
Uniwersytet Wrocławski

Praca magisterska

Ocena jakości obrazów w sekwencji zdjęć

Autor:
Karol Kontny

Promotor:
Andrzej Łukaszewski

1 grudnia 2015



Streszczenie

Niniejsza praca prezentuje i porównuje różne algorytmy służące do oceny jakości obrazu,
przede wszystkim skupiając się na ostrości. Proponuje też modyfikacje oraz szereg innych
technik służących do oceny jakości obrazów.

W rozdziale drugim pracy są zaprezentowane techniki, które są często używane w algoryt-
mach oceny jakości obrazów. Praca prezentuje kilka metod oceny ostrości obrazu (rozdział
3).

W kolejnym rozdziale opisane są popularne bazy danych zdjęć, często używane do testowania
metod oceny jakości obrazów. Opisane są też zdjęcia, które zostały wykonane do tej pracy i
na których były przeprowadzane w większości badania.

Rozdział piąty pracy to opis i porównanie metryk opisanych w rozdziale trzecim. W
rozdziale szóstym proponujemy ulepszenia do algorytmów z rozdziału trzeciego oraz nowe
algorytmy oraz opisujemy wyniki ich skuteczności.

Abstract

This paper presents and compares image quality assesment (IQA) algorithms, especially on
sharpness assesment. We also propose modifications and another techniques for image quality
assesment.

In second chapter of the paper we present popular techniques that are used in IQA
algorithms. In third chapter we present few algorithms for sharpness measuement.

In next chapter there are popular image databases describes, which are often used to test
IQA algorithms. Also in this chapter we described our own image database, which were taken
for purpose of this paper. Most reaserch were done on that image database.

Fifth chapter is a description and comparison of algorithms described in chapter three. In
sixth chapter we propose modifications for methods from chapter three and we propose new
algorithms.
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Rozdział 1

Wstęp

Celem pracy jest zaproponowanie algorytmicznej metody do porównywania jakości obrazów,
zakładając, że dysponujemy sekwencją zdjęć przestawiającą ten sam obiekt. Wraz z rozwojem
fotografii cyfrowej oraz powszechności urządzeń elektronicznych, które posiadają funkcję
aparatu pojawiły się możliwości robienia bardzo wielu zdjęć, nie troszcząc się zbytnio o ich
jakość. Wiele aparatów posiada funkcje robienia sekwencji zdjęć. Wśród tak wielu zdjęć często
tylko kilka ujęć jest dobrych w sensie technicznym (ostrość, jasność, kontrast, nasycenie etc.), a
także percepcyjnym (ustawienie obiektów na zdjęciu, dobry kadr). Przede wszystkim skupiamy
się na ich ostrości, ale bierzemy pod uwagę także inne czynniki takie jak: szum, kontrast,
jasność obrazu.

Od kilkunastu lat trwają badania nad algorytmami automatycznie oceniającymi obrazu
pod wieloma kryteriami, powstało na ten temat wiele prac, została opracowana systematyka
algorytmów do oceny jakości obrazu. Mimo tych wszystkich badań współczesne programy do
obróbki zdjęć (jak np. Adobe Lightroom) nie posiadają funkcjonalności typu automatycznego
wyboru dobrych zdjęć.

Określanie ostrości zdjęcia najczęściej odbywa się poprzez badanie krawędzi w obrazie,
dlatego prezentujemy różne techniki pozyskiwania krawędzi, które są wykorzystywane w
różnych algorytmach. Porównujemy kilka istniejących metryk służących do oceny jakości
obrazu, które wykorzystują różne rozwiązania, aby przekonać się jakie są najskuteczniejsze,
następnie wprowadzamy ulepszenia do nich. Proponujemy także inne algorytmy. Ponieważ
algorytm powinien automatycznie określać jakość obrazu, celem jest uzyskanie ocen, które
odpowiadają temu jak ludzie oceniają ten obraz. W tym celu przygotowaliśmy bazę zdjęć i
porównujemy wyniki otrzymane przez algorytm z ocenami ludzi.
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Rozdział 2

Metody pozyskiwania krawędzi

2.1 Operator Sobela
Jeżeli potraktujemy obraz jako sygnał f(x), to krawędzie w obrazie można zdefiniować, jako
miejsca gdzie są najbardziej dynamiczne zmiany sygnału, czyli jako miejsca gdzie pierwsza
pochodna ma ekstrema[8]. W celu wykrycia krawędzi w obrazie, czyli sygnale dwuwymiarowym
musimy policzyć jego pochodną, którą nazywamy gradientem. Zatem policzymy pochodne
cząstkowe w obu kierunkach.

(2.1) ∇f(x) =
[
∂f(x)
∂x1

∂f(x)
∂x2

]
Jednak obraz nie jest sygnałem ciągłym, ale dyskretnym, więc musimy w jakiś sposób oszacować
pochodną obrazu. W tym celu stosuje się operatory, których nałożenie na obraz daje pewne
przybliżenie pochodnej. Wśród wielu metod jest operator Sobela, który charakteryzuje się dość
dobrymi wynikami, dodatkową zaletą jest separowalność filtra, co wpływa na możliwość jego
efektywnej implementacji. Jest to operator, który należy do grupy operatorów do regulowanego
wykrywania krawędzi (regularized edge detectors)[8]. Takie filtry wygładzają obraz, co czyni
je bardziej odpornymi na przypadkowe i niepożądane wzmocnienie szumu w obrazie. Operator
Sobela rozmywa obraz w kierunku prostopadłym do szukanej pochodnej. Maski operatora
Sobela w obu kierunkach są widoczne poniżej.

(2.2) Mx =

−1 0 1
−2 0 2
−1 0 1

 =

1
2
1

 [−1 0 1
]

(2.3) My =

−1 −2 −1
0 0 0
1 2 1

 =
[
1 2 1

] −1
0
1


Gdy policzymy cząstkowe oszacowania pochodnej w kierunku poziomym i pionowym w danym
punkcie, to możemy obliczyć wartość gradientu w nim ze wzoru:

(2.4) G =
√
G2
x +G2

y
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Gdzie Gx oraz Gy to wartości w danym punkcie obrazu po nałożeniu operatora, czyli po
splocie obrazu z maską operatora. Czasami używa się bardziej uproszczonego szacowania ze
względu na lepszą szybkość działania:

(2.5) G = |Gx|+ |Gy|

W wyniku tej operacji dostajemy wartości gradientu (długości wektorów). Musimy jeszcze
znaleźć kierunek wektora w każdym punkcie. Kierunek otrzymujemy ze wzoru:

(2.6) θ = arctan

(
Gy
Gx

)

(a) Oryginalny obraz (b) Obraz po nałożeniu pionowego operatora Sobela

(c) Obraz po nałożeniu poziomego operatora Sobela (d) Obraz po nałożeniu zlożenia pionowego i pozio-
mego operatora Sobela

Rysunek 2.1: Przykład działania operatora Sobela
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2.2 Canny Edge Detector[1]
Canny scharakteryzował, jakie cechy powinien mieć dobry algorytm wykrywający krawędzie:

1. Prawdopodobieństwo pomyłki musi być niskie: algorytm musi wykrywać punkty należące
do krawędzi z dużym prawdopodobieństwem oraz oznaczać punkty nienależące do
krawędzi z małym prawdopodobieństwem.

2. Punkty zaznaczone jako krawędzie powinny być tak blisko, jak to możliwe prawdziwym
środkom krawędzi.

3. Pojedyncza krawędź powinna mieć tylko jedną właściwą odpowiedź w wyniku.

Algorytm wykrywający krawędzie można podzielić na kilka kroków:

1. Wygładzanie

2. Obliczanie gradientu obrazu

3. Tłumienie (non-max suppression)

4. Obliczanie progów (thresholding)

5. Śledzenie krawędzi

Krok 1 służy wyeliminowaniu z obrazu szumu, który mógłby spowodować wykrycie krawędzi
w miejscach, gdzie w rzeczywistości ich nie ma. Z drugiej strony zbytnie rozmycie obrazka
może spowodować błędy w detekcji. W tym celu używa się filtra Gaussa na obrazku. W
implementacji użyłem filtra o następującym jądrze:

(2.7) M = 1
159


2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2


Krok 2 to obliczenie gradientu. Istnieje wiele operatorów, które z różną dokładnością aprok-
symują gradient obrazu. Istotne jest, żeby wybrać rozwiązanie, które będzie optymalne pod
względem potrzebnej dokładności i szybkości działania. Dość powszechnie stosowany jest
operator Sobela rozmiaru 3× 3. Po tej operacji dostajemy wartość, jak i kierunek gradientu w
każdym punkcie obrazu.

W kolejnym kroku chcemy wytłumić niektóre piksele na obrazku, aby spełnić założenia 2 i
3 o dobrym wykrywaczu krawędzi. W tym celu dla każdego piksela sprawdzamy, czy ma on
największą wartość gradientu w swoim sąsiedztwie. Musimy również wziąć pod uwagę kierunek
gradientu w tych obliczeniach: sprawdzamy kierunek i sąsiadujące piksele leżące prostopadle
do kierunku i wygaszamy te, które nie mają wartości maksymalnej w porównaniu do sąsiadów.
Standardowo krawędzie wykrywamy w czterech kierunkach — pionowym, poziomym oraz
obu diagonalnych, zatem kierunek gradientu zaokrąglamy do najbliższej wielokrotności 45◦.
Możliwe jest wykrywanie krawędzi w mniejszej liczbie kierunków, jeżeli tylko taka jest potrzeba.
Wynik działania tłumienia można zobaczyć poniżej.
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(a) Przed tłumieniem (b) Po tłumieniu

Rysunek 2.2: Tłumienie

W kroku 4 ustalamy, powyżej jakich wartości uznajemy piksel za należący do krawędzi.
Canny w swojej pracy zaproponował znalezienie dwóch progów. Pojedynczy próg powoduje, że
krawędzie są poszarpane i brakuje w nich niektórych pikseli. Jeżeli punkt ma wartość powyżej
górnego progu h, to automatycznie jest uznawany za krawędź. Jeżeli ma wartość powyżej
dolnego progu l, to jest uznany za punkt należący do krawędzi i tylko wtedy, jeżeli łączy się
z punktem, który został już zaklasyfikowany jako należący do krawędzi. Takie rozwiązanie
powoduje, że jeżeli krawędzie w wyniku nie są poszarpane, nawet mimo wahających się wartości
punktów. Canny zalecał, aby stosunek wartości h do l wynosił pomiędzy 2 : 1 a 3 : 1.

