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1 Wstep

Celem pracy byta implementacja i testowanie algorytmu wyznaczania widocznych obiek-
tow. Sposrod wielu istniejacych rozwiazan wybrano algorytm GVS Wonki [3] z 2006
roku. Zostal on poddany licznym modyfikacjom i rozszerzeniom majacych wpltyw na
zmniejszenie czasu dzialania. Jako przyktadowe zastosowanie wybrano przyspiesze-
nie generowania obrazéw metoda sledzenia promieni. Sprawdzono czas renderowania
w scenach majacych ponad milion elementéw, a poprzez redukowanie ich rozmiaréw
poruszono problem przechodzenia scen w czasie rzeczywistym.

Dla potrzeb wyznaczania kolejnych zbioréw widocznych obiektéw opracowano al-
gorytm aktualizujacy, ktory bazujac na istniejacym rozwigzaniu wyznacza widoczne
elementy z sasiedniego obszaru. W odréznieniu od metod badajacych widocznosé dla
calej sceny np. Chhugani [10] i Bittner [11] jest to metoda przyspieszajaca obliczenia
bez uzywania dodatkowej pamieci. Idea algorytmu jest bliska rozwiazaniu wy$wietlania
duzych miast Koltuna [4], jednak nie wymaga ona zalozen co do typu sceny.

W drugim rozdziale zostalo opisane wyznaczanie widocznych obiektéow wraz z wy-
branymi algorytmami. W rozdziale trzecim opisano algorytm GVS bedacy agresywnym
wyznaczaniem widocznych obiektéw. Rozdziat czwarty i piaty zawiera wlasne pomysty
zwigzane z problematyka wyboru widocznych obiektéw. Przedstawiono w nich roz-
szerzenia i modyfikacje algorytmu GVS. W piatym rozdziale zostal opisany przyktad
zastosowania algorytmu widocznosci oraz metoda aktualizacji zbioru widocznych obiek-
tow. W rozdziatach szostym i siodmym zamieszczono wyniki i podsumowanie. Zaim-
plementowane algorytmy zostaly opisane w dodatku A.

2 Problematyka i przeglad rozwiazan

Jednym z podstawowych probleméw grafiki komputerowej jest okreslenie widocznych
obiektow sceny. Rozwigzaniem jest wygenerowany przez karte graficzng obraz zawie-
rajacy widok z okredlonego punktu. Wyobrazajac sobie w jaki sposob narysowaé scene
rozwazamy metode polegajaca na sprawdzaniu widocznosci kolejnych obiektéw. Innym
podejsciem spotykanym réwniez w malarstwie jest uwzglednienie najpierw dalekiego
planu, nastepnie blizszych drzew, budynkéw itd. Przyczynia sie to do czesciowego
zamalowania obszaréw naktadajac kolejne warstwy. Problem widocznosci, czyli klasy-
fikacji obiektoéw na widoczne i zastoniete, sprowadza sie do wyznaczenia elementéw,
ktore de facto znajda sie na obrazie.

Problem widocznosci rozszerza sie o widok we wszystkich kierunkach. Poprzez
odrzucenie niewidocznej geometrii sceny zmniejsza sie zbior obiektow, ktore nalezy
uwzgledniaé¢ przy rysowaniu. Obecne wiele rozwiazan skupia sie na odrzuceniu czesci
sceny schowanej pozostawiajac wszystkie obiekty widoczne. Najpopularniejszy i pow-
szechnie stosowany jest Z-Buffer, ktory ma dodatkowo wsparcie sprzetowe. Wyznacza
on tylko widoczne punkty odrzucajac kazdy ukryty (zastoniety).

Innymi technikami podczas okreslania widocznosci sa:

e uwzglednienie piramidy widzenia i odrzucanie geometrii sceny poza nia (ang.
view-frustum culling)

e pomijanie trojkatow (plaszczyzn) odwroconych tytem (ang. back-face culling)
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e wyznaczanie zastaniania sie obiektow i obszarow sceny (ang. occlusion culling)

Z bardziej ztozonym zadaniem znajdowania widocznych obiektéw mamy do czynienia
w przypadku niepunktowego obszaru obserwatora np. prostopadtoscianu lub wycinka
plaszczyzny. Obecnie jest to popularny problem, majacy szerokie zastosowanie nie
tylko w grafice komputerowej. O ile wyznaczanie dokladnie wszystkich widocznych
elementow EVS (ang. exact visible set) jest zadaniem niezwykle zlozonym, to ist-
nieje wiele rozwigzan aproksymacyjnych wyznaczajacych zbiér potencjalnie widocznych
obiektow PVS (ang. potentialy visible set) w krotszym czasie.

Algorytmy okreslania widocznej geometrii z obszaru zwykle klasyfikowane sg jako:

e doktadne (ang. ezact), ktorych wynikiem jest EV'S,

e agresywne (ang. aggressive) , wyznczajace PV'S, t.ze, PV.S C EVS,
e przyblizone (ang. approzimate), PVS ~ EV'S,

e konserwatywne (ang. conservative), PV.S O EV'S

Ograniczenie rozmiaru sceny do widocznych obiektéw jest jedng z metod przyspiesza-
nia generowania obrazu. Inna réwnie popularng techniks jest uwzglednienie poziomu
szczegblowosci LOD ang. level of detail. Metody upraszczania geometrii wyznaczajg
aproksymacje obiektow sceny, nastepnie podczas generowania obrazu obiekty zastepo-
wane sg ich przyblizong wersjg.

2.1 Klasyfikacja scen

W literaturze traktujacej o wyznaczaniu widocznej geometrii spotyka sie klasyfikacje
wzgledem wymiaru sceny:

e sceny 2D reprezentujace np. pietra wiezowcoéHw, pomieszczenia. Sceny takie
mozna utozsamiac¢ z planami budynkéw na plaszczyznie. Wysokosé Scian okreslona
jest przez plaszczyzny sufitu i podtogi.

e mapa wysokosci 2.5D - sceny bedace rozszerzeniem sceny 2D o wysoko$é Scian.
Czesto spotykanymi modelami 2.5D sg miasta lub rzezby terenu takie jak kaniony.

e scena 3D - model zawierajacy rozmieszczone dowolnie obiekty w przestrzeni
trojwymiarowej (najczesciej sa to trojkaty).

2.2 Geometria sceny widoczna z punktu

Techniki uzywane podczas szukania obiektéw sceny widocznych z punktu sa podsta-
wowymi metodami grafiki komputerowej. Wsrod nich znajduja sie zaréwno efektywne
algorytmy wyznaczania zastonietych obszaréw jak réwniez odrzucanie elementéw poza
piramida widzenia. Algorytmy te czesto znajduja zastosowanie w uogoélnionym prob-
lemie wyznaczania widocznosci z obszaru, a takze w metodach §ledzenia promieni. W
algorytmie MLRTA [13] zastosowano odrzucanie wierzchotkow kd-drzewa, ktore nie
zawieraja sie w piramidzie widzenia.

Powszechnie wykorzystuje sie hierarchiczne struktury danych typu kd-drzewa czy
drzewa 6semkowe, dzieki ktorym widocznosé, a wtasciwie zastoniecie, okresla sie dla
catych grup obiektow.



2.2.1 Selekcja obiektéw w polu widzenia

Piramida widzenia (ang. view frustum) V F wyznacza przestrzen widziang przez ob-
serwatora. Cztery plaszczyzny definiuja Sciany piramidy, ktore ,przechodza’ przez
krawedzie ekranu. Czesto stosuje sie dodatkowe dwie ptaszczyzny okreslajace gtebokosé
widzenia. Przestrzen piramidy widzenia jest wiec czescia wspolna odpowiednich pot-
przestrzeni, ktore zadane sa przez ptaszczyzny m;:

miin;icx+d; =0 i=0,1,...5 (1)

gdzie, n; jest wektorem normalnym , d; odlegtoscia , a x dowolnym punktem. Przyj-
mujac polprzestrzen wskazywang przez wektor normalny za zewnetrzng (tj. obszar, z
ktorego widoczny jest ,przod”) mowimy, ze punkt x jest na zewnatrz ptaszezyzny ;, gdy
n;-x+d; > 0. Zatem x jest wewnatrz piramidy widzenia V F' gdy jest po wewnetrznej
stronie wszystkich ptaszczyzn.

Odrzucanie obiektéw z uzyciem piramidy widzenia (ang. view frustum culling)
polega na okresleniu potozenie obicktu wzgledem kazdej ze $cian. Elementy sceny
poza piramida sa traktowane jako niewidoczne przez co sg pomijane podczas ren-
derowania. W celu przyspieszania powyzszego testu wraz z obiektami pami¢tane sa
punkty ekstremalne, z ktérymi utozsamiany jest prostopadtoscian zamykajacy 6w ele-
ment (and. bounding box). Réwnie popularne jest wykorzystywanie otaczajacych sfer
(ang. bounding spheres). Naiwny algorytm bazuje na sprawdzeniu wszystkich skraj-
nych wierzchotkow ,otoczki” wzgledem piramidy. Relacja miedzy prostopadtoscianem
BB a piramida widzenia V' F' moze by¢ nastepujaca:

e BB lezy w $rodku VF, gdy BBNVF = BB
e BB nazewnatrz VF, gdy BBNVFEF =0
e BB przecina VF', w przeciwnym przypadku,

W polaczeniu z hierarchiczna struktura np. kd-drzewa mozemy sklasyfikowaé cale
poddrzewo za widoczne lub nie.

Innym podejéciem jest klasyfikacja wierzchotkéw wzgledem kolejnych ptaszczyzn
VF. Jedli sa na zewnatrz plaszczyzny to prostopadtoscian jest od razu okreslony
jako niewidoczny. Taki algorytm prowadzi jednak do btednych odpowiedzi, gdyz moze
klasyfikowa¢ niewidoczny prostopadtoscian jako przecinajacy sie z piramida widzenia.
Mimo tego podejscie to zostalo efektywnie zoptymalizowane przez Ulfa Assarssona i
Tomasa Mollera [12]. Zastosowano prostopadtosciany, ktorych $ciany sa odpowiednio
rownolegte do plaszezyzn x =0,y = 0, 2 = 0 (AABB, ang. axis-aligned bounding box).
Ich reprezentacja sprowadza sie do dwoch punktow ekstremalnych bmin i bmax. Idea
algorytmu jest nastepujaca:

e dla kazdej ptaszczyzny m; (i = 1,2,3,4) okresla p-vertex i n-vertex bedace
punktami ekstremalnymi (rysunek 1),

e wstawiajac punkt do rownania 7; klasyfikujemy jego potozenie.



. p-vertex

n-vertex

n-vertex

Rysunek 1: Okreslanie polozenia bounding boxa wzgledem plaszczyzny m z uzyciem
punktéw ekstremalnych.

e wspolrzedne punktow p-vertex; i n-vertex;, gdzie j = x,y, 2 wyznaczane sg

nastepujaco:
bmax; dlan; >0
p-vertex; = brmin. w
o 2)
bminj dla n; > 0
n-vertex; =

bmax;  wpp.

e jesliistnieje ptaszcezyzna, dla ktorej n;-n-vertex+d; > 0, wtedy prostopadtoscian
jest na zewnatrz,

o jesli dla kazdej ptaszcezyzny n, - p-vertex+d; < 0 prostopadtoscian jest wewnatrz
piramidy widzenia,

e w pozostalych przypadkach algorytm klasyfikuje prostopadtoscian jako przecina-
jacy piramide widzenia.

Problem okreslania przeciecia prostopadtoscianu z piramida widzenia mozna roz-
wigzaé poprzez uwzglednienie ptaszczyzn wyznaczajacych bounding box i przecinania
ich przez piramide widzenia. Algorytm ,inverse view frustum culling” zostal opisany w
publikacji Reshetova [13], jako jedna z metod przyspieszenia $ledzenia promieni. Idea
algorytmu jest nastepujaca:

e wszystkie promienie zawarte w piramidzie widzenia maja zgodne znaki dla
kazdej wspotrzednej. W przeciwnym przypadku piramida jest dzielona.

e w celu okreslenia jak piramida widzenia V' F' przecina prostopadlo$cian BB wierz-
chotka, tj. czy tylko lewe poddrzewo, tylko prawe lub obydwa, wyznacza si¢
polozenie przeciecia VF z w. Jesli jest poza prostopadloscianem BB, to
przecinane jest tylko jedno poddrzewo (rysunek 2),

e powyzszy test przeciecia V F' z m zredukowany jest tylko do jednej wspolrzed-
nej (np. w sytuacji na rysunku 2 poréwnywane sa wartosci y),



e liscie drzewa poddawane sg dodatkowemu testowi: dla wszystkich trzech mozli-
wych par wspolrzednych (xy, yz, zx) VF i BB rzutowane sa na trzecia wspol-
rzedna. Przypadki w ktorych piramida widzenia omija lis¢ sa rozpoznawalne z
uzyciem dwoch poréwnan np. dla pary xy prostopadlo$cian zadany jest jako

B =A{(x,y) : bmin, < z < bmax, i bmin, <y < bmax,} (3)
zatem piramida widzenia omija BB gdy jeden z ponizszych warunkow:

min {yim } > max {Tou}
min {x;,} > max {You } @)

gdzie x;,, Tt Wyznaczaja przeciecia unormowanych promieni zawartych w V F
z plaszcezyznami BB. Punkty r(x;,) i 7(u) leza odpowiednio na plaszczyznach
x = bmin, i x = bmax,, gdzie r(t) jest rownaniem parametrycznym promienia.
Analogicznie dla y;, 1 Yout-

> - >
min max min max y min max min max

ry>0 ry<0

Rysunek 2: Okreslanie przeciecia piramidy widzenia V' F' i prostopadloscianu BB (7
jest plaszczyzna podziatu wierzchotka kd-drzewa). Zaktadamy, ze V' F' przecina BB
oraz promienie zgrupowane w V' F maja zgodny znak wspoélrzednej y. Piramida
przecina tylko gorna (czerwona) lub tylko dolna (niebieska) cze$¢ gdy przeciecie z
plaszczyzna m (wartosci min i max) jest poza prostopadloscianem.

