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Goals
This thesis describes the implementation of a 3D engine based on the VRML language.

The VRML language is used to define 3D environments. It will be described in detail in
Chapter 1, Overview of VRML. It has many advantages over other 3D languages:

• The specification of the language is open.

• The language is implementation-neutral, which means that it's not “tied” to any particu-
lar rendering method or library. It's suitable for real-time rendering (e.g. using OpenGL
or DirectX), it's also suitable for various software methods like ray-tracing. This neutral-
ity includes the material and lighting model described in VRML 2.0 specification.

Inventor, an ancestor of the VRML, lacked such neutrality. Inventor was closely tied to
the OpenGL rendering methods, including the OpenGL lighting model.

• The language is quite popular and many 3D authoring programs can import and export
models in this format. Author of this document can recommend the open-source Blender
[http://www.blender3d.org/] modeler.

• The language can describe geometry of 3D objects with all typical properties like mater-
ials, textures and normal vectors.

• The language is not limited to 3D objects. Other important environment properties, like
lights, the sky, the fog, viewpoints, collision properties and many other can be ex-
pressed.

• The language is easy to extend. You can easily add your own nodes and fields (and I did,
see the list of my VRML extensions [http:// www. camelot. homedns. org/ ~michalis/
kambi_vrml_extensions.php]).

Implementation goals were to make an engine that

• Uses VRML. Some other 3D file formats are also supported (in particular the popular
3DS format) by silently converting them to VRML.

• Allows to make a general-purpose VRML browser. See view3dscene [http://www.cam-
elot.homedns.org/~michalis/view3dscene.php].

• Allows to make more specialized programs, that use the engine and VRML models as
part of their job. For example, a game can use VRML models for various parts of the
world:
• Static environment parts (like the ground and the sky) can be stored and rendered as

one VRML model.
• Each creature, each item, each “dynamic” object of the world (door that can open,

building that can explode etc.) can be stored and rendered as a separate VRML model.

When rendering, all these VRML objects can be rendered within the same frame, so that
user sees the complete world with all objects.

Example game that uses my engine this way is “The Castle” [http:// www. camelot.
homedns.org/~michalis/castle.php].

viii

http://www.blender3d.org/
http://www.blender3d.org/
http://www.camelot.homedns.org/~michalis/kambi_vrml_extensions.php
http://www.camelot.homedns.org/~michalis/kambi_vrml_extensions.php
http://www.camelot.homedns.org/~michalis/kambi_vrml_extensions.php
http://www.camelot.homedns.org/~michalis/view3dscene.php
http://www.camelot.homedns.org/~michalis/view3dscene.php
http://www.camelot.homedns.org/~michalis/view3dscene.php
http://www.camelot.homedns.org/~michalis/castle.php
http://www.camelot.homedns.org/~michalis/castle.php
http://www.camelot.homedns.org/~michalis/castle.php


• Using the engine should be as easy as possible, but at the same time OpenGL rendering
must be as fast as possible. This means that a programmer gets some control over how
the engine will optimize given VRML model (or part of it). Different world parts may
require entirely different optimization methods:
• static parts of the scene,
• parts of the scene that move (or rotate or scale etc.) only relatively to the static parts,
• parts of the scene that frequently change inside (e.g. a texture changes or creature's

arm rotates).

All details about optimization and animation methods will be given in later chapters (see
Chapter 5, OpenGL rendering and Chapter 6, Animation).

• The primary focus of the engine was always on 3D games, but, as described above,
VRML models can be used and combined in various ways. This makes the engine suit-
able for various 3D simulation programs (oh, and various game types).

• The engine is open-source (licensed on GNU General Public License).

• Developed in object-oriented language. For me, the language of choice is ObjectPascal,
as implemented in the Free Pascal compiler [http://www.freepascal.org].

Goals
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Chapter 1. Overview of VRML
This chapter is an overview of VRML concepts. It describes the language from the point of
view of VRML author. It teaches how a simple VRML files look like and what are basic
building blocks of every VRML file. It's intended to be a simple tutorial into VRML, not a
complete documentation how to write VRML files. If you want to learn how to write non-
trivial VRML files you should consult VRML specifications.

This chapter also describes main differences between VRML 1.0 and 2.0. Our engine
handles both VRML versions, and in the future X3D will be supported too. X3D is the suc-
cessor of VRML 2.0 format (you can think of it as "VRML 3.0").

1.1. First example
VRML files are normal text files, so they can be viewed and edited in any text editor.
Here's a very simple VRML 1.0 file that defines a sphere:

#VRML V1.0 ascii

Sphere { }

The first line is a header. It's purpose is to identify VRML version and encoding used.
Oversimplifying things a little, every VRML 1.0 file will start with the exact same line:
#VRML V1.0 ascii.

After the header comes the actual content. Like many programming languages, VRML lan-
guage is a free-form language, so the amount of whitespace in the file doesn't really matter.
In the example file above we see a declaration of a node called Sphere. “Nodes” are the
building blocks of VRML: every VRML file specifies a directed graph of nodes. After spe-
cifying the node name (Sphere), we always put an opening brace (character {), then we
put a list of fields and children nodes of our node, and we end the node by a closing brace
(character }). In our simple example above, the Sphere node has no fields specified and
no children nodes.

The geometry defined by this VRML file is a sphere centered at the origin of coordinate
system (i.e. point (0, 0, 0)) with a radius 1.0.

1. Why the sphere is centered at the origin ?

Spheres produces by a Sphere node are always centered at the origin — that's defined
by VRML specifications. Don't worry, we can define spheres centered at any point, but
to do this we have to use other nodes that will move our Sphere node — more on this
later.

2. Why the sphere radius is 1.0 ?

This is the default radius of spheres produced by Sphere node. We could change it by
using the radius field of a Sphere node — more on this later.

Since the material was not specified, the sphere will use the default material properties.
These make a light gray diffuse color (expressed as (0.8, 0.8, 0.8) in RGB) and a slight am-
bient color ((0.2, 0.2, 0.2) RGB).
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1VRML 2.0 files are always encoded using plain text in utf8. There was a plan to design other encodings, but it
was never realized for VRML 2.0. VRML 2.0 files distributed on WWW are often compressed with gzip, we can
say that it's a “poor-man's binary encoding”.

X3D (VRML 2.0 successor) filled the gap by specifying three encodings available: “classic VRML encoding”
(this is exactly what VRML 2.0 uses), an XML encoding and a binary encoding.

Figure 1.1. VRML 1.0 sphere example

An equivalent VRML 2.0 file looks like this:

#VRML V2.0 utf8

Shape {
geometry Sphere { }

}

As you can see, the header line is now different. It indicates VRML version as 2.0 and en-
coding as utf8 1.

In VRML 2.0 we can't directly use a Sphere node. Instead, we have to define a Shape
node and set it's geometry field to our desired Sphere node. More on fields and chil-
dren nodes later.

Actually, our VRML 2.0 example is not equivalent to VRML 1.0 version: in VRML 2.0
version sphere is unlit (it will be rendered using a single white color). It's an example of a
general decision in VRML 2.0 specification: the default behavior is the one that is easiest
to render. If we want to make the sphere lit, we have to add a material to it — more on this
later.

Overview of VRML
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Figure 1.2. VRML 2.0 sphere example

1.2. Fields
Every VRML node has a set of fields. A field has a name, a type, and a default value. For
example, Sphere node has a field named radius, of type SFFloat, that has a default
value of 1.0.

1.2.1. Field types
There are many field types defined by VRML specification. Each field type specifies a
syntax for field values in VRML file, and sometimes it specifies some interpretation of the
field value. Example field types are:

SFFloat A float value. Syntax is identical to the syntax used in
various programming languages, for example
3.1415926 or 12.5e-3.

SFLong (in VRML 1.0),
SFInt32 (in VRML 2.0)

A 32-bit integer value. As you can see, the name was
changed in VRML 2.0 to indicate clearly the range of
allowed values.

SFBool A boolean value. Syntax: one word, either FALSE or
TRUE. Note that VRML is case-sensitive. In VRML 1.0
you could also write the number 0 (for FALSE) or 1
(for TRUE), but this additional syntax was removed
from VRML 2.0 (since it's quite pointless).

SFVec2f, SFVec3f Vector of 2 or 3 floating point values. Syntax is to write
them as a sequence of SFFloat values, separated by
whitespace. The specification doesn't say how these
vectors are interpreted: they can be positions, they can
be directions etc. The interpretation must be given for
each case when some node includes a field of this type.

SFColor Syntax is exactly like SFVec3f, but this field has a
special interpretation: it's an RGB (red, green, blue)
color specification. Each component must be between

Overview of VRML
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2But also note that my engine doesn't support utf8 yet. In particular, when rendering Text node, the string is
treated as a sequence of 8-bit characters in ISO-8859-1 encoding.

0.0 and 1.0. For example, this is a yellow color: 1 1
0.

SFRotation Four floating point values specifying rotation around an
axis. First three values specify an axis, fourth value
specifies the angle of rotation (in radians).

SFImage This field type is used to specify image content for
PixelTexture node in VRML 2.0 (Texture2
node in VRML 1.0). This way you can specify texture
content directly in VRML file, without the need to ref-
erence any external file. You can create grayscale,
grayscale with alpha, RGB or RGB with alpha images
this way. This is sometimes comfortable, when you
must include everything in one VRML file, but beware
that it makes VRML files very large (because the color
values are specified in plain text, and they are not com-
pressed in any way). See VRML specification for exact
syntax of this field.

SFString A string, enclosed in double quotes. If you want to in-
clude double quote in a string, you have to precede it
with the backslash (\) character, and if you want to in-
clude the backslash in a string you have to write two
backslashes. For example:

"This is a string."

"\"To be or not to be\" said the man."

"Windows filename is
c:\\3dmodels\\tree.wrl"

Note that in VRML 2.0 this string can contain charac-
ters encoded in utf8 2.

SFNode This is a special VRML 2.0 field type that contains oth-
er node as it's value (or a special value NULL). More
about this in Section 1.3, “Children nodes”.

All names of field types above start with SF, which stands for “single-value field”. Most of
these field types have a counterpart, “multiple-value field”, with a name starting with MF.
For example MFFloat, MFLong, MFInt32, MFVec2f and MFVec3f. The MF-field
value is a sequence of any number (possibly zero) of single field values. For example,
MFVec3f field specifies any number of 3-component vectors and can be used to specify a
set of 3D positions.

Syntax of multiple-value fields is:

1. An opening bracket ([).

2. A list of single field values separated by commas (in VRML 1.0) or whitespaces (in
VRML 2.0). Note that in VRML 2.0 comma is also a whitespace, so if you write com-
mas between values your syntax is valid in all VRML versions.

Overview of VRML
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3. A closing bracket (]). Note that you can omit both brackets if your MF-field has exactly
one value.

1.2.2. Placing fields within nodes
Each node has a set of fields given by VRML specification. VRML file can specify value
of some (maybe all, maybe none) node's fields. You can always leave the value of a field
unspecified in VRML file, and it always is equivalent to explicitly specifying the default
value for given field.

VRML syntax for specifying node fields is simple: within node's braces ({ and }) place
field's name followed by field's value.

1.2.3. Examples
Let's see some examples of specifying field values.

Sphere node has a field named radius of type SFFloat with a default value 1.0. So
the file below is exactly equivalent to our first sphere example in previous section:

#VRML V1.0 ascii

Sphere {
radius 1

}

And this is a sphere with radius 2.0:

#VRML V1.0 ascii

Sphere {
radius 2

}

Here's a VRML 2.0 file that specifies a cylinder that should be rendered without bottom
and top parts (thus creating a tube), with a radius 2.0 and height 4.0. Three SFBool fields
of Cylinder are used: bottom, side, top (by default all are TRUE, so actually we
didn't have to write side TRUE). And two SFFloat fields, radius and height, are
used.

Remember that in VRML 2.0 we can't just write the Cylinder node. Instead we have to
use the Shape node. The Shape node has a field geometry of type SFNode. By de-
fault, value of this field is NULL, which means that no shape is defined. We can place our
Cylinder node as a value of this field to correctly define a cylinder.

#VRML V2.0 utf8

Shape {
geometry Cylinder {
side TRUE
bottom FALSE
top FALSE
radius 2.0
height 10.0

}
}

Overview of VRML
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Figure 1.3. Cylinder example, rendered in wireframe mode (because
it's unlit, non-wireframe rendering would look confusing)

Here's a VRML 2.0 file that specifies two points. Just like in the previous example, we had
to use a Shape node and place PointSet node in it's geometry field. PointSet
node, in turn, has two more SFNode fields: coord (that can contain Coordinate node)
and color (that can contain Color node). Coordinate node has a point field of
type MFVec3f — these are positions of defined points. Color node has a color field of
type MFColor — these are colors of points, specified in the same order as in the Co-
ordinate node.

Note that PointSet and Color nodes have the same field name: color. In the first
case, this is an SFNode field, in the second case it's an MFVec3f field.

#VRML V2.0 utf8

Shape {
geometry PointSet {
coord Coordinate { point [ 0 -2 0, 0 2 0 ] }
color Color { color [ 1 1 0, 0 0 1 ] }

}
}

Figure 1.4. VRML points example: yellow point at the bottom, blue
point at the top

Overview of VRML
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1.3. Children nodes
Now we're approaching the fundamental idea of VRML: some nodes can be placed as a
children of other nodes. We already saw some examples of this idea in VRML 2.0 ex-
amples above: we placed various nodes inside geometry field of Shape node. VRML
1.0 has a little different way of specifying children nodes (inherited from Inventor format)
than VRML 2.0 and X3D — we will see both methods.

1.3.1. Group node examples
In VRML 1.0, you just place children nodes inside the parent node. Like this:

#VRML V1.0 ascii

Group {
Sphere { }
Cube { width 1.5 height 1.5 depth 1.5 }

}

Figure 1.5. A cube and a sphere in VRML 1.0

Group is the simplest grouping node. It has no fields, and it's only purpose is just to treat a
couple of nodes as one node.

Note that in VRML 1.0 it's required that a whole VRML file consists of exactly one root
node, so we actually had to use some grouping node here. For example the following file is
invalid according to VRML 1.0 specification:

#VRML V1.0 ascii

Sphere { }
Cube { width 1.5 height 1.5 depth 1.5 }

Nevertheless the above example is handled by many VRML engines, including our engine
described in this document.

In VRML 2.0, you don't place children nodes directly inside the parent node. Instead you
place children nodes inside fields of type SFNode (this contains zero (NULL) or one node)
or MFNode (this contains any number (possibly zero) of nodes). For example, in VRML
2.0 Group node has an MFNode field children, so the example file in VRML 2.0 equi-

Overview of VRML
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valent to previous example looks like this:

#VRML V2.0 utf8

Group {
children [
Shape { geometry Sphere { } }
Shape { geometry Box { size 1.5 1.5 1.5 } }

]
}

Syntax of MFNode is just like for other multiple-valued fields: a sequence of values, inside
brackets ([ and ]).

Example above also shows a couple of other differences between VRML 1.0 and 2.0:

1. In VRML 2.0 we have to wrap Sphere and Box nodes inside a Shape node.

2. Node Cube from VRML 1.0 was renamed to Box in VRML 2.0.

3. Size of the box in VRML 2.0 is specified using size field of type SFVec3f, while in
VRML 1.0 we had three fields (width, height, depth) of type SFFloat.

While we're talking about VRML versions differences, note also that in VRML 2.0 a file
can have any number of root nodes. So actually we didn't have to use Group node in our
example, and the following would be correct VRML 2.0 file too:

#VRML V2.0 utf8

Shape { geometry Sphere { } }
Shape { geometry Box { size 1.5 1.5 1.5 } }

To be honest, we have to point one more VRML difference: as was mentioned before, in
VRML 2.0 shapes are unlit by default. So our VRML 2.0 examples above look like this:

Figure 1.6. An unlit box and a sphere in VRML 2.0

To make them lit, we must assign a material for them. In VRML 2.0 you do this by placing
a Material node inside material field of Appearance node. Then you place Ap-
pearance node inside appearance field of appropriate Shape node. Result looks like
this:

Overview of VRML
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#VRML V2.0 utf8

Group {
children [
Shape {

appearance Appearance { material Material { } }
geometry Sphere { }

}
Shape {

appearance Appearance { material Material { } }
geometry Box { size 1.5 1.5 1.5 }

}
]

}

We didn't specify any Material node's fields, so the default properties will be used. De-
fault VRML 2.0 material properties are the same as for VRML 1.0: light gray diffuse color
and a slight ambient color.

As you can see, VRML 2.0 description gets significantly more verbose than VRML 1.0,
but it has many advantages:

1. The way how children nodes are specified in VRML 2.0 requires you to always write an
SFNode or MFNode field name (as opposed to VRML 1.0 where you just write the
children nodes). But the advantages are obvious: in VRML 2.0 you can explicitly assign
different meaning to different children nodes by placing them within different fields. In
VRML 1.0 all the children nodes had to be treated in the same manner — the only thing
that differentiated children nodes was their position within the parent.

2. As mentioned earlier, the default behavior of various VRML 2.0 parts is the one that is
the easiest to render. That's why the default behavior is to render unlit, and you have to
explicitly specify material to get lit objects.

This is a good thing, since it makes VRML authors more conscious about using fea-
tures, and hopefully it will force them to create VRML worlds that are easier to render.
In the case of rendering unlit objects, this is often perfectly acceptable (or even desired)
solution if the object has a detailed texture applied.

3. Placing the Material node inside the SFNode field of Appearance, and then pla-
cing the Appearance node inside the SFNode field of Shape may seem like a
“bondage-and-discipline language”, but it allows various future enhancements of the
language without breaking compatibility. For example you could invent a node that al-
lows to specify materials using a different properties (like by describing it's BRDF func-
tion, useful for rendering realistic images) and then just allow this node as a value for
the material field.

Scenario described above actually happened. First versions of VRML 97 specification
didn't include geospatial coordinates support, including a node GeoCoordinate. A
node IndexedFaceSet has a field coord used to specify a set of points for geo-
metry, and initially you could place a Coordinate node there. When specification of
geospatial coordinates support was formulated (and added to VRML 97 specification as
optional for VRML browsers), all that had to be changed was to say that now you can
place GeoCoordinate everywhere where earlier you could use only Coordinate.

4. The Shape node in VRML 2.0 contains almost whole information needed to render
given shape. This means that it's easier to create a VRML rendering engine. We will
contrast this with VRML 1.0 approach that requires a lot of state information in Sec-
tion 1.5, “VRML 1.0 state”.

Overview of VRML
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1.3.2. The Transform node
Let's take a look at another grouping node: VRML 2.0 Transform node. This node spe-
cifies a transformation (a mix of a translation, a rotation and a scale) for all it's children
nodes. The default field values are such that no transformation actually takes place, be-
cause by default we translate by (0, 0, 0) vector, rotate by zero angle and scale by 1.0
factor. This means that the Transform node with all fields left as default is actually equi-
valent to a Group node.