Ostatni krok to stworzenie ostatecznego wyniku na postawie wyliczonych wcześniej progów.
Należy przejrzeć pośredni obraz wykonany w kroku 3 i wybrać piksele stanowiące krawędzie
według kryterium opisanego w kroku 4. Na rysunku 2.3 widać wynik działania wykrywacza
krawędzi:

(a) Oryginalny obraz (b) Obraz z wykrytymi krawędziami

Rysunek 2.3: Canny edge detector
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2.3 Funkcje Haara i transformata Haara
Falki Haara (Haar wavelets) jest to baza, w której możemy przechowywać różne rodzaje
sygnałów między innymi obrazy. W przeciwieństwie do np. bazy Fouriera w bazie Haara
mamy zachowaną lokalność obiektów w transformacie obrazu. Dzieje się tak dlatego, że funkcje
bazowe Haara są różne od zera tylko na jednym spójnym fragmencie funkcji. Funkcja matka
falek Haara ψ(t) jest określona wzorem[9][10]:

(2.8) ψ(t) =


1, dla t ∈ [1

2),
−1, dla t ∈ [1

2 , 1)
0, wpp

Inne funkcje bazowe można otrzymać poprzez skalowanie i przesuwanie funkcji ψ(t).

(2.9) ψj,k = ψ(2jt− k) (k = 0, 1 . . . 2j − 1)

Transformaty Haara używa się min. w przetwarzaniu obrazów do wykrywania krawędzi, a
także bardziej ogólnie w przetwarzaniu sygnałów do ich kompresji.

(a) Oryginalny obraz (b) Obraz po transformacie Haara(3 poziomy)

Widać, że w lewej dolnej ćwiartce każdego poziomu „piramidy” są informacje o gradientach
poziomych, w prawym górnym o pionowych, a w prawym dolnym o gradientach diagonalnych
w każdej rozdzielczości.
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Rozdział 3

Metryki ostrości obrazu

3.1 Wprowadzenie
Metryki oceniające jakość obrazu są dzielone na kilka różnych grup[11][7]:

• Subiektywne — metody oparte na subiektywnych ocenach ludzi. Najczęściej stosowana
jest pięciostopniowa skala jakości, w której badana osoba ocenia pokazywane zdjęcie.
Wśród tych metod można wyróżnić dwie główne grupy:

– Metody pojedynczej stymulacji, gdzie pokazuje się oceniającemu jedno zdjęcie, na
pewien czas, a po jego upływie prosi o ocenę.

– Metody podwójnej stymulacji, w których oceniający widzi dwa zdjęcia np. zdjęcie
referencyjne i oceniane lub prosi się o porównanie dwóch zdjęć i wybranie lepszego
z nich.

• Obiektywne — metody algorytmiczne oceniające jakość zdjęć. Celem badań jest wynale-
zienie algorytmów, których wyniki odpowiadają subiektywnym ocenom ludzi.

– Metryki pełnej referencji (full reference — FR) - takie, w których mamy dostęp do
obrazu oryginalnego, niemającego wad i porównujemy jakiś obrazek z oryginalnym.

– Metryki częściowej referencji (reduced reference — RR) - kiedy mamy tylko czę-
ściową informację o oryginalnym obrazie, na przykład o jego najważniejszych
fragmentach.

– Metryki bezreferencyjne (no reference — NR) - kiedy nie mamy żadnej informacji
o obrazie idealnym, jest to przypadek, który najbardziej odpowiada założeniom
postawionym w temacie pracy, gdyż nie mamy żadnej informacji o „właściwej”
wersji obrazu, ale z drugiej strony zakładamy, że obrazy przedstawiają te same
obiekty, dzięki czemu algorytm może posłużyć się technikami niedostępnymi w
klasycznej wersji tego problemu.

W kolenych podrozdziałach opiszemy kilka różnych metod oceny ostrości obrazu typu no–
reference.
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3.2 Metryka Marziliano[2]
Jest to jedna z pierwszych i jednocześnie bardzo prosta metoda oceniania ostrości obrazów typu
no–reference. Opiera się na detekcji krawędzi i sprawdzaniu ich szerokości. Zarys algorytmu
można przedstawić w punktach:

1. Oblicz gradient obrazu.

2. Dla każdej krawędzi oblicz jej szerokość.

3. Oblicz wynik jako średnią szerokość krawędzi.

Najpierw używa się operatora Sobela na komponencie jasności (luminance) obrazu wej-
ściowego S = Sobel(I), aby znaleźć w nim krawędzie. Poprzez ustalenie progu t na obrazie
wynikowym S eliminuje się szum i mało widoczne krawędzie. Dla polepszenia szybkości dzia-
łania używa się operatora tylko w jednym kierunku — w pracy wybrano pionowy, autorzy
twierdzą, że wybór obu kierunków nie wpływa na poprawę wyników. Następnie dla każdego
punktu należącego do krawędzi ei oblicza się pozycję początku krawędzi ri i jej końca li. Jako
początek i koniec rozumie się lokalne ekstrema w jasności obrazu I na prawo i lewo od punktu
ei. Szerokość krawędzi jest różnicą między pozycją końca krawędzi a jej początkiem czyli
szerokość Wi = ri − li. Wartość metryki dla całego obrazka to suma szerokości krawędzi przez
ilość krawędzi, czyli ilość pikseli ei. Metrykę można opisać wzorem:

(3.1) B =
N∑
i=0

li + ri
N

Im mniejsza jest szerokość krawędzi, tym ostrzejszy jest obraz, zatem mniejszy wynik
oznacza bardziej ostry obraz.

Rysunek 3.1: Przekrój przez wiersz obrazu I, jasność zaznaczona ciągłą linią, przerywaną linią
wystąpienia krawędzi, przerywano – kropkowaną linią lokalne minima i maksima dla krawędzi.
W1 i W2 oznaczają szerokość krawędzi, e1 i e2
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3.3 Just Noticable Blur[3]
Wśród wielu algorytmów mierzących ostrość obrazu, część z nich stworzona była do porów-
nywania obrazów o tej samej zawartości. Autorzy chcieli wymyśleć algorytm, który dawałby
podobne wyniki dla takiego samego obiektywnego rozmycia obrazu.

Algorytm opiera się na często stosowanej metodzie Just Noticable Difference (JND), której
używa się w badaniu różnych czynników na ludzką percepcję. W tej metodzie sprawdza się,
jak mała ilość badanego bodźca jest zauważalna przez człowieka. W tym przypadku prze-
prowadzono badania, kiedy człowiek jest w staniu zauważyć rozmycie obrazu przy zadanym
kontraście. Taką najmniejszą wartość rozmycia autorzy nazywają Just Noticable Blur (JNB).
Badania pozwoliły oszacować wartość parametru wJNB , który jest wykorzystywany później w
algorytmie. Przy szerokości krawędzi równej wJNB, dla zadanego kontrastu prawdopodobień-
stwo wykrycia jej nieostrości jest równe 63%.

Schemat algorytmu:
1. Wykryj krawędzie w obrazie i oblicz jego gradient.

2. Podziel na bloki i odrzuć bloki gładkie.

3. Oblicz ocenę dla każdego niegładkiego bloku.

4. Oblicz ocenę dla całego obrazu na postawie ocen dla bloków.
Algorytm najpierw używa na wyjściowym obrazie I wykrywacza krawędzi Cannego na

obrazie C = Canny(I) oraz nakłada na obraz operator Sobela S = Sobel(I). Następnie obraz
jest dzielony na bloki o rozmiarze 64×64 pikseli. W każdym bloku obliczana jest ilość punktów
krawędzi na podstawie C. Jeżeli jest mniejsza niż 0.2% pikseli w bloku, to blok jest uznany za
gładki i nie jest dalej przetwarzany. W przeciwnym wypadku ocena rozmycia dla bloku Rb
jest obliczana ze wzoru:

(3.2) DRb =
( ∑
ei∈Rb

w(ei)
wJNB(ei)

β
) 1
β

W powyższym wzorze ei to piksele rozpoznane jako krawędzie na obrazie C, a wJNB ma
wartość zależną od kontrastu w bloku. Kontrast k jest obliczany jako różnica jasności między
najjaśniejszym a najciemniejszym pikselem w bloku. wJNB ma wartość 5 jeżeli k ≤ 50 i
wartość 3 jeżeli k > 50. Natomiast w(ei) to szerokość krawędzi obliczana tak samo, jak w
metryce Marziliano[2] na postawie obrazu S. Parametr β ma wartość 3.6. Ilość wszystkich
przetwarzanych bloków oznaczamy przez L.

Następnie, aby otrzymać wynik rozmycia dla całego obrazu używana jest metryka Min-
kowskiego:

(3.3) D =
(∑
Rb

|DRb |
β

) 1
β

(3.4) B = L

D

Wartość B jest zwracana jako wynik. ilość przetworzonych bloków L przez rozmycie D.
Im wyższy jest wynik, tym obraz jest ostrzejszy.
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3.4 Cumulative Probability of Blur Detection[4]
Algorytm jest ulepszeniem poprzedniego [3], stosowany jest inny model do oceny rozmycia
obrazu, natomiast nadal stosowana jest ta sama koncepcja (JNB) jako podstawa do określenia
czy dana krawędź jest rozmyta.