2.2.2 Odrzucanie tylnych $cian

Zalozenie, ze tylko jedna strona powierzchni ptaskich jest widoczna, prowadzi do efek-
tywnych metod zmniejszania liczby elementow sceny, ktore wykorzystywane sa podczas
wys$wietlania obrazu (czy tez uwzgledniane sa w kolejnych obliczeniach).

W zwiazku z tym, ze plaszczyzna dzieli przestrzen na dwie czesci, tj. cze$¢ z
przodu i z tytu wzgledem jej wektora normalnego, nalezy prostym testem sklasyfikowaé
polozenie obserwatora. Majac dany trojkat T reprezentowany przez wierzchotki vy, vy,
vy okredlane jest polozenie obserwatora O nastepujaco:



réwnanie plaszczyzny 7 :n -z +d =0 (gdzie x jest dowolnym punktem na
plaszczyznie) zawierajacej T wyznaczamy obliczajac:

P 5)

nastepnie po podstawieniu O do réwnania m okreslamy trojkat jako widoczny
z tytu gdy otrzymamy wynik ujemny. Otrzymana wartosé (bez znaku) jest
odlegltoscig punktu O od T', przemnozong przez n - n.

Rowniez sklasyfikowanie wielokata T jako widocznego z tytu jest mozliwe poprzez
zbadanie czy n - (O —p) < 0, gdzie p jest dowolnym punktem z 7.

2.2.3 Hierarchiczne odrzucanie tylnych $cian

Rozpatrujac sytuacje, w ktorej potozenie obserwatora nie jest state, tj. generujac obraz
z roznych punktow obszaru sceny, obliczenia dla wszystkich trojkatow za kazdym razem
staje sie mato wydajne. Rozwigzaniem tego problemu jest grupowanie obiektow, tak
by klasyfikacja czy grupa jest odwrdcona przodem czy tylem odbywato sie za pomoca
jednego testu. Subodh Kumar i Dinesh Manocha w [2| zaprezentowali hierarchiczne
odrzucanie odwroconych obiektow (ang. Hierarchical back-face culling). Idea tego
algorytmu jest nastepujaca:

plaszczyzna kazdego trojkata dzieli przestrzen 3D na obszary, z ktorych jest
on widoczny z przodu lub z tyhlu. Korzystajac z reprezentacji ptaszczyzn
w przestrzeni dualnej nastepuje ich grupowanie w klastry. W przypadku
duzej liczby elementéw nastepuja kolejne podzialy na 4 lub 8 podgrup az
do osiagniecia minimalnej mocy podzbioru. Dla kazdej grupy budowane sa
podzialy na' (rysunek 3):

e N\, zprzodu

mieszany RN

Rysunek 3: Okreslanie jak zorientowane sa ptaszczyzny wzgledem dowolnych punk-
tow obszarow. Punkty obszaréw z tylu i z przodu sa rozwigzaniami problemu pro-
gramowania liniowego zadanego nieréwnosciami dla ptaszczyzn.

1. region, z ktorego wszystkie trojkaty sa widoczne z tylu (ang. back
region,)

! Autorzy wykorzystuja algorytmy rozwiazujace problem programowania liniowego oraz znajdowa-
nia otoczki wypuktej 3D



2. region, z ktorego wszystkie trojkaty sa widoczne z przodu (ang. front
region)

3. obszar mieszany zawierajacy obiekty widoczne z tylu lub z przodu
(ang. mized region). Nie jest on pamietany.

Wykrywanie obiektéw zwroconych przodem do obserwatora odbywa sie,
poprzez sklasyfikowanie do ktorego regionu nalezy punkt obserwatora dla
kazdego klastra.

2.2.4 Laczenie zaslonietych obszaréw

Peter Wonka i Dieter Schmalstieg zaproponowali metode szybkiego odrzucania nie-
widocznych obiektow dla scen 2.5D [5]. Sprowadza sie ona do wykorzystania kart
graficznych do generowania obrazu zawierajacego sume zastonietych obszaréow (rysunek
4).

Rysunek 4: Po lewej: Zastoniety obszar ¢ wyznaczany jest na podstawie punktu ob-
serwatora i gornej krawedzi e obiektu zastaniajacego. Dzieki projekcji 6 na podtoze 7
powstaje mapa zastoniecia ktora wraz z informacja o wysokosci pozwala na okreslenie
widocznosci z punktu. Po prawej: mapa zastoniecia cull map. Wykorzystujac z-bufor
i wsparcie sprzetowe rozwiazany jest problem naktadajacych sie¢ obszarow.

Idea jest nastepujaca:

e scena zostaje umieszczona w strukturze - regularnej siatce 2D. Kazdy obiekt jest
umieszczony w jednej lub wielu komorkach.

e podczas wyswietlania sceny nastepuje dynamiczny wybor zbioru obiektow za-
staniajacych, dla ktorych rysowane sa cienie w odpowiednim buforze cull map
(rysunek 4). Jako kryterium wyboru obiektéw rzucajacych cien brana jest je-
dynie odlegto$¢ od obserwatora.

e 7 kazdym pikselem cull mapy utozsamiona jest odpowiada komoérka w siatce 2D.
Razem z informacja o wysokosci padajacego cienia rysowane sa jedynie obiekty
WYZSZe€.

e w celu uzyskania konserwatywnego algorytmu nalezy skorygowaé rozmiar cienia.
Przy rasteryzacji piksel p nalezacy do wielokata W jest rysowany gdy jego $rodek
lezy wewnatrz W. W algorytmie piksel reprezentuje kwadratowy obszar po-
wierzchni zatem poprawna mapa zastoniecia zawiera¢ powinna te obszary, ktore



sa catkowicie zawarte w cieniu, a nie tylko ich $rodek. Dotyczy to obszaréow
lezacych na brzegu wielokata. Determinuje to zatem korekcje rozmiaru cieni
polegajaca na ich zwezeniu.

Wyzej opisang metode mozna zastosowaé réwniez dla dowolnych scen, wymaga on
jednak odpowiedniego jej przetworzenia, tj. wyodrebnienia np. budynkéw, drzew,
odcinkéw drog oraz wyboru obiektow zastaniajacych.

Pseudokod algorytmu rysujacego potencjalnie widoczne obiekty:

for each C(i,j) in data grid
if C(i,j).z > cullmap(i,j)
for each object 0(k) in C(i,j)
if 0(k).z > cullmap(i,j).z and 0(k) not already rendered
render 0(k)

2.3 Geometria sceny widoczna z obszaru

W niniejszym rozdziale zostang oméwione wybrane algorytmy rozwiazujace problem
widocznodci z obszaru wraz z metodami np. aproksymacji zastonietego obszaru, wyko-
rzystania algorytmoéw widocznosci z punktu czy tez przestrzeni dualnych.

Interesujacymi rozwiazaniami sa metody analizujace sceny w przestrzeniach du-
alnych. Sposréd spotykanych rozwigzan na szczegdlng uwage zashuguja prace Koltuna
[4] i Nirensteina [7] opisane w rozdziatach 2.3.2 oraz 2.3.5. W pierwszej zaproponowano
wyznaczanie widocznych obiektéw sceny 2.5D w dualnej przestrzeni promieni 2D.
Druga publikacja opisuje doktadny algorytm wyznaczania widocznosci wykorzystujac
reprezentacje obiektéw i promieni w przestrzeni Pliickera.

2.3.1 Algorytm Schauflera i przestrzen zastaniajaca

Gernot Schaufler w [1] przedstawil wyznaczanie widocznych obiektow dzielac przestrzen
sceny 1 taczac obszary ograniczajgce widocznosé . Algorytm operuje na scenach zaréwno
2.5D jak i 3D, opiera sie on na dyskretyzacji sceny na komorki (np. szesciany) a nastep-
nie okredleniu, ktore z nich sg widoczne. Ogoélny zarys algorytmu jest nastepujacy:

e w wolumetrycznej reprezentacji sceny, takiej jak drzewa 6semkowe (ang. oct-
trees) i drzewa czwoérkowe (and. quadtrees) oznacza sie liscie jako puste,
wypelnione i brzegowe. Puste odpowiadaja obszarom niezawierajacym ele-
mentow sceny. Jako wypelnione oznaczone sg woksle (ang. voksel) w catosci za-
warte w obiektach. Pozostalymi sg brzegowe, dla ktérych dodatkowo wprowadza
sie doktadniejszy podziat co powoduje wicksza gltebokosé drzewa,

e algorytm dla wybranych obiektéw oznacza zastoniety przez nie obszar,

e w celu optymalizacji obliczen jako obiekt zastaniajacy traktuje sie fragment prze-
strzeni w ksztalcie prostopadtoscianu,

e wybodr obiektéow, czyli wypelnionych lisci, blokujacych promienie z obszaru
obserwatora nastepuje wedtug kryteriéw: odlegtosci od obserwatora i rozmiaru.
Blizsze obiekty ograniczaja wickszy obszar, natomiast duze sa na mniejszej gle-
bokosci w drzewie,
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e wybrany zastaniajacy obszar jest odpowiednio powiekszany o przylegte do
niego wypelnione wierzchotki tworzac w ten sposob duzy obiekt ograniczajacy
widocznosé (occluder fusion). Zastoniete wierzchotki traktowane sa rowniez jako
wypelnione i stuza powiekszaniu prostopadtoscianu (rysunek 5),

e definiujac odpowiednio ptaszczyzny styczne do zastaniajacego obszaru i obser-
watora oraz trawersujac drzewo zaznaczane sa niewidoczne wierzchotki. Hierar-
chiczna struktura danych pozwala na skrocenie $ciezki w drzewie.

Rysunek 5: Rozszerzanie obiektu zastaniajacego o wypeklione woksle. Dla obszaru O
rozszerzone obiekty A i B wyznaczaja cienie a1 3. Obszar - jest zastoniety dopiero po
powickszeniu B o C, ktéry bedac w cieniu A traktowany jest jako wypelniony obszar.
Sklasyfikowanie C' jako obszar pusty, wypelniony lub brzegowy nie jest uwzgledniane.

W publikacji zostaly opisane réwniez specyficzne metody rozszerzania obiektu za-
staniajacego oraz reprezentacji zastonietego obszaru dla scen typu 2.5D oraz 3D.

2.3.2 Selekcja widoczno$ci w dualnej przestrzeni promieni

Vladen Koltun, Yiorgos Chrysanthou i Daniel Cohen-Or zaprezentowali w [4] algorytm
wyznaczania widocznych elementéw sceny z obszaru w przestrzeni dualnej promieni.
Jest on zwiazany z problemem przechodzenia ztozonej sceny i wyswietlania jej w czasie
rzeczywistym (ang. online walkthrough). Zalozenia oraz idea rozwiazania sg nastepu-

jace:

e rozpatrywanie scen typu miasto (2.5D), dla ktorych okreslamy podzial na pro-
stopadlosciany (komorki).

e zastosowanie kd-drzew do reprezentacji sceny.

e rozmiar obszaru, w ktorym porusza sie¢ obserwator jest tak dobrany, by czas
potrzebny na jego przejécie byt wystarczajacy do wyznaczenia PVS dla sgsied-
nich regionéw. Autorzy zaprezentowali system, w ktéorym wyznaczanie PVS
odbywa sie na serwerze, a wyniki przesytane sa do aplikacji klienta.

e zrezygnowano z fazy preprocesingu, ktorym wyznacza sie widoczne obiekty dla
wszystkich komorek.
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e dla danego obszaru obserwatora algorytm trawersuje kd-drzewo okreslajac dla
kazdego wierzchotka, czy bounding bor z nim zwiazany jest niewidoczny - co jest
zarazem warunkiem stopu przechodzenia Sciezki w drzewie.

e widoczno$¢ miedzy dwoma komoérkami zredukowana jest do widocznosci miedzy
dwoma krawedziami. Analizowana jest ona w dualnej dwuwymiarowej prze-
strzeni, w ktorej kazdemu promieniowi majacemu poczatek na jednej krawedzi i
przecinajacej druga odpowiada punkt w przestrzeni dualnej.