Example of a simple translation:

#VRML V2.0 utf8

Shape {
appearance Appearance { material Material { } }
geometry Box { }

}

Transform {
translation 5 0 0
children Shape {
appearance Appearance { material Material { } }
geometry Sphere { }

}
}

Figure 1.7. A box and a translated sphere

Note that a child of a Transform node may be another Transform node. All trans-
formations are accumulated. For example these two files are equivalent:

#VRML V2.0 utf8

Shape {
appearance Appearance { material Material { } }
geometry Box { }

}

Transform {
translation 5 0 0
children [
Shape {

appearance Appearance { material Material { } }
geometry Sphere { }

}
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Transform {
translation 5 0 0
scale 1 3 1
children Shape {

appearance Appearance { material Material { } }
geometry Sphere { }

}
}

]
}

#VRML V2.0 utf8

Shape {
appearance Appearance { material Material { } }
geometry Box { }

}

Transform {
translation 5 0 0
children Shape {
appearance Appearance { material Material { } }
geometry Sphere { }

}
}

Transform {
translation 10 0 0
scale 1 3 1
children Shape {
appearance Appearance { material Material { } }
geometry Sphere { }

}
}

Figure 1.8. A box, a translated sphere, and a translated and scaled
sphere

1.3.3. Other grouping nodes

• A Switch node allows you to choose only one (or none) from children nodes to be in
the active (i.e. visible, participating in collision detection etc.) part of the scene. This is
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useful for various scripts and it's also useful for hiding nodes referenced later — we will
see an example of this in Section 1.4, “DEF / USE mechanism”.

• A Separator and a TransformSeparator nodes in VRML 1.0. We will see what
they do in Section 1.5, “VRML 1.0 state”.

• A LOD node (the name is an acronym for level of detail) specifies a different versions of
the same object. The intention is that all children nodes represent the same object, but
with different level of detail: first node is the most detailed one (and difficult to render,
check for collisions etc.), second one is less detailed, and so on, until the last node has
the least details (it can even be empty, which can be expressed by a Group node with no
children). VRML browser should choose the appropriate children to render based on the
distance between the viewer and designated center point.

Unfortunately, note that LOD is not implemented in our engine yet — for now we al-
ways use the most detailed version. As far as VRML specification is concerned, this is
acceptable (although non-optimal) behavior.

1.4. DEF / USE mechanism
VRML nodes may be named and later referenced. This allows you to reuse the same node
(which can be any VRML node type — like a shape, a material, or even a whole group)
more than once. The syntax is simple: you name a node by writing DEF <node-name>
before node type. To reuse the node, just write USE <node-name>. This mechanism is
available in all VRML versions.

Here's a simple example that uses the same Cone twice, each time with a different material
color.

#VRML V2.0 utf8

Shape {
appearance Appearance {
material Material { diffuseColor 1 1 0 }

}
geometry DEF NamedCone Cone { height 5 }

}

Transform {
translation 5 0 0
children Shape {
appearance Appearance { material Material { diffuseColor 0 0 1 } }
geometry USE NamedCone

}
}

Overview of VRML

21



Figure 1.9. Two cones with different materials

Using DEF / USE mechanism makes your VRML files smaller and easier to author, and it
also allows VRML implementations to save resources (memory, loading time...). That's be-
cause VRML implementation can allocate the node once, and then just copy the pointer to
this node. VRML specifications are formulated to make this approach always correct, even
when mixed with features like scripting or sensors. Note that some nodes can “pull” addi-
tional data with them (for example ImageTexture nodes will load texture image from
file), so the memory saving may be even larger. Consider these two VRML files:

#VRML V2.0 utf8

Shape {
appearance Appearance {
texture DEF SampleTexture ImageTexture { url "sample_texture.png" }

}
geometry Box { }

}

Transform {
translation 5 0 0
children Shape {
appearance Appearance {

texture USE SampleTexture
}
geometry Sphere { }

}
}

#VRML V2.0 utf8

Shape {
appearance Appearance {
texture ImageTexture { url "sample_texture.png" }

}
geometry Box { }

}

Transform {
translation 5 0 0
children Shape {
appearance Appearance {

texture ImageTexture { url "sample_texture.png" }
}
geometry Sphere { }

}
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3 Actually, in the second case, our engine can also figure out that this is the same texture filename and not load the
texture twice. But the first case is much “cleaner” and should be generally better for all decent VRML implement-
ations.

}

Figure 1.10. A box and a translated sphere using the same texture

Both files above look the same when rendered, but in the first case VRML implementation
loads the texture only once, since we know that this is the same texture node 3.

Note that the first node definition, with DEF keyword, not only names the node, but also
includes it in the file. Often it's more comfortable to first define a couple of named nodes
(without actually using them) and then use them. You can use the Switch node for this —
by default Switch node doesn't include any of it's children nodes, so you can write
VRML file like this:

#VRML V2.0 utf8

Switch {
choice [
DEF RedSphere Shape {

appearance Appearance { material Material { diffuseColor 1 0 0 } }
geometry Sphere { }

}
DEF GreenSphere Shape {

appearance Appearance { material Material { diffuseColor 0 1 0 } }
geometry Sphere { }

}
DEF BlueSphere Shape {

appearance Appearance { material Material { diffuseColor 0 0 1 } }
geometry Sphere { }

}
DEF SphereColumn Group {

children [
Transform { translation 0 -5 0 children USE RedSphere }
Transform { translation 0 0 0 children USE GreenSphere }
Transform { translation 0 5 0 children USE BlueSphere }

]
}

]
}

Transform { translation -5 0 0 children USE SphereColumn }
Transform { translation 0 0 0 children USE SphereColumn }
Transform { translation 5 0 0 children USE SphereColumn }
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4I do not cite full VRML source code here, as it includes a long list of coordinates and indexes generated by
Blender exporter. See VRML files distributed with this document: full source is in the file examples/re-
use_coordinate.wrl.

Figure 1.11. Three columns of three spheres

One last example shows a reuse of Coordinate node. Remember that a couple of sec-
tions earlier we defined a simple PointSet. PointSet node has an SFNode field
named coord. You can place there a Coordinate node. A Coordinate node, in turn,
has a point field of type SFVec3f that allows you to specify point positions. The obvi-
ous question is “Why all this complexity ? Why not just say that coord field is of
SFVec3f type and directly include the point positions ?”. One answer was given earlier
when talking about grouping nodes: this allowed VRML specification for painless addition
of GeoCoordinate as an alternative way to specify positions. Another answer is given
by the example below. As you can see, the same set of positions may be used by a couple
of different nodes4.

#VRML V2.0 utf8

Switch {
choice DEF TowerCoordinates Coordinate {
point [

4.157832 4.157833 -1.000000,
4.889094 3.266788 -1.000000,
......

]
}

}

Shape {
appearance Appearance { material Material { } }
geometry IndexedFaceSet {
coordIndex [

63 0 31 32 -1,
31 30 33 32 -1,
......

]
coord USE TowerCoordinates

}
}

Transform {
translation 30 0 0
children Shape {
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geometry IndexedLineSet {
coordIndex [

63 0 31 32 63 -1,
31 30 33 32 31 -1,
......

]
coord USE TowerCoordinates

}
}

}

Transform {
translation 60 0 0
children Shape {
geometry PointSet {

coord USE TowerCoordinates
}

}
}

Figure 1.12. Faces, lines and point sets rendered using the same
Coordinate node

1.4.1. VRML file as a graph
Now that we know all about children relationships and DEF / USE mechanism, we can
grasp the statement mentioned at the beginning of this chapter: every VRML file is a direc-
ted graph of nodes. It doesn't have cycles, although if we will forget about direction of
edges (treat it as an undirected graph), we can get cycles (because of DEF / USE mechan-
ism).

Note that VRML 1.0 file must contain exactly one root node, while VRML 2.0 file is a se-
quence of any number of root nodes. So, being precise, VRML graph doesn't have to be a
connected graph. But actually our engine when reading VRML file with many root nodes
just wraps them in an “invisible” Group node. This special Group node acts just like any
other group node, but it's not written back to the file (when e.g. using our engine to pretty-
print VRML files). This way, internally, we always see VRML file as a connected graph,
with exactly one root node.

1.5. VRML 1.0 state
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5 Actually, they are remembered for each OpenGL context. And, ideally, they are partially “remembered” on
graphic board. But we limit our thinking here only to the point of view of a typical program using OpenGL.

In previous sections most of the examples were given only in VRML 2.0 version. Partially
that's because VRML 2.0 is just newer and better, so you should use it instead of VRML
1.0 whenever possible. But partially that was because we avoided to explain one important
behavior of VRML 1.0. In this section we'll fill the gap. Even if you're not interested in
VRML 1.0 anymore, this information may help you understand why VRML 2.0 was de-
signed the way it was, and why it's actually better than VRML 1.0. That's because part of
the reasons of VRML 2.0 changes were to avoid the whole issue described here.

Historically, VRML 1.0 was based on Inventor file format, and Inventor file format was
designed specifically with OpenGL implementation in mind. Those of you who do any
programming in OpenGL know that OpenGL works as a state machine. This means that
OpenGL remembers a lot of “global” settings 5. When you want to render a vertex (aka
point) in OpenGL, you just call one simple command (glVertex), passing only point co-
ordinates. And the vertex is rendered (along with a line or even a triangle that it produces
with other vertexes). What color does the vertex has ? The last color specified by glCol-
or call (or glMaterial, mixed with lights). What texture coordinate does it have ? Last
texture coordinate specified in glTexCoord call. What texture does it use ? Last texture
bound with glBindTexture. We can see a pattern here: when you want to know what
property our vertex has, you just have to check what value we last assigned to this prop-
erty. When we talk about OpenGL state, we talk about all the “last glColor”, “last gl-
TexCoord” etc. values that OpenGL has to remember.

Inventor, and then VRML 1.0, followed a similar approach. “What material does a sphere
use ?” The one specified in the last Material node. Take a look at the example:

#VRML V1.0 ascii

Group {
# Default material will be used here:
Sphere { }

DEF RedMaterial Material { diffuseColor 1 0 0 }

Transform { translation 5 0 0 }
# This uses the last material : red
Sphere { }

Transform { translation 5 0 0 }
# This still uses uses the red material
Sphere { }

Material { diffuseColor 0 0 1 }

Transform { translation 5 0 0 }
# Material changed to blue
Sphere { }

Transform { translation 5 0 0 }
# Still blue...
Sphere { }

USE RedMaterial

Transform { translation 5 0 0 }
# Red again !
Sphere { }

Transform { translation 5 0 0 }
# Still red.
Sphere { }

}
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Figure 1.13. Spheres with various material in VRML 1.0

Similar answers are given for other questions in the form “What is used ?”. Let's compare
VRML 1.0 and 2.0 answers for such questions:

• What texture is used ?

VRML 1.0 answer: Last Texture2 node.

VRML 2.0 answer: Node specified in enclosing Shape appearance's texture field.

• What coordinates are used by IndexedFaceSet ?

VRML 1.0 answer: Last Coordinate3 node.

VRML 2.0 answer: Node specified in coord field of given IndexedFaceSet.

• What font is used by by AsciiText node (renamed to just Text in VRML 2.0) ?

VRML 1.0 answer: Last FontStyle node.

VRML 2.0 answer: Node specified in fontStyle field of given Text node.

So VRML 1.0 approach maps easily to OpenGL. Simple VRML implementation can just
traverse the scene graph, and for each node do appropriate set of OpenGL calls. For ex-
ample, Material node will correspond to a couple of glMaterial and glColor
calls. Texture2 will correspond to binding prepared OpenGL texture. Visible shapes will
cause rendering of appropriate geometry, and so last Material and Texture2 settings
will be used.

In our example with materials above you can also see another difference between VRML
1.0 and 2.0, also influenced by the way things are done in OpenGL: the way Transform
node is used. In VRML 2.0, Transform affected it's children. In VRML 1.0, Trans-
form node is not supposed to have any children. Instead, it affects all subsequent nodes. If
we would like to translate last example to VRML 2.0, each Transform node would have
to be placed as a last child of previous Transform node, thus creating a deep nodes hier-
archy. Alternatively, we could keep the hierarchy shallow and just use Transform {
translation 5 0 0 ... } for the first time, then Transform { transla-
tion 10 0 0 ... }, then Transform { translation 15 0 0 ... } and
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so on.

This means that simple VRML 1.0 implementation will just call appropriate matrix trans-
formations when processing Transform node. In VRML 1.0 there are even more special-
ized transformation nodes. For example a node Translation that has a subset of fea-
tures of full Transform node: it can only translate. Such Translation has an excel-
lent, trivial mapping to OpenGL: just call glTranslate.

There's one more important feature of OpenGL “state machine” approach: stacks. OpenGL
has a matrix stack (actually, three matrix stacks for each matrix type) and an attributes
stack. As you can guess, there are nodes in VRML 1.0 that, when implemented in an easy
way, map perfectly to OpenGL push/pop stack operations: Separator and Trans-
formSeparator. When you use Group node in VRML 1.0, the properties (like last
used Material and Texture2, and also current transformation and texture transforma-
tion) “leak” outside of Group node, to all subsequent nodes. But when you use Separ-
ator, they do not leak out: all transformations and “who's the last material/texture node”
properties are unchanged after we leave Separator node. So simple Separator im-
plementation in OpenGL is trivial:

1. At the beginning, use glPushAttrib (saving all OpenGL attributes that can be
changed by VRML nodes) and glPushMatrix (for both modelview and texture
matrices).

2. Then process all children nodes of Separator.

3. Then restore state by glPopAttrib and glPopMatrix calls.

TransformSeparator is a cross between a Separator and a Group: it saves only
transformation matrix, and the rest of the state can “leak out”. So to implement this in
OpenGL, you just call glPushMatrix (on modelview matrix) before processing chil-
dren and glPopMatrix after.

Below is an example how various VRML 1.0 grouping nodes allow “leaking”. Each
column starts with a standard Sphere node. Then we enter some grouping node (from the
left: Group, TransformSeparator and Separator). Inside the grouping node we
change material, apply scaling transformation and put another Sphere node — middle
row always contains a red large sphere. Then we exit from grouping node and put the third
Sphere node. How does this sphere look like depends on used grouping node.

#VRML V1.0 ascii

Separator {
Sphere { }
Transform { translation 0 -3 0 }
Group {
Material { diffuseColor 1 0 0 }
Transform { scaleFactor 2 2 2 }
Sphere { }

}
# This was a Group, so both Material change and scaling "leaks out"
Transform { translation 0 -3 0 }
Sphere { }

}

Transform { translation 5 0 0 }

Separator {
Sphere { }
Transform { translation 0 -3 0 }
TransformSeparator {
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Material { diffuseColor 1 0 0 }
Transform { scaleFactor 2 2 2 }
Sphere { }

}
# This was a TransformSeparator, so only Material change "leaks out"
Transform { translation 0 -3 0 }
Sphere { }

}

Transform { translation 5 0 0 }

Separator {
Sphere { }
Transform { translation 0 -3 0 }
Separator {
Material { diffuseColor 1 0 0 }
Transform { scaleFactor 2 2 2 }
Sphere { }

}
# This was a Separator, so nothing "leaks out".
# The last sphere is identical to the first one.
Transform { translation 0 -3 0 }
Sphere { }

}

Figure 1.14. An example how properties “leak out” from various
grouping nodes in VRML 1.0

1.5.1. Why VRML 2.0 is better
There are some advantages of VRML 1.0 “state” approach:

1. It maps easily to OpenGL.

Such easy mapping may be also quite efficient. For example, if two nodes use the same
Material node, we can just change OpenGL material once (at the time Material
node is processed). VRML 2.0 implementation must remember last set Material
node to achieve this purpose.

2. It's flexible. The way transformations are specified in VRML 2.0 forces us often to cre-
ate deeper node hierarchies than in VRML 1.0.
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6...programming languages that should remain nameless here...

And in VRML 1.0 we can easier share materials, textures, font styles and other proper-
ties among a couple of nodes. In VRML 2.0 such reusing requires naming nodes by
DEF / USE mechanism. In VRML 1.0 we can simply let a couple of nodes have the
same node as their last Material (or similar) node.

But there are also serious problems with VRML 1.0 approach, that VRML 2.0 solves.

1. The argumentation about “flexibility” of VRML 1.0 above looks similar to argumenta-
tion about various programming languages 6, that are indeed flexible but also allow the
programmer to “shoot himself in the foot”. It's easy to forget that you changed some
material or texture, and accidentally affect more than you wanted.

Compare this with the luxury of VRML 2.0 author: whenever you start writing a
Shape node, you always start with a clean state: if you don't specify a texture, shape
will not be textured, if you don't specify a material, shape will be unlit, and so on. If you
want to know how given IndexedFaceSet will look like when rendered, you just
have to know it's enclosing Shape node. More precisely, the only things that you have
to know for VRML 2.0 node to render it are

• enclosing Shape node,

• accumulated transformation from Transform nodes,

• and some “global” properties: lights that affect this shape and fog properties. I call
them “global” because usually they are applied to the whole scene or at least large
part of it.

On the other hand, VRML 1.0 author or reader (human or program) must carefully ana-
lyze the code before given node, looking for last Material node occurrence etc.

2. The argumentation about “simple VRML 1.0 implementation” misses the point that
such simple implementation will in fact suffer from a couple of problems. And fixing
these problems will in fact force this implementation to switch to non-trivial methods.
The problems include:

• OpenGL stacks sizes are limited, so a simple implementation will limit allowed depth
of Separator and TransformSeparator nodes.

• If we will change OpenGL state each time we process a state-changing node, then we
can waste a lot of time and resources if actually there are no shapes using given prop-
erty. For example this code

Separator {
Texture2 { filename "texture.png" }

}

will trick a naive implementation into loading from file and then loading to OpenGL
context a completely useless texture data.

This seems like an irrelevant problem, but it will become a large problem as soon as
we will try to use any technique that will have to render only parts of the scene. For
example, implementing material transparency using OpenGL blending requires that
first all non-transparent shapes are rendered. Also implementing culling of objects to
a camera frustum will make many shape nodes in the scene ignored in some frames.

Overview of VRML

30



3. Last but not least: in VRML 1.0, grouping nodes must process their children in order, to
collect appropriate state information needed to render each shape. In VRML 2.0, there is
no such requirement. For example, to render a Group node in VRML 2.0, implementa-
tion can process and render children nodes in any order. Like said above, VRML 2.0
must only know about current transformation and global things like fog and lights. The
rest of information needed is always contained within appropriate Shape node.

VRML 2.0 implementation can even ignore some children in Group node if it's known
that they are not visible.

Example situations when implementation should be able to freely choose which shapes
(and in what order) are rendered were given above: implementing transparency using
blending, and culling to camera frustum.