1. Wykryj krawędzie w obrazie i oblicz jego gradient.

2. Podziel na bloki i odrzuć bloki gładkie.

3. Dla każdej krawędzi w bloku oblicz prawdopodobieństwo jej uznania za rozmytą.

4. Znormalizuj wyniki i oblicz wynik.

Na obrazie I obliczany jest gradient za pomocą operatora Sobela S = Sobel(I) i wykrywane
są krawędzie za pomocą algorytmu Cannego C = Canny(I). Obraz jest dzielony na bloki o
rozmiarach 64× 64 pikseli. Jeżeli blok jest uznany za niegładki (na takich samych zasadach
jest algorytmie JNB) to dla każdego punktu krawędzi ei obliczane jest prawdopodobieństwo
jej uznania za rozmytą za pomocą wzoru:

(3.5) PBLUR(ei) = 1− exp
(
−
∣∣∣∣ w(ei)
wJNB(ei)

∣∣∣∣β
)

Gdzie w(ei) to szerokość krawędzi obliczana jak w pracy [2], a parametr β = 3.6. Wynik
prawdopodobieństwa zaokrągla się do 0.01.

Po obliczeniu prawdopodobieństw dla wszystkich krawędzi oblicza się znormalizowany
histogram prawdopodobieństw detekcji rozmycia, czyli PBLUR/Liczba wszystkich krawędzi.
Wynikiem jest suma gęstości prawdopodobieństw poniżej 63%. Im większy jest wynik, tym
obraz jest ostrzejszy. Nieostre krawędzi mają dużą szerokość, zatem prawdopodobieństwo
uznania ich za rozmyte jest duże. Wtedy suma gęstości prawdopodobieństw poniżej 63%
będzie mała. Kiedy w obrazie jest dużo ostrych krawędzi, to suma małych prawdopodobieństw
wykrycia nieostrości jest duża, więc wynik jest większy.

3.5 Metryka Tonga[5]
Ta metryka wykorzystuje przetwarzanie obrazów w dziedzinie falek (wavelets). Na obrazie
wejściowym dokonywana jest transformata Harra. Krawędzie w obrazie można podzielić na
cztery typy (3.5). Autorzy zauważają, ze w obrazach nieostrych dwa z tych typów nie występują,
a pozostałe tracą swój kształt. Zadaniem algorytmu jest znalezienie, które piksele obrazu
należą do krawędzi oraz do jakich typów krawędzi one należą. Schemat działania algorytmu
można przedstawić następująco:

1. Oblicz transformatę Haara H = haar(I) obrazu.

2. Skonstruuj mapę krawędzi Emapi dla każdego poziomu transformaty.

3. Skonstruuj mapę maksimów Emapi na postawie map krawędzi.

4. Oblicz ilość krawędzi poszczególnych typów w obrazie.
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(a) Krawędź typu Dirac (b) Krawędź typu Roof

(c) Krawędź typu Astep (d) Krawędź typu Gstep

Rysunek 3.2: Ilustracja typów krawędzi

5. Oblicz wynik.

Po obliczeniu trzystopniowej transformaty Haara na obrazie I konstruujemy mapę krawędzi
w każdej skali. Wartość każdego piksela otrzymujemy ze wzoru:

(3.6) Emapi(k, l) =
√
V D2

i (k, l) +HD2
i (k, l) +DD2

i (k, l) (i = 1, 2, 3)

Następnie musimy sprowadzić wszystkie mapy krawędzi do wspólnej skali, w tym celu
dzielimy każdą z nich na okna rozmiaru 24−i×24−i i znajdujemy maksymalną wartość w takich
oknach. Po tym kroku algorytmu otrzymujemy trzy mapy maksimów Emaxi (i = 1, 2, 3).
Ponieważ transformata Haara wpływa rożnie na różne typy krawędzi, możemy teraz rozpoznać,
które piksele należą do jakiego typu. Nie będziemy jednak rozważać pikseli, których wartość
jest poniżej pewnego progu t = 35, gdyż są one mało widoczne dla człowieka. Do klasyfikowania
krawędzi będziemy używać kilku reguł:

1. Jeżeli Emax1(k, l) > t lub Emax3(k, l) > t lub Emax3(k, l) > t, to piksel należy do
krawędzi, oznaczmy sumę takich punktów przez Ne.
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Rysunek 3.3: Ilustracja piramidy z oznaczonymi poszczególnymi obszarami

2. Jeżeli piksel należy do krawędzi i Emax1(k, l) > Emax2(k, l) > Emax3(k, l), to piksel
ma typ Dirac lub Astep, oznaczmy sumę, takich punktów przez Nda.

3. Jeżeli piksel należy do krawędzi i Emax1(k, l) < Emax2(k, l) < Emax3(k, l), to piksel
ma typ Roof lub Gstep.

4. Jeżeli piksel należy do krawędzi i Emax1(k, l) < Emax2(k, l) > Emax3(k, l), to piksel
ma typ Roof, oznaczmy sumę pikseli z tego warunku i poprzedniego przez Nrg.

5. Jeżeli piksel ma typ Gstep lub Roof i Emax1(k, l) < t, to piksel należy do nieostrej
krawędzi, sumę takich pikseli oznaczymy przez Nb.

Ostatnim krokiem algorytmu jest obliczenie wartości metryki, najpierw obliczamy stosunek
P = Nda

Ne
czyli pikseli ostrych krawędzi do wszystkich krawędzi. Jeżeli P > m to zdjęcie

zostaje uznane za ostre i wynikiem jest 0, autorzy ustalili wartość parametru m = 0.05. W
przeciwnym wypadku jako wynik algorytmu zwracane jest B = Nb

Nrg
. Im większy wynik tym

gorsza jakość zdjęcia.

3.6 Metryka Kerouh’a[6]
Ta metoda różni się znacznie od poprzedniego algorytmu, ale autorzy często odwołują się do
pracy [5], która była punktem wyjściowym. Oto schemat algorytmu:

1. Oblicz transformatę falkową obrazu

2. Oblicz mapę krawędzi

3. Zidentyfikuj krawędzie i krawędzie rozmyte w transformacie

4. Oblicz wynik
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Podobnie jak w algorytmie Tonga pierwszym krokiem jest użycie transformaty falkowej.
Mapę krawędzi buduje się, nie korzystając z części diagonalnej:

(3.7) Emapi(k, l) =
√
V D2

i (k, l) +HD2
i (k, l) (i = 1, 2, 3)

W algorytmie Tonga był stały próg, powyżej którego stwierdzało się wykrycie krawędzi,
tutaj autorzy proponują wartość zależną od poziomu transformaty i oraz średniej.

(3.8) ti = 2i−1 ·mean(Emapi(k, l)) (i = 1, 2, 3)

Piksel Emapi(k, l) > ti, który należy do krawędzi, jest uznawany na nieostry, jeżeli różnica
między nim, a jego sąsiadami (rozpatrujemy wszystkich ośmiu sąsiadów) jest mniejsza niż próg,
którego wartość jest zależna od poziomu transformaty ξi = 0.5 · 2i−1 (i = 1, 2, 3). Zliczamy
wszystkie piksele stanowiące krawędzie NEi i krawędzie nieostre NBi dla każdego poziomu.
Następnie obliczamy współczynnik rozmycia na każdym z poziomów:

(3.9) Qi = NBi
NEi

(i = 1, 2, 3)

Ostatecznie wynikiem algorytmu jest średnia ważona B. Poziomy, które mają większą
rozdzielczość, są uważane za ważniejsze i mnożone przez większe wagi. Im większy wynik B
tym lepsza jakość obrazu.

(3.10) B = 1−

3∑
i=1

23−iQi

3∑
i=1

23−i

3.7 Metryka Choi[7]
Metryka służy do oceny jakości obrazu na podstawie rozmycia i szumu obecnego w obrazie.
Algorytm jest podzielony na następujące fazy:

1. Ocena rozmycia obrazu

(a) Detekcja krawędzi.
(b) Szacowanie rozmycia obrazu.

2. Ocena szumu w obrazie.

3. Obliczenie wyniku.

3.7.1 Wykrywanie krawędzi i ocena rozmycia

Wykrywanie krawędzi odbywa się inaczej niż w poprzednich algorytmach, jest to metoda
bardzo prosta w porównaniu do poprzednio opisanych. Krawędzie wykrywane są w kierunkach
poziomym i pionowym oddzielnie. Opiszemy tu jedną metodę, do wykrywania poziomych
krawędzi z indeksami h, gdyż druga jest analogiczna i posiada indeksy v. Najpierw obliczamy
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gradient poziomy Dhb dla każdego piksela obrazu I(i, j), a następnie średnią Dhbm. H ·W to
rozmiar obrazu (wysokość razy szerokość):

(3.11) Dhb(i, j) = |I(i, j + 1)− I(i, j − 1)|

(3.12) Dhbm = 1
H ·W

H∑
i=1

W∑
j=1

Dhb(i, j)

Następnie jest obliczana mapa pikseli kandydujących do bycia krawędziami Ch(i, j).

(3.13) Ch(i, j) =
{
Dhb(i, j) jeżeli Dhb(i, j) > Dhbm,

0 wpp

Jeżeli piksel (i, j) ma wartość Ch większą niż dwóch sąsiadów, to zostaje uznane jako
krawędź Eh(i, j).