W ostatnim punkcie wykorzystane jest zalozenie o wymiarze sceny 2.5D, de facto
wymiar ten dotyczy wybranych obiektéw zastaniajgcych niewidoczne obszary np. fasady
budynkéw. Problem widocznos$ci miedzy dwoma komoérkami cell-to-cell zostal wiec
zmodyfikowany do nastepujacego zadania:

dla danych komoérek A i B i zbioru obiektow S (2.5D) wystarczy okresli¢
czy gorne krawedzie e, i ¢, komorek A oraz B sa calkowicie zastoniete
przez elementy z S (rysunek 6).

eb_ | _ €b
ea ea
ebA (1,1) T (1,1)
Si
>
(0,0) €a

Rysunek 6: Krawedzie e, i e, oraz obiekt zastaniajacy s;. U géry w uproszczonej scenie,
na dole w dualnej przestrzeni promieni

Zauwazajac, ze obiekty (powierzchnie) z S przecinajac ptaszczyzne przechodzaca
przez e, i e, determinuja zbior odcinkow S’ redukujemy problem widocznosci nastepu-

jaco:

e definiujemy zbior punktow RS = {(z,y):0 < uz,y <1}, w ktéorym punktowi
(x,y) odpowiada odcinek taczacy e,(x) z ey(y).

e ograniczajac sie tylko do promieni miedzy e, i e, elementowi s € S’ odpowiada
zamkniety obszar RS w postaci trapezu lub dwoch trojkatow (rysunek 6)
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e generujac obraz (bitmape) elementéw S’ w RS stwierdzamy, czy komorki A 1 B
sa widoczne:

— tak - jesli istnieje niezamalowany punkt w RS

— nie - jesli RS zostal w calosci pokryty elementami S’

Wybor obiektow 2.5D zastaniajacych obszary sceny zostat opisany m.in. w pracach
Isabla Navazo [15] i Vladena Koltuna [14].

2.3.3 Grupowanie i odrzucanie tylnych Scian

Jedna z metod redukcji liczby widocznych elementéw jest odrzucanie obiektow odwro-
conych tytem. Poprzez dyskretyzacje obszaru obserwatora i reprezentacje wybranymi
punktami mozemy odrzu¢ te elementy, ktore widoczne sa z tytu ze wszystkich punktow.
Dziegki czemu mozemy wykorzysta¢ algorytmy widocznosci dla pojedynczego punktu.
Roéwniez przeprowadzenie testu widocznosci z tytu dla jednej plaszczyzny okazuje sie
byé¢ trywialnym zadaniem. Zaktadajac, ze komorka obserwatora jest zadana punk-
tami ekstremalnymi bmin i bmax analogicznie jak w opisanym algorytmie frustum
culling wystarczy zbada¢ warto$é¢ rownania ptaszczyzny 7 dla odpowiedniego punktu
ekstremalnego p-vertex.

Jatin Chhugani w pracy doktorskiej[10] przedstawil m.in. interesujacy algorytm
odrzucania obiektow ,,Cell-based hierarchical back-face culling” . Wykrywanie tylnych
Scian opiera sie o konstrukeje stozkow (and. bounding cone) zawierajacych wektory nor-
malne oraz wektory do obserwatora, a nastepnie badanie katow miedzy nimi (rysunek

7).

Nt Ni+1 5
\“ v

Nv

(0,0,0)

Rysunek 7: Po lewej: tworzenie otaczajacego stozka bounding cone. Po prawej: uzycie
stozkow i1 katow I', v do wyznaczenia widocznych obiektéw z przodu i z tytu.

Algorytm jest nastepujacy:

e danymi sa komorka obserwatora O oraz zbiér figur ptaskich zamknietych w pro-
stopadtoscianie B.

e wektory normalne powierzchni elementéw zamykane sa w stozku (podobna kon-
strukcja opisana jest w pracy Sederberga [16]):
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— stozek reprezentowany jest przez pare wektor A; oraz kat 6;, stozek ten
zawiera wszystkie wektory, ktore tworza z A; kat co najwyzej 6;.

— zaczynajac od pierwszego wektora N; budowany jest stozek reprezentowany
przez wektor A; = Ny i6; =0.

— wyznaczajac kolejne A; 1 i 0,11 sprawdzamy kat miedzyA; a N;41. Jesli
Ni.1 jest wewnatrz stozka to A;.1 = A; oraz 6,41 = ;. W przeciwnym
przypadku nalezy stozek rozszerzy¢:

Aisi = (Ny+ Nigr)/ [|Ne + Niga || (6)
005(9i+1) = A1 Nip

gdzie N; lezy na plaszczyznie zawierajacej A; i N;y 1, tworzy kat 6; z A; i
lezy po drugiej stronie wektora A; co N;.; (por. rysunek 7, « jest katem
miedzy wektorami A; i Nijq).

(N, 0) zawiera wektory normalne i zaczyna si¢ w dowolnym punkcie komorki B,
oznaczamy go przez v

z v budowany jest (V,, «,) - stozek widocznosci (ang. wvisibility cone) zawierajacy
promienie z v w dowolny obszar O.

wyznaczane sg: najmniejszy i najwiekszy kat miedzy dowolnymi wektorami nor-
malnymi a wektorami widocznosci:

L, = cos ' (N-V,)+0+a, (7
Y = cos ' (N-V,) —0—a,

obliczajac (V,, o) i katy 'y, v, w naroznikach B znajdujemy wartosci ekstremalne:
maksymalny I' i minimalny ~.

jesli v jest wiekszy od /2, to wszystkie elementy sa zwrocone tytem. Jesli I jest
mniejszy od 7/2 wtedy wszystkie elementy zwrdcone sa przodem. W przeciwnym
przypadku zbior elementéw jest dzielony na poét i rekurencyjnie analizowany.

2.3.4 Wykorzystanie widocznosci z punktu w algorytmie Wonki

Bazujac na rozwiazaniu widocznosci z punktu [5] Wonka, Schmalstieg wraz z Michaelem
Wimmerem rozszerzyli algorytm na wyznaczanie widocznosci z obszaru w [6]. Algo-
rytm jest konserwatywny, a idea sprowadza sie do dyskretyzacji sceny na komorki, dla
ktorych wyznaczany jest zbior charakterystycznych punktéw obserwatora. Nastepnie
jest obliczana widoczno$é sceny jako suma wynikoéw widocznosci z punktow.

Rozwiazanie opiera si¢ o nastepujace obserwacje:

warunkiem wystarczajacym widocznosci z prostopadtos$cianu jest widocznosé z
jego Scian,

obiekt moze zosta¢ blednie sklasyfikowany jako zastoniety jesli jest widoczny
jedynie z obszaru miedzy punktami z P,
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e obliczenie konserwatywnej aproksymacji widocznosci jest mozliwe poprzez zba-
danie jej dla dyskretnego zbioru punktow P, gdy dokona sie korekcji zastanianego
obszaru,

e zwezona powierzchnia zastaniajaca o € determinuje mniejszy cien. Spelniona jest
wtedy wlasnosé:

obiekt B sklasyfikowany jako zastoniety przez A’ (bedacy skurczonym
A o €) z punktu obserwatora O pozostaje zastoniety przez A (oryginalny
obiekt) z dowolnego punktu O’ przesunietego o co najwyzej € punktu

O (|]O"= 0] <¢) (rysunek 8).

Rysunek 8: Obiekty B zastoniety przez zmniejszony A’ jest réwniez niewidoczny z
otoczenia O, poniewaz przystania go A

Nalezy zwroci¢ uwage, ze zwezanie obiektow zastaniajacych rézni sie dla bryt i po-
wierzchni. Zmniejszenie o € jest wystarczajace dla obiektow wolumetrycznych (ang.
volumetric occluder), co zostalo udowodnione w publikacji Wonki [5]. Natomiast w
przypadku ptaskich obiektow zastaniajacych (ang. planar occluder) zwezanie w kazdym
kierunku determinowane jest przez pozycje obserwatora i obiektu. Zatem analogiczne
zmniejszanie jak dla bryl nie jest wystarczajace. Przyktad takiej sytuacji jest na ry-
sunku 9. Cien « figury ptaskiej A’ (powstatego przez ,skurczenie” A o €) zawiera
elementy B i C'. Przesuniecie obserwatora o € sprawia, ze B staje sie widoczny. Cien
0 jest wlasciwie wyznaczony, tj. kazdy obiekt w nim zawarty nie jest widoczny z
otoczenia O.

Algorytm selekcji widocznych obiektoéw sceny mozna opisaé¢ nastepujaco:

1. podziat sceny na komoérki i wybdr €. Dla scen 2.5D zastosowano triangulacje
Delaunaya.

2. zwezanie obiektow zastaniajacych w zaleznosci od e
3. dla kazdej komorki sceny:

e okreslenie wystarczajacej liczby probek reprezentujacych komorke
e wyznaczenie widocznosci z kazdego punktu

e wyznaczenie widocznosci z komoérki poprzez scalenie PVS uzyskanych dla
punktow lub wygenerowanych cieni (rozdzialt 2.2.4)
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Rysunek 9: Obiekt B € « zastoniety przez zmniejszony A’ o € jest widoczny z otoczenia
O'. Po uwzglednieniu polozenia obiektu wzgledem obserwatora obiekt C' € 3 pozostaje
zastoniety przez A

2.3.5 Doktadny algorytm widoczno$ci Nirentseina

Nirenstein, Blake i Gain opublikowali interesujacy algorytm odrzucania niewidocznych
obiektow |7]. W przeciwienstwie do duzej liczby rozwiazan aproksymacyjnych jest to
algorytm doktadny, tj. wyznaczajacy tylko widoczne obiekty z zadanego obszaru. W
praktyce, z powodu btedéw numerycznych powstajacych przy reprezentacji i obliczeni-
ach, wynik nie gwarantuje jednak selekcji wszystkich widocznych elementéw. Algorytm
jest w stanie operowac¢ na bardzo ztozonych scenach, w ktérych liczba trojkatow jest
rzedu miliona. Idea algorytmu polega na reprezentacji wielokatéw (z przestrzeni R3) i
linii przecinajacych je L (ang. stabbing lines) w pieciowymiarowej przestrzeni euklides-
owej otrzymanej z przestrzeni Plickera a nastepnie odejmowaniu zastonictych linii ze
zbioru L.

Wspoéirzedne i hiperppowierzchnia Pliickera

Wspotrzedne Pliickera sa niezwykle uzyteczne w operacjach na liniach i promieniach
3D jako wektorach w szesciowymiarowe]j przestrzeni. Przeksztalcenie IT : RS — P° jest
zdefiniowane nastepujaco:

Niech [ bedzie promieniem (lub linia) przechodzaca przez punkty P,Q € R?

w postaci odpowiednio (p, py,p:) 1 (¢us @y ¢2)-
Wtedy H(l> = (7T07 1, T2, T3, T4, 7T5)7 gdZie:

To = 4y — Dx T3 = (GzPy — QyP:z
T = qy— Dy Ty = GuP:— QD2 (8)
T = {4z — Pz Ts = (QyDPxz — qzPy

Wtlasnosci:

e wspohrzedne (mg, 71, w2, T3, T4, T5) sa jednorodne, tj. przemnozenie wszystkich
wspotrzednych przez dowolny dodatni skalar daje w wyniku inng reprezentacje
tej samej linii,

e przeksztalcenie II jest réznowartosciowe,
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e przestrzen rzutows P° mozna interpretowa¢ jako R® wraz z polaczonymi hiper-
plaszczyznami w nieskonczonosci w dodatnim i ujemnym kierunku. Zgodnie z
pierwszym punktem szostke mozna podzieli¢ przez wybrana wspotrzedna np. s,
nastepnie operowaé na elementach R5. Nalezy dodatkowo zadbaé¢ o odpowiednig
przesuniecie linii w scenie by nie dzieli¢ przez zero.

e nie kazdy punkt (szostka wspotrzednych Pliickera) odpowiada linii w 3D,
e definiujac nastepujaco iloczyn skalarny 7 i z (7,2 € P°):

D.(z):P° - R
D, (x) = moxs + T124 + Toks + T3To + T4x1 + T2

(9)

zbior rozwiazani D, (z) = 0 okresla dualng plaszczyzne m w P - hiperplaszczyzne
Pliickera.