More about the way how we solved this problem for both VRML 1.0 and 2.0 in Sec-
tion 2.10, “Flat scene”. More about OpenGL blending and culling to frustum in Sec-
tion 5.3, “Flat scene for OpenGL”.

1.6. Other important VRML features
Now that we're accustomed with VRML syntax and concepts, let's take a quick look at
some notable VRML features that weren't shown yet.

1.6.1. Inline nodes
A powerful tool of VRML is the ability to include one model as a part of another. In
VRML 2.0 we do this by Inline node. It's url field specifies the URL (possibly relat-
ive) of VRML file to load. Note that our engine doesn't actually support URLs right now
and treats this just as a file name.

The content of referenced VRML file is placed at the position of given Inline node. This
means that you can apply transformation to inlined content. This also means that including
the same file more than once is sensible in some situations. But remember the remarks in
Section 1.4, “DEF / USE mechanism”: if you want to include the same file more than once,
you should name the Inline node and then just reuse it. Such reuse will conserve re-
sources.

url field is actually MFString and is a sequence of URL values, from the most to least
preferred one. So VRML browser will try to load files from given URLs in order, until a
valid file will be found.

In VRML 1.0 the node is called WWWInline, and the URL (only one is allowed, it's SF-
String field) is specified in the field name.

When using our engine you can mix VRML versions and include VRML 1.0 file from
VRML 2.0, or the other way around. Moreover, you can include 3DS and Wavefront OBJ
files too.

An example:

#VRML V2.0 utf8

DEF MyInline Inline { url "reuse_cone.wrl" }

Transform {
translation 1 0 0
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rotation 1 0 0 -0.2
children [
USE MyInline

Transform {
translation 1 0 0
rotation 1 0 0 -0.2
children [
USE MyInline

Transform {
translation 1 0 0
rotation 1 0 0 -0.2
children [
USE MyInline

Transform {
translation 1 0 0
rotation 1 0 0 -0.2
children [
USE MyInline

] } ] } ] } ] }

Figure 1.15. Our earlier example of reusing cone inlined a couple of
times, each time with a slight translation and rotation

1.6.2. Texture transformation
VRML allows you to specify a texture coordinate transformation. This allows you to trans-
late, scale and rotate visible texture on given shape.

In VRML 1.0, you do this by Texture2Transform node — this works analogous to
Transform, but transformations are only 2D. Texture transformations in VRML 1.0 ac-
cumulate, just like normal transformations. Here's an example:

#VRML V1.0 ascii

Group {
Texture2 { filename "sample_texture.png" }

Cube { }

Transform { translation 3 0 0 }

Overview of VRML

32



Separator {
# translate texture
Texture2Transform { translation 0.5 0.5 }
Cube { }

}

Transform { translation 3 0 0 }

Separator {
# rotate texture by Pi/4
Texture2Transform { rotation 0.7853981634 }
Cube { }

}

Transform { translation 3 0 0 }

Separator {
# scale texture
Texture2Transform { scaleFactor 2 2 }
Cube { }

Transform { translation 3 0 0 }

# rotate texture by Pi/4.
# Texture transformation accumulates, so this will
# be both scaled and rotated.
Texture2Transform { rotation 0.7853981634 }
Cube { }

}
}

Figure 1.16. Textured cube with various texture transformations

Remember that we transform texture coordinates, so e.g. scale 2x means that the texture
appears 2 times smaller.

VRML 2.0 proposes a different approach here: We have similar TextureTransform
node, but we can use it only as a value for textureTransform field of Appearance.
This also means that there is no way how texture transformations could accumulate. Here's
a VRML 2.0 file equivalent to previous VRML 1.0 example:

#VRML V2.0 utf8

Shape {
appearance Appearance {
texture DEF SampleTexture ImageTexture { url "sample_texture.png" }
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}
geometry Box { }

}

Transform {
translation 3 0 0
children Shape {
appearance Appearance {

texture USE SampleTexture
# translate texture
textureTransform TextureTransform { translation 0.5 0.5 }

}
geometry Box { }

}
}

Transform {
translation 6 0 0
children Shape {
appearance Appearance {

texture USE SampleTexture
# rotate texture by Pi/4
textureTransform TextureTransform { rotation 0.7853981634 }

}
geometry Box { }

}
}

Transform {
translation 9 0 0
children Shape {
appearance Appearance {

texture USE SampleTexture
# scale texture
textureTransform TextureTransform { scale 2 2 }

}
geometry Box { }

}
}

Transform {
translation 12 0 0
children Shape {
appearance Appearance {

texture USE SampleTexture
# scale and rotate the texture.
# There's no way to accumulate texture transformations,
# so we just do both rotation and scaling by
# TextureTransform node below.
textureTransform TextureTransform {

rotation 0.7853981634
scale 2 2

}
}
geometry Box { }

}
}

1.6.3. Navigation
You can specify various navigation information using the NavigationInfo node.

• type field describes preferred navigation type. You can “EXAMINE” model, “WALK”
in the model (with collision detection and gravity) and “FLY” (collision detection, but
no gravity).

Overview of VRML

34



• avatarSize field sets viewer (avatar) sizes. These typically have to be adjusted for
each world to “feel right”. Although you should note that VRML generally suggests to
treat length 1.0 in your world as “1 meter”. If you will design your VRML world follow-
ing this assumption, then default avatarSize will feel quite adequate, assuming that
you want the viewer to have human size in your world. Viewer sizes are used for colli-
sion detection.

• Viewer size together with visibilityLimit may be also used to set VRML
browsers Z-buffer near and far clipping planes. This is the case with our engine. By de-
fault our engine tries to calculate sensible values for near and far based on scene bound-
ing box size.

• You can also specify moving speed (speed field), and whether head light is on (head-
light field).

To specify default viewer position and orientation in the world you use Viewpoint node.
In VRML 1.0, instead of Viewpoint you have PerspectiveCamera and Ortho-
gonalCamera (in VRML 2.0 viewpoint is always perspective). Viewpoint and camera
nodes may be generally specified anywhere in the file. The first viewpoint/camera node
found in the file (but only in the active part of the file — e.g. not in inactive children of
Switch) will be used as the starting position/orientation. Note that viewpoint/camera
nodes are also affected by transformation.

Finally, note that my VRML viewer view3dscene [http:// www. camelot. homedns. org/
~michalis/view3dscene.php] has a useful function to print VRML viewpoint/camera nodes
ready to be pasted to VRML file, see menu item “Console” -> “Print current camera node”.

Here's an example file. It defines a viewpoint (generated by view3dscene) and a naviga-
tion info and then includes actual world geometry from other file (shown in our earlier ex-
ample about inlining).

#VRML V2.0 utf8

Viewpoint {
position 11.832 2.897 6.162
orientation -0.463 0.868 0.172 0.810

}

NavigationInfo {
avatarSize [ 0.5, 2 ]
speed 1.0
headlight TRUE

}

Inline { url "inline.wrl" }
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Figure 1.17. Viewpoint defined for our previous example with
multiplied cones

1.6.4. IndexedFaceSet features
IndexedFaceSet nodes (and a couple of other nodes in VRML 2.0 like Elevation-
Grid) have some notable features to make their rendering better and more efficient:

• You can use non-convex faces if you set convex field to FALSE. It will be VRML
browser's responsibility to correctly triangulate them. By default faces are assumed to be
convex (following the general rule that the default behavior is the easiest one to handle
by VRML browsers).

• By default shapes are assumed to be solid which allows to use backface culling when
rendering them.

• If you don't supply pre-generated normal vectors for your shapes, they will be calculated
by the VRML browser. You can control how they will be calculated by the
creaseAngle field: if the angle between adjacent faces will be less than specified
creaseAngle, the normal vectors in appropriate points will be smooth. This allows
you to specify preferred “smoothness” of the shape. In VRML 2.0 by default
creaseAngle is zero (so all normals are flat; again this follows the rule that the de-
fault behavior is the easiest one for VRML browsers). See example below.

• For VRML 1.0 the creaseAngle, backface culling and convex faces settings are con-
trolled by ShapeHints node.

• All VRML shapes have some sensible default texture mapping. This means that you
don't have to specify texture coordinates if you want the texture mapped. You only have
to specify some texture. For IndexedFaceSet the default texture mapping adjusts to
shape's bounding box (see VRML specification for details).

Here's an example of the creaseAngle use. Three times we define the same geometry in
IndexedFaceSet node, each time using different creaseAngle values. The left
tower uses creaseAngle 0, so all faces are rendered flat. Second tower uses
creaseAngle 1 and it looks good — smooth where it should be. The third tower uses
creaseAngle 4, which just means that normals are smoothed everywhere (this case is
actually optimized inside our engine, so it's calculated faster) — it looks bad, we can see
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that normals are smoothed where they shouldn't be.

#VRML V2.0 utf8

Viewpoint {
position 31.893 -69.771 89.662
orientation 0.999 0.022 -0.012 0.974

}

Switch {
choice DEF TowerCoordinates Coordinate {
point [

4.157832 4.157833 -1.000000,
4.889094 3.266788 -1.000000,
........

]
}

}

Transform {
children Shape {
appearance Appearance { material Material { } }
geometry IndexedFaceSet {

coordIndex [
63 0 31 32 -1,
31 30 33 32 -1,
........

]
coord USE TowerCoordinates
creaseAngle 0

}
}

}

Transform {
translation 30 0 0
children Shape {
appearance Appearance { material Material { } }
geometry IndexedFaceSet {

coordIndex [
63 0 31 32 -1,
31 30 33 32 -1,
........

]
coord USE TowerCoordinates
creaseAngle 1

}
}

}

Transform {
translation 60 0 0
children Shape {
appearance Appearance { material Material { } }
geometry IndexedFaceSet {

coordIndex [
63 0 31 32 -1,
31 30 33 32 -1,
........

]
coord USE TowerCoordinates
creaseAngle 4

}
}

}
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Figure 1.18. Three towers with various creaseAngle settings

1.6.5. Beyond what is implemented
There are some very notable VRML 97 features that I didn't describe in this document,
simply because they are not implemented yet. To name just a few:

Interpolator nodes They define animation by interpolation of appropriate sets
of values. My engine also allows to do animations, also by
interpolating, so the internal approach is actually the same.
However the way to specify the animations for my engine
is not by VRML nodes, but instead by providing two or
more VRML models with the same structure. My ap-
proach has some advantages and some disadvantages
when compared to VRML interpolators, the details will be
explained in Chapter 6, Animation.

Prototypes These constructions define new VRML nodes in terms of
already available ones. The idea is basically like macros,
but it works on VRML nodes level (not on textual level,
even not on VRML tokens level) so it's really safe.

External prototypes These constructions define syntax of new VRML nodes,
without defining their implementation. The implementa-
tion can be specified in other VRML file (using normal
prototypes mentioned above) or can be deduced by partic-
ular VRML browser using some browser-specific means
(for example, a browser may just have some non-standard
nodes built-in). If a browser doesn't know how to handle
given node, it can at least correctly parse the node (and ig-
nore it).

For example, many VRML browsers handle some non-
standard VRML nodes. If you use these nodes and you
want to make your VRML files at least readable by other
VRML browsers, you should declare these non-standard
nodes using external prototypes.

My engine doesn't handle external prototype constructions
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7Although I already handle a couple of non-standard VRML extensions, see my extensions list [http://www.cam-
elot.homedns.org/~michalis/kambi_vrml_extensions.php]

yet7. When my engine approaches unknown node type it is
able to ignore it without really parsing it's fields: it just
parses the file up to the matching brace token. So it doesn't
actually need the external prototype.

Sensors, events, scripting VRML 97 specification includes a great support for ex-
tending content with any kind of external language. De-
tailed description of Java and ECMAScript (JavaScript)
bindings is given by the specification, and it's expected
that other languages could use similar approaches. X3D
specification pushes this even further, by describing ex-
ternal language interface in a way that is “neutral” to actu-
al programming language (which means that it should be
applicable to pretty much all existing programming lan-
guages).

Scripts can be invoked on various events, and the events
can in turn be generated by various nodes. In particular,
sensor nodes are special kind of nodes that were designed
only to generate events in particular situations.

My engine doesn't support any kind of scripting for now.
My initial approach was directed at making special pro-
grams (like games ...) that simply use the VRML engine,
so any logic was expressed in normal ObjectPascal code
that was later compiled.

Of course, it would be great to implement scripting and
move as much of this logic as possible to VRML files. For
VRML authors, this is also the way to not be tied to any
particular VRML engine. Although for really large pro-
grams there's no way that whole logic could be moved into
a scripting language...

NURBS NURBS curves and surfaces. Optional in VRML 97 spe-
cification.
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Chapter 2. Reading, writing,
processing VRML scene graph

This and the following chapters will describe how our VRML engine works. We will de-
scribe used data structures and algorithms. Together this should give you a good idea of
what our engine is capable of, where are it's strengths and weaknesses, and how it's all
achieved.

In this document we should not go into details about some ObjectPascal-specific language
constructs or solutions — this would be too low-level stuff, uninteresting from a general
point of view. If you're an ObjectPascal programmer and you want to actually use my en-
gine then you may find it helpful to study source code [http:// camelot. homedns. org/
~michalis/ sources. php] (especially example programs in examples subdirectories) and
units documentation [http://camelot.homedns.org/~michalis/sources_docs.php] while read-
ing this document. If you only want to read this document, everything that you need is
some basic idea about object-oriented programming.

2.1. TVRMLNode class basics
The base class of our engine is the TVRMLNode class, not surprisingly representing a
VRML node. This is an abstract class, for all specific VRML node types we have some
descendant of TVRMLNode defined. Naming convention for non-abstract node classes is
like TNodeCoordinate class for VRML Coordinate node type.

Every VRML node has it's fields available in it's Fields property. You can also access
individual fields by properties named like FdXxx, for example FdPoint is a property of
TNodeCoordinate class that represents point field of Coordinate node.

VRML 1.0 children nodes are accessed by Children and ChildrenCount properties.
For VRML 2.0 this is not needed, since you access all children nodes by accessing appro-
priate SFNode and MFNode fields. A convenience properties named SmartChildren
and SmartChildrenCount are defined: for “normal” VRML 2.0 grouping nodes (this
mostly means nodes with MFNode field named children) the SmartChildrenXxx
properties operate on appropriate MFNode, for other nodes they operate on VRML 1.0
ChildrenXxx properties.

Because of DEF / USE mechanism each node may be a children (“children” both in the
VRML 1.0 and 2.0 senses) of more than one node. This means that we cannot use some
trivial destructing strategy. When we destruct some node's instance, we cannot simply de-
struct all it's children, because they are possibly used in other nodes. The simple solution to
this is to keep track in each node about it's parents. Each node has properties Parent-
Nodes and ParentNodesCount that track information about all the nodes that use it in
VRML 1.0 style (i.e. on TVRMLNode.Children list). And properties ParentFields
and ParentFieldsCount that track information about all the SFNode and MFNode
fields referencing this node. The children node is automatically destroyed when it has no
parents — which means that both ParentNodesCount and ParentFieldsCount
are zero. Effectively, we implemented reference-counting. And as a bonus, ParentXxx
properties are sometimes helpful when we want to do some “bottom-to-top” processing of
VRML graph (although this should be generally avoided, “top-to-bottom” processing is
much more in the spirit of the VRML graph).

Classes for VRML nodes specific to particular VRML version get a suffix _1 or _2 rep-
resenting their intended VRML version. For example, we have TNodeIndexedFace-
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1Multiple root nodes are allowed in VRML 2.0 specification. Our engine also allows them for VRML 1.0 because
it's an extension often expected by VRML 1.0 creators (humans and programs).

Set_1 (for VRML 1.0) and TNodeIndexedFaceSet_2 (for VRML 2.0) classes. Such
nodes always have their ForVRMLVersion method overridden to indicate in what
VRML version they are allowed to be used. For example, when parser starts reading In-
dexedFaceSet node, it creates either TNodeIndexedFaceSet_1 or TNodeIn-
dexedFaceSet_2, depending on VRML version indicated in the file header line. Note
that this separation between VRML versions is done only when reading VRML nodes from
file. When processing VRML nodes graph by code you can freely mix VRML nodes from
various VRML versions and everything will work, including writing nodes back to VRML
file (although if you mix VRML versions too carelessly you may get VRML file that can
only be read back by my engine, and not by other engines that may be limited to only
VRML 1.0 or only VRML 2.0). More on this later in Section 2.2, “The sum of VRML 1.0
and 2.0”.

The result of parsing any VRML file is always a single TVRMLNode instance representing
the root node of the given file. If the file had more than one root node 1 then our engine
wraps them in an additional Group node. More precisely, additional instance of TNode-
GroupHidden_1 or TNodeGroupHidden_2 is created. They descend from TNode-
Group_1 and TNodeGroup_2, accordingly, and so can be always treated as 100% nor-
mal Group nodes. At the same time, VRML writing code can take special precautions to
not record these “fake” group nodes back to VRML file.

2.2. The sum of VRML 1.0 and 2.0
Our engine handles both VRML 1.0 and VRML 2.0. As we have seen in Chapter 1, Over-
view of VRML, there are important differences between these VRML versions. The way
how I decided to handle both VRML versions is the more difficult, but also more complete
approach. Effectively, you have the sum of VRML 1.0 and 2.0 features available.

I decided to avoid trying to create some internal conversions from VRML 1.0 to VRML
2.0, or VRML 2.0 to 1.0, or to some newly invented internal format. I wanted to have a
full, flexible, 100% conforming to VRML 1.0 and VRML 2.0 specifications engine. And
the fact is that any conversion along the way will likely cause problems — ideologically
speaking, that's because there is always something lost, or at least difficult to recover, when
a complicated conversion is done.

Practically here are some reasons why a simple conversion between VRML 1.0 and VRML
2.0 is not possible, in any direction:

1. VRML 2.0 specification authors intentionally wanted to simplify some things that
people (both VRML world authors and VRML browser implementors) thought were un-
necessarily complicated in VRML 1.0. This causes problems for a potential converter
from VRML 1.0 to 2.0, since it will have trouble to express some VRML 1.0 constructs.
For example:

• In VRML 1.0 you can specify multiple materials for a single geometry node. In
VRML 2.0 each geometry node uses at most one material. So a potential converter
from VRML 1.0 to 2.0 may need to split geometry nodes.

• In VRML 1.0 you can accumulate texture transformations (Texture2Transform
nodes). In VRML 2.0 you can't (you can only place one TextureTransform node
in the Appearance.textureTransform field). So a potential converter must
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accumulate texture transformations on it's own. And this is not trivial in a general
case, because you can't directly specify texture transformation matrix in VRML 2.0.
Instead you have to express texture transformation in terms of one translation, one ro-
tation and one scaling.

• In VRML 1.0 you can specify any 4x4 matrix transformation using MatrixTrans-
formation node. This is not possible at all in VRML 2.0. In VRML 2.0 geometry
transformation must be specified in terms of translations, rotations and scaling.