(3.14) Eh(i, j) =
{

1 jeżeli Ch(i, j) > Ch(i, j + 1) i Ch(i, j) > Ch(i, j − 1),
0 wpp

Gdy zostanie dokonana detekcja krawędzi, to kolejnym krokiem jest zdecydowanie które
piksele są rozmyte. W tym celu oblicza się wskaźnik rozmycia w obu kierunkach: Rh oraz Rv i
wybiera większy z nich i dla ustalonego progu Thb = 0.1 dla wartości mniejszych uznaje się
piksel za rozmyty. Wskaźnik rozmycia Rh obliczamy następująco:

(3.15) Ah(i, j) = 1
2Dhb(i, j)

(3.16) Rh(i, j) = |I(i, j)−Ah(i, j)|
Ah(i, j)

Rv definiujemy dla kierunku wertykalnego analogicznie. Wtedy rozmyte piksele to:

(3.17) B(i, j) =
{

1 jeżeli max(Rh(i, j), Rv(i, j)) < Thb,

0 wpp

Ostatecznie do oceny rozmycia obrazu używamy dwie liczby: Bm oraz Br:

(3.18) Bm = Sumblur

Blurcnt

(3.19) Br = Blurcnt
Edgecnt

Gdzie Edgecnt to suma pikseli uznanych za krawędzie, Blurcnt to suma pikseli rozmytych,
czyli takich których B(i, j) = 1, a Sumblur opisuje się wzorem:

(3.20) Sumblur =
H∑
i=1

W∑
j=1

max(Rh(i, j), Rv(i, j))
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(a) Obraz Dhb — gradient poziomy (b) Obraz z wykrytymi krawędziami poziomymi

(c) Obraz Dvb — gradient pionowy (d) Obraz z wykrytymi krawędziami pionowymi

Rysunek 3.4: Ilustracja wykrywania krawędzi w algorytmie Choi’a

3.7.2 Ocena szumu

Jako pierwszy krok wykrywania i oceny szumu wykonujemy wygładzanie obrazka filtrem „box”
o rozmiarze 3× 3 o masce:

(3.21) M =

1 1 1
1 1 1
1 1 1


Na powstałym wyniku, podobnie jak w wypadku wykrywania krawędzi obliczamy gradient

poziomy i pionowy Dhn oraz Dvn, a także wartości średnie Dhnm i Dvnm, prezentujemy
tu wzory dla kierunku poziomego, wzory dla kierunku pionowego, indeksowane przez v są
analogiczne:

(3.22) Dhn(i, j) = |f(i, j + 1)− f(i, j − 1)|

(3.23) Dhnm = 1
H ·W

H∑
i=1

W∑
j=1

Dhn(i, j)
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Następnie obliczamy mapę pikseli kandydujących na szum oraz średnią mapy szumu Ncm:

(3.24)

Nc(i, j) =
{
max(Dvn(i, j), Dhn(i, j)) jeżeli Dhn(x, y) ≤ Dhnm(i, j) i Dvn(i, j) ≤ Dvnm

0 wpp

(3.25) Ncm = 1
H ·W

H∑
i=1

W∑
j=1

Nc(i, j)

Ostatecznie podejmowana jest decyzja czy dany piksel jest szumem. Tworzona jest mapa
szumu N(i, j).

(3.26) N(i, j) =
{
Nc(i, j) jeżeliNc(i, j) > Ncm

0 wpp

Podobnie jak w wypadku rozmycia obliczane są dwa wskaźniki Nm i Nr:

(3.27) Nm = Sumnoise

Noisecnt

(3.28) Nr = Noisecnt
H ·W

gdzie Noisecnt to ilość pikseli szumu, a Sumnoise to suma N(i, j).

3.7.3 Obliczenie wyniku

Wynik metryki otrzymuje się poprzez ważenie wielkości opisujących rozmycie i szum w obrazie,
wagi są równe w1 = 1.0, w2 = 0.95, w3 = 0.3 i w4 = 0.75. Wagi zostały dobrane poprzez
eksperymenty, widać z nich, że szum jest mniej ważny od nieostrości obrazu w ocenie człowieka:

(3.29) B = 1− (w1Bm + w2Br + w3Nm + w4Nr)
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Rozdział 4

Zdjęcia

4.1 Wstęp
Do testowania algorytmów potrzebne są zdjęcia, najlepiej zróżnicowane pod względem za-
wartości — robione z różnych odległości, różnej ilości obiektów na zdjęciu, ilości planów etc.
Zdjęcia powinny również zawierać różne błędy, które zdarzają się przy robieniu fotografii, aby
sprawdzić, czy metryka prawidłowo ocenia zdjęcia poprawnie wykonane, jak i nieudane. Innym
dobrym pomysłem jest wykorzystanie popularnych baz zdjęć, które są wykorzystywane przez
autorów prac traktujących o jakości obrazu. W ten sposób możemy porównać nasze wyniki
z wynikami różnych autorów na tych samych zdjęciach, co daje lepsze porównanie między
algorytmami.

4.2 LIVE Database
Jedną z najbardziej znanych baz danych zdjęć, których używa się w testowaniu jakości obrazów
jest LIVE Database [12][13][14]. Wśród zaimplementowanych algorytmów, tylko jeden nie był
testowany przez autorów na tej bazie zdjęć. Baza składa się z 29 zdjęć, w rozdzielczości do
768 × 512 pikseli. Każde ze zdjęć jest dostępne w wersji referencyjnej oraz kilku wersjach
zniekształconych poprzez różne algorytmy min: kompresję JPEG i JPEG2000, a także szum,
rozmycie Gaussowskie. Jednak baza ma wiele wad, przez które używanie jej do testowania
algorytmów może być niemiarodajne. W przypadku zadania postawionego w temacie pracy to
nie jest zbyt dobra baza. Wszystkie zniekształcenia są zrobione w sposób syntetyczny, jednakowo
na całych obrazach. Takie rozwiązanie sprawdza się w przypadku badania wpływu kompresji
na jakość obrazu, ale nie są to błędy, które spotyka się podczas robienia zdjęć aparatem. W
naturalnych warunkach zaburzenia nie zawsze obejmują całe zdjęcie, np. nieostrość na jednym
z planów. W bazie również nie ma zdjęć zawierających bardziej naturalne błędy: poruszenia,
niedoświetlenie, prześwietlenie, ustawienie ostrości na niewłaściwy plan. Ponadto baza LIVE
zawiera zdjęcia w niskiej rozdzielczości (najlepsze mają 0.4 MPix, co w dzisiejszych czasach
nie można uznać za miarodajne).
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Rysunek 4.1: Przykłady zdjęć z bazy LIVE

4.3 Baza zdjęć
W związku z podanymi powyżej powodami, do badania algorytmów została stworzona baza
zdjęć zawierająca zdjęcia z różnymi typowymi błędami, które mogą powstać podczas normal-
nego użytkowania aparatu. Wybraliśmy kilka zróżnicowanych scen pod względem zawartości
zdjęcia, skomplikowania planów, odległości od obiektywu. Baza zawiera 95 zdjęć w rozdziel-
czości 25MPix zgrupowanych w 8 scen oraz 14 zdjęć w rozdzielczości 5MPix w dwóch scenach.
Krótko omówimy charakterystykę różnych scen. Wszystkie zdjęcia zostały zrobione bez użycia
statywu, dlatego minimalnie różnią się między sobą, co jest przypadkiem naturalnym, dodat-
kowo można było zbadać jeden z najczęściej występujących błędów, czyli poruszenie aparatu
podczas robienia zdjęcia.

4.3.1 Drzewa

Scena z dużą głębią ostrości, z dużą ilością drobnych szczegółów (trawa, gałęzie). Wszystkie
obiekty mają podobną ostrość na każdym zdjęciu. W bazie jest 6 zdjęć tej sceny.
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Rysunek 4.2: Ujęcia sceny „Drzewa”

4.3.2 Hiacynt

Zdjęcie kwiatu z bliskiej odległości jest to dość trudne do oceny ujęcie, gdyż ze względu na
bliską odległość do fotografowanego przedmiotu jest niewielka głębia ostrości. W niektórych
zdjęciach ustawiono ostrość na plan za obiektem, co powoduje duże trudności dla algorytmów
z rozpoznaniem najlepszego ujęcia. W bazie jest 12 zdjęć tej sceny.

Rysunek 4.3: Ujęcia sceny „Hiacynt”

4.3.3 Krzak

Zdjęcie robione ze średniej odległości (kilka metrów), jest na nim wiele drobnych szczegółów
(liście, gałęzie, trawa). W każdym ujęciu pierwszy lub drugi plan jest co najmniej lekko nieostry,
co powoduje problem z automatycznym ocenieniem jakości zdjęcia. W bazie jest 15 zdjęć w
tej scenie.
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Rysunek 4.4: Ujęcia sceny „Krzak”

4.3.4 Krzak 2

Scena podobna do poprzedniej, ale dodano jeszcze jeden plan — człowieka. W związku z tym
jest to zdjęcie, które sprawia algorytmom kłopot, gdyż mała część obrazu na zdjęciu udanym
jest ostra, reszta jest lekko lub bardziej nieostra. W bazie jest 12 zdjęć tej sceny.

Rysunek 4.5: Ujęcia sceny „Krzak 2”
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4.3.5 Kubek

Zdjęcie podobnie jak „Hiacynt” robione z bardzo małej odległości, co skutkuje małą głębią
ostrości. W odróżnieniu od tamtego nie ma ono szczegółów, po których można rozpoznać
dobre ujęcie (powierzchnia obiektu jest biała). Jedyną pierwszoplanową informacją jest kontur
obiektu. Zrobiono zdjęcia z ostrym pierwszym, a także drugim planem, który ma więcej
szczegółów, czego algorytmy nie potrafią odróżnić. W bazie jest 12 zdjęć tej sceny.

Rysunek 4.6: Ujęcia sceny „Kubek”

4.3.6 Kwiaty

Zdjęcie zrobione ze średniej odległości, na zdjęciu jest wiele szczegółów, ale wszystkie są na
jednym planie. W bazie jest 6 zdjęć w tej scenie.