W celu ograniczenia zbioru do obrazu linii 3D wzgledem przeksztatcenia I definiuje sie
hiperpowierznie Pliickera. Idea polega na ograniczeniu si¢ do elementéw dla ktorych
iloczyn skalarny z samym soba daje w wyniku 0, mianowicie:

G={rer:D,(x)=0} \ {0} (10)

Praktyczne zastosowanie wspo6lrzednych Pliickera

Badanie wartosci iloczynu skalarnego D, (x) umozliwia okreslenie potozenia wzgle-
dem siebie dwoch promieni. Jesli wartos¢ wynosi zero, wtedy dwa promienie przecinaja
sie. W przeciwnym przypadku drugi promien mija pierwszy z prawej lub lewej strony
(patrzac na promieni ,z gory” przypomina to obieganie zgodnie z ruchem wskazowek
zegara lub w strone przeciwna). Interpretacja graficzna przedstawiona jest na rysunku
10.

ak ak

/ / /
!> s

Dria)(I(b)) >0 Dria)(Il(b)) =0  Drna)(Il(b)) <0

b

Rysunek 10: Interpretacja graficzna wartosci iloczynu skalarnego Dry(y(I1(D)): a i b -
promienie w R3. Po lewej: promien b omija a w przeciwng strone do ruchu wskazowek
zegara. Na $rodku: a i b incydentne. Po prawej: promieri b omija a zgodnie z ruchem
wskazowek zegara.

Dzieki powyzszym wlasnosciom dos¢ tatwo zaimplementowaé jest algorytm wykry-
wania przeciecia promienia r z wielokatem 7' . Traktujac krawedzie figury jako odpowied-
nio skierowane promienie e; promien r przecina 1" gdy:

D.(II(r)) > 0,V7 € {Il(e1),I(ea), - - -, I(en)} (11)
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Innym ciekawym algorytmem wykorzystujacym wspotrzedne i przestrzen Pliickera jest
wyznaczanie przeciecia promienia z zastosowaniem SIMD [21].

Algorytm wyznaczania widocznych obiektow

Idea selekcja widocznych obiektow jest zblizona do rozwigzania Vladena Koltuna
[4] (rozdzial 2.3.2):

e widoczno$¢ wyznaczana jest poprzez testowanie czy para powierzchni jest wza-
jemnie widoczna,

e powierzchnie sa wzajemnie widoczne gdy istnieje promien je przecinajacy, ktory
nie trafia w zaden obiekt zastaniajacy. Analogicznie do algorytmu Koltuna, w
ktorym w scenach 2.5 wymiarowych problem redukuje sie do wzajemnej wido-
cznosci gornych krawedzi,

e zbior rozpatrywanych linii L miedzy para ptaszezyzn (wielokatow) reprezentowany
jest w hiperpowierzchni Pliickera. Jest to zbiér spelniajacy nieréwnosé 11 dla
dwoch wielokatow.

e kazdy zastaniajacy wielokat - de facto trojkat - blokuje cze$¢ linii O; redukujac
zatem zbior mozliwych promieni L.

e para plaszczyzn jest wzajemnie widoczna gdy L pozostanie niepuste,

e do odejmowania zbioréw zastosowano algorytm oparty o CSG (ang. Constructive
Solid Geomtery) w 5D.

2.4 Poziom szczegbdlowosci

Wprowadzenie poziomu szczegotowosci LOD (ang. Level of detail) jest naturalng
metoda upraszczania geometrii sceny polegajacg na wyswietlaniu uproszczonych mod-
eli znajdujacych sie daleko od obserwatora. W przypadku scen, ktorych ztozonosé
graniczy z pojemno$cig pamieci operacyjnych komputerow klasy PC, stosowanie LOD
jest konieczne. Ponizej przedstawiona zostata klasyfikacja spotykanych rozwiazan.

Systemy stosujace poziomy szczegdtowosci LOD oraz aproksymacje modeli sceny,
mozna podzieli¢ na:

e dyskretne (statyczne) - wyznaczaja zbior aproksymacji kazdego modelu, wraz
z wspoétczynnikiem bledu. Podczas dzialania zamieniaja odpowiednia wersje
obiektu w zalezno$ci od obserwatora tj. orientacji obiektu i odlegtosci od niego,
np. przez zbadanie ilorazu odleglosci i wspotezynnikow btedu. O stosowanych
technikach mozna przeczyta¢ m.in. w pracach C.Eriksona, D. Manocha [23] opisu-
jacej kontrukcje LOD dla duzych statycznych (jak i dynamicznych) scen. Natomi-
ast w pracy M.Garlanda i P. Heckberta [24] przedstawiono metody aproksymacji
powierzchni.

e ciagle (progresywne) - wyznaczaja hierarchie aproksymacji oryginalnego modelu.
Opis metody mozna znalezé w pracy H. Hoppe [25].
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e zalezne od widoku - sg rozszerzeniem systemu ciagltego o uwzglednienie orientacji
modelu wzgledem obserwatora. Dzieki czemu blizsza czes¢é modelu jest wyswi-
etlana z wieksza dokladnoscia. Metoda jest szczegoélnie uzyteczna w przypadku
duzych a zarazem szczegétowych modeli. Zostata on opublikowana w pracy Xia
i Varshneya [26].

3 Ukierunkowane probkowanie widocznosci

Powstanie efektywnych algorytmoéw sledzenia promieni jak np. [13]| otworzylo droge
metodom selekcji widocznych obiektéw opartych na sledzeniu promieni. Takim al-
gorytmem jest ukierunkowane probkowanie widocznosci GVS (ang. Guided visiblility
sampling) opublikowane w pracy (3| autorstwa: Peter Wonka, Michael Wimmer, Kaichi
Zhou, Stefan Maierhofer, Gerd Hesina i Alexander Reshetov. Opracowana metoda
stuzy do rozwiazywania nastepujacego problemu:

e majqgc dany zbior trojkgtow T okreslic, ktore sq w catosci lub czeSciowo widoczne
z wyznaczonego obszaru (powierzchni)

Bazujac na modelu promieni i przecinanych obiektéw rozwiazanie mozna przyblizy¢
do obserwatora, ktory oglada scene w dowolnych kierunkach i porusza sie po wyznac-
zonej powierzchni. Utozsamiamy w ten sposob widoczny w danym kierunku obiekt z
promieniem i tréjkatem w 3D.

Moéwiac bardziej formalnie specyfikacje zadania mozna przedstawié¢ nastepujaco:
Niech:

e () - zbior wszystkich promieni wychodzacych z zadanego obszaru,
o T - zbior trojkatow sceny,

e v : ) — T funkcja widocznosci zdefiniowana nastepujaco:
v(r) jest pierwszym trdjkatem przecietym przez promien r

Trojkat t € T jest widoczny, wtedy i tylko wtedy gdy istnieje trafiajacy w niego
promien r € €.

Zadanie wyznaczania widocznych obiektéw sprowadza si¢ wiec do znalezienia zbioru
promieni ¥ takiego, ze v(V) zawiera wszystkie widoczne trojkaty. Oczywistym faktem
jest, ze sposrod mozliwych rozwiazan lepszymi sa takie, ktore zawierajg mniejsza ilosé
promieni ({2 jest takze rozwiazaniem).

Algorytm GVS jest agresywna technikg, ktora skupia sie na wyznaczeniu w
sposob przyrostowy zbioru V¥, ktory okresla widoczny podzbioér sceny 7;. Bazujac na
znalezionych juz obiektach wyznacza kolejne promienie eksplorujace otoczenie T; jak
rowniez luki. W opublikowanej pracy rozwiazanie jest ztozeniem trzech nastepujacych
algorytmow:

e random sampling - losowe generowanie promieni, uzywane w celu zainicjowania
kolejnych algorytmow.
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e adaptive border sampling - (adaptacyjne probkowanie krawedzi) - odpowiada za
szybkie analizowanie sasiednich trojkatow poprzez probkowanie krawedzi znale-
zionego obszaru (tj. otoczenia znalezionych widocznych trojkatow).

e reverse sampling (probkowanie wstecz) - w celu zbadania obszaréw sceny beda-
cych na granicy widocznosci (np. luki miedzy trojkatami).

Kolejne podrozdzialy zawieraja szczegdtowy opis wyzej wymienionych algorytmow.

3.1 Proébkowanie pseudo-losowe

Podstawowym i za razem najprostszym algorytmem wyznaczania promieni znajduja-
cych widoczne obiekty sceny jest losowanie z rozktadem jednostajnym elementu ze
zbioru (2. Algorytm sktada sie z dwoch faz:

1. losowanie punktu na ptaszczyznie, tj potozenia poczatku promienia
2. losowanie kierunku promienia.

Nalezy jednak zwréci¢ uwage na drugi punkt, gdyz wylosowany kierunek nie moze by¢
dowolny. Mianowicie wyznaczany wektor jest akceptowalny, tylko wtedy, gdy tworzy
wektorem normalnym ptaszczyzny kat co najwyzej 90°. Warunek taki jest spelniony
gdy U o1, gdzie n jest wektorem normalnym powierzchni, po ktérej porusza sie ob-
serwator. Przykladow rozwiagzan jest wiele, a wybor nie ma duzego znaczenia, gdyz
algorytm GVS korzysta gtownie z metod opisanych w nastepnych rozdziatach.
Zastosowany algorytm wyznaczania losowego promienia (potozenia i kierunku):

u==¢&, v==&, ¢=2n&, 0O=arcsinéy

gdzie &; € [0,1] sa wartosciami pseudolosowymi (sekwencje Haltona [20]).

3.2 Adaptacyjne prébkowanie otoczenia

Probkowanie adaptacyjne krawedzi (ABS, ang. adaptive border sampling) jest algo-
rytmem opartym na mutacji promieni, ktory w oparciu o trafiony trojkat wyznacza
deterministycznie kolejne promienie. ABS analizuje przylegte trojkaty w scenie nie
zmieniajac potozenia poczatku promienia.

Ideg algorytmu jest dopasowanie probkowania do geometrii sceny, tak aby dalekim
ztozonym obszarom, skupiajacym wicksza liczbe trojkatow, wyznaczyé wiecej promieni
skierowanych w ich kierunku. W ten sposoéb nie zostang pominiete obiekty mate lub
potozone daleko od obserwatora. Prawdopodobienstwo znalezienia ich jest wieksze
niz w przypadku algorytméw probkujacych regularnie. Warto zauwazy¢, ze badanie
otoczenia znalezionego obiektu jest idealng metoda do wyznaczania widocznych frag-
mentow powierzchni, ktora to w praktyce jest po prostu zbiorem przylegajacych troj-
katow.

Algorytm jest nastepujacy:

Trojkat t trafiony pierwszy raz przez promien r jest minimalnie powickszany. Bazu-
jac na otrzymanym wielokacie ', probkowanie odbywa sie wzgledem jego krawedzi. W
przypadku gdy w koncach badanego odcinka zostaty znalezione rozne obiekty nastepuje
jego podzial. Rekurencyjnie analizowane zostaja kolejne czesci krawedzi (rysunek 11).
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(0

Rysunek 11: Probkowanie krawedzi e. Promienie r i o skierowane w kierunku koricow
odcinka e trafiaja w dwa rozne obiekty. Determinuje to rekurencyjne dzielenie odcinka
i kolejne probkowania r;, r; itd.

powierzchnia

Rysunek 12: Powiekszanie trojkata. Po lewej: probkowanie otoczenia skutkuje
znalezieniem przylegtych trojkatéw powierzchni. Po prawej: wyznaczanie otoczenia
t', wektory d;,; sa prostopadle do wektora v,,.

Ksztalt t' jest wyznaczany nie tylko na podstawie bazowego tréjkata t. Ze wzgledu
na niedoktadnosci obliczenn numerycznych i bledéw zaokraglen pod uwage brane sa
réwniez:

1. ulozenie trojkata wzgledem obserwatora, tj. jak trojkat jest obrocony

2. odlegtosé trojkata od obserwatora - majace kluczowe znaczenie dla dalekich obiek-
tow

Uwzgledniajagc dodatkowo mate odlegtosci miedzy krawedziami z ¢’ a ¢ istnieje ryzyko,
ze promienie trafia znowu w bazowy trojkat . Zaproponowana metoda wyznaczania
' jest nastepujaca: Dla kazdego wierzchotka trojkata (rysunek 12) p; wyznaczane sa
trzy wektory d;;—1, d; i, d; i11. Wektory te sa prostopadte do promienia padajacego na
wierzchotek trojkata oraz odpowiednio do krawedzi trojkata (z wyjatkiem d; ;, ktory jest
kombinacja dwoch sasiednich wektorow). Poprzez przesuniecie wierzchotkéw odpowied-
nio o wektory d; ; zostaje wyznaczonych 9 wierzchotkow wielokata t' (de facto tamanej,
gdyz wszystkie wierzchotki z; ; nie leza na jednej plaszczyznie):
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dz’,i—l = NO?”m((pi - xp) X (pz'+1 —pz‘))
di,i+1 = NO?"m((Pz‘ - $p) X (pi _pi—l))

4. = Norm(d; ;1 + diiv1) if diji1-digra >0 (12)
e Norm((p; — xp) X dii—1 + diiy1 X (pi — xp)) else
Tij = pite-|pi—xyl-di

gdzie Norm jest operatorem normalizacji. Nalezy zwroci¢ uwage, ze w przypadku
gdy trojkat jest widoczny z tytu nalezy zamieni¢ wektory d; ; na przeciwne.