• In VRML 1.0 you can limit which geometry nodes are affected by PointLight or
SpotLight by placing light nodes at particular points in the node hierarchy. That's
because in VRML 1.0 light nodes work just like other “state changing” nodes: they
affect all subsequent nodes, until blocked by the end of the Separator node.

In VRML 2.0 this doesn't work. You cannot control what parts of the scene are af-
fected by light nodes by placing light nodes at some particular place in the node hier-
archy. Instead, you have to use radius field of light nodes. This means that some
VRML 1.0 tricks are simply not possible.

• OrthographicCamera is not possible to express using VRML 2.0 standard
nodes.

Summary: in certain cases translating VRML 1.0 to 2.0 can be very hard or even im-
possible. If we want to handle VRML 1.0 perfectly, we can't just write a converter from
VRML 1.0 to 2.0 and then define every operation only in terms of VRML 2.0.

2. On the other hand, VRML 2.0 also includes various things not present in VRML 1.0.
This includes many new nodes, that often cannot be expressed at all in VRML 1.0: all
sensors, scripts, interpolators, special things like Collision and Billboard.

Moreover, VRML 2.0 uses SFNode (with possible NULL value) and MFNode, and gen-
erally reduces the state that needs to be remembered when processing VRML graph.
This means that many existing features have to be expressed differently.

For example consider specifying normals for IndexedFaceSet. In VRML 2.0
everything that decides about how generated normals are supplied are the normal and
normalIndex fields of given IndexedFaceSet node. We take advantage of the
SFNode field type, and say that whole Normal node may be just placed within nor-
mal field of IndexedFaceSet. So we just keep whole knowledge inside Indexed-
FaceSet node.

On the other hand, in VRML 1.0 we have to use the value of last NormalBinding
node. This says whether we should use the last Normal node, and how.

Potential VRML 2.0 to 1.0 converter would have to make a lot of effort to “deconstruct”
VRML 2.0 shape properties back to VRML 1.0 state nodes. This makes conversion dif-
ficult to revert (e.g. when we want to write VRML 2.0 content back to file).
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2SmartChildrenXxx properties mentioned in the previous section somewhat combine VRML 1.0 and 2.0
ideas of children nodes, but they are generally not used except in some small pieces of code where they just make
the code shorter.

That's why I decided to support in my engine the sum of all VRML features. For example,
VRML 1.0 nodes can have direct children nodes, so I support it (by Children property
of TVRMLNode). VRML 2.0 nodes can have children nodes through SFNode and
MFNode fields, so I support it too. I'm not trying hard to “combine” these two ideas (direct
children nodes and children inside MFNode) into one — I just implement and handle them
both 2.

In some cases this approach forces me to do more work. For example, for many routines
that calculate bounding boxes of shape nodes, I had to prepare three routines:

1. Common implementation, as a static procedure inside the VRMLNodes unit. This
handles actual calculation and as parameters expects already calculated properties of
given shape node. As a simple example, when calculating bounding box of a cube, we
expect to get three parameters describing cube's sizes in X, Y and Z dimension.

2. VRML 1.0 implementation in VRML 1.0-specific node version that calls the common
implementation, after preparing parameters for common implementation. As a simple
example, TNodeCube_1 (VRML 1.0 cube shape) just uses it's FdWidth, FdHeight
and FdDepth as appropriate sizes.

3. And VRML 2.0 implementation in VRML 2.0-specific node version, that also calls the
common implementation after preparing it's parameters. As a simple example, TNode-
Box (VRML 2.0 cube shape) accesses three items of it's FdSize field to get the appro-
priate sizes.

In our simple example above we talked about a cube shape, and the whole issue with calcu-
lating three size values differently for VRML 1.0 and 2.0 was actually trivial. But the point
is that for some nodes, like IndexedFaceSet, this is much harder.

For VRML authors this “sum” approach means that when reading VRML 1.0, many
VRML 2.0 constructs (that not conflict with anything in VRML 1.0) are allowed, and the
other way around too. That's why you can actually mix VRML 1.0 and 2.0 code in my en-
gine. Consider this strange file:

#VRML V2.0 utf8

Separator {
DEF VRML2Cube Shape {
appearance Appearance { material Material { } }
geometry Sphere { }

}

Translation { translation 3 0 0 }

USE VRML2Cube

Transform {
translation 3 0 0
children [

USE VRML2Cube

Translation { translation 3 0 0 }

USE VRML2Cube
]

}
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}

Figure 2.1. Four spheres in mixed VRML 1.0 and 2.0 code

This file uses VRML 2.0 sphere that is transformed using both VRML 1.0 approach
(Translation node that affects all subsequent nodes) and VRML 2.0 approach
(Transform node that affects all it's children). And everything works: VRML 1.0 nodes
are handled according to VRML 1.0 specification, VRML 2.0 according to VRML 2.0 spe-
cification. Transformations, no matter which VRML version was used to specify them, af-
fect all shapes. The file's header line says that it's supposed to be VRML 2.0, and this
means that when we have a node name that is possible in both VRML specifications (but
must be handled differently in each version), for example Transform node, file header
decides which version of this node (TNodeTransform_1 or TNodeTransform_2) is
created when parsing this file.

This also means that you have many VRML 2.0 features available in VRML 1.0. VRML
2.0 nodes like Background, Fog and many others, that express features not available at
all in standard VRML 1.0, may be freely placed inside VRML 1.0 models when using our
engine.

Also including (using WWWInline or Inline nodes) VRML 1.0 files within VRML 2.0
files (and the other way around) is possible. Each VRML file will be parsed taking into ac-
count it's own header line, and then included content is actually placed as a children node
of including WWWInline or Inline node. So you get VRML graph hierarchy with
nodes mixed from both VRML versions.

2.3. Reading VRML files
You can create a node using CreateParse constructor to parse the node. Or you can ini-
tialize node contents by parsing it using Parse method. However, these both approaches
require you to first prepare appropriate TVRMLLexer instance and a list of read node
names.

There are comfortable routines like ParseVRMLFile that take care of this for you. They
create appropriate lexer, and may create also suitable TStream instance to read given file
content.

Some details about parsing:
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3Prototypes and external prototypes in VRML 2.0 are designed to handle such non-local node naming.

• Our VRML lexer is a unified lexer for both VRML 1.0 and 2.0. Most of the VRML 1.0
and 2.0 lexical syntax is identical, minor differences can be handled correctly by a lexer
because it always knows VRML header line of the given file. So it knows what syntax to
expect.

• Note that VRML version of the file from where the node was read is not saved anywhere
in the TVRMLNode instance. This information is lost after parsing has ended and lexer is
destroyed. This is intentional.

Only while parsing, ForVRMLVersion method mentioned earlier may be used to de-
cide which node classes to create based on VRML version indicated in the file's header
line.

This creates a question when saving VRML nodes back to file: what VRML header to
write ? We will solve it by SuggestedVRMLVersion method, described in Sec-
tion 2.4.2, “Determining VRML version when writing”.

• To properly handle DEF / USE mechanism we keep a list of known node names while
parsing. After a node with DEF clause is parsed we add the node name and it's reference
to NodeNameBinding list that is passed through all parse routines. When a USE
clause is encountered, we just search this list for appropriate node name.

Simple VRML rules of DEF / USE behavior make this approach correct. Remember that
VRML name scope is not modeled after normal programming languages, where name
scope of an identifier is usually limited to the structure (function, class, etc.) where this
identifier is declared. In VRML, name scope always spans to the end of whole VRML
file (or to the next DEF occurrence with the same name, that overrides previous name).
Also, the name scope is always limited to the current file — for example, you cannot use
names defined in other VRML files (that you included by Inline nodes, or that in-
clude you)3.

The simple trick with adding our name to NodeNameBinding after the node is fully
parsed prevents creating loops in our graph, in case supplied VRML file is invalid.

2.4. Writing VRML files
SaveToStream method of TVRMLNode class allows you to save node contents
(including children nodes) to any stream. Just like for reading, there are also more comfort-
able routines for writing called SaveToVRMLFile.

2.4.1. DEF / USE mechanism when writing
When writing we also keep track of all node names defined to make use of DEF / USE
mechanism. If we want to write a named node, we first check NodeNameBinding list
whether the same name with the same node was already written to file. If yes, then we can
place a USE statement, otherwise we have to actually write the node's contents and add
given node to NodeNameBinding list.

The advantages of above NodeNameBinding approach is that it always works correctly.
Even for node graphs created by code (as opposed to node graphs read earlier from VRML
file). If node graph was obtained by reading VRML file, then the DEF / USE statements
will be correctly written back to the file, so there will not be any unnecessary size bloat.
But note that in some cases if you created your node graph by code then some node con-
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tents may be output more than once in the file:

1. First of all, that's because we can use DEF / USE mechanism only for nodes that are
named. For unnamed nodes, we will have to write them in expanded form every time.
Even if they were nicely shared in node graph.

2. Second of all, VRML name scope is weak and if you use the same node name twice,
then you may force our writing algorithm to write node in expanded form more than
once (because you “overridden” node name between the first DEF clause and the poten-
tial place for corresponding USE clause).

So if you process VRML nodes graph by code and you want to maximize the chances that
DEF / USE mechanism will be used while writing as much as it can, then you should al-
ways name your nodes, and name them uniquely.

It's not hard to design a general approach that will always automatically make your names
unique. VRML 97 annotated specification suggests adding to the node name an _
(underscore) character followed by some integer for this purpose. For example, in our en-
gine you can enumerate all nodes (use EnumerateNode method), and for each node that
is used more than once (you can check it easily: such node will have ParentNo-
desCount + ParentFieldsCount > 1) you can append '_' + PtrU-
Int(Pointer(Node)) to the node name. The only problem with this approach (and
the reason why it's not done automatically) is that you will have to strip these suffixes later,
if you will read this file back (assuming that you want to get the same node names). This
can be easily done (just remove everything following the last underscore in the names of
multiply instantiated nodes). But then if you load the created VRML file into some other
VRML browser, you may see these internal suffixes anyway. That's why my decision was
that by default such behavior is not done. So the generated VRML file will always have ex-
actly the same node names as you specified.

2.4.2. Determining VRML version when writing
Since our engine supports various VRML versions, there appears a question when writing
VRML files: what VRML version to indicate in created file header ? One solution would
be to save for this purpose in TVRMLNode version numbers of the original VRML file
from where the node was read. But our engine must also allow easy construction of VRML
files by code, so not every node is obtained from parsing some file. Adding some public
fields to TVRMLNode or parameters for SaveToVRMLFile to explicitly indicate desired
version is one simple solution, but it's tiresome — it's another piece of information that will
have to be figured out and provided when constructing VRML files by code.

Finally the approach we take in our engine places the burden on implementation of each
TVRMLNode descendant. If you only create nodes of already defined classes, everything
should just magically work. Every TVRMLNode descendant can override Suggested-
VRMLVersion method to indicate it's desired VRML version, and how strong is the pref-
erence (SuggestionPriority parameter). The idea is that node decides about the de-
sired VRML version by collecting desired VRML version of all it's children and then
adding his own preference. And there is a SuggestionPriority parameter, so that
VRML files that use our engine extension that allows to mix VRML 1.0 and 2.0 construc-
tions (see Section 2.2, “The sum of VRML 1.0 and 2.0”) will also be written correctly, i.e.
using the closest VRML version for them. When writing VRML file, the Suggested-
VRMLVersion method of root node is called and used to determine header line for the
VRML file.

This means that if you have VRML nodes graph (either read from a file or constructed by
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4Examples of “easily matching in VRML 1.0” nodes from VRML 2.0 are Background and Fog nodes. They
don't use any VRML 2.0 features like SFNode or MFNode, and they don't interact with other nodes state in com-
plex way.

code) using only VRML 1.0 features then it will be correctly written as VRML 1.0 file.
Same for a file using only VRML 2.0 features. If you have a mixed file that is mostly
VRML 1.0 and uses only some VRML 2.0 nodes that easily “match” into VRML 1.0 4 then
the written file will have VRML 1.0 header. Even though it will not be correct standard
VRML 1.0 file — it's only correct for our engine. Of course for some ambiguous node
graphs there will be no way to determine correct VRML version: for example if you used
IndexedFaceSet nodes both in VRML 1.0 and 2.0 versions then the generated VRML
version header is undefined (actually, it will depend on node order in the graph). This is
one real problem of our “sum of VRML 1.0 and 2.0 approach”: VRML scene graph in
memory is not necessarily valid for either VRML 1.0 or VRML 2.0.

2.4.3. VRML graph preserving
As was mentioned a couple of times earlier, we do everything to get the VRML scene
graph in memory in exactly the same form as was recorded in VRML file, and when writ-
ing the resulting VRML file also directly corresponds (including DEF / USE mechanism
and node names) to VRML graph in memory.

Actually, there are two exceptions:

1. Inline nodes load their referenced content as their children

2. When reading VRML file with multiple root nodes, we wrap them in additional Group
node

... but we work around these two exceptions when writing VRML files. This means that
reading the scene graph from file and then writing it back produces the file with the exact
same VRML content. But whitespaces (including comments) are removed, when writing
we reformat everything to look nice. So you can simply read and then write back VRML
file to get a simple VRML pretty-printer.

2.5. Constructing and processing VRML
graph by code

This feature was mentioned a couple of times before. In code, you can simply instantiate
any nodes you want, you can add them as a children of other nodes, you can set their fields
as you like, and so on. Also several methods for enumerating and searching the nodes
graph are provided (like EnumerateNodes and FindNode). See units documentation
[http://camelot.homedns.org/~michalis/sources_docs.php] for details.

I made a decent converter from 3DS and Wavefront file formats to VRML 1.0 this way.
Once I was able to read these files, it was trivial to construct according VRML graphs for
them. You can then save constructed VRML graph to a file (so user can actually use this
converter) and you can further process and render them just like any other VRML nodes
graph (so my engine seamlessly handles 3DS and Wavefront files too, even though it's al-
most solely oriented on VRML).
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Converter to VRML 2.0 using the same approach is also trivial and will be done very
shortly.

This also allows VRML authors to include 3DS and Wavefront files inside VRML files by
Inline nodes, making it possible to handle scenes designed in mixed 3D files formats.

2.6. Traversing VRML graph
Traversing VRML graph means visiting all active VRML graph nodes in a depth-first
search order. By “active” nodes we mean that only the visible (or affecting the visible)
parts of the graph are browsed — for example, only one child of a Switch and LOD nodes
is visited.

You can traverse nodes using Traverse or TraverseFromDefaultState methods.
For each visited node, a callback function will be called.

The most important feature of traversing is that whole VRML state that we talked about in
Section 1.5, “VRML 1.0 state” is collected along the way. For each visited node traverse
callback gets all the information about accumulated transformation, active light nodes and
(meaningful only for VRML 1.0 nodes) currently bound property nodes (material, texture
etc.).

2.7. Shape nodes features
An important descendant of TVRMLNode is the TNodeGeneralShape class. This is an
abstract class. All visible VRML nodes (in VRML 1.0 and 2.0) are descendants of this
class. Don't confuse this with TNodeShape class — TNodeShape represents a VRML
2.0 Shape node.

TNodeGeneralShape class defines a couple of important methods, overridden in each
descendant. All of these methods take a State parameter that describes VRML state at
given point of the graph (this is typically obtained by a traverse callback), since we need
this to have full knowledge about node's geometry.

2.7.1. Bounding boxes
LocalBoundingBox and BoundingBox methods calculate axis-aligned bounding box
of given node.

Axis-aligned bounding box is one of the simplest bounding volume types. It's a cuboid with
axes aligned to base coordinate system X, Y and Z axes. It can be easily expressed as a pair
of 3D points. In our engine we require that the points' coordinates are correctly ordered, i.e.
X position of the first point must always be less or equal than the X position of the second
point, and analogously for Y and Z values. We also have the special value for designating
empty bounding box. And while we're talking about empty bounding boxes, remember to
not confuse empty box with a box with zero volume: a box with zero volume still has some
position. For example, a PointSet VRML node with only one point has a non-empty
bounding box with a zero volume. A PointSet without any points has empty bounding
box.

I chose axis-aligned bounding boxes just because they are very simple to calculate and op-
erate on. They have some disadvantages — as with all bounding volumes, there is some
compromise between how accurately they describe bounding volumes and how comfort-
able it is to operate on them. But in practice they just work fast and are enough accurate.
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LocalBoundingBox method returns a bounding box of given object without transform-
ing it (i.e. assuming that State contains an identity transformation). BoundingBox
method takes current transformation into account. Each descendant has to override at least
one of these methods. If you override only LocalBoundingBox then BoundingBox
will be calculated by transforming LocalBoundingBox (which can give poor bounding
volume, much larger than necessary). If you override only BoundingBox then Local-
BoundingBox will be calculated by calling BoundingBox with transformation matrix
set to identity matrix (this can make LocalBoundingBox implementation much slower
than a potential special LocalBoundingBox implementation that knows that there is no
transformation, so no matrix multiplications have to be done).

2.7.2. Triangulating
VerticesCount and TrianglesCount calculate triangles and vertices count of giv-
en shape.

Triangulate method actually calculates all the triangles needed to represent given geo-
metry. Simple lines and points are ignored by this method, so you can't use it to render
VRML nodes like PointSet and IndexedLineSet.

These methods take OverTriangulate parameter which requires some explanation.

When using Gouraud shading (and that is the case when rendering models in OpenGL) it's
desirable to triangulate every large surface — even if it doesn't improve the geometry ap-
proximation by triangles. This is the inherent problem of Gouraud shading, that says that
lighting calculations are done only at the vertices and within the triangles color is interpol-
ated between vertices. This is much faster than calculating light for every pixel, but it also
produces inaccurate rendering results when there is “something interesting going on with
the lighting” within the triangle. For example when a thin spot light shines at the middle of
the triangle, or when the bright specular highlight should appear in the middle of the tri-
angle. Gouraud shading may miss such effects, because the triangle will be completely
dark if all three of it's vertices are determined to be dark.

The solution to this is just to avoid problematic situations by using smaller triangles gener-
ating more vertices.

For example: when we triangulate quadrics like cylinder and cone, we always approximate
circles at their bases as a set of lines, so their side faces are split to many triangles. I call
this triangulation “dividing into slices”, after OpenGL documentation, because this triangu-
lation looks like dividing a pizza into slices (when looking from the top of the quadric).
But this produces large (tall) triangles that start at the base circle and end at the top (top
peak of the cone, or top circle of the cylinder). This is undesirable for Gouraud shading, so
we do additional triangulation: we divide cone and cylinder into stacks (like stacks of the
tower). Dividing into stacks doesn't improve the quality of our approximation (when we
triangulate cone or cylinder, we always only approximate it's real shape), but it helps the
shapes to look good when rendering with Gouraud shading.

I call this additional triangulation an over-triangulation. While it's useful for Gouraud
shading, for many other purposes it's unnecessary and slows down processing (since it cre-
ates unnecessarily many triangles). These purposes include collision detection and render-
ing the scene with other methods, like Phong shading or ray-tracing algorithms.