Rysunek 4.7: Ujęcia sceny „Kwiaty”
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4.3.7 Odra

Obraz z dużą głębią ostrości o średniej ilości szczegółów — na pierwszym planie trawa daje
dużo krawędzi. Wszystkie obiekty na zdjęciu są jednakowo ostre, co czyni ujęcie dość łatwym
dla algorytmów. W bazie jest 19 zdjęć tej sceny.

Rysunek 4.8: Ujęcia sceny „Odra”

4.3.8 Pokój

Zdjęcia robione w niższej rozdzielczości, cześć jest zrobiona przy użyciu lampy, a część bez —
te są nieostre. W bazie są 4 zdjęcia tej sceny.

Rysunek 4.9: Ujęcia sceny „Pokój”
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4.3.9 Salon

Zdjęcia podobnie jak scena „pokój” były zrobione gorszym sprzętem w niższej rozdzielczości
(5Mpix). Zdjęcia różnią się ustawieniem ostrości i lampy. Warto, zauważyć, że scena jest bardzo
prosta, ma mało obiektów, większość krawędzi jest pionowa lub pozioma. Dodatkowo środek
obrazu jest pusty, większość obiektów znajduje się przy krawędziach zdjęcia. W bazie jest 10
zdjęć tej sceny.

Rysunek 4.10: Ujęcia sceny „Salon”

4.3.10 Samochód

Zdjęcie zrobione z niewielkiej odległości (kilka metrów), na pierwszym planie jest samochód,
który nie posiada wielu szczegółów, drugi plan jest nieco bardziej skomplikowany. Zdjęcia
gdzie drugi plan jest ostry, są problematyczne dla algorytmów, gdyż ma on więcej szczegółów,
a pierwszy plan w takich przypadkach jest nieostry. W bazie jest 13 zdjęć tej sceny.

Rysunek 4.11: Ujęcia sceny „Samochód”

27



4.4 Ocena zdjęć
Do oceny zdjęć poproszono 9 osób. Miały one za zadanie ocenić każde ze zdjęć w skali od
jeden (bardzo dobre) do pięć (bardzo nieudane). Ocenę przeprowadzono metodą pojedynczej
stymulacji: pokazywano jedno zdjęcie na raz na czas maksymalnie 20 sekund, po czym
proszono o ocenę. Następnie obliczono średnią ocen zdjęć (metoda MOS — Mean Opinion
Score). Uszeregowano zdjęcia według średniej ocen — była to wzorcowa kolejność zdjęć według
ocen respondentów. Wszystkie osoby oceniające zdjęcia oglądały je na tym samym monitorze –
LG FLATRON L225WT, przy podobnym oświetleniu pomieszczenia.
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Rozdział 5

Wyniki

5.1 Wprowadzenie
Wszystkie algorytmy wymienione w rozdziale trzecim zaimplementowano w języku C++. W
przypadku metryk JNB oraz CPBD zrobiliśmy to na podstawie znalezionej implementacji
autorów w MATLABie. Programy działają zarówno pod systemem Windows, jak i Linux.
Algorytmy testowano na komputerze z procesorem INTEL Core 2 Duo E8200 2.66 Ghz i 2GB
pamięci RAM.

Wyniki algorytmów porównywano z wcześniej obliczoną kolejnością wzorcową. Do oceny
jakości algorytmu użyto dwóch metod: korelacji Pearsona oraz korelacji rang Spearmana. Są
to najczęściej spotykane metody do oceny tego rodzaju algorytmów.

5.1.1 Korelacja Pearsona

Jest to najbardziej znana metoda obliczania korelacji zmiennych losowych.

(5.1) ρXY = cov(X,Y )
σY σY

Gdzie cov(X,Y ) to kowariancja zmiennych losowych X i Y, a σX , σY to odchylenia standardowe
zmiennych losowych X, Y. Dla próby losowej wzór wygląda następująco:

(5.2) ρXY =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2

√
n∑
i=1

(yi − ȳ)2

Aby ułatwić czytanie wyników algorytmów, zmieniliśmy znak wyników w przypadkach,
kiedy wyższa ocena algorytmu oznacza lepszą jakość. W przeciwnym razie część wyników
byłaby ze znakiem ujemnym oznaczającym dobrą korelację, a część z dodatnim. We wszystkich
przypadkach wyższa korelacja oznacza lepszy wynik.

5.1.2 Korelacja rang Spearmana

Jest to tak zwana korelacja rang, nie porównujemy w niej wartości zmiennych losowych X oraz
Y ale kolejność, która jest ustalona przez wartości Xi oraz Yi. Najpierw ustalamy kolejność
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rang: najlepsza obserwacja dostaje rangę 1, kolejna 2, ostatnia dostaje rangę n. Następnie
ustalamy wartość współczynnika korelacji ze wzoru:

(5.3) ρ = 1−
6

n∑
i=1

d2
i

n(n2 − 1)

5.1.3 Kolejność wzorcowa

Dla każdego zdjęcia i obliczona średnią jego ocen ai. W przypadku korelacji Persona te wartości
ai postawiamy jako watości zmienniej losowej X. W przypadku korelacji rang Spearmana na
podstawie średnich ai obliczamy rangi, które służa nam jako watości zmiennej losowej X.

Gdzie di oznacza różnicę między rangami zmiennych losowych X i Y, dla próby losowej o
numerze i.

5.2 Oceny
Korelacja zmiennych losowych jest liczbą z zakresu [−1, 1]. Wartości ujemne oznaczają korelację
wsteczną. Wyniki ujemne w naszych testach uznajemy za bardzo złe, algorytm który uzyskuje
takie wyniki w jakiejkolwiek scenie nie może być uznany za dobry. Wartości korelacji mięcy
0 a 0.5 uznajemy za wynik słaby, który niewiele mówi o pożądanej przez nas kolejności
wyników. Wyniki z przedziału 0.5 - 0.8 uznajemy za wyniki średnie, które pokazują mniej
więcej oczekiwaną kolejność, ale posiada błędy. Wyniki powyżej 0.8 uznajemy za dobre, które
z niewielkimi błędami pokazują właściwą kolejość.

5.3 Marziliano

Tablica 5.1: Wyniki korelacji dla algorytmu Marziliano
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Metryka sprawdzała się na dość prostych scenach: „Drzewa”, „Kwiaty”, „Pokój”, także „Odra”,
ale już zdecydowanie nie radziła sobie z bardziej skomplikowanymi: „Hiacynt”, „Kubek” gdzie
zdjęcia były robione z bliskiej odległości, a także w scenach gdzie jest wiele planów. Nieco
zaskakująca jest niska ocena w scenie „Salon”, gdzie nie ma wielu planów, a rozmycie powinno
być łatwo wykrywalne.

5.4 JNB

Tablica 5.2: Wyniki korelacji dla algorytmu JNB
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5.5 CPBD

Tablica 5.3: Wyniki korelacji dla algorytmu CPBD

Jest to metoda będąca ulepszeniem JNB. Niestety w przypadku zdjęć z bazy wynik korelacji
Pearsona jest niewiele lepszy, a Spearmana nawet słabszy. Algorytm, podobnie jak poprzednik,
radzi sobie ze scenami gdzie nie ma kilku planów.
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5.6 Tong

Tablica 5.4: Wyniki korelacji dla algorytmu Tonga

Algorytm daje znacznie lepsze wyniki od poprzednich: radzi sobie z łatwymi scenami, jak i z
trudniejszymi: w scenach „Hiacynt”, „Krzak” czy „Samochód” dawał znacznie lepsze wyniki
niż poprzednie algorytmy, ale nadal nie można ich uznać za dobre. Z drugiej strony bardzo zła
jest korelacja w scenie Kubek, gdzie poprzednie algorytmy dawały nieco lepsze wyniki, ale
również słabe.
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5.7 Kerough

Tablica 5.5: Wyniki korelacji dla algorytmu Kerougha

Metoda powstała przez ulepszenie poprzedniego algorytmu. Niestety wyniku są nieco gorsze
od oryginalnej metryki. Jednak wartym zauważenia jest fakt, że algorytm dawał lepsze oceny
na scenach „Krzak”.
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5.8 Choi

Tablica 5.6: Wyniki korelacji dla algorytmu Choi

Ten algorytm dawał najlepsze wyniki ze wszystkich w tym rozdziale. Algorytm nie poradził
sobie z właściwą oceną trudnej sceny: „Kubek”, wyniki dla scen „Krzak 2” i „Hiacynt” są
lepsze niż w poprzednich algorytmach, ale nadal niezbyt dobre. Metoda działa zadowalająco w
pozostałych przypadkach.
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Rozdział 6

Ulepszenia i propozycje algorytmów

6.1 Podział obrazu
W algorytmach oceniających jakość obrazu wszystkie traktują całe zdjęcie w taki sam sposób.
W większości praktycznych zastosowań obiekty będące blisko krawędzi obrazu mają mniejsze
znaczenie niż te w środku. Ostrość jest przeważnie ustawiona na środek obrazu lub na jakieś
ważny obiekt — jedna z zasad fotografii mówi, że ważne obiekty powinny być w 1/3 wysokości i
szerokości zdjęcia. Ponieważ części obrazu będące blisko krawędzi są mniej ważne, to można je
oceniać z mniejszą wagą. W tym celu zdjęcia dzielono na 64 części (8× 8), w każdej obliczano
wartość metryki dla każdej z części, a następnie obliczano ostateczną ocenę, sumując wyniki i
ważąc je.

Algorytmy używające algorytmu wykrywania krawędzi Cannego były zmodyfikowane
w taki sposób, żeby najpierw wykrywały krawędzie, a potem dzielono wynikowy obraz z
krawędziami na fragmenty i za jego pomocą obliczano wartość metryki. Wykrywanie krawędzi
w podzielonym obrazie mogłoby drastycznie wpłynąć na wynik, jako że progi algorytmu są
obliczane na podstawie histogramu operatora Sobela. Zdjęcie po podzieleniu lokalnie może mieć
zupełnie inny histogram niż globalnie. W pozostałych przypadkach nie stosowano modyfikacji.