Wada algorytmu jest brak mozliwosci analizy luk miedzy tréjkatami, ktore widoczne
sa jedynie z innego punktu sceny. Roéwniez obszary sceny z wieloma matymi nie potagc-
zonymi siatkami trojkatéow sa niemal niemozliwe do eksplorowania. Sceny zawierajace
losowo utozone trojkaty, np. las, w ktorym kazdy lis¢ jest reprezentowany przez np. 2
trojkaty, pozostaja ciagle duzym wyzwaniem.

3.3 Proébkowanie wsteczne

Probkowanie wstecz stuzy generowaniu promieni w obszary bedace na granicy wido-
cznosci. Glowna wada oméwionego w poprzednim podrozdziale rozwigzania byt brak
mozliwosci penetrowania luk miedzy trojkatami. Luki takie widoczne byly jedynie
z innych punktéow sceny. Cho¢ pytanie, czy z danego obszaru widzenia znaleziona
luka jest widoczna jest de facto problem widoczno$ci, to okazato sie mozliwe w wielu
przypadkach wyznaczenie wektora omijajacego blizszy trojkat, ktory skierowany jest
w niezbadany obszar (rys 13).

tl

Rysunek 13: Probkowanie luki miedzy dwoma trojkatami. Po lewej: znalezione prze-
ciecie promienia z trojkatem (punkt Es), przewidywane trafienie (punkt F;) wygen-
erowane podczas adaptive border sampling, widoczne trafienie w blizszy trojkat. Po
prawej: wygenerowanie nowego promienia, ktory wyznacza nowy zarodek dla ABS,
wektor 7" lezy na plaszczyznie wyznaczonej przez punkty Fp, Fo i O.

Dziatanie algorytmu jest nastepujace. Niech (patrz rysunek 13):
e [5 - punkt przeciecia promienia z trojkatem ¢,

e F - jeden z punktow nalezacych do powiekszenia trojkata ¢,
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e O - punkt poczatkowy - polozenie obserwatora,

jesli podczas probkowania krawedzi t' zostanie znaleziony obiekt blizszy, wyznacz pro-
mien r ktory:

e lezy na plaszezyznie wyznaczonej przez punkty Fy, Ey i O
e omija blizszy obiekt przechodzac jak najblizej jego krawedzi

Przeciecie promienia r z obszarem widzenia wyznacza nowy punkt dla obserwatora,
za$ promien o przeciwnym zwrocie penetruje luke. Staje sie on kolejnym punktem
dyskretyzacji obszaru obserwatora i zarazem zarodkiem dla probkowania adaptacyj-
nego.

3.4 Algorytm GVS

Z potaczenia powyzszy trzech metod powstatl nastepujacy algorytm GVS wyznaczania
widocznych obiektéw z obszaru:

main()
while (not finished)
(xp,xd) = generate_random_ray()
handle_ray((xp,xd))
while (not queue.empty())
adaptive_border_sampling(queue.dequeue()))

handle_ray (x)
if v(x) not in PVS
PVS+=v(x)
queue+=x

adaptive_border_sampling(x)
t’ = enlarge(v(x), eps)
for each point(p) in t’
handle_ray((xp, p-xp))
for each edge(pl, pr) in t’
subdiv_edge(pl, pr)

subdiv_edge(pl, pr)

x = (xp, pl - xp)

y = (xp, pr - xp)

check_discontinuity(x)

check_discontinuity(y)

if v(x) = v(y) or |hit(x) - hit(y)| < eps
return

else
p = (pl + pr) /2
handle_ray((xp, p - xp))
subdiv_edge(pl, p)
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subdiv_edge(p, pr)

check_discontinuity(x)
if |predicted_hit(x) - xpl| - |hit(x) - xp| > tresh
xn = reverse_sampling(x)
if start(xn) in view cell
handle_ray(xn)

gdzie:
e v(x) - pierwszy trojkat przeciety przez promien x,
e hit(x) - punkt trafienia promieniem x trojkata v(x)

e predicted hit(x) - przewidywany punkt trafienia. W przypadku rozszerzania
trojkata ¢ punkt ten okreslany jest jako przeciecie promienia x z plaszczyzna
zawierajaca trojkat t. Rownie dobrym przyblizeniem jest punkt lezacy na t'.

Koniec algorytmu nastepuje, gdy zostanie spelniony jeden z nastepujacych warunkow:
e wygenerowano 10 milionéw promieni,

e nie wiecej niz 50 nowych trojkatow zostato znalezionych po sprawdzeniu 1 miliona
promieni.

4 Rozszerzenia algorytmu GVS

4.1 Obszar obserwatora

Stosunkowo tatwo jest uogélnic¢ pole widzenia view cell na dowolny obszar. Rozszerzenie
sprowadza si¢ jedynie do znalezienia algorytmu generowania probek losowych z nowego
otoczenia obserwatora. Dodatkowo dla potrzeb algorytmu probkowania wstecznego
(ang. reverse sampling) nalezy zwroci¢ uwage, by znajdowanie przecie¢ promienia z
komorka obserwatora byto tatwo obliczalne. Efektywnym rozwigzaniem jest wybranie
prostopadtoscianu AABB (rysunek 14).

. max

P>

P1

min

Rysunek 14: Prostopadtoscian jako obszar widzenia

Losowanie z rozktadem jednostajnym nastepuje wedlug ponizszego algorytmu:
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e wylosuj sciane P; z prawdopodobienistwem

ppb(P;) = area(P;)/ ’; area(Py,)

gdzie area(P) to pole powierzchni P
e wylosuj promieri wychodzacy ze Sciany wyznaczajac|19]:

— (u,v) - poczatek promienia, lezacy na P,
— 11,79 - (pseudo) losowe liczby z przedziatu [0, 1]

— oblicz losowy wektor jednostkowy (z uwzglednieniem wektora normalnego

powierzchni P;) np.:
re = cos(2mry)y/1 — 13
ry = sin(2wry)y/1—1r3

r, = T

Powyzsze wartosci odpowiadaja powierzchni z wektorem normalnym 7 =
[0,0,1]. W pozostatych przypadkach obliczenia sa analogiczne (otrzymane
warto$ci mozna tez odpowiednio przestawi¢ lub tez przemnozy¢ przez -1 by
zmieni¢ zwrot wektora).

Przeciecie promienia z bounding boxem jest jednym z podstawowym zadan w grafice
komputerowej. Jego rozwiagzanie pozwala na weryfikacje, czy dany promien omija scene,
czy tez skierowany jest w jej wnetrze. Zatem do sprawdzenia czy promien wsteczny
przecina obszar obserwatora mozna zastosowac efektywny algorytm Liang-Barsky Line
Clipping 2.

4.2 Klasyfikacja promieni

Generowane przez GVS promienie, dzieki ktérym znajdowane sa kolejne widoczne ele-
menty sceny, mozna sklasyfikowaé¢ nastepujaco:

e wsteczne - penetrujace nieciaglosci (luki) w probkowaniu wstecznym,

e punktowe i krawedziowe - skierowane w punkty i krawedzie wyznaczone przez
probkowanie adaptacyjne otoczenia

e losowe - promienie inicjujace, wyznaczane przez probkowanie losowe.

Warto zauwazy¢, ze czas dzialania algorytmu $cisle zwigzany jest z liczbg promieni.
Zakladajac niewielki rozmiar PVS wzgledem sceny? i liczby rozpatrywanych promieni
(zdeterminowanej przez sam algorytm oraz warunek stopu) czas dzialania algorytmu
uzalezniony jest od:

e liczby losowych promieni,

27rodlo: http://www.siggraph.org/education /materials/HyperGraph /scanline/clipping/cliplb.htm
3W zaprezentowanych wynikach w [3] wyznaczany PVS stanowil 0,1% calej sceny.
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e promieni skierowanych w krawedzie, de facto liczby réznych obiektéw wykrytych
przy jej analizie.

Chceac otrzymaé¢ w krotszym czasie PVS, nawet za cene wiekszego bledu, nalezy zatem
ograniczy¢ wystepowanie powyzszych dwoch przypadkow. Osiagnaé to mozna poprzez
ograniczenie maksymalnej liczby promieni oraz modyfikacje algorytmu probkowania
adaptacyjnego poprzez:

e dobodr wartodci tresh okreslajacej minimalng dlugosé dzielonej krawedzi

e zmiane sposobu podzialu krawedzi zamiast dzielenia na pot.

4.3 Strategie probkowania krawedzi

Czas analizy otoczenia obiektu zwiazanej z probkowaniem punktéw i odcinkéw w
gltownej mierze zalezy od krawedzi, tj. liczby widocznych obiektéw, ktore przecinane sa
przez promienie skierowane w krawedz. Bardziej formalnie méwigc, czas poswiecany
przez algorytm na uwzglednienie krawedzi F)F, z punktu obserwatora O zalezy od
liczby obiektéw przecinanych przez wycinek /FE,OFE, ptaszczyzny wyznaczonej przez
punkty Ei,O, Es. Drzielenie krawedzi i rekurencyjne analizowane jej czesci zdetermi-
nowane jest przez dwa cele:

e znalezienie jak najwiekszej liczby widocznych obiektéow z O na krawedzi F, Es,

e wyznaczenie zastaniajgcego obszaru, bardziej formalnie: ograniczenie dtugosci
promieni przecinajacych odcinek, ktore wyznaczaja pusta przestrzen w plaszczyz-
nie F1OF,.

Glownym czynnikiem decydujacym o kolejnych podziatach krawedzi jest okresle-
nie czy promienie skierowane w jej konce trafiaja w ten sam obiekt T'. Z tego faktu
oraz z zalozenia, ze trojkaty sa obiektami wypuktymi, wynika, iz kazdy promien w od-
cinek trafi w T lub obiekt blizszy. Algorytm zatem nie znajduje doktadnie wszystkich
widocznych obiektow (zgodnie z jego klasyfikacja do agresywnych algorytmow wyz-
naczajacych widocznosé). Stad tez wniosek, iz okreslanie zastanianego obszaru stuzy
zredukowaniu liczby generowanych promieni przy analizie krawedzi. Drugim, mniej
znaczacym warunkiem stopu jest minimalny rozmiar krawedzi. Jej wielkos¢ ma oczy-
wisty wplyw na czas algorytmu.

Nalezy zwrocié tu rowniez uwage na fakt, ze dla wszystkich promieni krawedziowych
badane sa nieciagtosci sceny i inicjowany jest algorytm reverse sampling. Ponizsza
tabela 1 zawiera przykladows statystyke wyznaczanego PVS dla sceny sibenik.

Zbioér widocznych obiektow zostat wyznaczony dla otoczenia obserwatora, z ktorego
widok na scene jest na rysunku 15.

W kolejnych czesdciach rozdziatu przedstawiona zostala analiza oraz mutacje algo-
rytmu podziatu odcinka uwzgledniajace:

e maksymalng liczbe podziatow danego odcinka (tj. glebokosé rekurencji),
e odleglosci odcinka od punktu obserwatora,

e wykrywanie przylegtych obiektow.
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Tablica 1: Statystyka promieni algorytmu GVS dla sceny Sibenik zawierajacej 75 tys.
trojkatow.

rozmiar PVS 7,494
liczba promieni w krawedzie | 549,626
liczba promieni w punkty 22,482

liczba wykrytych nieciagtosci | 319,415
liczba promieni w nieciaglosci | 116,146

Rysunek 15: Widok z badanego obszaru obserwatora na zbiér widocznych obiektow.

Powyzsze modyfikacje przyczyniaja sie do przyspieszenia algorytmu analizy krawedzi
(poprzez redukcje liczby generowanych promieni) kosztem zwiekszenia prawdopodo-
bienistwa pominiecia widocznego elementu w trakcie obliczen.

4.3.1 Glebokosé rekursji

Modyfikacja warunku stopu: v(x) = v(y) or |hit(x) - hit(y)| < tresh poprzez
zwiekszenie wartosci tresh wplywa na gtebokosé rekurencji. Mniejsza wartos¢ powoduje
doktadniejszg analize, gdyz generowanie wiekszej liczby promieni wptywa na prawdo-
podobienstwo znalezienia obiektu. Z drugiej strony jednak zwicksza liczbe przypadkow
brzegowych, tj. probkowanie brzegdéw obiektéow przy ktorych wystapi¢é moga btedy nu-
meryczne. Zwiazane sg one z reprezentacja promienia i odcinka, jak réwniez z btedami
obliczenn. Konsekwencja moze by¢ ominiecie przystaniajacego obiektu i dodanie do
zbioru elementow, ktore sg niewidoczne. Przykladem takiej sytuacji jest probkowanie
otoczenia wierzchotkow trojkatow nalezacych do triangulacji powierzchni.