That's why my triangulation methods allow you to turn this feature on and off as desired by
OverTriangulate parameter.

Let's take a look at the following example:
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#VRML V1.0 ascii

Group {
PerspectiveCamera {
position 6 4 14

}

PointLight {
color 0.3 0.3 0.3
location 6 4 10

}

Switch {
DEF ALight SpotLight {

location 0 0 3
direction 0 0 -1
cutOffAngle 0.3
color 1 1 0

}
DEF Col Separator {

Separator { USE ALight Cube { } }
Translation { translation 0 4 0 }
Separator { USE ALight Cone { } }
Translation { translation 0 4 0 }
Separator { USE ALight Cylinder { } }

}
}

KambiTriangulation {
quadricStacks 1 rectDivisions 0 }

USE Col

Translation { translation 4 0 0 }
KambiTriangulation {
quadricStacks 8 rectDivisions 4 }

USE Col

Translation { translation 4 0 0 }
KambiTriangulation {
quadricSlices 30 quadricStacks 30 rectDivisions 10 }

USE Col

Translation { translation 4 0 0 }
KambiTriangulation {
quadricSlices 100 quadricStacks 100 rectDivisions 100 }

USE Col
}

The example shows the cone, the cylinder and the cube with various triangulation. Left-
most column has no over-triangulation, next columns have more and more over-
triangulation. The VRML code uses the KambiTriangulation node to control the tri-
angulation. This node is my VRML extension (hence the prefix Kambi), see the page ht-
tp:// www. camelot. homedns. org/ ~michalis/ kambi_vrml_extensions.
php#ext_kambi_triangulation for details.

Spot lights shine on every object. First screenshot shows the wireframe view, so you can
see how the triangulation looks like.
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Figure 2.2. Different triangulations example (wireframe view)

Now let's see the same example rendered using OpenGL (Gouraud shading). As you can
see, on the leftmost column spot highlight is not visible at all. The more to the right and the
spot looks better and better.

Figure 2.3. Different triangulations example (Gouraud shading)

And finally let's see ray-tracer rendering of the same example. As you can see, over-
triangulation (on boxes faces, and stacks on cones and cylinders) doesn't matter here at all.

Figure 2.4. Different triangulations example (ray-tracer rendering)
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If you want to control how detailed the triangulation should be:

• Programmers can use Detail_QuadricSlices, Detail_QuadricStacks and
Detail_RectDivisions global variables.

• VRML authors can use the KambiTriangulation [http:// www. camelot. homedns. org/
~michalis/ kambi_vrml_extensions. php#ext_kambi_triangulation] VRML node to con-
trol this.

• Finally, my programs view3dscene [http:// www. camelot. homedns. org/ ~michalis/
view3dscene.php] and rayhunter [http://www.camelot.homedns.org/~michalis/rayhunter.
php] allow you to control this by command-line options

--detail-quadric-slices <integer>
--detail-quadric-stacks <integer>
--detail-rect-divisions <integer>

2.8. WWWBasePath property
This is a string property that specifies base URL of each node. Actually, for now our en-
gine doesn't support downloading data using any network protocol, so this is always treated
just like an absolute path on local file-system. It is always set to the directory of VRML
file from which given node was read. It's used by nodes that reference any external file,
like Inline or ImageTexture. Thanks to this field, all such nodes can always resolve
their url fields with respect to the directory of their file.

For example, assume that inside some directory you have a main VRML file main.wrl
and two subdirectories: textures and inline. Inside textures you have a file
my_texture.png and inside inline you have VRML file textured_box.wrl.
Finally, let's say that you want to include textured box in main.wrl file, so you write

Inline { url "inline/textured_box.wrl" }

Now inside textured_box.wrl you should reference the texture like

ImageTexture { url "../textures/texture.png" }
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and everything will work when you open main.wrl VRML file. Moreover, tex-
tured_box.wrl is able to “stand on it's own” too, which means that you can open only
textured_box.wrl and texture will still be properly read.

This is similar to xml:base [http://www.w3.org/TR/xmlbase/] attribute in XML, that was
needed to make including XML files by XInclude and referencing external files from vari-
ous elements (like DocBook's imagedata) to cooperate seamlessly.

2.9. Defining your own VRML nodes
At the end it's worth noting that you're not limited to the nodes defined by VRML specific-
ations and implemented in VRMLNodes unit. You can freely define your own TVRML-
Node descendants. All it takes to make them visible is to register them in NodesMan-
ager object. For example, call

NodesManager.RegisterNodeClasses([TNodeMy]);

from your unit's initialization section. You may also want to add it to the AllowedChil-
drenNodes list.

This way you can define specific VRML nodes for a specific programs, without the need to
modify anything within the base units. I used this technique in the malfunction game [ht-
tp:// camelot. homedns. org/ ~michalis/ malfunction. php] to define special-purpose VRML
nodes like MalfunctionLevelInfo and MalfunctionNotMovingEnemy.

2.10. Flat scene
If you want to operate on the VRML graph, for some purposes it's enough to load your
scene to a TVRMLNode instance. This way you know the root node of the scene. Each
node points (within it's Children property and SFNode and MFNode fields) to it's chil-
dren nodes, so if you know the root node of the scene, you know the whole scene. TVRML-
Node class gives you many methods to operate on the scene graph, and sometimes this is
all you need.

However, some operations cannot be implemented in TVRMLNode class. The basic reason
is that the node doesn't “know” the state of VRML graph where it is used. Node's state is
affected by other nodes that may be it's parents or siblings. Moreover, a node may be used
many times in the same scene (by DEF / USE mechanism), so it may occur many times in
a scene with different states. That's why many TVRMLNode methods (like Triangu-
late and BoundingBox methods described in Section 2.7, “Shape nodes features”) re-
quire a parameter State: they are not able to figure it out automatically.

These are the reasons why an additional class, called TVRMLFlatScene, was created. It
is essentially just a wrapper around a VRML root node (kept inside it's RootNode prop-
erty) adding a lot of useful and comfortable methods to operate and investigate the scene as
a whole.

2.10.1. List of shape+state pairs
This is the main property of TVRMLFlatScene, and the reason for it's name. The idea is
simple: to overcome the problems with VRML state, we can just use Traverse method
from the root node (see Section 2.6, “Traversing VRML graph”) and store every shape
node (descendant of TNodeGeneralShape, see Section 2.7, “Shape nodes features”)
along with it's state. As a result we get a simple list of pairs: shape and it's state. This list is,
to some extent, an alternative “flattened” representation of the VRML graph. Hence the
name TVRMLFlatScene.
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This way we solve various problems mentioned in Section 1.5, “VRML 1.0 state”: we get
full accumulated VRML state readily available for each shape. Also we can pick our
shape+state pairs in any order, and we can pick any of them. This is crucial for various
OpenGL rendering features and optimizations.

For VRML 2.0, some flat scene features were already available. That's because of smart
definitions of children fields of grouping nodes, as explained earlier in Section 1.5.1,
“Why VRML 2.0 is better”: we don't need so much state information in VRML 2.0 and we
can pick children of grouping nodes in any order. Still, our flat scene provides the more
complete solution: it includes also accumulated transformation matrix and “global” proper-
ties (fog and active lights).

Additional advantage of looking at flat scene shapes+state pairs is that resources com-
pletely not used (for example Texture2 node not used by any node in VRML 1.0) are
not present. They don't occur in a state of any shape. So unused textures will not be even
loaded from their files.

Finally, remember that in Section 1.5, “VRML 1.0 state” we mentioned a practical problem
of simple VRML 1.0 implementation in OpenGL: OpenGL stack sizes are limited. Flat
scene solves this, because there is no unlimited push/pop hierarchy anymore. Features of
nodes like VRML 1.0 Separator and TransformSeparator are already handled at
this stage. And they are handled without using any OpenGL stacks, since this unit can't
even depend on OpenGL. Features of VRML 2.0 Transform nodes that apply transform-
ation to all it's children are already handled here too.

2.10.2. Various comfortable routines
Numerous other features are available in flat scene:

• Methods to calculate bounding box, vertices count and triangles count of the whole
scene. They work simply by summing appropriate results of all shape+state pairs.

• Methods to calculate triangles list (triangulate all shapes in the scene) and to build
octrees for the scene. There are also comfortable properties to store the build octree as-
sociated with given scene — although our engine doesn't limit how you manage the con-
structed octrees, you can create as many octrees for given scene as you want and store
them where you want.

More about octrees in Chapter 3, Octrees.

• Methods to find Viewpoint or camera nodes, transform them, and calculate simple
(position, direction, up) triple describing camera setting.

• Methods to find Fog node and calculate it's transformation.

• Each shape+state pair is stored as TVRMLShapeState instance. This class also has a
couple of comfortable routines to calculate bounding box, bounding sphere and such.

2.10.3. Caching
Some flat scene properties are quite time-consuming to calculate. Calculating the list of
shape+state pairs requires traversing whole scene graph. Calculating scene bounding box is
even more difficult, since for each shape+state we must calculate it's bounding box (in fact
calculation of scene bounding box as implemented simply uses the shape+state pairs list).
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Obviously we cannot repeat these calculations each time we need these values. So the res-
ults are cached inside TVRMLFlatScene instance.

Most of the properties are cached: shape+state pairs, bounding boxes, vertices and triangles
counts, fog properties. Even triangles' list may be cached if you want.

Also various properties for single shape+state pairs are cached inside
TVRMLShapeState instance: bounding box, bounding sphere and triangle and vertices
counts. After all, some of these operations are quite time-consuming by themselves. For
example to calculate bounding box of IndexedFaceSet we have to iterate over all it's
coordinates.

Changes to actual VRML nodes are not automatically detected. In other words cache is not
automatically cleared on changes. Instead you have to manually call appropriate
ChangedXxx methods of flat scene after changing some parts of the scene. You can spe-
cify information about changes in various ways, and as few as possible parts of the cache
should get cleared.

For example when you call ChangedFields(Node) method then flat scene checks
what class your Node has and what it can affect. Changes to VRML 1.0 nodes like Tex-
ture2 or Material will affect only the shape+state pairs that have these nodes in their
state. So the whole shape+state list doesn't need to be regenerated, also the information
about other shape+state pairs (like their bounding boxes) is still valid.

In Section 5.3, “Flat scene for OpenGL” we will introduce the TVRMLFlatSceneGL
class that descends from TVRMLFlatScene. It adds various OpenGL methods and
caches various OpenGL resources related to rendering particular scene parts. This means
that our ChangedXxx methods will have even greater impact.
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Chapter 3. Octrees
Octree is a tree structure used to partition a 3D space. Each octree node has eight children
(hence the name “octree”, oct + tree). Our engine uses octrees for a couple of tasks.

3.1. Collision detection
Generally speaking, octree is useful for various collision detection tasks:

1. First of all, for a “normal” collision detection needed in games. That is for checking col-
lisions between the player and the world geometry. The player may be represented by a
sphere, and when the player moves we check that:

• The line segment between the current player position and the new player position
does not collide with the world.

• The sphere surrounding new player position does not collide with the world.

When we detect a collision, we can simply reject player move, or (much better) propose
another, non-colliding new player position. This way the player can “slide” along the
wall when he tries to move into it.

This is done within MoveAllowed and MoveAllowedSimple methods of TVRML-
TriangleOctree class.

Also, when gravity works, we want the player to preserve some preferred height above
the ground. This allows the player to climb up and down the hills, stairs etc. It is often
called terrain-following. This requires calculating current player height above the
ground. By comparing this height with a preferred height we know whether the player
position should fall down or raise up. This is done by checking for a collision between a
ray (that starts at player's position and is directed down) with the world.

This is done by GetCameraHeight method of TVRMLTriangleOctree class.

2. For ray-tracer, this is the most important data structure. Ray-tracer checks collisions of
rays with the world to calculate it's image. Also when calculating shadows we check for
collision between light point (or a random point on light's surface, in case of surface
lights) and the possibly shadowed geometry point.

This is done by RayCollision and SegmentCollision methods of TVRML-
TriangleOctree class.

3. When player picks (for example by clicking with mouse) given point on the screen
showing 3D scene, we want to know which object from our 3D scene (for example,
which VRML node) he actually picked. So again we want to do collision detection
between a ray (starting at player's position and with direction calculated from player's
looking direction, screen dimensions and picked point coordinates on the screen) and
the world.

Note that there are other methods to determine which object player picked. For example
you could employ some OpenGL tricks: rendering in selection mode, or reading color
buffer contents to get results of depth buffer tests. See The OpenGL Programming
Guide - The Redbook [http:// www. opengl. org/ documentation/ red_book/] for details.
But once we have octree already implemented, it is usually easier and less cumbersome
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to use than these tricks.

4. When rendering using OpenGL, we don't want to pass to OpenGL objects that are
known to be invisible to the player. For example, we know that objects outside of the
camera frustum are invisible. In certain cases (when e.g. dense fog is used) we also
know that objects further from player than certain distance are not visible.

This means that we want to check for collision between camera frustum and/or sphere
with the world. This is done by EnumerateCollidingOctreeItems and
SphereCollision methods.

More information about how these algorithms are used will be given in Section 5.3,
“Flat scene for OpenGL”.

3.2. How octree works
Octree is a tree where each internal (non-leaf) node has eight children. Each node spans a
particular space area, expressed as an axis-aligned bounding box (available as Box prop-
erty of TOctreeNode). Each node also has a chosen middle point inside this box
(available as MiddlePoint property of TOctreeNode class). This point defines three
planes parallel to the base X, Y and Z planes and crossing this point. Each child of given
octree node represents one of the eight space parts that are created by dividing parent space
using these three planes.

Each child, in turn, may be either

1. Another internal node. So it has his own middle point and another eight children. His
middle point must be within the space part that his parent node gave him.

2. Or a leaf, that simply contains actual items that you wanted to store in an octree. What
is an “actual item” depends on with want items you want to calculate collisions using
this octree.

In our engine we have two octree types:

a. TVRMLTriangleOctree that keeps triangles

b. TVRMLShapeStateOctree that keeps VRML nodes of TNodeGeneralShape
class (remember from Section 2.7, “Shape nodes features” that these are the only
VRML nodes that actually have some geometry visible) along with their State
(obtained from traversing VRML graph).

What happens when given item should be included in more than one children ? That is,
item is contained in space part of more than one children ?

1. Simple solution is to put this item inside all children where it should be. This means that
we could waste a lot of memory if given item should be present in many leaf nodes, but
this problem can be somewhat cured by just keeping an array of octree items for the
whole octree (OctreeItems property of each octree class) and keeping only indices
to this array in octree leafs (ItemsIndices property of TOctreeNode).

2. Another possible solution is to keep such problematic item only in the list of items of in-
ternal node, instead of putting it inside children nodes. But each octree node has eight
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children, and given item can be contained for example only in two of eight children. In
this case our collision checking routines would always have to consider this item, while
in fact they should consider it only for a 2/8 part of the space.

That's why my engine doesn't use this approach. Note that some hybrid approach could
be possible here, for example keep the item if it spans more than 4 children nodes and
put it inside children otherwise. This idea remains to be implemented one day... For now
our collision checking is fast enough for all purposes when it's needed in real-time
games.

Example below shows an octree constructed by our engine. The sample scene contains two
boxes and a sphere. On the screenshot yellow bounding boxes indicate every internal node
and every non-empty leaf. Whole scene is contained within root node of the tree, so the
largest yellow bounding box corresponds also to the bounding box of the scene. The
“lonely” box (in the foreground) is placed within the two direct children on the root tree
node. Left and right quarter on the image contain only empty children leaves of root node,
so their bounding boxes are not shown. Finally, the interesting things happen in the quarter
with a box and a sphere. Sphere has many triangles, so a detailed octree is constructed
around it. Also the sphere caused a little more detailed octree around the near box.

#VRML V2.0 utf8

Viewpoint {
position -10.642 8.193 -5.614
orientation -0.195 -0.921 -0.336 2.158

}

Transform {
translation 4 0 1.25
children Shape {
appearance DEF ALit Appearance { material Material { } }
geometry Sphere { }

}
}

Transform {
translation 4 0 4
children Shape {
appearance USE ALit
geometry Box { }

}
}

Transform {
translation -4 0 -4
children Shape {
appearance USE ALit
geometry Box { }

}
}
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Figure 3.1. A sample octree constructed for a scene with two boxes and
a sphere

You can view octree like this using view3dscene [http:// www. camelot. homedns. org/
~michalis/ view3dscene. php]. Just turn on the menu option “View” -> “Show whole
octree”. There are also menu commands to investigate octree nodes only at the particular
depth.

3.2.1. Checking for collisions using the octree
Let's assume that you have some reference object (like a sphere or a ray or a line segment
mentioned in the first section) that you want to check for collisions with all items contained
in the octree. You start from the root node — all items, which means “all potential col-
liders”, are there. You check with which children of this node your object could possibly
collide. Different object types will require various approaches here. In general, this comes
down to checking for collision between children nodes' boxes and your reference object.
For example:

1. For a sphere, you check which child node contains the sphere center. Then you check
with which planes (of the three dividing planes of this node) the sphere collides. This
determines all the children that the sphere can collide with.

Above approach is not as accurate as it could be — since it effectively checks the colli-
sion of the bounding box of the sphere with children boxes. To make it more accurate
you can check whether the middle point of given node is within the sphere. But it's not
certain whether this additional check will make your collision detection faster (because
we will descend into less children nodes) or slower (because we spend time on the addi-
tional check). In practice, this depends on how large spheres you will check for collision
— for small (small in comparison to the world) spheres, this additional check will sel-
dom eliminate any child and probably will be worthless.

2. For a ray: determine child node where ray start is. Then check for collision between this
ray and three base planes crossing node's middle point. This will let you determine into
which children nodes the ray enters. Similar approach could be taken for the line seg-
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ment.

3. For a frustum: first note that our engine stores frustum as a 6 plane equations.

The basic approach here is to employ the method of checking for collision between a
plane and a box. To determine collision of a box with a plane you can check 8 box
corners on which side of the plane they are (simply by checking expression similar to
the plane equation, Ax + Bx + Cz + D >= 0). If all points are on the same side of the
plane (and no point lies precisely on the plane) then there is no collision. This also tells
your on which size of the plane the box is located, in case there is no collision.

In our engine, frustum planes are correctly oriented, so the answer to the question “on
which size of the plane” a box is located is meaningful to us. To check for collision of
frustum with a node, we check 6 frustum planes for collision with this node's box. If box
is on the inside side of every plane, this means that the box is completely inside the
frustum. Otherwise, if the box is on the outside side of at least one plane, then the box is
completely outside of the frustum. Otherwise (which means that box collides with at
least one plane, and it's not outside any plane) we don't really know.