Na rysunku 6.1 widzimy podział zdjęcia na obszary. Obszar A w środku zdjęcia składający
się z 16 fragmentów, które jest sumowany z wagą 0.6. Obszarowi C przy krawędzi (28 frag-
mentów, strefa zewnętrzna) nadano wagę 0.1, a obszarowi B pomiędzy nimi (20 fragmentów,
strefa środkowa) wagę 0.3.

(6.1) BA =
∑
j∈A

F (Ij)

(6.2) BB =
∑
j∈B

F (Ij)

(6.3) BC =
∑
j∈C

F (Ij)

(6.4) B = 0.6BA + 0.3BB + 0.1BC
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Rysunek 6.1: Ilustracja podziału obrazka na strefy wewnętrzną (A), środkową (B) i zewnętrzną
(C).

W dwóch przypadkach zastosowanie tej metody dało pozytywne rezultaty: w przypadku
algorytmów Marziliano oraz Tonga. W przypadku pozostałych algorytmów średnia ocena nie
zmieniła się lub pogorszyła. W zmodyfikowanym algorytmie Marziliano poprawa w stosunku do
oryginalnej metody nastąpiła w większości scen, oprócz sceny „Salon”, gdzie obszar pośrodku
zdjęcia jest pusty, natomiast większość obiektów znajduje się przy krawędziach obrazu. Nie
jest to metoda, którą można stosować zawsze, choć w przypadku większości zdjęć powinna się
sprawdzić, ale poprawa wyników jest niewielka.

Tablica 6.1: Wyniki korelacji dla algorytmu Marziliano z podziałem zdjęcia
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Tablica 6.2: Wyniki korelacji dla algorymu Tonga z podziałem zdjęcia

W przypadku algorytmu Tonga widać poprawę w przypadku prawie wszystkich scen z
wyjątkiem sceny „Krzak 2” gdzie nastąpiło znaczne pogorszenie wyniku, oraz sceny „Kubek”
gdzie wynik jest tak samo zły, w obu przypadkach algorytm zupełnie zawiódł w tej scenie.

6.2 Długość krawędzi
Wiele z cytowanych prac w ocenie ostrości zdjęcia wykorzystuje badanie pośrednie([5][6]) lub
bezpośrednie([2], [3], [4]) szerokości krawędzi. Do badania ostrości tej samej sceny można wy-
korzystać również długość wykrytych krawędzi na zdjęciu. Im dłuższe są kawałki, tym bardziej
zdjęcie jest ostre. Niestety ta metoda nadaje się tylko do porównywania zdjęć tego samego
obiektu, gdyż długość krawędzi może być zupełnie różna w zależności od fotografowanego
obiektu. Z drugiej strony algorytm ten pośrednio wykorzystuje założenie o tym że zdjęcia
przedstawiają te same obiekty.

Na postawie tej własności skonstruowaliśmy następujący algorytm:

1. Dokonaj detekcji krawędzi w obrazie.

2. Policz długość każdej krawędzi.

3. Oblicz średnią długość krawędzi.

Na obrazie I wykrywamy krawędzie algorytmem Cannego: C = Canny(I). Następnie
znajdujemy na obrazie zapalone piksele oznaczające wystąpienie krawędzi. Od takiego piksela
zaczynamy przeszukiwanie wszerz (BFS), aby znaleźć długość krawędzi ei. W tej procedurze
sprawdzamy wszystkie sąsiednie piksele (także diagonalne) i jeżeli były nieodwiedzone to
dodajemy je do kolejki przeszukiwania, nie zajmujemy się kierunkiem krawędzi. Otrzymujemy
długość i–tej krawędzi i oznaczmy ją przez li. Im większa jest policzona średnia z długości
wszystkich krawędzi, tym lepsza jest ostrość zdjęcia.
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(6.5) B =

n∑
i=0

li

n

Wykonano też obliczenia dla wariantu tej metody z podziałem zdjęcia na fragmenty oraz
z użyciem dwóch wersji algorytmu wykrywania krawędzi Cannego z podwójnym progiem,
jak i pojedynczym progiem. Wyniki algorytmu są w większości lepsze od zaproponowanych
metryk z rozdziału trzeciego. Dzięki wykorzystaniu założenia o sekwencji zdjęć w bardzo prosty
sposób udało się skonstruować metodę bardzo prostą i często znacznie lepszą, niż bardziej
zaawansowane algorytmy, które nie przyjmowały żadnych założeń.

Tablica 6.3: Wyniki korelacji dla metody długości krawędzi

39



Tablica 6.4: Wyniki korelacji dla metody długości krawędzi z podziałem zdjęcia

Ta metoda daje lepsze wyniki od poprzednich, w scenach gdzie nie ma wielu planów i
jednocześnie wszystko może być ostre, wyniki są lepsze niż w poprzednio opisanych algorytmach.
Nadal w scenach „Krzak 2” i „Kubek wyniki są błędne. Po podziale obrazka w większości
scen wyniki się lekko poprawiły, jedynie w scenie „Salon” są wyraźnie gorsze, należy jednak
zauważyć, że na tym zdjęciu większość obiektów jest przy krawędzi zdjęcia, a środek jest pusty.

6.3 Uwzględnianie histogramu zdjęcia
Wiele z powyższych algorytmów dobrze radzi sobie z rozpoznawaniem ostrych zdjęć, ale te mimo
to nie są zbyt dobre. Algorytmy te nie uwzględniają ogólnej jasności obrazu, jako dobre uznają
zdjęcia niedoświetlone lub prześwietlone. Aby temu przeciwdziałać, można do metryki dodać
uwzględnianie histogramu zdjęcia, preferując zrównoważony. W kilku algorytmach dodaliśmy
takie ocenianie, co zauważalnie poprawiało wyniki algorytmów. Dla każdego zdjęcia w serii
(właściwie komponentu jasności) obliczano jego histogram, dzieląc go na 16 kubełków, w każdym
znajdowały się wartości z przedziału [16i, 16i + 15] i = (0, 1, . . . , 15). Następnie obliczano
jego kwadrat odległości Qk od histogramu wzorcowego – wyrównanego. Histogram wyrównany
to taki, który w każdym kubełku wz(i) ma tyle samo pikseli wz(0) = wz(1) = · · · = wz(15).
Qk oblicza się następującym wzorem:

(6.6) Qk =
15∑
i=0

(
hist(i)−wz(i)

16

)2

Gdzie hist(i) to ilość pikseli w i-tym kubełku histogramu, a k oznacza numer zdjęcia w
danej serii. Następnie normalizujemy wszystkie względem najmniejszego wyniku i bierzemy
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odwrotność dla mniejszej odległości otrzymać większy wynik:

(6.7) Hk = min(Q1, Q2, . . . , Qn)
Qk

Jeżeli ocena histogramu byłą uwzględniana w obliczeniach jej byłe testowana w przedziale
0.2 – 0.25 od całego wyniku. Ostatecznie zdecydowaliśmy się na użycie wartości 0.25 we
wszystkich algorytmach zaprezentowanych w pracy.

Tablica 6.5: Wyniki korelacji dla metody długości krawędzi z uwzględnieniem histogramu

Poprzednia metoda (długości krawędzi, sekcja 6.2, tablica 6.3) wybierała ostre zdjęcia,
ale często źle oceniała zdjęcia prześwietlone lub niedoświetlone. Ocena histogramu pozwoliła
wyeliminować w większości te błędy i obniżyć wartość oceny, gdzie histogram był niezbalanso-
wany. Dodanie podziału zdjęcia ogólnie nie zmienia średnich wyników, ale ocena jest lepsza w
przypadku sceny „Kubek”, a gorsza w przypadku serii zdjęć „Salon”. Warto zauważyć, że jest
to pierwsza metoda, która właściwie oceniła scenę „Kubek”.
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Tablica 6.6: Wyniki korelacji dla metody długości krawędzi z podziałem zdjęcia i uwzględnieniem
histogramu

6.4 Pojedynczy próg
W algorytmie wykrywania krawędzi Cannego, który jest częścią wielu algorytmów, używany
jest tak zwany podwójny próg (double thresholding). Aby piksel został zaliczony do krawędzi,
musi mieć wartość powyżej górnego progu lub powyżej dolnego, ale wtedy musi mieć w
sąsiedztwie piksel zaliczony do krawędzi. Powoduje to, że krawędzie są mniej „porwane” i
lepiej widać kształt całego obiektu. Wyłączenie dolnego progu powoduje, że krawędzie są
krótsze, ale część pikseli z lekko rozmytych krawędzi nie jest już do nich zaliczana. Przez to
łatwiej odróżnić ostre zdjęcie od lekko nieostrego. Obliczyliśmy metodę długości krawędzi
bez uwzględnienia histogramu, jak i z jego uwzględnieniem przy użyciu wykrywacza krawędzi
Cannego z pojedynczym progiem.

W porównaniu do metody długości krawędzi z użyciem podwójnego progu (sekcja 6.2,
tablica 6.3) wyniki są zauważalnie lepsze. Poprawiły się znacznie oceny scen „Kubek” oraz
„Samochód”. W dalszym ciągu słabe wyniki otrzymano w przypadku sceny „Krzak 2”.
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Tablica 6.7: Wyniki korelacji dla metody długości krawędzi z pojedynczym progiem

Tablica 6.8: Wyniki korelacji dla metody długości krawędzi z pojedynczym progiem i uwzględ-
nieniem histogramu

Metoda długości krawędzi z pojedynczym progiem i uwzględnieniem histogramu lekko
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poprawiła średnie wyniki. Duże zmiany są widoczne w trudnych scenach jak „Krzak” „Krzak
2” oraz „Kwiaty”. W innej trudnej scenie „Samochód” ocena pozostała prawie bez zmian. W
pewnych przypadkach (np. „Salon”) ocena się pogorszyła. Daje to algorytm dający dość dobre
wyniki.