Zwiekszenie wartosci tresh zmniejsza prawdopodobieristwo trafienia obiektu, jed-
nak jednoczesnie znacznie przyspiesza dziatanie calego algorytmu.

Warto zauwazy¢, ze zmniejszenie maksymalnej glebokosci rekurencji o k£ wiaze sie ze
zwickszeniem tresh 2F razy, a zastosowana wartosé tresh w GVS wynosi w przyblizeniu
2714 ~6-1075.

W celu poréwnania algorytmoéow dla réznych wartosci tresh mozna okresli¢ prawdo-
podobienistwo trafienia obiektu ,lezacego na krawedzi”. Rozwazajac plaszczyzne wyz-
naczong przez probkowany odcinek i punkt obserwatora szansa trafienia obiektu jest
proporcjonalna do rozmiaru jego rzutu (rysunek 16). Ponizej zdefiniowano Rzut obiektu
na widoczny odcinek. Jest to podobna konstrukcja widocznosci miedzy dwoma od-
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cinkami w dualnej przestrzeni promieni jaka zostata opisana w rozdziale 2.3.2.

Niech:
e [ Es odcinek o dtugosci 1
e O - punkt poczgtkowy promieni.
e 7(t) - promien o poczgtku O przecinajgcy krawedz EyFEy w punkcie
Et)=FE +t- (B — E)
Odcinek wyznaczony przez punkty E(a) i E(b) jest rzutem obiektu T na odcinek Fy Es
wtedy 1 tylko wtedy gdy a 1 b sq odpowiednio minimalnym i maksymalnym elementem

zbioru:
Apr={t : r(t) przecina T }

O

Rysunek 16: Rzut obiektu T na odcinek F;FE5 z punktu O

Z powyzszej definicji wynika, ze promien r(z) trafia we wszystkie obiekty T;, ktorych
rzut na odcinek spetnia warunek: 0 < a; < = < b; < 1. Stad z szansa znalezienia
obiektu zwiazemy wartosé¢ P, - prawdopodobienstwo trafienia rzutu 7;:

Interpretacja graficzna jest nastepujaca. Na ukladzie wspotrzednych (b,a) kazdy
punkt (b;, a;) reprezentuje odcinek miedzy E(a;) a E(b;). Wprowadzajac ograniczenia:
a;,b; > 01 a;,b; < 1 oraz a; < b;, wszystkie mozliwe odcinki zawarte sa w trojkacie
wyznaczonym przez roéwnania: a < b, a < 1, b > 0. Zbior trafianych odcinkow
przez promien r(x) jest prostokatem o bokach x i 1 — z, zaczepionym goérnym lewym
naroznikiem w punkcie (z,z) (rysunek 17)

Rozwiazaniem problemu znajdowania najlepszego promienia (tj. o najwiekszej
szansie trafienia w obiekt) jest promien r(1/2). Badajac funkcje p(z) = 2z - (1 — z)
mozna wykazac¢, ze osiaga ona maksimum w punkcie x = 1/2 1 wynosi P, = 0.5 . Co
ostatecznie réwniez uzasadnia wyznaczanie podziatu na pot.

Zwigkszenie liczby promieni zwieksza szanse trafienia obiektu. Roéwnocze$nie zm-
niejsza sie prawdopodobienistwo pominiecia obiektu (przeciwne zdarzenie). Mozna
rozwazy¢ jedynie promienie wychodzace z danego punktu i przecinajace badang krawedz.
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Rysunek 17: Interpretacja graficzna prawdopodobienistwa trafienia przez r(z)

Na ich podstawie mozemy okresli¢ prawdopodobienstwo trafienia obiektu podczas prob-
kowania adaptacyjnego krawedzi. Ponizej pokazujemy, ze zmniejszenie gtebokosci
rekurencji d o 1 zwieksza szanse pominiecia o co najwyzej 2179

Niech A bedzie rzutem obiektu 7" na odcinek E; E, zaktadajac, ze

[ J |E1E2| == 1

e promienie w korice odcinka trafiaja w rozne obiekty. Jest to warunek konieczny
dla zainicjowania kolejnych podziatow

Niech X¥ bedzie zbiorem odcinkéw o dhugosci co najwyzej 27% przecinanych przez
promieni 7¥) (rysunek 18).

Rysunek 18: Interpretacja graficzna zbioréw XF. Po prawej zbior wszystkich odcinkéw
trafianych przez promienie przedstawiony jako suma zbioréw XF.

Zauwazmy, ze podczas dzialania algorytmu z kazdym wywotaniem (podziatem)
mozemy okresli¢ zbior XF. Wraz z pierwszym wywolaniem analizy krawedzi wyznac-

zony zostaje promieni ¥ = r(0.5). Zbior rzutoéw (tj. odcinkow), ktére przecinane sa

przez ¥ zawiera wszystkie elementy (a,b), takie, ze a < 0.5 i b > 0.5 bez ograniczenia
dtugosci odcinkéw. Interpretacja graficzna takiego zbioru przedstawiona jest na ry-

sunku 18. Wywolanie procedury dla lewej i prawej czesci inicjuje budowanie zbiorow
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X! i Xj. Ograniczenie dtugosci odcinkéw w nich zawartych determinuje uwzgled-
nienie tylko tych, ktérych nie przecina r{. W kolejnych krokach sytuacja si¢ pow-
tarza. Mianowicie wywolania rekurencyjne na poziomie k buduja roztaczne zbiory
X1, X5, ..., X5 . Tym sposobem zbior wszystkich trafianych odcinkéw mozna podzielic
na zbiory roztaczne. Jesli: X - zbiér wszystkich odcinkéw trafianych przez promienie

k
r;y, to

xX= U x/ (13)
i€K,jeD

Niech ZF okregla zdarzenie przeciecia promieniem r¥ odcinka o dtugosci co najwyzej
27% czyli odcinkéw zawartych w XF. Wtedy:

P(Zf) = 5}/8 (14)

gdzie S jest polem powierzchni zawierajacej odcinki X i wynosi: S¥F = (27%)2, a S
jest polem powierzchni zawierajacej wszystkie odcinki. (patrz interpretacja graficzna
na rysunku). Rozlacznosé zbiorow X* implikuje niezaleinoéé zdarzeri ZF. Wiec

P(ZENZ)=0 i#jV k#1 (15)

Zatem prawdopodobieristwo trafienia w odcinek wynosi przy maksymalnym poziomie
rekurencji d:

d
Pi=P( U Z)=> > PZ) (16)
ieK,je{l..d} k=1 1
Zmiana maksymalnej glebokosci wywotan rekurencyjnych o 1 powoduje zmiane
powyzszej wartosci:

Pi1 =33 P(Z) =P P(Z]) (17)

k=1 1

Szacujac sume po prawej stronie majaca maksymalnie 2¢ sktadnikow:

> Pz < S sifs =2 Tt = o 13

Biorac pod uwage fakt, ze podczas dziatania algorytmu poziom, na ktérym kolejne
podzialy nie sa juz uwzgledniane, nie zawsze jest maksymalny, P; maleje o s-27%, gdzie
s to liczba wystapien maksymalnych glebokosci rekurencji tj. de facto liczby spetnien
warunku |hit(x) - hit(y)| < tresh.

4.3.2 Odleglosé odcinka

Prosta modyfikacja algorytmu jest heurystyka polegajaca na uwzglednieniu odlegtosci
odcinka od obserwatora. Idea polega na generowaniu wiekszej liczby probek w obiekty
blizsze. Jesli [ jest odlegltoscia $rodka odcinka EjF,; od punktu O to warto$é tresh
zostaje zwiekszona przez [, tj. tresh = tresh - 1. W przeciwienstwie do jednakowego
ograniczenia maksymalnego poziomu wywotan, uwzglednianie odlegtosci ma wptyw na
nig dynamiczny. Mianowicie maksymalna glteboko$¢ rekurencji zmniejszy sie o k =
[logal]
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4.3.3 Przylegle obiekty

Z analizy algorytmu podziatu odcinka i rekurencyjnego probkowania jego cze$ci mozna
wywnioskowaé, iz maksymalny poziom rekurencji zostanie osiagniety przynajmniej raz,
wtedy gdy konce odcinka FE; Es wskazuja rézne obiekty. Rozwazajac przypadek tylko
dwoch obiektow przylegtych widocznych dla obserwatora z punktu O (przedstawiony
na rysunku 19) wygenerowanych zostanie d promieni, gdzie d to maksymalny poziom
wywolan algorytmu. Test czy dwa obiekty sa przylegte (tj. moga by¢ traktowane
jako jeden obiekt zastaniajacy scene) sprowadza sie sprawdzenia jednego z promieni
skierowanych w okolice ich brzegéw. Nalezy zwrocié uwage, ze dwa obiekty sa przylegle
wzgledem punktu obserwatora analogicznie do nieciggto$ci miedzy dwoma obiektami,
ktora jest widoczna w zalezno$ci od obszaru patrzenia.

Rysunek 19: Probkowanie krawedzi EjFEs dla obiektow przyleglych wyznaczajacych
obszar niewidoczny za nimi. Po lewej rekurencyjny podziat odcinka. Po prawej promiert
rq skierowany w otoczenie lewego obiektu trafia w prawy, mu przylegty.

Warto zauwazy¢, ze ostatnie dwa wygenerowane promienie przez algorytm rekuren-
cyjnego podzialu wyznaczajg witasnie dwie probki brzegowe. Do sprawdzenia czy
obiekty sasiaduja ze soba na linii badanego odcinka E; Fy wystarczy wiec jeden pro-
mien: Niech:

o E(t) = E; + t(Fy — Ey) bedzie rownaniem parametrycznym odcinka E; Fs,
e 7(t) bedzie promieniem trafiajagcym w punkt E(t) z punktu O,
e v(r) bedzie obiektem trafionym przez promien r.

Oznaczajac obiekty trafiane przez promienie r(0) i (1) jako T i T5 (rysunek 19) oraz
definiujac dwa zbiory:

L = {t :o(r@®) =T}
R = {t :o(r(t) = To)) (19)

mozemy wywnioskowac, ze dwa obiekty widziane z O sa przyleglte gdy L0, = maz(L) >
min(R) = Ryin. Zatem w celu sprawdzenia czy dwa elementy tworza spojny obiekt
zastaniajacy scene dla obserwatora w punkcie O wystarczy sprawdzi¢ czy:

V(r(Limaz +€)) =Tz albo v(r(Rpm —€)) =Th
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Podczas testu wystarczy sprawdzenie jednego z powyzszych warunkow. Graficzna
interpretacja tak wygenerowanego promienia jest widoczny na rysunku 19 (promien
Tq)-

Na podstawie powyzszej analizy mozna stworzyé¢ algorytm, ktérego idea opiera
sie na generowaniu promieni w punkty brzegowe znajdowanych obiektow. Agresywny
algorytm probkowania w kierunku krawedzi mozna opisa¢ nastepujaco:

process_edge (pl,pr)
check_discountinuity((xp, pr-xp));
m = pl;
while ( |m - pl| < [pr - pl| - tresh) {
check_discountinuity((xp, m-xp));
if v(m) = v(pr)
return;
m = edgepoint(v(m), m, pr, o)

gdzie edgepoint(v(M), M, P,, O) jest algorytmem wyznaczania punktu z brzegu obiektu
v(M), ktory lezy w wycinku plaszczyzny /MOP,. Powyzszy algorytm wyznacza
promienie brzegowe z prawej strony dla kolejno znajdowanych (od lewej) obiektow.
Dochodzac ostatecznie do obiektu wskazywanego przez promien przecinajacy prawy
koniec odcinka. Algorytm zostanie opisany w rozdziale 4.3.5.W celu zwiekszenia praw-
dopodobieristwa znalezienia obiektu przed krawedzia prosta modyfikacja jest wymusze-
nie uwzglednienia promienia w §rodek odcinka, np. poprzez zmiane metody enlarge
tak, by generowata dla kazdej krawedzi dodatkowy punkt w jej srodku.

Wyznaczenie promienia w reverse samping jest analogiczne do obliczenia punktu
brzegowego. Na rysunku 20 przedstawiono znajdowanie promienia i punktu, ktory lezy
w zadanej ptaszczyznie. Obydwa problemy sprowadzaja sie do wyznaczenia przeciecia
krawedzi trojkata z dowolna ptaszczyzna.