In the last case, we're pretty certain that the box collides somehow with the frustum, so
we assume this. In case of error, nothing terrible will happen: our collision checking
routine using octree will just work a little slower than possible, but it will still be 100%
correct. In practice, in almost all cases our assumption will be true, although some nasty
cases are indeed possible. You can see an example of such case below. This is a side
view showing a frustum and a box. You can see that the box collides with 3 planes and
is considered to be on the inside of the 4th plane (the one at the bottom). You can easily
extend this image to 3D and imagine the remaining 2 frustum planes in such way that
they will intersect the box.

Figure 3.2. A nasty case when a box is considered to be colliding with
a frustum, but in fact it's outside of the frustum

Once you can check with which octree node's children your object collides, you just apply
this process recursively. That is, for each internal node you determine which of it's children
may collide with your reference object, and recursively check for collisions inside these
children. For each leaf node, you just sequentially check all it's items for collision. For ex-
ample, in case of a triangle octree, in the leafs you will check for collision between tri-
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angles and your reference object.

What's the time of this collision checking algorithm ? Like with all tree structures, the idea
is that the time should be logarithmic. But actually we don't use any advanced techniques
that could ensure that our octree is really balanced. And the fact that items that are put in-
side more than one children are effectively multiplied in the octree doesn't help either.
However octrees of real-world models are enough balanced (and multiplication is small
enough) to make collision checking using octrees “logarithmic (i.e. fast) in practice”.

Some more notes about collision checking using an octree:

• Sometimes all you need is the information that “some collision occured” (for example
that's enough for shadow detection). Sometimes you want to get the closest collision
point (for example, closest to the ray start, for ray-tracing). The first case can obviously
be optimized to finish whole algorithm as soon as any collision is found. In the second
case you must always check all items when you process a leaf node (because the items in
leaf nodes are not ordered in any way). But when processing internal nodes it can still be
optimized to not enter some children nodes if collision in earlier child node was found
(in cases when we know that every possible collision in one child node must be closer to
ray start than every possible collision in other node).

• As was mentioned earlier, if an octree item fits into more than one child of given node,
we put it inside every matching children node, thus duplicating information about this
item in many leafs. But this means that we can lose some speed. We can be fooled into
checking more than once for collision between our reference object (like a ray) with the
same item, but placed within a different leaf.

This is not so terribly bad, since we are talking here about tests like checking for colli-
sion between a single ray and a single triangle. So this test is anyway quite fast opera-
tion, in constant time. But still it requires a couple of floating point operations, and it's
called very often by our algorithm, so we want to optimize it.

The solution is called the mailboxes. Each octree item gets a mailbox. Each reference
object (like a ray) gets a unique tag. Before we check for collision between our reference
object and an octree item, we check whether the mailbox has the information about the
collision test result for this object tag. If yes, then we obtain the collision test result from
the mailbox. Otherwise, we perform normal (more time-consuming) test and we store
the test result along with the object tag within the mailbox. This way each item will be
tested for collision with reference object only once. Next time we will just use the mail-
box.

This is possible to implement thanks to the fact that we keep indices to items in octree
nodes, and the actual items are kept in an array for a whole octree. So we can naturally
place our mailboxes in this array.

3.2.2. Constructing octree
A simple algorithm starts with an empty tree, containing one leaf node with no items. Then
we add our items (triangles, VRML shape nodes etc.) to the octree keeping an assertion
that no leaf can have more than some specified number of items (MaxLeafItemsCount
property of TOctree class). When we see that adding another item to some leaf would
break this assertion, we convert the leaf to an internal node with eight children, and we add
items (previous leaf items and the new item that we're trying to add) to newly created chil-
dren. Of course, each children gets only the items that are within its space part.
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Note that this algorithm doesn't guarantee in any way that a tree is balanced. And we want
the tree to be balanced, otherwise checking for collisions using this tree will be as slow (or
even slower) than just sequentially checking collision with all items. However, for most
real-world models, the items are spread more-or-less evenly across the scene, so in practice
our tree is more-or-less balanced. To prevent the pathological cases that could result in ex-
tremely deep octrees we can add a simple limit on the allowed depth of the tree
(MaxDepth property of TOctree class). When a leaf reaches MaxDepth, we will not
split it to an internal node anymore, no matter how many items does it contain. So the as-
sertion becomes “leafs on depth < MaxDepth must have at most MaxLeafItemsCount
items”. This way the nasty cases are somewhat bounded — our collision checking using
tree cannot be much slower than just sequentially checking for collision with all contained
items.

There is a question how to calculate middle point of each node. The simple and most com-
mon approach is just to calculate it as an actual middle point of the node's box. Root tree
node gets a box equal to the bounding box of our scene. But you could plug here other
techniques. The basic idea is that the tree should be balanced, so ideally the middle point
should divide the node's box into eight parts with equal number of triangles inside.

For some purposes it's helpful to keep in each internal node a list of all items contained
within it's children. This eats more memory, but may allow in some cases to terminate the
collision checking operation faster. For example, when we want to check which octree
items are inside a camera frustum, we often find ourselves in a situation when we know
that some octree node is completely contained within the frustum. If we have all the items'
indices easily accessible within this internal node, we can avoid having to traverse all chil-
dren nodes under this node. This is used by TVRMLShapeStateOctree in our engine.

3.3. Similar data structures
There are other tree structures similar to the octree. Generally, octree is the easiest one to
construct. Other tree structures give greater flexibility how the space is partitioned on each
level, but to actually get the significant speed benefit, these trees must be also constructed
in much smarter way.

• kd-tree partitions space at each node by a plane parallel to one of the base planes. In oth-
er words, it uses one plane where octree uses three planes. This allows greater flexibility,
for example it may be more optimal to divide the space more often by a X = const plane
than Y = const. Octree is forced to divide space by all three planes at each node.

If you will use the simple “rotational” strategy (X, Y, Z, then again X, Y, Z and so on) to
choose partitioning axes at each depth, then the kd-tree becomes similar to an octree.

The name kd-tree comes from “k-dimensional tree” term, since kd-tree may be used for
any number of dimensions, not necessarily 3D.

• BSP (Binary Space Partitioning) tree partitions space in each node by a plane. Any
plane, not necessarily parallel to one of the base X, Y, Z planes.

This gives even more flexibility than kd-tree, but it makes constructing optimal BSP
trees much harder (assuming that you want to actually produce a better tree than what
can be achieved with kd-tree). It also means that at each node you have to check for col-
lision between your reference object and a free plane (instead of a plane parallel to one
of the base coordinate system planes), so computations get a little slower than for kd-
tree.
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Note that BSP tree is suitable for any number of dimensions, just like kd-tree. You just
use different equations to represent hyperplanes in other dimensions.

• Finally, note that the only thing that ties octree to 3 dimensions is actually it's name. The
same approach could be used for any number of dimensions. For N dimensions, each in-
ternal node will have 2N children. For example for 2 dimensions each node has 4 chil-
dren, and such tree is called a quadtree.

Note that this approach is completely inadequate when we have a really large number of
dimensions (because than 2N will be so large that “organizational” data of all tree nodes
may eat a lot of memory), but this is not a problem as long as we stay within 2 or 3 di-
mensions.
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Chapter 4. Ray-tracer rendering
This chapter describes our implementation of ray-tracer, along with some related topics.

We don't even try to explain here how ray-tracing algorithms work, as this is beyond the
scope of this document. Moreover, the ray-tracer is not the most important part of our en-
gine right now (OpenGL real-time rendering is). This means that while our ray-tracer has a
couple of nice and unique features, admittedly it also lacks some common and important
ray-tracer features, and it certainly doesn't even try to compete with many other profession-
al open-source ray-tracing engines existing.

Many practical details related to using our ray-tracer are mentioned in rayhunter document-
ation [http://www.camelot.homedns.org/~michalis/ rayhunter.php]. Many sample images
generated by this ray-tracer are available in the rayhunter gallery [http:// www. camelot.
homedns.org/~michalis/raytr_gallery.php].

4.1. Using octree
The basic data structure for ray-tracing is an octree based on triangles, that is TVRMLTri-
angleOctree instance. If you want to ray-trace a scene, you have to first build such
octree and pass it to a procedure that does actual ray-tracing. Note that the quality of the
octree is critical to the speed of the ray-tracer. Fast ray-tracer requires much deeper octree,
with less items in leafs (MaxLeafItemsCount property) than what is usually sufficient
for example for collision detection in real-time game.

To calculate triangles for your octree you should use the Triangulate method of
VRML shape nodes. Triangles enumerated by this method should be inserted into the
octree. If you use TVRMLFlatScene class to load VRML models (described in Sec-
tion 2.10, “Flat scene”) you have a comfortable method CreateTriangleOctree
available that takes care of it all, returning the ready octree for a whole scene.

The Triangulation method is also admittedly responsible for some lacks in our ray-
tracer. For example, ray-tracer doesn't handle textures, because triangulation callback
doesn't return texture coordinates. Also normal vectors are not interpolated because trian-
gulation callback doesn't return normal vectors at the triangle corners. This is all intended
to be fixed one day, but for now ray-tracer is not that important for our engine.

4.2. Classic deterministic ray-tracer
Classic Whitted-style deterministic ray-tracer is done by ClassicRayTracerTo1st
procedure in VRMLRayTracer unit.

Point and directional lights are used, as defined by all normal VRML light nodes. This
means that only hard shadows are available. Algorithm sends one primary ray for each im-
age pixel. Ray-tracing is recursive, where the ray arrives on some surface we check rays to
light sources and eventually we recursively check refracted ray (when Material has
transparency > 0) and reflected ray (when Material has mirror > 0).

The resulting pixel color is calculated according to VRML 97 lighting equations [http://
www. web3d. org/ x3d/ specifications/ vrml/ ISO-IEC-14772-VRML97/ part1/ concepts.
html#4.14]. This is probably the most important advantage of ray-tracer in our engine: abil-
ity to calculate images conforming precisely to the VRML 97 lighting specification. Actu-
ally, we modified these equations a little, but only because:
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1. I have recursive ray-tracing while VRML 97 specifies only local light model, without a
placeholder for reflected and refracted color.

2. VRML 1.0 SpotLight must be calculated differently, since it uses the dropOf-
fRate field (a cosinus exponent) to specify spot highlight. While VRML 2.0 uses the
beamWidth field (a constant spot intensity area and then a linear drop to the spot bor-
der). So for VRML 1.0 spot lights we use the equations analogous to the OpenGL light-
ing equations.

3. The ambient factor is calculated taking into account that standard VRML 1.0 light nodes
don't have the ambientIntensity field. Although, as an extension, our engine al-
lows you to specify ambientIntensity to get VRML 2.0 behavior in VRML 1.0
[http:// www. camelot. homedns. org/ ~michalis/ kambi_vrml_extensions.
php#ext_light_attenuation].

4.3. Path-tracer
Done by PathTracerTo1st procedure in VRMLRayTracer unit.

Surface lights are used: every shape with non-zero emissiveColor is considered a light
emitter. For each image pixel many random paths are checked and final pixel color is the
average color gathered from all paths.

Path length is determined by a given minimal path length and a Russian-roulette parameter.
Every path will have at least the specified minimal length, and then Russian-roulette will
be used to terminate the path. E.g. if you set minimal path length to 3 and Russian-roulette
parameter to 0.5 then 1/2 of all paths will have length 3, 1/4 of all paths will have length 4,
1/8 of all paths will have length 5 etc.

Russian-roulette makes sure that the result is unbiased, i.e. the expected value is the correct
result (the perfect beautiful realistic image). However, Russian-roulette introduces also a
large variance, visible as a noise on the image. That's why forcing some minimal path
length helps. Sensible values for minimal path length are around 1 or 2. Of course, the
more the better, but it will also slow down the rendering. You can set minimal length to 0,
then Russian-roulette will always be used to decide about path termination (expect a lot of
noise on the image!).

Actually our path-tracer does something more than a normal path-tracer should: for every
pixel it checks PrimarySamplesCount of primary rays, and then each primary ray that
hits something splits into NonPrimarySamplesCount. So in total we check
PrimarySamplesCount * NonPrimarySamplesCount paths. This optimization
comes from the fact that there is no need to take many PrimarySamplesCount, be-
cause all primary rays hit more-or-less the same thing, since they have very similar direc-
tion.

To get really nice results path-tracer requires a different materials description. I added a
couple of additional fields to Material node to describe physical material properties (for
Phong's BRDF) [http:// www. camelot. homedns. org/ ~michalis/ kambi_vrml_extensions.
php#ext_material_phong_brdf_fields]. If these fields are not specified in Material node,
path-tracer tries to calculate them from normal material properties, although this may result
in a poor-looking materials. There's also a program kambi_mgf2inv [http://www.camelot.
homedns.org/~michalis/kambi_mgf2inv.php] available that let's you convert MGF files to
VRML 1.0 generating correct values for these additional Material fields.

Shadow cache is used, this makes path-tracer a little faster. Also you can generate the im-
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age pixels in more intelligent order than just line-by-line: you can use Hilbert or Peano
space-filling curves. In combination with shadow cache this can make path-tracing faster
(shadow cache should hit more often). Although in practice space-filling curves don't make
any noticeable speed difference. Undoubtedly, there are many possibilities how to improve
the speed of our path-tracer, and maybe one day space-filling curves will come to a real
use.

4.4. RGBE format
Our ray-tracer can store images in the RGBE format.

RGBE stands for Red + Green + Blue + Exponent. It's an image format developed by Greg
Ward, and used e.g. by Radiance [http://floyd.lbl.gov/radiance/]. Colors in RGBE images
are stored with a very good precision, while not wasting a lot of disk space. Good precision
means that you may be able to expose in the image some details that were not initially vis-
ible for the human eye, e.g. by brightening some areas. Also color components are not
clamped to [0; 1] range — each component can be any large number. This means that even
if resulting image is too bright, and some areas look just like white stains, you can always
correct the image by darkening it or applying gamma correction etc. This is especially im-
portant for images generated by path-tracer.

You can process RGBE images using various Radiance programs. You can also use RGBE
images in all my programs, for example you can view them using glViewImage [http://
www.camelot.homedns.org/~michalis/glviewimage.php] and you can use them as textures
on VRML models.

4.5. Generating light maps
This is a feature closely related to ray-tracer routines, although it doesn't actually involve
any recursive ray-tracing. The idea comes from the realization that we already have a
means to calculate light contribution on a given point in a scene, including checking what
lights are blocked on this point. So we can use these methods to calculate lighting on some
surface independent of the camera (player) position. All it takes is just to remove from
lighting equations all components related to camera, which means just removing the specu-
lar component of lighting equation. We can do it even for any point on a scene (not neces-
sarily a point that is actually part of any scene geometry), as long as we will provide mater-
ial properties that should be assumed by calculation.

What do we get by this ? We get the ability to generate textures that contain accumulated
effect of all lights shining on given surface. This includes shadows. We can use such tex-
ture on a surface to get already precomputed lighting with shadows. Of course, the trick
will only work as long as lights are static in the scene and it's not a problem to remove
specular component for given surface. And remember to make the texture large enough —
otherwise user will see that the shadows on the wall are pixelated and the whole nice effect
will be gone.

I used this trick to generate ground texture for my toy lets_take_a_walk [http://www.cam-
elot.homedns.org/~michalis/lets_take_a_walk.php]. Initially I had this model:
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Figure 4.1. lets_take_a_walk scene, side view

Figure 4.2. lets_take_a_walk scene, top view

Using our trick I generated this texture for the ground. Note how the texture includes shad-
ows of all scene objects. And note how the upper-right part of the texture has a nice bright-
er area. Our OpenGL rendering above didn't show this brighter place, because the ground
geometry is poorly triangulated. So OpenGL rendering hit again the problems with
Gouraud shading discussed in detail earlier in Section 2.7.2, “Triangulating”. It's a quite
large texture (1024 x 1024 pixels), but any decent OpenGL implementation should be able
to handle it without any problems. In case of problems, I would just split it to a couple of
smaller pieces.
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Figure 4.3. Generated ground texture

Finally, resulting model with a ground texture:

Figure 4.4. lets_take_a_walk scene, with ground texture. Side view
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Figure 4.5. lets_take_a_walk scene, with ground texture. Top view.

Such textures may be generated by the gen_light_map program included in the
units/3dmodels/tools/gen_light_map.dpr file in our engine source code.
The underlying unit responsible for all actual work is called VRMLLightMap.
lets_take_a_walk source code is available too, so you can see there an example how
the gen_light_map program may be called.
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Chapter 5. OpenGL rendering

5.1. VRML lights rendering
5.1.1. Lighting model

When rendering using the OpenGL we try to get results as close as possible to the VRML
97 lighting equations [http:// www. web3d. org/ x3d/ specifications/ vrml/ ISO-
IEC-14772-VRML97/ part1/ concepts. html#4. 14]. We look at equations calculated by
OpenGL for lighting, materials, fog etc. and set OpenGL properties such that the OpenGL
results should match the results required by VRML 97 specification.

There are cases when it is not possible to match VRML 97 requirements precisely by this
approach:

1. VRML 2.0 way of specifying spot light highlight, by beamWidth, cannot be translated
to a standard OpenGL spotlight.

Let's look at the equations. Let α be the angle between the spot light's direction and the
ray from spot light's position to the considered geometry point.

• OpenGL spot light uses cosinus drop-off, which means that the light intensity within
the spot cutOffAngle is calculated as a Cos(α)spotExponent.

• VRML spot light has a constant spot intensity area and then a linear drop-off to the
spot border. In other words, the light intensity is 1.0 (maximum) when α < beam-
Width and it drops linearly from 1.0 to 0.0 as α raises up from beamWidth to
cutOffAngle.

There is no general translation possible between these two systems, so VRML 2.0 spot
light cannot be perfectly represented by a standard OpenGL spot light.

The good news is that the default VRML case, where beamWidth > cutOffAngle
can be represented correctly in OpenGL (just set the spot exponent to 0.0).

2. The exponential fog of VRML 2.0 also uses different equations than OpenGL exponen-
tial fog and cannot be matched perfectly. See VRML and OpenGL specifications for de-
tails.

3. Gouraud shading limitations, discussed a couple of times before, are another OpenGL
rendering limitation that simply cannot be overcome.

Still, OpenGL rendering is usually quite close to what VRML 97 specification requires. An
easy way to check this conformance is to compare the OpenGL renderings with the render-
ings done by the classic ray-tracer.

5.1.2. Rendering lights separately
VRML lights can be translated to appropriate OpenGL calls using TVRMLLightSetGL
class. This is normally used internally by TVRMLOpenGLRenderer class that will be
discussed in next sections, but it can also be used separately for special purposes. For ex-
ample, in games you may want to render various things in OpenGL context: maybe you
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render many VRML models (for example you have one static world VRML model and
various creature VRML models) and maybe you render some things straight to OpenGL
(i.e. not through our VRML engine). If you want to have complete control over what is af-
fected by VRML lights, you can load them to TVRMLLightSetGL instance. Then you
can explicitly say when these lights are rendered for OpenGL and so you have complete
control over what is lightened by them.