6.5 Metoda histogramu gradientu
Innym pomysłem na rozpoznanie zdjęć ostrych jest wykorzystanie histogramu gradientu obrazu,
który jest przybliżony za pomocą operatora Sobela. Spodziewamy się, że w ostrym obrazie
będzie więcej pikseli o dużej wartości niż w zdjęciu nieostrym — tam krawędzie są rozmazane,
szersze, a zatem pochodna nie osiąga dużych wartości. Na podstawie tych obserwacji i założeń
skonstruowaliśmy następujący algorytm:

1. Oblicz operator Sobela w obrazie.

2. Oblicz histogram operatora.

3. Podziel histogram na kubełki.

4. Przemnóż ilość pikseli w każdym kubełku przez odpowiednią wagę.

5. Zsumuj wartości uzyskane dla każdego kubełka.

Wartości gradientu większe niż 255 zastępowaliśmy wartością 255, aby mieściły się w
bajtowej zmiennej oraz ze względu na wygodę obliczeń, takich wartości było bardzo mało.
W algorytmie histogram dzieliliśmy na 16 równych kubełków, w każdym były wartości z
zakresu [16i, 16i + 15] i = (0, 1, . . . , 15). Pierwsze dwa kubełki były pomijane ze względu
na niewielkie wartości i wynikającą z tego małe zmiany w obrazie, które nie są istotne dla
człowieka. Wagami dla poszczególnych kubełków hi były kolejne wyrazy funkcji wykładniczej.
Przetestowaliśmy algorytm dla podstawy 2 i 3. Wartość metryki możemy opisać wzorem:

(6.8) B =
16∑
i=2

W (hi)× 2i−2

gdzie hi oznacza i–ty kubełek, a W (hi) ilość pikseli w i–tym kubełku.
Wyniki obu wariantów tej metody widzimy w tabelach 6.9 oraz 6.10. Są one do siebie

zbliżone, ale metoda z podstawą 2 jest minimalnie lepsza w średnim przypadku. Obydwa
warianty dobrze oceniały sceny, gdzie nie było wieku planów jak na przykład: „Drzewa”,
„Pokój”, „Salon”, „Kwiaty”. Warto zwrócić uwagę na dobrą ocenę sceny „Samochód”. Słabe
wyniki otrzymano w przypadku scen trudnych jak: „Hiacynt”, „Krzak 2” czy „Kubek”.
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Tablica 6.9: Wyniki korelacji dla metody histogramu gradientu z podstawą funkcji oceny 2

Tablica 6.10: Wyniki korelacji dla metody histogramu gradientu z podstawą funkcji oceny 3
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6.6 Metoda wybierające ważne rejony
Algorytmy oparte na histogramie gradientu (sekcja 6.5) osiągają całkiem dobre wyniki w
scenach o dużej głębi ostrości, gdzie wszystko jest jednakowo ostre lub nieostre, nie ma dużej
ilości planów. Jednak w kilku scenach z bazy testowej (Hiacynt, Krzak 2, Kubek, Samochód)
są ujęcia różnych planów, najczęściej któryś z nich jest nieostry. Również plan, na którym nam
najbardziej zależy — właściwy jest często nieostry lub zajmuje niewielką część zdjęcia. W
takich wypadkach ocena przez powyższe metryki jest błędna, gdyż najczęściej wybierają one
zdjęcia, gdzie drugi lub trzeci plan jest ostry. Metryki te nie wykorzystują także w bezpośredni
sposób założenia, o tym, że na wszystkich zdjęciach z sekwencji jest ten sam obiekt. Algorytmy
te również oceniają całe zdjęcie jednakowo.

Ponieważ często tylko na części zdjęcia są ważne obiekty, to można nie oceniać całego
zdjęcia, ale tylko fragmenty. Pozostaje sformułować kryterium, na podstawie którego można
sądzić, że dany rejon jest ważny. Można wysunąć przypuszczenie, według którego, jeżeli dany
rejon często pojawia się jako ostry, to jest to ważny obszar na zdjęciu. Do oceny ostrości
ważnych fragmentów zdjęcia wykorzystaliśmy dwie metody.

6.6.1 Wybór ważnych fragmentów na podstawie metody histogramu gra-
dientu

Jako ważne rejony zdjęcia można uznać te, które mają najlepszy histogram gradientu w myśl
metryki z podrozdziału 6.6. Algorytm prezentuje się następująco:

1. Oblicz operator Sobela dla zdjęcia.

2. Podziel obraz po nałożeniu operatora na fragmenty.

3. Dla każdego fragmentu oblicz metrykę histogramu gradientu.

4. Wybierz najlepsze rejony.

5. Zsumuj wartości metryki histogramu dla najlepszych rejonów.

Obraz S = Sobel(I), w naszej implementacji, jest dzielony na 64 (8 × 8) części, jest to
wartość, która powoduje, że rzadko zdarzają się sytuacje, w których jedna część fragmentu
jest ostra na jednym zdjęciu, a przeciwnie na innym. Dla każdego fragmentu Si obliczamy
metrykę histogramu gradientu z rozdziału 6.3, wynik dla każdego fragmentu oznaczamy przez
Bi. Dla każdego zdjęcia tworzymy ranking, w którym fragmenty są posortowane względem ich
ocen Bi, najlepszy fragment dostaje numer 1, kolejny 2, etc. Następnie dla każdego fragmentu
Si(i = 0, 1, . . . , 64) obliczamy, na jakiej średniej pozycji znajdował się w rankingach. W
naszej implementacji wybieramy t = 16 najlepszych rejonów, zbiór najlepszych fragmentów
oznaczmy przez W . Jest to 25% powierzchni całego zdjęcia, jeżeli jakiś obiekt na zdjęciu jest
ustawiona ostrość, a reszta zdjęcia jest nieostra, to 25% jest wystarczającą częścią, aby wykryć
ważny obiekt, ale jednocześnie nie uznać za istotne nieostrych fragmentów zdjęcia. Dla tych t
najlepszych rejonów sumujemy ich wartości Bi i sumę tych liczb uznajemy za wynik. Należy
pamiętać, że ta ocena istnieje w odniesieniu do tej konkretnej sekwencji zdjęć i poza nią nie
mówi wiele o zdjęciu.
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Tablica 6.11: Wyniki korelacji dla metody opisanej w rozdziale 6.6.1

Metoda nie poradziała sobie z właściwą oceną zdjęć, gdzie wyraźnie były różne plany:
„Hiacynt”, „Krzak 2” oraz „Kubek”.j Ocena sceny „Krzak” jest nie jest bardzo zła, ale daleko
jej do oceny dobrej. W związku z tym należało szukać innej metody z wyborem ważnych
rejonów.

6.6.2 Wybór ważnych fragmentów na podstawie metody mieszanej

Ponieważ metoda z sekcji 6.6.1 miała wady, gdyż wybierała zdjęcia, które były nieostre,
zwłaszcza w scenach gdzie było wiele planów, należało wprowadzić do niej poprawkę. Kroki 1 –
4 pozostają takie same jak w poprzednim algorytmie (podrozdział 6.6.1, metoda z podstawą
2), ale zmieniamy algorytm w punkcie 5. Oprócz metryki histogramu gradientu, dla każdej
części zdjęcia, obliczamy także metrykę długości krawędzi (metoda opisana w rozdziale 6.2),
wyniki te oznaczmy przez Li. Sumujemy wartości Li z fragmentów, które należą do zbioru W
zamiast używać wartości Bi jak w podrozdziale 6.6.1.
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Tablica 6.12: Wyniki korelacji dla metody opisanej w rozdziale 6.6.2

6.6.3 Wybór ważnych fragmentów na podstawie metody długości krawędzi

Kolejnym ulepszeniem poprzedniej metody było wykorzystanie metryki długości krawędzi w
obu częściach algorytmu. W tej metodzie użyliśmy średniej długości krawędzi do wyznaczenia
rejonów, które zostały uznane za najbardziej istotne (zbiór W ). Punkt piąty algorytmu
pozostaje taki sam jak w sekcji 6.6.2. Dodatkowo, aby zniwelować szum i nieistotne fragmenty
zdjęcia dodaliśmy próg th = 6 – oznacza to, że krawędzie krótsze niż 6 pikseli są uznawane za
nieistotne i pomijane w obliczaniu średniej długości krawędzi.

Poniżej zamieszczamy kilka przykładów (rysunki 6.2 – 6.5), jak obydwie metody (histogramu
gradientu i długości krawędzi) wyznaczania istotnych obszarów na zdjęciu zadziałały na
zdjęciach z naszej bazy. Rejony uznane za ważne są jaśniejsze.
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(a) Metoda histogramu gradientu (b) Metoda długości krawędzi

Rysunek 6.2: Ważne rejony scena „Drzewa”

(a) Metoda histogramu gradientu (b) Metoda długości krawędzi

Rysunek 6.3: Ważne rejony scena „Hiacynt”
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(a) Metoda histogramu gradientu (b) Metoda długości krawędzi

Rysunek 6.4: Ważne rejony scena „Krzak”

(a) Metoda histogramu gradientu (b) Metoda długości krawędzi

Rysunek 6.5: Ważne rejony scena „Salon”

Na zdjęciach widać, że metoda długości krawędzi lepiej radziła sobie z wyborem właściwych
obszarów. Na przykład w scenie „Krzak” metoda wybrała spójny obszar, na którym faktycznie
znajduje się pożądany obiekt. Również lepiej wybrała obszar, na którym znajduje się kwiat w
scenie ”Hiacynt”. W scenie „Salon” mniej jest wybranych obszarów pustych, na których nie
ma żadnych detali.