4.3.4 Wyznaczanie przeciecia

Przeciecie krawedzi trojkata 1" z zadana plaszczyzna zostato zilustrowane na rysunku
20. Intuicyjnym rozwiazaniem jest znalezienie przecie¢ trzech promieni VO_Vl, ViVa VQ_VO
z trojkatem AOFE) Ey poprzez uzycie np. algorytmu Méller’a [8] lub przecie¢ dwoch
trojkatow AOE1E, 1 AVpViVy [9]. Jednak wiaza sie z tym niepotrzebne obliczenia
(np. wspotrzednych parametrycznych trojkata znalezionego przeciecia). Nalezy zatem
rozwiazaé zadanie algebraicznie, podobnie jak zrobili to Méller i Trumbore [§].

Rownanie trojkata T° w postaci parametrycznej jest nastepujace:
T(u,v) = (1—u—v)Vy+ul)+ols (20)
Zauwazmy, ze interesuja nas punkty na krawedziach, wiec rozpatrujac trzy przypadki
u=0,v=0,u+v =1 otrzymujemy trzy réwnania z jednym parametrem. Kazde
sprowadza si¢ do rownania odcinka (zakladajac V3 = V4) :

Tu) = A+wu-(B—A) gdzie: A=V;,, B=V;y, 1= 0,1,2 (21)
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E
E> Vo

Vo

Rysunek 20: Znajdowanie promienia miedzy obiektami 77 i T', lezacego na plaszczyznie
wyznaczonej przez punkty O, Ej, Es. Po lewej: reverse sampling w ktorym O,
przecina T'. Po prawej: uogoélnienie problemu dla dowolnych O, FE,, F5, punkt Z na
prostej zawierajacej Fy Fy okresla promien trafiajacy w punkt brzegowy X

Zgodnie z przedstawiong sytuacja na rysunku 20, wektor przechodzacy przez X prze-
cina odcinek F)FE> w punkcie Z. Mozna go przedstawi¢ jako przesuniecie F; o wektor
E5E'1 przemnozony przez skalar s:

Z(s) = E,+sE

E = E,—E (22)
Oczywistym jest, ze X lezy na prostej przechodzacej przez O i Z, wiec:
XX(t) = O+t (Z-0) (23)
(t,s) = O+t -(Ey+sE—-0)
Otrzymujemy réwnanie T'(u) = X (t, s), ktoremu odpowiada:
A4+u(B—-A) = O+t-(Ey+sE—-0) (24)

ts(—E)+u(B—-A)+t(O—-FE) = O-A
podstawiajac r = ts, Xpa = B— A, Y = O — Ey, T4 = O — A réwnanie 24 mozna

przedstawié¢ jako:

[—E,XBA,Y] u :TA (25)
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Rozwiazaniem powyzszego rownania (korzystajac z zasady Cramera dla uktadow nxn)
jest:

r 1 | TA7 XBA> Y ‘
u | = | —FE, Ty, Y | (26)
13 | = B, Xpa, Y| | —FE, Xpa, Ta |

Obliczanie wyznacznika |A, B, C'| (macierzy 3 x 3) mozna zrobi¢ na wiele sposobow
uzywajac iloczynu wektorowego i skalarnego (dowod jest trywialny, chociazby poprzez
rozpisanie lewych stron ponizszych rownan metoda Sarrusa)

IA,B,C| = (AxB)-C

|A,B,C| = —(AxC(C)-B (27)
|A,B,C| = —(CxB)-A
Korzystajac z zaleznosci (27) otrzymujemy ostatecznie réwnanie:
r 1 (Ta x Xpa) Y 1 Qap Y
| T (EXY) Xpa (éf; ;;;A)TAE ~ P Xpa QZBTAE 28)

gdZieQABZTAXXBAiPZEXY.

Bazujac na powyzszym réwnaniu oraz zalozeniu r = ts, mozemy wyznaczy¢ wartosci
parametru s:
g .1 _ QupY P-Xpy  Quap-Y
t P-Xpa Qap-FE Qap - E

W powyzszym wywodzie dolne indeksy AB i A zostaly tak dobrane by podkresli¢
zaleznosé¢ od wyboru wierzchotkéw trojkata 7' (patrz rownanie 21). Majac do wyboru
dwa wierzchotki z trzech otrzymujemy trzy wartosci s; (¢ = 0, 1,2). Aby nie wyznaczaé
wszystkich mozliwych nalezatoby okresli¢ ktora wartos¢ s; jest ta wtasciwa, inaczej
moéwiac, ktore wierzcholtki trojkata nalezy wziaé pod uwage. Wystarczajacym testem
jest zbadanie parametru u wystepujacego w zmodyfikowanym réwnaniu trojkata (21).
Wyboér wierzchotkéw prowadzi do poprawnego rozwigzania gdy 0 < u < 1, wtedy punkt
lezy na krawedzi opisanej wzorem (21). Warto$¢ u otrzymujemy z réwnania (27):

P-Ty
P-Xup

Warto zauwazy¢, ze P nie zalezy od wierzchotkéow trojkata T 1 wystarczy wyznaczyé
go tylko raz. Zatem punkty A i B sa dobrze okreslone gdy:

(29)

u = (30)

O<P-Ty N P -Ty<P-Xup
lub
P-Tp<0 AN P-Xup<P-Ty

Nalezy zwroci¢ uwage, ze istnieja co najwyzej dwa punkty lezace na przecieciu krawedzi
trojkata i plaszezyzny (oczywiscie poza zdegenerowanymi przypadkami gdy krawedz
lezy w calodci na ptaszezyznie). W celu zastosowania algorytmu do reverse sampling
nalezy bra¢ pod uwage wynik z s > 0.
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4.3.5 Algorytm

Dane:
e V[0], V[1],V]2] - wierzchotki trojkata (dla uproszczenia V[3] = V[0])
e 2 FE1, O - punkty okreslajace powierzchnie.

Wynik:

e warto$¢ parametru s na podstawie ktorego obliczamy promien R(t) trafiajacy w
krawedz trojkata:

R(t) = O+t-(Z-0)
(31)
Z = FEl+s-(E2—-EFE1)

Czas dzialtania Opisany algorytm jest szybszy od metody opartej o znajdowanie
przeciecia krawedzi z trojkatem. Srednie czasy dziatania algorytmow sa o 30% lepsze
mimo optymalizacji w znajdowaniu przeciecia Molera polegajacej na nie wyznaczaniu
parametrow u i v. Wynika to z nastepujacej wlasnosci:

wyznaczanie zamiast punktu na brzegu tréjkata promienia przez niego prze-
chodzacego jest efektywniejsze.

Algorytm:

edgepoint(V, E1, E2, 0)
edge = E2 - E1l
edgel = 0 - E1
edge? 0 - E2
pvec CROSS (edge, edgel)

for (i = 0; i < 3; i++) {
= V[i+1] - VI[il;

0 - VI[il;

DOT (pvec, T)

DOT (pvec, X)

B H A X
I

if (0<1&&1<m) || (1<0&m<1)){

qvec = CROSS(T,X)
m = DOT(qvec, edge)
if (m '=0) {

s = DOT(Q, edgel) / m

if (s > 0)

return s;

} else

return 0O

return O;
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4.4 Obiekty wypukle

Opublikowany algorytm GVS operuje na scenie zawierajacej jedynie trojkaty, jednak
juz po krotkiej jego analizie mozna doj$¢ do wniosku, ze mozna go uogélni¢ na dowolne
typy obiektéw. Pierwszym krokiem jest zdefiniowanie otoczenia danego elementu
sceny, ktore jest widoczne z badanego punktu obserwatora. Kolejnym i za razem os-
tatnim jest ustalenie sposobu wyznaczania promienia dla pré6bkowania wstecznego.
Mianowicie takiego, ktory penetruje obszar miedzy dwoma obiektami, omijajac je jak
najblizej zgodnie z ideg algorytmu. O ile zbior punktéw z otoczenia ¢’ nie wymaga
zalozenn co do elementéw sceny, to w przypadku analizy krawedzi wymagane jest, by
trafiane przez ABS obiekty byly wypukte. Zgodnie z ponizsza definicja takiego obiektu:

Obiekt wypukly. Obiekt zawierajgcy w catosci odcinki miedzy dowolnie wybra-
nymi punktami obiektu

Algorytm probkowania otoczenia, w szczegdlnosci warunek stopu kiedy oba korice
wskazuja ten sam obiekt, zaweza elementy sceny do obiektéw wypuklych. Przykta-
dem takiego obiektu jest kula.

4.4.1 Kula

Jednym z praktycznych zastosowan innych obiektéw niz trojkat jest uzycie kuli ze
wzgledu na:

e szybkie znajdowanie przeciecia promienia ze sferg

e zmniejszenie ztozonosci sceny poprzez wyeliminowanie triangulacji sfery i zastapi-
enie kilkunastu (a nawet kilkudziesieciu) trojkatow jednym obiektem.

e wyglad wyrenderowanej kuli.

Algorytm ABS polega na probkowaniu otoczenia obiektu, ktoére jest wyznaczone
w niewielkiej odleglosci od obiektu. W celu analizy otoczenia kuli nalezy wyznaczy¢
zbior punktow Epyines 1 krawedzi Eegqes, takich, ze promienie z obszaru obserwatora (a
wlasciwie aktualnie rozpatrywanego punktu potozenia) w ich kierunku omijaty mozli-
wie jak najblizej obiekt. O ile wyznaczenie elementow Epyines jest do$é trywialne, to w
przypadku krawedzi tj. stycznych wydaje sie¢ by¢ bezcelowe, a rozsadniejszym wydaje
sie rozpatrzenie tukow (rysunek 21).

Rysunek 21: Przykladowe otoczenie kuli widziane z punktu obserwatora. Od lewej:
zbior punktow, odcinki, tuki.

Jednak analiza tukow, czy nawet calego okregu bedacego otoczeniem kuli, mija
sie z ideg rekurencyjnego podziatu  krawedzi”. W przypadku odcinka mozna zatozy¢,
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ze trafienie tego samego obiektu w koncach odcinka (tj. promieni skierowanych w
jego korice) jest warunkiem stopu. Z definicji obiektu wypuklego, a z zatozenia tylko
takie wystepuja w scenie, odcinek miedzy dowolnymi jego dwoma punktami jest w
nim zawarty. W przypadku wycinka tuku zdanie takie jest falszywe (cho¢ odcinek
miedzy koricami tuku jest zawarty) i prowadzi¢ moze do zbyt wczesnego zakoriczenia
probkowania (rysunek 22). Nalezy zatem pozostaé przy otoczeniu ztozonego z odcinkow
stycznych do obiektu.

A \

Rysunek 22: Warunek stopu w rekurencyjnym podziale odcinka lub tuku. Promienie w
korice tuku trafiaja w obiekt A powodujac zakoriczenie analizowania otoczenia obiektu
t' i pominiecia B.

Konce odcinkéw otoczenia kuli lezg na okregu. Jest on okreslony przez obszar sty-
czny miedzy kula a stozkiem majacym poczatek w punkcie obserwatora. W zwiazku z
czym obliczenia sprowadzaja si¢ do wyznaczenia odpowiednich punktéw na okregu.

Z wystepowaniem kul w scenie, jak réwniez dowolnych bryt, wiaze si¢ niezbedna
modyfikacja przy wyznaczaniu promienia podczas proébkowania wstecznego. Rozpa-
trujac jedynie trojkaty algorytm polega na znalezieniu promienia w wyznaczonej pta-
szczyznie, tak by omijal minimalnie blizszy tréjkat. Z promieniem tym mozna utozsamic
prosta przechodzaca przez dwa punkty:

e nalezacy do otoczenia dalszego obiektu,
e nalezacy do otoczenia obiektu blizszego.

Dziatanie algorytmu mozna réwniez przedstawi¢ jako obrét promienia wychodzacego
z punktu E; az do momentu trafienia w otoczenie blizszego trojkata (rysunek 23 po
lewej). Pojawia sie jednak problem w przypadku kul, poniewaz obrot promienia przy-
czyni sie do przeciecia dalszego obiektu (rysunek 23 w érodku). Nalezy wzia¢ pod
uwage, iz proba przesuniecia poczatku promienia (punkt F;) prowadzi do analogicznego
problemu (rysunek 23 po prawej).

Zaktadajac, ze dwa rozpatrywane elementy sceny przez reverse sampling sa kulami,
znalezienie promienia sprowadza si¢ do wyznaczenia prostej stycznej do tychze dwoch
obiektow. Dodatkowo, zgodnie z algorytmem, styczna ta lezy na plaszczyzZnie wyz-
naczonej przez punkty: O, Ey, Fy (punkt Ry; takze lezy na plaszczyznie i moze byé
uzyty). Korzystajac z faktu, ze przeciecie sfery plaszczyzna jest zawsze okregiem (w
szczegbdlnym przypadku punktem, jednak taki przypadek nie zachodzi, poniewaz pro-
mieit OF, nie wyznacza stycznej w Es) algorytm sprowadza sie do prostego zadania
na plaszczyznie:
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Rysunek 23: Wyznaczanie promienia penetrujacego przestrzen miedzy obiektami
poprzez przesuniecie. Po lewej: poprawnie wyznaczony promien w przypadku tréj-
katow, w srodku: przeciecie z dalszym obiektem, po prawej: przeciecie z obiektem
blizszym po przesunieciu .

