i bez. Scena zawiera 130062 trójkątów.
Rozdzielczość obrazu wynosi 500 na 500 pikseli, dla każdego piksela wygenerowano 100
ścieżek. Obliczenia wykonano na maszynie z procesorem Athlon XP 1600+ (1750MHz),
512 pamięci RAM, na systemie operacyjnym Linux Mandriva LE 2005. Wygenerowane
sceny widać na obrazach poniżej.

Metoda Czas renderowania
Śledzenie ścieżek średnio 20 min

Śledzenie ścieżek + mapy fotonów (około 2.2 miliona fotonów) średnio 23 h

Rysunek 3.1: Scena wyrenderowana za pomocą metody śledzenia ścieżek

3.2. Opis implementacji

Do implementacji symulacji wykorzystany został algorytm śledzenia ścieżek, wsparty
metodą map fotonów.

Jądrem projektu jest klasa RayTracer. Wewnątrz tej klasy wykonuje się główna
pętla programu wykonująca obliczenia. Klasa ta również zapisuje wygenerowany obraz
w formacie PPM.
Klasa Scene zawiera listę obiektów obecnych w obrazowanej przestrzeni.
Klasa Camera odpowiada za ustawienie kamery w stosunku do sceny.
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Za symulowany promień światła odpowiada klasa Ray. Wszelkie interakcje obiektów
ze światłem odbywają się przy użyciu tej klasy.
Abstrakcyjna klasa Primitive zawiera parametry które musi posiadać każdy obiekt
obecny na scenie. Wszystkie obiekty dziedziczą po tej klasie. Przykładem jest klasa
Triangle opisująca trójkąt.
Za kształt powierzchni wody odpowiedzialna jest klasa StatisticalWater. Klasa ta
jest napisana w oparciu o implementację Gottfrieda Chena. Wykorzystuje ona szybką
transformatę Fouriera (klasa Fft2D) do wygenerowania mapy wysokości (klasa He-
ightMap) powierzchni wody. Na podstawie tej mapy generowana jest lista trójkątów
odwzorowująca powierzchnię wody. Z powodu dużej liczby trójkątów składających się
na tą listę upakowywane one są do struktury zwanej Quad Tree (klasa QuadTree).
Dzieli ona przestrzeń zajmowaną przez trójkąty na 4 części, następnie każda z pod-
przestrzeni jest rekurencyjnie dzielona na mniejsze części, aż w każdej pozostaje nie
więcej niż ustalona liczba obiektów. Pozwala to na znaczne przyspieszenie wyszukiwa-
nia przecięć promienia z obiektami.
Abstrakcyjna klasa Material opisuje kolor obiektu, oraz własności fizyczne jakie po-
siada dany obiekt. Po tej klasie dziedziczy klasa Lambertian, opisująca powierzchnię
lambertowską (idealnie rozpraszającą światło). Dziedziczy po niej także klasa Cook-
TorranceMaterial, wykorzystywana w tej implementacji do opisu powierzchni wody.
Materiał opisujący źródło światła (klasa Light) również dziedziczy po klasie Mate-
rial.
Scena renderowana w tej pracy zbudowana jest z pięciu ścian (każda składa się z dwóch
trójkątów), o powierzchniach lambertowskich. Poza tym na scenie jest źródło światła
(dwa trójkąty), o powierzchni źródła światła. Scena zawiera również powierzchnię
wody (zbiór trójkątów generowany za pomocą klasy StatisticalWater). Powierzch-
nia wody jest opisywana przez model Cook’a-Torrance’a. Scena konstruowana jest
wewnątrz klasy Scene.
Sposób patrzenia na scenę (rozdzielczość wynikowego obrazu, punkt z którego obser-
wuje się scenę, kierunek i kąty patrzenia) jest opisuje klasa Camera. Klasa Photon
opisuje parametry fotonu. Fotony gromadzone są w mapie fotonów (klasa Photon-
Map).
W funkcji uruchamiającej program (funkcja main w pliku rt.cpp) znajduje się pętla
dzięki której można tworzyć animacje ruszającej się wody.
W pliku defs.h znajdują się makroinstrukcje sterujące zachowaniem programu. Można
dzięki nim ustawiać takie parametry jak rozdzielczość wynikowego obrazu, jakość prób-
kowania sceny, włączać/wyłączać i ustawiać parametry mapowania fotonów, oraz kilka
innych.
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Rysunek 3.2: Sceny wyrenderowane za pomocą metody śledzenia ścieżek i metody
mapowania fotonów (około 2.2 milionów fotonów)
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Rysunek 3.3: Scena widziana pod innym kątem

Rysunek 3.4: Rzeczywista scena podwodna
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Dodatek – płyta CD

Zawartość płyty CD:
W katalogu src/ znajdują się źródła programu.
W katalogu bin/ znajduje się skompilowany program gotowy do uruchomienia.
W katalogu pic/ znajdują się przykładowe obrazy i animacje wygenerowane za pomocą
programu stworzonego na potrzeby tej pracy.
W katalogu doc/ znajduje się treść pracy w formacie PDF.
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[8] Philip Dutré: Global illumination compendium., Dostępne w sieci, URL
http://www.graphics.cornell.edu/ phil/GI/ , 2001

[9] Henrik Wann Jensen: Realistic image synthesis using photon mapping., A K Pe-
ters, 2001

[10] Jerry Tessendorf: em Simulating ocean water. Simulating Nature: Realistic and
Interactive Techniques. SIGGRAPH 2001 Course Notes 47.

[11] Jon L. Bentley: Multidimensional binary search trees used for associative sear-
ching., Communications of the ACM 18(9): 509-517 (1975)

[12] Jon L. Bentley: Multidimensional binary search trees in database applications.,
IEEE Trans. on Soft. Eng. 5(4): 333-340 (July 1979)

[13] Jon L. Bentley, Jerome H. Friedman: Data structures for range searching. Com-
puting Surveys 11(4): 397-409 (1979)

[14] Thomas H. Cormen, Charles E. Leierson, Ronald L. Rivest: Wprowadzenie do
algorytmów. WNT, Warszawa 1997

34



[15] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery:
Numerical recipes in C. The art of scientific computing., Second edition. Cam-
bridge University Press 1992

[16] T. Whitted: An improwed illumination model for shaded display., Communications
of the ACM 23(6):343-349 (June 1980)

[17] R.L. Cook, T. Porter, L. Carpenter: Distributed ray tracing., Comput. Graph.
(Siggraph ’84 proceedings) 18(3), 137-145, July 1984
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