I use this technique in my games. For example see “The Castle” [http:// www. camelot.
homedns.org/~michalis/castle.php] levels. They use special xxx_lights.wrl VRML
files that contain only light nodes. You can even edit (and write back as VRML files) these
lights at run-time from the game. Use debug menu “Edit light” to do this. This makes a
nice educational tool that allows you to experiment with VRML lights properties.

5.2. Basic OpenGL rendering
TVRMLOpenGLRenderer class does the basic OpenGL rendering of VRML nodes.
“Basic” rendering means that this class is not supposed to

• Choose the order of rendering of VRML nodes. This implicates that TVRMLO-
penGLRenderer is not responsible for doing optimizations that pick only some subset
of VRML nodes for rendering (for example, only the nodes visible within the camera
frustum). This also implicates that it's not responsible for arranging the rendering order
for OpenGL blending, see Section 5.3.1, “Material transparency using OpenGL alpha
blending”. In fact, it doesn't set any OpenGL blending parameters (aside from setting
colors alpha values as appropriate).

• Wrapping rendering of VRML nodes within OpenGL display lists. TVRMLO-
penGLRenderer class always renders by “real” calls to OpenGL, no display lists.
However, it's carefully designed to allow the caller to wrap most of it's rendering meth-
ods inside OpenGL display lists.

Above limitations are done by design. It's supposed that a higher-level routines will intern-
ally use instance of this class to perform rendering. These higher-level routines should then
provide support for all things mentioned above, like choosing appropriate nodes order and
wrapping calls in OpenGL display lists. In the next Section 5.3, “Flat scene for OpenGL”
we will get familiar with such higher-level class.

The way to use TVRMLOpenGLRenderer looks like this:

1. First you must call Prepare method for all the State instances that you want to later
use for rendering. You can obtain such State instances for example by a traverse call-
back discussed earlier in Section 2.6, “Traversing VRML graph”. The order of calling
Prepare methods doesn't matter — it's only important for you to prepare all states be-
fore you will render them.

Prepare calls cannot be wrapped inside OpenGL display lists. In fact, the very reason
why they exist is that there are some places where TVRMLOpenGLRenderer wants to
create an internal OpenGL display list that can be used later when rendering.

Right now Prepare calls prepare two kinds of resources: they load textures into
OpenGL, and they load outline fonts (used by VRML Text and AsciiText nodes)
into display lists.

You are free to mix Prepare calls with any other rendering calls to OpenGL. This
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doesn't matter, as Prepare only prepares some resources, without changing OpenGL
state. The only thing that you are forbidden to do is to mess (use or delete) display lists
and texture names reserved inside Prepare calls. A properly written OpenGL program
should always allocate free display list and texture names using calls like glGen-
Lists and glGenTextures (never hardcode display list and texture numbers !), so
this shouldn't be ever a problem.

2. Call RenderBegin to start actual rendering. This will set up some OpenGL state that
will be assumed by further rendering calls. Also, this will do a push on OpenGL attrib-
utes stack, so that everything can be restored later by RenderEnd.

3. Then you should call RenderShapeState for each pair of VRML shape node and a
state that you want to render. As mentioned earlier, you can only use here state values
that you prepared earlier by a Prepare call.

RenderShapeState call can be placed inside OpenGL display list, and usually it
should be to get proper rendering speed.

Alternatively you can split one RenderShapeState call to three calls:
a. RenderShapeStateBegin
b. RenderShapeStateNoTransform
c. RenderShapeStateEnd

Such splitting is often useful because it allows you to place RenderShapeStateNo-
Transform on a separate display list, that can shared by more shape+state pairs
(because it doesn't take some transformations into account).

4. Finally after you rendered all your shapes, you should call RenderEnd. As mentioned
before, whole OpenGL state will restored by popping OpenGL attribute stack.

Between RenderBegin and RenderEnd you are not allowed to change OpenGL
state in any way except for calling other TVRMLOpenGLRenderer methods. Well,
actually there are some exceptions, things that you can legitimately do — these include
e.g. setting enabled state of OpenGL blending. But generally you should limit yourself
to calling other TVRMLOpenGLRenderer methods between RenderBegin and
RenderEnd.

RenderBegin and RenderEnd can be wrapped inside OpenGL display lists.

Of course the scenario above may be repeated as many times as you want. The key is that
you will not have to repeat Prepare calls each time — once a state is prepared, you can
use it in RenderShapeState calls as many times as you want. If you will not need
some state anymore then you can release some resources allocated by it's Prepare call by
using UnPrepare or UnPrepareAll methods.

Note that TVRMLOpenGLRenderer doesn't try to control whole OpenGL state. It con-
trols only the state that it needs to, to accurately render VRML nodes. Some OpenGL set-
tings that are not controlled include:

• global ambient light value (glLightModel with GL_LIGHT_MODEL_AMBIENT
parameter),

• polygon mode (filled or wireframe ?),
• whether lighting calculation is enabled (although for shapes that VRML specification re-

quires to be unlit TVRMLOpenGLRenderer will always temporarily turn lighting cal-
culation off),

• blending settings.
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So you can adjust some rendering properties simply by using normal OpenGL commands.
Also you can transform rendered VRML models simply by setting appropriate modelview
matrix before calling RenderBegin. So rendering done by TVRMLOpenGLRenderer
tries to cooperate with OpenGL nicely, acting just like a “complex OpenGL operation”,
that plays nicely when mixed with other OpenGL operations.

However, for various implementation reasons, many other VRML rendering properties
cannot be controlled by just setting OpenGL state before using RenderBegin. Instead
you can adjust them by setting Attributes property of TVRMLOpenGLRenderer.

5.2.1. OpenGL resource cache
Often when you render various VRML models, you will use various TVRMLOpenGLRen-
derer instances. But still you want those TVRMLOpenGLRenderer instances to share
some common resources. For example, each texture has to be loaded into OpenGL context
only once. It would be ridiculous to load the same texture as many times as there are
VRML models using it. That's why we have
TVRMLOpenGLRendererContextCache. It can be used by various renderers to store
common resources, like an OpenGL texture name associated with given texture filename.

Things that are cached include:

• Fonts display lists.

• Texture names. This way you can make your whole OpenGL context to share common
“texture pool” — and all you have to do is to pass the same TVRMLOpenGLRender-
erContextCache instance around.

• Objects working on higher level than TVRMLOpenGLRenderer may also store in the
cache various things. Display lists generated for TVRMLOpenGLRender-
er.RenderShapeState calls are stored in the cache, which allows them to be
shared if you started multiple animations from the same scene. Also display lists gener-
ated for TVRMLOpenGLRenderer.RenderShapeStateNoTransform calls are
stored in the cache, this allows them to be shared when multiple animation frames rep-
resent the same object but transformed differently.

By default, each TVRMLOpenGLRenderer creates and uses his own cache, but you can
create TVRMLOpenGLRendererContextCache instance explicitly and just pass it
down to every OpenGL renderer that you will create. All higher-level objects that use
TVRMLOpenGLRenderer renderer allow you to pass your desired TVRMLO-
penGLRendererContextCache. And you should use it, if you want to seriously con-
serve memory usage of your program.

Also note that when animating, all animation frames of given animation object (TVRM-
LGLAnimation instance, that will be described in details in Chapter 6, Animation) al-
ways use the same renderer. So they also always use the same cache instance, which
already gives you some memory savings thanks to cache automatically.

5.2.2. Specialized OpenGL rendering routines vs
Triangulate approach

There are two approaches to render specific VRML nodes within TVRMLOpenGLRen-
derer:
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1. The specialized rendering routines for each node approach: for all VRML nodes we
have routines to render them efficiently using OpenGL. This means that we have to
write one routine for each TNodeGeneralShape descendant class — one routine to
render a Sphere, one to render a Box, one to render IndexedFaceSet and so on.
This approach is used by default.

2. The triangulate approach. This is an alternative rendering method that will be used if
you define USE_VRML_NODES_TRIANGULATION symbol for compilation of VRM-
LOpenGLRenderer unit. Each node will be triangulated using TNodeGener-
alShape.LocalTriangulate method (mentioned earlier in Section 2.7.2,
“Triangulating”) and each triangle will be passed to OpenGL.

This is a proof-of-concept implementation that shows that using TNodeGener-
alShape.LocalTriangulate we can render all nodes in the same manner — no
need to write separate rendering routines for various TNodeGeneralShape descend-
ants. All you have to do is to implement triangulating.

This approach is useful for testing purposes, to test that LocalTriangulate meth-
ods work correctly. And this allows you to render nodes that don't have specialized ren-
dering procedure done yet. It has a couple of practical disadvantages:

a. It's slower than dedicated rendering procedures for each node. See discussion below.

b. Things that are not expressed as triangles (IndexedLineSet, PointSet) will
not be rendered at all.

c. It lacks some features, because the triangulating routines do not return enough in-
formation. For example, textures are not applied (because texture coordinates are not
generated), flat shading is always used (because the whole triangle has always only
one normal vector). This disadvantage could be removed in the future (by extending
information that triangulate callback returns).

By default we use the specialized OpenGL routines for each VRML shape node. Do we
want to ever switch to the “triangulate approach” as the default approach ? Clearly the
“triangulate approach” has some advantages:

• Extending the triangulate callbacks would give ray-tracer more information. This is the
key to implementing normal vectors interpolating and texture mapping in ray-tracer, so
it will have to be eventually done anyway.

• OpenGL rendering code would be much shorter. You can already see this by comparing
a couple lines of code used by VRMLOpenGLRenderer when
USE_VRML_NODES_TRIANGULATION is defined versus all the files and lines of code
used otherwise. In the “triangulate approach” it doesn't matter what TNodeGener-
alShape descendant you have. All you have to do is to call it's triangulating method
and pass all triangles to OpenGL.

But the key problem is that the “triangulate approach” makes OpenGL rendering much less
efficient. When writing specialized OpenGL rendering routines we can use OpenGL prim-
itives like GL_QUAD_STRIP and such that allow every sensible OpenGL implementation
to minimize vertex calculations (in other words, more vertex sharing). In case of indexed
shapes (IndexedFaceSet) we can even put all vertexes inside vertex array and then
lock it (using GL_EXT_compiled_vertex_array OpenGL extension, honored by al-
most every implementation), again greatly improving vertex sharing.
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On the other hand current simple triangulator just returns every triangle as a three points,
each of them with 3 float values. So it has no way to achieve vertex sharing. To get vertex
sharing with triangulator we would have to change our triangulator callbacks to return data
in much more complicated way: indexes to arrays instead of direct positions, and a way to
produce GL_QUAD_STRIP and other OpenGL primitives. But extending triangulator in
this direction means that I would have to “expose” all these OpenGL mechanisms for trian-
gulator, complicating greatly not only triangulator interface but also handling of triangulat-
or data by code that doesn't need vertex sharing (like ray-tracer or octree for collision de-
tection). Alternatively, I could make a simpler triangulator (for ray-tracer and such) work-
ing on the base of the more general triangulator, but this is also quite some work to imple-
ment. This all means some implementation work — as it is now, this would actually make
more complicated implementation than the current “specialized routines for each node”
approach. This may sound like a blasphemy, but in this particular case code duplication
(since the simple triangulator routines and specialized OpenGL renderers somewhat duplic-
ate each other algorithms) seems more manageable than alternative of complicated triangu-
lator implementation. At least for now.

Note that even ray-tracer efficiency (and precision) suffers right now because ray-tracer
uses the “triangulate approach”. That's because ray-tracer could use specialized collision
checking for e.g. spheres. Ray collision check with one sphere is much faster (and at the
same time more precise) than triangulating sphere and checking for collision with each
generated triangle.

5.3. Flat scene for OpenGL
TVRMLFlatSceneGL is a descendant of TVRMLFlatScene (which was introduced
earlier in Section 2.10, “Flat scene”). Internally it uses TVRMLOpenGLRenderer
(introduced in last section, Section 5.2, “Basic OpenGL rendering”) to render scene to
OpenGL. It also provides higher-level optimizations and features for OpenGL rendering. In
short, this is the most comfortable and complete class that you should use to load and
render static VRML models. In addition to TVRMLFlatScene features, it allows you to:

• Render all shape+state pairs (i.e. whole VRML scene). Use Render method with nil
as TestShapeStateVisibility parameter for the simplest rendering method.

• You can render only the shape+state pairs that are within current camera frustum by
RenderFrustum. This works by checking each shape+state pair for collision with
frustum before rendering. Generally, it makes a great rendering optimization if user
doesn't usually see the whole scene at once.

• An even better choice than RenderFrustum is RenderFrustumOctree. This
works like RenderFrustum, but the shape+state pairs within the frustum are determ-
ined by traversing the shape+state octree. If your scene has many shape+state pairs then
this will be faster than normal RenderFrustum.

• In special cases you may be able to create a specialized test whether given shape+state
pair is visible. You can call Render method passing as a parameter pointer to your spe-
cialized test routine. This way you may be able to add some special optimizations in par-
ticular cases.

For example if you know that the scene uses a dense fog and it has a matching back-
ground color (for example by Background VRML node) then it's sensible to ignore
shape+state pairs that are further then fog's visibility range. In other words, you only
draw shapes within a sphere around the player position.
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A working example program that uses exactly this approach is available in our engine
sources in the file units/3dmodels.gl/examples/fog_culling.dpr.

On the screenshot below the fog is turned off. Camera frustum culling is used to optim-
ize rendering, and so only 297 spheres out of all 866 spheres on the scene need to be
rendered.

Figure 5.1. Rendering without the fog (camera frustum culling is
used)

On the next screenshot the fog is turned on. The same view is rendered. We render only
the objects within fog visibility range, and easily achieve a drastic improvement: only 65
spheres are passed to OpenGL now. Actually we could improve this result even more: in
this case, both camera frustum culling and culling to the fog range could be used.
Screenshot suggests that only 9 spheres would be rendered then.

Figure 5.2. Rendering with the fog (only objects within the fog
visibility range need to be rendered)

• TVRMLFlatSceneGL implements material transparency by OpenGL alpha blending.
This requires rearranging the order in which shape+state pairs are rendered, that's why it
must be done in this class (instead of being done inside TVRMLOpenGLRenderer).
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Details about this will be revealed soon in Section 5.3.1, “Material transparency using
OpenGL alpha blending”.

• TVRMLFlatSceneGL automatically builds and uses display lists to optimize rendering
of the VRML model. You can choose the “granularity” of display list creation by the
Optimization property. This is a very important optimization that in practice greatly
speeds up OpenGL rendering.

Details about this will be revealed soon in Section 5.3.3, “Display lists strategies”.

• TVRMLFlatSceneGL has also comfortable methods to handle and render VRML
Background node of your scene.

Note that TVRMLFlatSceneGL caches various information, just like TVRMLFlatS-
cene, as discussed in Section 2.10.3, “Caching”. Cached things include Background
node information and created display lists. In case of display lists it's sort-of obvious that
they are cached, since the very idea of display lists is to create them once and reuse many
times already stored calculation. In practice, caching means that you must call some
ChangedXxx method if you change something in your VRML node graph after loading
it.

5.3.1. Material transparency using OpenGL alpha
blending

To understand the issue you have to understand how OpenGL works. OpenGL doesn't
“remember” all the triangles sent to it. As soon as you finish passing a triangle to OpenGL
(which means making glVertex call that completes the triangle) OpenGL implementa-
tion is free to immediately render it. This means mapping the given triangle to 2D window
and updating data in various buffers — most notably the color buffer, but also the depth
buffer, the stencil buffer and possibly others. Right after triangle is rendered this way,
OpenGL implementation can completely “forget” about the fact that it just rendered the tri-
angle. All triangle geometry, materials etc. information doesn't have to be kept anywhere.
The only trace after rendering the triangle is left in the buffers (but these are large 2D ar-
rays of data, and only the human eye can reconstruct the shape of the triangle by looking at
the color buffer contents).

In summary, this means that the order in which you pass the triangles to OpenGL is signi-
ficant. Rendering opaque objects with the help of depth buffer is the particular and simple
case when this order doesn't matter (aside for issues related to depth buffer inaccuracy or
overlapping geometry). But generally the order matters. Using alpha blending is one such
case.

To implement VRML material transparency we use materials with alpha (4th color com-
ponent) set to value lower than 1.0. When the triangle is specified, OpenGL renders it. A
special operation mode is done for updating color buffer: instead of overriding old color
values, the new and old colors are mixed, taking into account alpha (which acts as opacity
factor here) value. Of course when rendering transparent triangles they still must be tested
versus depth buffer, that contains at this point information about all the triangles rendered
so far within this frame.

Now observe that depth buffer should not be updated as a result of rendering partially
transparent triangle. Reason: partially transparent triangle doesn't hide the geometry behind
it. If we will happen to render later other triangle (partially transparent or opaque) behind
current partially transparent triangle, then the future triangle should not be eliminated by
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the current triangle. So only rendering opaque objects can change depth buffer data, and
thus opaque objects hide all (partially transparent or opaque) objects behind them.

But what will happen now if you render opaque triangle that is behind already rendered
partially transparent triangle ? The opaque triangle will cover the partially transparent one,
because the information about partially transparent triangle was not recorded in depth buf-
fer. For example you will get this incorrect result:

Figure 5.3. The ghost creature on this screenshot is actually very close
to the player. But it's transparent and is rendered incorrectly: gets
covered by the ground and trees.

The solution is to avoid this situation and render all partially transparent objects after all
opaque objects. This will give correct result, like this:

Figure 5.4. The transparent ghost rendered correctly: you can see that
it's floating right before the player.

Actually, in a general situation, rendering all partially transparent objects after opaque ob-
jects is not enough. That's because if more than one transparent object is visible on the
same screen pixel, then the order in which they are rendered matters — because they are
blended with color buffer in the same order as they are passed to OpenGL. For example if
you set your blending functions to standard (GL_SRC_ALPHA,
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GL_ONE_MINUS_SRC_ALPHA) then each time you render a triangle with color (Red,
Green, Blue) and opacity α, the current screen pixel color (Screen

Red
, Screen

Green
,

ScreenBlue) changes to

(Screen
Red

, Screen
Green

, Screen
Blue

) * (1 - α) + (Red, Green, Blue) * α

Consider for example two partially transparent triangles, one of them red and the second
one green, both with α set to 0.9. Suppose that they are both visible on the same pixel. If
you render the red triangle first, then the pixel color will be

ScreenColor * (1 - α) * (1 - α) + RedColor * α * (1 - α) + GreenColor * α =
ScreenColor * 0.01 + RedColor * 0.09 + GreenColor * 0.9 =
visible as GreenColor in practice

If you render green triangle first then the analogous calculations will get you pixel color
close to the red.

So the more correct solution to this problem is to sort your transparent triangles with re-
spect to their distance from the viewer. You should render first the objects that are more
distant.