Jest to najlepsza metoda, którą udało się uzyskać, dająca dobre wyniki w przypadku prawie
wszystkich scen, z wyjątkiem „Kubek” i „Krzak 2”, ale nawet tam wyniki są powyżej 0.5, co
jest znacznym postępem w porównaniu do innych algorytmów. Ta metoda dość dobrze radzi
sobie z rozpoznaniem co jest ważne na zdjęciu, pod warunkiem, że jest odpowiednia liczba
zdjęć, które nie są zepsute. Z serii całkiem nieudanych zdjęć nie da się rozpoznać istotnych dla
zdjęcia obszarów. Kiedy w serii przeważają zdjęcia być może nie idealne, ale takie, w których
ostrość jest ustawiona na pożądany obiekt, to metoda zadziała. W tym przypadku odrzuciła
zdjęcia z serii „Hiacynt” i „Kubek”, które miały ustawioną ostrość na drugi plan, podobnie w
scenie „Samochód”.
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Tablica 6.13: Wyniki korelacji dla metody wybierającej ważne rejony według długości krawędzi
z sekcji 6.6.3

Metoda oceniająca także histogram (tablica 6.14) dała lepsze wyniki, gdyż gorzej oceniła
zdjęcia wprawdzie ostre, ale zbyt jasne lub ciemne. Dzięki temu znacznie poprawiła się ocena
w serii „Krzak 2” i mniej wyraźnie w scenach „Samochód”, „Kwiaty”, a także „Hiacynt”. W
przypadku tych metod przetestowaliśmy je także na bazie zdjęć LIVE, jednak obliczając tylko
korelację rang Spearmana ze względu na brak odpowiednich danych. Oceny były przeprowa-
dzone dla zniekształceń obrazu poprzez rozmycie go filtrem Gaussa, jak i kompresją JPEG
2000.

Poniżej znajduje się wykres zbiorczy (tablica 6.17), na którym są pokazane średnie wyniki
dla wszystkich zaprezentowanych metod. Algorytmy zaprezentowane w rozdziale szóstym są
ponumerowane liczbami od 1 do 16, oto oznaczenia wszystkich metod:

1. Metoda długości krawędzi (rozdział 6.2)

3. Metoda długości krawędzi z uwzględnieniem histogramu (rozdział 6.3)

6. Metoda długości krawędzi z pojedynczym progiem

8. Metoda długości krawędzi z pojedynczym progiem i uwzględnieniem histogramu

9. Metoda histogramu gradientu, podstawa 2 (rozdział 6.5)

10. Metoda histogramu gradientu, podstawa 3 (rozdział 6.5)

11. Metoda wybierająca ważne rejony na podstawie histogramu gradientu (rozdział 6.6.1)

12. Metoda wybierająca ważne rejony mieszana (rozdział 6.6.2)

15. Metoda wybierająca ważne rejony długości krawędzi (rozdział 6.6.3)

16. Metoda wybierająca ważne rejony długości krawędzi z uwzględnieniem histogramu
(rozdział 6.6.3)
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Tablica 6.14: Wyniki korelacji dla metody wybierającej ważne rejony według długości krawędzi
z sekcji 6.6.3 z uwzględnieniem histogramu
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Tablica 6.15: Wyniki korelacji dla metody wybierającej ważne rejony z sekcji 6.6.3 na bazie
LIVE
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Tablica 6.16: Wyniki korelacji dla metody wybierającej ważne rejony z sekcji 6.6.3 z uwzględ-
nieniem histogramu na bazie LIVE
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Tablica 6.17: Porównanie średnich wyników korelacji dla wszystkich metod dla własnej bazy
zdjęć
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Rozdział 7

Wnioski

W pracy przedstawiliśmy szereg metod oceny jakości obrazu, z głównym uwzględnieniem
ostrości, jak i kilka ulepszeń i modyfikacji tych metod, jak i zupełnie inne algorytmy. Algo-
rytmy służące do oceny jakości zdjęć często nie radzą sobie z właściwą oceną scen bardziej
skomplikowanych, gdzie jest wiele planów, różnie ustawiona ostrość, różny poziom oświetlenia.
Pokazaliśmy poprzez testy, że wiele popularnych i uznanych algorytmów nie ocenia zdjęć w
sposób zgodny w z oceną zdjęć przez ludzi. Gdy mamy wybrać najlepsze zdjęcie z serii zdjęć
tego samego obiektu, możemy użyć szerszej gamy technik, niż w zwykłej wersji tego problemu.
Poprzez użycie takich metod najpierw udało nam się skonstruować algorytm, który mimo
swojej prostoty działał dość dobrze w porównaniu do znacznie bardziej skomplikowanych
algorytmów, które nie wykorzystywały założenia o podobieństwie zdjęć. Następnie przedsta-
wiliśmy kilka pomysłów jak jeszcze można ten algorytm ulepszyć. Poprzez kolejne poprawki,
uzyskaliśmy algorytm, który rzeczywiście wykrywał elementy istotne na zdjęciu, przez co
radził sobie dobrze niemal we wszystkich przypadkach.

W pracy wykorzystaliśmy do testowania zarówno popularne zdjęcia używane w wielu
badaniach, jak i własne, które bardziej odpowiadają rzeczywistemu robieniu zdjęć oraz różno-
rodności i lepiej testują jakość działania algorytmu.

Algorytmy przedstawione w pracy można dalej ulepszać aby działały jeszcze lepiej, można
zmienić metodę wykrywania ważnych rejonów na taką, która nie musiałaby korzystać z
założenia o dużym podobieństwie obiektów w scenie. Można użyć takiej metody jak korelacja
krzyżowa do „kalibracji” zdjęć, co dawałoby lepsze wykrywanie istotnych obiektów. Innym
pomysłem na rozwijanie algorytmów jest powiększenie puli kryteriów, na podstawie których
określa się jakość obrazu.
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Dodatek A

Programy

W ramach pracy powstały implementacje wszystkich wymienionych w niej programów. Wszyst-
kie zostały napisane w języku C++ przy użyciu środowiska Microsoft Visual Studio 2010.
Każda z metryk opisanych w rozdziale trzecim ma osobny program. Programu nie posiadają
interfejsu graficznego, a jedynie konsolowy. Były napisane i testowane pod systemem Win-
dows, ale działają również pod systemem Linux. Programy o nazwach „Marziliano”, „JNB”,
„CPBD”, „Tong”, „Kerough”, „Choi” są implementacjami odpowiednich prac opisanych w
rozdziale trzecim. Program „Edge Detector” jest implementacją nowych metod.

A.1 Biblioteki
Programy używają biblioteki TurboJPEG w wersji 1.4.0 do wczytywania zdjęć w formacie
JPG. Biblioteka ta musi zostać zlinkowana podczas kompilacji programu. Ponadto programy
wykorzystują również bibliotekę CImg do wczytywania zdjęć w formacie BMP oraz do obliczenia
transformaty Haara.

A.2 Plik konfiguracyjny
W kolejnych liniach pliku powinny znajdować się ścieżki względne lub bezwzględne do folderów
ze zdjęciami. W takim folderze nie powinno być innych plików (podkatalogi są dopuszczalne).
Wszystkie zdjęcia w folderze powinny należeć do jednej serii i powinny posiadać jedną roz-
dzielczość. Obsługiwane formaty zdjęć to JPG i BMP.

A.3 Uruchamianie
Programy „Marziliano”, „JNB”, „CPBD”, „Tong”, „Kerough”, „Choi” potrzebują do prawi-
dłowego działania dwóch argumentów. We wszystkich programach pierwszym parametrem do
uruchomienia jest plik konfiguracyjny, a drugim nazwa pliku wynikowego. Program „Edge De-
tector” potrzebuje trzeciego argumentu, będącego liczbą z zakresu od 1 do 16, który determinuje
która z metod z rozdziału 6 będzie uruchamiana. Poniżej znajduje się lista argumentów:

1. Metoda długości krawędzi (rozdział 6.2)

3. Metoda długości krawędzi z uwzględnieniem histogramu (rozdział 6.3)
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6. Metoda długości krawędzi z pojednynczym progiem

8. Metoda długości krawędzi z pojednynczym progiem i uwzględnieniem histogramu

9. Metoda histogramu gradientu, podstawa 2 (rozdział 6.5)

10. Metoda histogramu gradientu, podstawa 3 (rozdział 6.5)

11. Metoda wybierająca ważne rejony na podstawie histogramu gradientu (rozdział 6.6.1)

12. Metoda wybierająca ważne rejony mieszana (rozdział 6.6.2)

15. Metoda wybierająca ważne rejony na podstawie długości krawędzi (rozdział 6.6.3)

16. Metoda wybierająca ważne rejony na podstawie długości krawędzi z uwzględnieniem
histogramu (rozdział 6.6.3)

A.4 Plik wynikowy
Program w każdym folderze, który został wpisany do pliku konfiguracyjnego, zakłada podfolder
wynikowy o nazwie „Wyniki”, gdzie umieszcza pliki z rezultatami działania algorytmu. Program
zakłada plik tekstowy, o nazwie podanej jako drugi argument przy uruchamianiu programu
(rozszerzenie uzupełnia program, nie trzeba go dodawać). Dodatkowo programy, tam gdzie
to możliwe, obliczają także daną metrykę w wersji z podziałem zdjęcia i wyniki również
umieszczają w pliku o nazwie takiej jak drugi parametr wejścia, ale z sufiksem „_splitted”. W
kolejnych liniach pliku wynikowego są wypisane nazwy plików wejściowych (zdjęć) i liczby –
wyniki algorytmu. Linie są posortowane w porządku od najlepszego zdjęcia do najgorszego w
ocenie danego algorytmu.
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Rozdział 8
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