However, this solution isn't really nice. Sorting all triangles at each frame (or after each
camera move) doesn't seem like a good idea for a 3D simulation that must be done in real-
time as fast as possible. Moreover, there are pathological cases when even sorting is not
enough and you will have to split triangles to get things 100% right. Of course, you could
sort larger objects (for example whole VRML shape nodes) instead of triangles to make the
process faster. But then you may have to split VRML shape nodes sometimes (in addition
to splitting triangles inside in pathological cases), or agree to non-perfect results.

That's why our engine (as well as many other OpenGL rendering engines) just ignores the
sorting problem. We do not pay any attention to the order of rendering of transparent ob-
jects — as long as they are rendered after all opaque objects. In practice, rendering artifacts
will occur only in some complex combinations of transparent objects. If you seldom use a
transparent object, then you have small chance of ever hitting the situation that actually re-
quires you to sort the triangles. Moreover, even in these situations, the rendering artifacts
are usually not noticeable to casual user. Fast real-time rendering is far more important that
100% accuracy here.

Moreover, our engine right now by default uses (GL_SRC_ALPHA, GL_ONE) blending
functions, which means that the resulting pixel color is calculated as

(Screen
Red

, Screen
Green

, Screen
Blue

) + (Red, Green, Blue) * α

That is, the current screen color is not scaled by (1 - α). We only add new color, scaled by
it's alpha. This way rendering order of the transparent triangles doesn't matter — any order
will produce the same results. For some uses (GL_SRC_ALPHA, GL_ONE) functions look
better than (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA), for some uses they are
worse. (GL_SRC_ALPHA, GL_ONE) tend to make image too bright (since transparent ob-
jects only increase the color values), that's actually good as long as your transparent objects
represent some bright-colored and dense objects (a thick plastic glass, for example).
(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) on the other hand can sometimes un-
naturally darken the opaque objects behind (since that's what these functions will do for a
dark transparent object with large alpha).

5.3.2. Material transparency using polygon stipple
Other method of rendering material transparency deserves a quick note here. It's done by
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polygon stipple, which means that transparent triangles are rendered using special bit mask.
This way part of their pixels are rendered as opaque, and part of them are not rendered at
all. This creates a transparent look on sufficiently large resolution. Order of rendering
transparent objects doesn't matter in this case.

However, the practical disadvantages of this method is that it looks quite, well, ugly. When
we use random stipples (to precisely show different transparency of different objects) then
the random stipples look very ugly:

Figure 5.5. Material transparency with random stipples

Instead of using random stipples, we can use a couple of special good-looking prepared
regular stipples. But then we don't have much ability to accurately represent various trans-
parency values (especially for very transparent objects). And still the results look quite bad:
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Figure 5.6. Material transparency with regular stipples

5.3.3. Display lists strategies
TVRMLFlatSceneGL allows you to choose one of the four display lists optimization
methods. Which method is the best really depends on various factors, including how often
you will modify your VRML nodes graph while rendering and how user will usually view
the scene. If in doubt, a good default is to choose the roSeparateShapeStates meth-
od.

view3dscene [http://www.camelot.homedns.org/~michalis/view3dscene.php] allows you to
test all optimization methods by --renderer-optimization command-line option.

The available optimization methods are:

1. roNone. This stands for “no optimization”. No OpenGL display lists will be ever con-
structed. This means that rendering is always done by real OpenGL calls (through ren-
dering methods of TVRMLOpenGLRenderer). So rendering may be slow.

On the other hand, changing your VRML nodes graph at run-time doesn't hurt. Calls to
methods like PrepareRender and ChangedAll are very fast (as they will act al-
most as null operations).

Use this optimization method if you plan to change the scene at run-time very often (for
example, at each OnIdle event). Building display lists in such case would be only a
waste of time, since they would have to be rebuild very often. Alternatively, this is use-
ful optimization if you have a special situation are you know that you will render given
TVRMLFlatSceneGL scene very few times (for example, only 1 or 2 times).

2. roSceneAsAWhole. Treat the scene as a one big static object. One OpenGL display
list will be created, that renders the whole object. This is a great optimization method if
the scene is static (otherwise rebuilding display lists too often would cost too much
time) and you're sure that user will usually see the whole scene (or at least a large part
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of it).

For example, this is suitable optimization for an Examine navigation method, when
the whole scene is displayed. Or for small VRML models, like creatures or items in a
3D game — such models are usually either visible completely or not visible at all. So
there is no need for any more sophisticated optimization. Although if the creatures are
animated, you should choose other optimization method (preferably roSeparate-
ShapeStatesNoTransform) to conserve memory usage.

If the scene is static but user usually only looks at some small part of it (for example, a
typical 3D game level; or a Walk navigation method) then this optimization is not a
good choice. That's because this optimization nullifies the purpose of RenderFrust-
um and RenderFrustumOctree methods. And the purpose of the Render method
with a non-nil function to test shape visibility. In case of this optimization all render
methods will always render the whole scene to OpenGL.

3. roSeparateShapeStates. Build separate OpenGL display list for each
shape+state pair. This is a good optimization method if:

a. You're not going to modify anything within the VRML graph after loading the scene,
or you will modify only some local parts of it (that affect only small part of
shape+state pairs). In the latter case, we will rebuild, on change, only display lists for
the affected shape+state pairs.

b. You know that usually user will not see the whole scene, only a small part of it. In
this case you want to render the scene using methods like RenderFrustum or
RenderFrustumOctree, and this optimization allows them to work perfectly:
only the needed shape+state pairs will be passed to OpenGL.

c. Another advantage of this optimization comes when you use TVRMLGLAnimation
(discussed in details in later Chapter 6, Animation). If a large part of your animation
is actually still (i.e. the same shape+state is used, with the same nodes inside), and
only the other part animates, then the still shape+states pairs will actually use and
share only one display list. Only one — throughout all the time when they are still!
This can be a huge memory saving, which is important because generating many dis-
play lists for TVRMLGLAnimation is generally very memory-hungry operation.

Actually you may be able to achieve even better memory savings by using roSep-
arateShapeStatesNoTransform optimization method discussed next.

Such display list sharing is possible thanks to TVRMLOpenGLRendererCon-
textCache that caches display lists and allows them to be reused by various anim-
ation frames.

4. roSeparateShapeStatesNoTransform. This is like roSeparate-
ShapeStates but it allows for much more display lists sharing because it stores un-
transformed shape+state in a display list. In other words, it wraps Render-
ShapeStateNoTransform call of TVRMLOpenGLRenderer instead of the whole
RenderShapeState.

When this is better over roSeparateShapeStates:

a. If you use TVRMLGLAnimation when the same shape+state occurs in each anima-
tion frame but differently transformed. For example, a robot moves by bending it's
legs at the knees. But the thighs and the calves' shapes remain the same, only the
transformations of the calves change.
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b. When you have a scene that uses the same shape+state many times but with different
transformation. For example a forest using the same tree models scattered around. In
this case only one display list to render the tree is created, and this can be a huge
memory saving if we have many trees in our forest.

Figure 5.7. All the trees visible on this screenshot are actually the
same tree model, only moved and rotated differently.

Actually, “transformation” here means everything rendered by TVRMLOpenGLRen-
derer.RenderShapeStateBegin method. This includes not only the modelview
transformation, but also the texture transformation and all lights settings. So there are
even more cases when roSeparateShapeStatesNoTransform will use one dis-
play list, while roSeparateShapeStates would use a lot. Sometimes this can be a
huge memory saving. Also preparing scene/animations (preparing their display lists, e.g.
by PrepareRender call or implicitly during the first Render call) should be much
faster.

Unfortunately, roSeparateShapeStatesNoTransform has some disadvantages
when compared with roSeparateShapeStates:

• roSeparateShapeStatesNoTransform can be used only if you don't use
Attributes.OnBeforeVertex feature and your model doesn't use volumetric
fog. If you do use these features, you have no choice: you must use roSeparate-
ShapeStates, otherwise rendering results may be wrong.

For example, look at these two trees on a scene that uses the blue volumetric fog.
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Figure 5.8. The correct rendering of the trees with volumetric fog.
Using roSeparateShapeStates optimization.

Figure 5.9. The wrong rendering of the trees with volumetric fog.
Using roSeparateShapeStatesNoTransform optimization.

The reason of this problem: roSeparateShapeStatesNoTransform assumes
that the work done by RenderShapeStateNoTransform call of TVRMLO-
penGLRenderer really doesn't depend on current transformation. However, for
OpenGL volumetric fog vertex parameter, and for calculating Attrib-
utes.OnBeforeVertex callback parameter, we have to use current transforma-
tion.

• In some cases roSeparateShapeStatesNoTransform may be a little slower
at rendering than roSeparateShapeStates, as it doesn't wrap in display list
things done by TVRMLOpenGLRenderer.RenderShapeStateBegin method.
So modelview matrix and texture matrix and whole lights state will be applied each
time by “real” OpenGL commands, without display lists.

Will this affect rendering speed much ? If your scene doesn't use lights then the speed
difference between roSeparateShapeStates and roSeparate-
ShapeStatesNoTransform should not be noticeable. Otherwise... well, you
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have to check what matters more in this case: memory saving by roSeparate-
ShapeStatesNoTransform or additional speed saving by roSeparate-
ShapeStates.

5.3.3.1. Various optimizations for the same VRML model

Note that you are free to create more than one TVRMLFlatSceneGL instance for the
same VRML nodes graph. Just be careful to:

• Do not try to free the same RootNode object more than once. Setting OwnsRoot-
Node property of TVRMLFlatSceneGL to false allows you to take manual control
over when your VRML nodes graph will be freed.

• Also you should pass the same TVRMLOpenGLRendererContextCache instance
to various TVRMLFlatSceneGL instances, to share OpenGL resources.

• In fact, you can even force various TVRMLFlatSceneGL instances to use the same
TVRMLOpenGLRenderer, but this is more tricky.

Using this approach you can even create various TVRMLFlatSceneGL instances that
render the same VRML model but with different optimizations.

5.3.4. Shape+state granularity
Optimizations done by TVRMLFlatSceneGL (in particular, frustum culling) work best
when the scene is sensibly divided into a number of small shape+state pairs. This means
that “internal” design of VRML model (how it's divided into shape+states) matters a lot.
Here are some guidelines for VRML authors:

• Don't define your entire world model as one IndexedFaceSet node (since this will
effectively reduce roSeparateShapeStatesNoTransform and roSeparate-
ShapeStates optimization methods to being equivalent to roSceneAsAWhole).

• Avoid IndexedFaceSet nodes with triangles that are scattered all around the whole
scene. Such nodes will have very large bounding box and will be judged as visible from
almost every camera position in the scene, thus making optimizations like frustum cull-
ing less efficient.

• An ideal VRML model is split into many shape nodes that have small bounding boxes.
It's hard to specify a precise “optimal” number of shape nodes, so you should just test
your VRML model as much as you can. Generally, RenderFrustumOctree should
be able to handle efficiently even models with a lot of shape+state pairs.

5.3.4.1. Triangle granularity ?

Then comes an idea to use scene division into triangles instead of shape+state pairs. This
would mean that our optimization doesn't depend on shape+state division so much. Large
shape+states would no longer be a problematic case.

To make this work we would have to traverse triangle octree to decide which triangles are
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in the visibility frustum. Doing this without the octree, i.e. testing each triangle against the
frustum, would be pointless, since this is what OpenGL already does by itself.

Such traversing of the octree would have to be the first pass, used only to mark visible tri-
angles. In the second pass we would take each shape+state pair and render marked tri-
angles from it. The reason for this two-pass approach is that otherwise (if we would try to
render triangles immediately when traversing the octree) we would produce too much over-
head for OpenGL. Overhead would come from changing material/texture/etc. properties
very often, since we would probably find triangles from various nodes (with various prop-
erties) very close in some octree leafs.

But this approach creates problems:

• The rendering routines would have to be written much more intelligently to avoid ren-
dering unmarked triangles. This is not as easy as it seems as it collides with some smart
tricks to improve vertex sharing, like using OpenGL primitives (GL_QUAD_STRIP
etc.).

• We would be unable to put large parts of rendering pipeline into OpenGL display lists.
Constructing separate display list for each triangle has little sense.

That's why this approach is not implemented.

OpenGL rendering
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Chapter 6. Animation
TVRMLGLAnimation class is used to build and render animations. When constructing
it's instance you provide one or more VRML models that have exactly the same structure,
but may have different values for various fields. For each provided model you specify an
associated position in time. The resulting animation will change the first VRML model to
the last one, such that at any time point we will either use one of the predefined models (if
point in time is close to the model's associated time) or a new model created by interpolat-
ing between two successive models in time.

For example, the first model may be a small sphere with blue color, and the second model
may be a larger sphere with white color. The resulting animation depicts a growing sphere
with color fading from blue to white.

Every animation may be played backwards and/or in a loop.

The models must be the same structurally, but most of the field types may have different
values. VRML field types that are allowed to differ include SFColor, SFFloat,
SFMatrix, SFRotation, SFVec2f and SFVec3f. Equivalent multi-valued fields
may have different values too (but still must have the same number of items). This gives
you an endless list of possibilities what can be expressed as an animation. Some examples:

• Moving, rotating, scaling objects may be expressed by changing transformation values.

• Any kind of morphing (mesh deformation) may be expressed by changing values of In-
dexedFaceSet coordinates.

• Materials, colors, lights may change. Even such properties like a material transparency,
or a light position or direction.

• Texture coordinates may change to achieve effects like a moving water surface.

If you want to experiment with animations the sources of our engine contain a program
demo_animation (see the file units/
3dmodels.gl/examples/demo_animation.dpr), and various sample models for
animating (see subdirectory models/). Also “The Castle” [http://www.camelot.homedns.
org/~michalis/castle.php] uses animations for all creatures and weapons.

6.1. How does it work
First of all, for now the scenes are not interpolated when rendering. Instead, at construction
time, we create a number of new interpolated models and save them (along with the models
that were specified explicitly). The property ScenesPerTime says with what granularity
the intermediate scenes are constructed for a time unit.

If you specify too large ScenesPerTime your animations will take a lot of time to pre-
pare and will require a lot of memory. On the other hand too small ScenesPerTime
value will result in an unpleasant jagged animation. Ideally, ScenesPerTime should be
>= than the number of frames you will render in your time unit, but this is usually way too
large value.

Internally, the TVRMLGLAnimation wraps each model (that was specified explicitly or
created by interpolation) in a new TVRMLFlatSceneGL instance. This means that we
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have all the features of our static OpenGL rendering available when doing animations too.
The suggested display list optimization for animations is usually roSeparate-
ShapeStatesNoTransform, since this allows various animation frames to share as
much display lists as they can. Sharing display lists is very important for animations, other-
wise you can easily run out of memory (and preparing animations will take a long time).

6.2. Comparison with VRML interpolator
nodes

VRML 97 has special interpolator nodes [http://www.web3d.org/x3d/specifications/vrml/
ISO-IEC-14772-VRML97/ part1/ concepts. html#4. 6. 8] to express animation in a VRML
file. Their idea of work is similar to ours, that is animation is done by interpolating some
fields values. In general, VRML approach is obviously cleaner: it's better to keep informa-
tion about interpolating in one file instead of creating two copies only to express an anima-
tion.

Moreover, our current approach has a serious deficiency if your animation tries to change
two pieces of your model with drastically different speeds. Consider this:

1. It's trivially easy to create an animation with a box that blinks (changes color) 100 times
per time unit.

2. It's also trivially easy to create an animation with a sphere that blinks only once for a
given time unit.

3. But if you want to create an animation that contains both the box (blinking 100 times/
time unit) and the sphere (blinking once for a time unit), you will have to prepare 100
VRML files to express this !

VRML interpolators don't have this problem.

Still we may point some small advantages of our approach over VRML interpolators :

• VRML interpolators don't allow to animate textures coordinates (expressed as MFVec2f
field type).

• The practical advantage of our approach is that you can design your animations using
any authoring software that can export static VRML files. If your modeller can design
animations, but doesn't save them to VRML interpolator nodes, all you have to do is to
export your models a couple of times from a couple of different points in time.

Author of this document is not familiar with any professional open-source 3D modelling
software that can export animations to VRML interpolator nodes. In particular, VRML
97 exporter from my favourite Blender [http://www.blender3d.org/] cannot do it.

6.3. Future plans
6.3.1. Perform interpolation at rendering time

This will be much less memory-demanding, and will remove the problems with jagged an-
imations because of too small ScenesPerTime values.

Animation
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But note that this will necessarily be either slower or more limited than our current ap-
proach:

1. If we want to keep all our features, we will have to use roNone optimization (no dis-
play list). And all traversing and calculations needed by interpolation will have to be
done at rendering time.

2. The other approach is to extend possibilities of roSeparateShapeStatesNo-
Transform optimization. This allows me to easily interpolate things like modelview
transformation while keeping everything important inside display lists. In fact, this was
the initial idea behind implementing roSeparateShapeStatesNoTransform
optimization. Right now, roSeparateShapeStatesNoTransform optimization
allows for display list sharing (which means that memory saving is already achieved).
By actually interpolating transformation at rendering time we will achieve the second
advantage: no jagged animations.

However, this will allow us to animate only a limited set of properties. For example an-
imating a whole mesh will not be possible with this approach.

6.3.2. Handling of VRML interpolator nodes
All rendering features of VRML interpolators are available in our engine. To handle inter-
polator nodes we have to read their key time points and then build appropriate interpolated
nodes.

Animation
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Chapter 7. Links

7.1. VRML specifications
• VRML 1.0 specification [http://www.web3d.org/x3d/specifications/vrml/VRML1.0/in-

dex.html]
• VRML 2.0 (also called VRML 97) specifications [http://www.web3d.org/x3d/specifica-

tions/vrml/]
• The Annotated VRML 97 Reference [http:// accad. osu. edu/ ~pgerstma/ class/ vnv/ re-

sources/info/AnnotatedVrmlRef/Book.html]
• X3D specifications [http://www.web3d.org/x3d/specifications/]

7.2. Author's resources
My homepage [http://www.camelot.homedns.org/~michalis/], including:

• VRML engine documentation [http:// www. camelot. homedns. org/ ~michalis/
vrml_engine_doc.php] — the document that you're reading right now

• view3dscene [http://www.camelot.homedns.org/~michalis/view3dscene.php] — VRML
1.0, 2.0, 3DS, OBJ browser

• rayhunter [http://www.camelot.homedns.org/~michalis/rayhunter.php] — command-line
ray-tracer, and it's gallery [http:// www. camelot. homedns. org/ ~michalis/ raytr_gallery.
php]

• sources of my engine [http:// www. camelot. homedns. org/ ~michalis/ sources. php] and
their documentation [http://www.camelot.homedns.org/~michalis/sources_docs.php]

• VRML implementation status [http:// www. camelot. homedns. org/ ~michalis/
vrml_implementation_status.php]

• VRML test suite [http://www.camelot. homedns.org/~michalis/kambi_vrml_test_suite.
php]

• Specification of my extensions to VRML [http://www.camelot.homedns.org/~michalis/
kambi_vrml_extensions.php]
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