Majgce dane dwa dowolne okregi na ptaszczyinie, wyznaczyé prostq styczng
do nich, takq, ze okregi lezq po przeciwnych jej stronach

Rysunek 24: Styczna przechodzaca miedzy kulami okreslona przez punkty x;.

Probkowanie wsteczne dla kul obliczane jest poprzez wyznaczenie (rysunek 24):

e przecie¢ kul z plaszczyzna: O; - rzuty srodkéow kul, r; - promieni okregdéw po-
wstalych w wyniku przeciecia.

e wektoréw h; lezacych na plaszczyznie, prostopadtych do 010,
e punktéw z; bedacych przesunieciem srodkéow okregéw o wektor hy.

Dtugosé h; oblicza sie wzorem:

d2
"N @ ()2 (32)
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gdzie d jest dtugoscia odcinka O10,.

Zmiany w algorytmie nie maja wplywu na wyznaczanie promienia wstecznego
miedzy dwoma trojkatami. Uzywajac wzoru 32 do obliczen dla konstrukeji stycznej
dla kuli i trojkata nalezy dodatkowo okresli¢ srodek O; i promien r; okregu:

e gody obiekt dalszy jest trojkatem: O; = Ey,r; = 0,
e gdy obiekt blizszy jest trojkatem: O; = Es3,r; =0,

Przyktadowo dla dwoch trojkatow wartosci h; wyniosa 0, a promien wsteczny zdeter-
minowany jest przez $rodki okregéw, czyli punkty z otoczenia trojkatow.

4.4.2 Inne obiekty

W celu zastosowania algorytmu GVS dla dowolnych obiektéw wypuktych, analogicznie
jak w przypadku kul nalezy zdefiniowa¢ otoczenie widziane z zadanego punktu obser-
watora oraz okresli¢ wyznaczanie promienia wstecznego. O ile otoczenie jest problem
prostym, to probkowanie wsteczne miedzy ré6znymi obiektami moze okazac sie zadaniem
nietrywialnym.

4.4.3 Badanie niecigglosci

Algorytm reverse sampling zastosowany w GVS wystepuje w szczegdlnych przypadkach
dzialania algorytmu prébkujacego otoczenie obiektu. Poprzez okreslenie przewidy-
wanego punktu przeciecia promienia (ang. predicted hit) a nastepnie wyznaczenie
rzeczywistego przeciecia ze scena, mozliwe stalo sie badanie luk - niecigglosci sceny.
Mianowicie przerwa miedzy dwoma obiektami moze by¢ niewidoczna w zaleznosci od
miejsca z ktorego widzi ja obserwator. Sprawdzajac odlegto$¢ miedzy przewidywanym
a rzeczywistym punktem przeciecia zostaje zainicjowane szukanie promienia penetru-
jacego obszar miedzy dwoma elementami sceny.

Zastosowanie roznych obiektow determinuje rézne ,rodzaje” wyznaczania otoczenia.
W zwiazku ze znanym przewidywanym punktem przeciecia (punkt w otoczeniu lub w
plaszczyznie zwierajacej obiekt) mozliwe jest badanie nieciagtosci sceny. W przed-
stawionym algorytmie analiza taka odbywa si¢ jedynie w przypadku krawedzi, cho¢
moglaby by¢ réwniez przeprowadzona dla punktow:

e otoczenie sktadajace sie jedynie z punktéw uniemozliwia inicjowanie reverse sam-
pling,

e w punktach moze wystepowaé nieciaglosé, ktora nie zostaje wykryta przy badaniu
krawedzi,

e niecigglo$é zostanie pominicta gdy wyznaczony penetrujacy ja promien nie prze-
cina obszaru obserwatora. Badanie nieciggtoéci w punkcie zwieksza prawdopo-
dobienistwo analizy luk niewielkim kosztem.

Algorytm ABS mozna zmodyfikowaé nastepujaco:
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adaptive_border_sampling(x)
t’ = enlarge(v(x), e)
for each p in t’> {
handle_ray((xp, p-xp)
check_discountinuity((xp, p-xp));

Dodatkowo nalezy uwzgledni¢ fakt, ze przewidywanego punktu przeciecia nie da sie
poprawnie okresli¢ dla promieni losowych. Réwniez moze okazaé si¢ to niemozliwe dla
promieni punktowych z ABS. Rowniez definicja predicted hit z pracy [3] jako przeciecie
promienia przechodzacego przez otoczenie t' z plaszezyzna zawierajacg trojkat ¢ moze
prowadzié¢ do wartosci w ,nieskoniczonosci’. Przyktadem takiej sytuacji jest obserwator
lezacy na ptlaszczyznie trojkata. Problem ten mozna jednak obej$é poprzez uzycie
punktow z otoczenia jako przewidywanego trafienia.

4.5 Promienie losowe i warunek stopu

Promienie losowe wyznaczane sa w celu zainicjowania algorytmu prébkowania adapta-
cyjnego. W zaproponowanym rozwiazaniu GVS jedyna kontrola nad ich liczba sa dwa
warunki stopu. Pierwszy okre$la maksymalng liczbe promieni. Drugi jest spelniony,
gdy liczba nowo znajdowanych obiektoéw przypadajacych na ostatnie n promieni bedzie
zbyt mata. W [3] jest to 50 obiektow na ostatnie n = lmln promieni. Probkowanie
losowe uzywane jest jedynie, gdy pozostale algorytmy nie wyznaczyly nowych obiek-
tow 1 kolejnych promieni. Rozwazajac wielowatkowo$¢é mozna rozpatrzeé¢ nastepujaca
sytuacje: kazdy z k watkow losuje promien, znajduje jego przeciecie nastepnie uzywa
ABS i reverse sampling do wyznaczania PVS. Uzyskanie analogicznego efektu mozemy
otrzymaé poprzez modyfikacje GVS, polegajaca na poczatkowym wygenerowaniu k
promieni. Powstaja wiec dwie heurystyki:

1. k promieni na koncu (strategia leniwa last) - oryginalne dziatanie algorytmu GVS
z dodatkowym ograniczeniem na liczbe losowych promieni.

2. k promieni na poczatku (strategia gorliwa first) - polegajaca na wylosowaniu k
promieni inicjujacych GVS.

Zaktadajac, ze losowane promienie z 1 i 2 sg takie same, np. pseudolosowe z takim
samym zarodkiem, wystepuje istotna roéznica podczas dzialania algorytmu. Mianowi-
cie:

e algorytm w 1 przypadku konczy dziatanie wyznaczajac mniej niz k promieni
losowych. Spowodowane jest to spelieniem jednego z warunkéw stopu. Warto
zauwazy¢, ze przyczyni¢ sie to moze do pominiecia probkowania widocznej czesci
sceny. Jest to przypadek, w ktorym GVS analizuje zlozony obszar sceny w danym
kierunku (np. wzdluz ulicy miasta) i osiaga maksymalng liczbe promieni. Po-
zostawia on niezbadana cze$¢ sceny w pozostatych kierunkach, np. przeciwnym.

e wymuszajac wygenerowanie doktadnie k losowych promieni (np. okreslajac go
jako glowny warunek stopu) analize opisane heurystyki mozna poréwnaé¢ pod
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wzgledem liczby zarodkéw. Zarodkami sa punkty w obszarze obserwatora, w
ktorych maja poczatek promienie GVS. Ich liczba i réznorodnosé wpltywa na
budowane otoczenie widocznych obiektéw, czyli na przestrzen analizowang przez
ABS. Nalezy zwrocié uwage, ze zarodki powstaja zaréwno przy préobkowaniu
losowym i wstecznym. Jednak w strategii last jest ich znacznie mniej, gdyz
promieri losowy trafi¢ moze w obiekt juz widoczny.

5 Zmiana obszaru obserwatora

Algorytm Petera Wonki Guided visibility sampling mozna przedstawi¢ na przyktadzie
dwu wymiarowym. Scena bedaca plaszczyzng zawiera elementy - np. odcinki. Algo-
rytm GVS generujac losowe promienie z obszaru obserwatora znajduje odcinki inicju-
jace poszukiwania widocznych elementéw w ich otoczeniu. Adaptacyjne probkowanie
polega na rozszerzeniu odcinka i sprawdzeniu promieni przechodzacych przez jego
konce, natomiast probkowanie wsteczne wyznacza promienie omijajace elementy, tj.
penetrujace nieciagtosci miedzy nimi (rysunek 25).

e
r1
ran ladt i E—
lrand [
ladt lrev
lrand
losowe adaptacyjne wsteczne

Rysunek 25: Interpretacja algorytmu GVS na przyktadzie sceny 2-wymiarowej. Przed-
stawione zastaly trzy metody probkowania.

Jedna z zaproponowanych w [3] metod modyfikacji algorytmu GVS jest znalezienie
odpowiednich promieni inicjujacych zamiast poczatkowych promieni losowych. Jest
to efektywna optymalizacja algorytmu, ktéra powoduje szybsze i dokladniejsze wyz-
naczanie PVS. W przypadku algorytmoéw i scen, dla ktérych okreslamy zbior obiektow
zastaniajacych (np. fasady budynkoéw, powierzchnie drog itd.) odrzucane sa elementy
przez nie zasloniete. Takie podejscie zostalo opisane w 2.3.2 i 2.3.4. Mozliwe jest
wiec zatem zdefiniowanie promieni inicjujacych jako tych, ktore trafiaja w wybrane
obiekty ograniczajace widocznosé. Rozwazajac dowolng scene i zbiér idealnych inicju-
jacych promieni GVS wyznaczyltby dokladnie wszystkie widoczne obiekty. Obserwacja
ta prowadzi do modyfikacji polegajacej na rozszerzeniu wyniku PVS o punkty pier-
wszego trafienia kazdego obiektu lub odpowiadajace im promienie. Warunek stopu
Sliczby nowych znalezionych obiektow na ostatnie &£ promieni” zostalby spetlniony po
|PV S| + k probkowaniach. Tak obrany zbior inicjujacych promieni postuzyé¢ moze do
wyznaczenia PVS dla zmodyfikowanego obszaru obserwatora poprzez:

e przesuniecie - oczekujac, ze widocznosé odleglej czesci sceny zostanie niezmieniona.
Ewentualnie zostanie ona przystonieta. Zatem wynik GVS zawiera podzbior
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poprzedniego PVS oraz zbiér nowych obiektéw znalezionych przez algorytmy
probkowania adaptacyjnego i wstecznego.

e powickszenie - dla ktorego istotna réznica lezy w probkowaniu wstecznym, tj.
promieni penetrujacych nieciaglosci sceny widocznych po rozszerzeniu obszaru
obserwatora. Latwo zauwazy¢, ze jest to szczegdlny przypadek przesuniecia ob-
szaru, w ktorym nie zmniejszono poprzedniego zbioru PV S.

Przesuniecie obserwatora (obszaru) o wektor v, powoduje zmiane zastanianego
regionu (rysunek 26). Z jednej strony czesé widocznej do tej pory sceny zostaje sie
zastonieta, z drugiej powstaje potencjalnie widoczny obszar (PVA). W zwiazku z idea
probkowania do znajdowania PVS generowane sa promienie skierowane w PVA, zami-
ast sprawdzania ktore z obiektéw przestaty byé widoczne. Szukanie przecie¢ promieni
inicjujacych majacych trafi¢c w PVS automatycznie spowoduje odrzucenie niewidocz-
nych juz obiektow.

S(T)

Rysunek 26: Obszar S(T') zastaniany przez obiekt T. Przesuniecie pola widzenia
powoduje odstoniecie niewidocznej do tej pory czesci sceny PVA (potentialy visible
area,).

Badanie widocznosci obszaru PVA jest analogiczne do adaptacyjnego probkowania
w GVS. Ponizej zostaly przedstawione mozliwe trafienia promieniem r,,, ktéry omija
obiekt T' (rysunek 26) i przechodzi przez jego otoczenie. Jesli v jest funkcja widocznosci
wowczas:

o v(rpe) ¢ PVS - znaleziony zostal nowy obiekt, dla ktorego (jak i dla jego
otoczenia) widocznosé jest badana przez GVS,

® U(7pa) € PV S - obszar widoczny réwniez z poprzedniego pola widzenia. Okresla-
jac przewidywane trafienie (ang. predicted hit) przez punkt nalezacy do otoczenia
rozszerzenia T' 1 sprawdzajac odlegltosé rzeczywistego trafienia (hit) mozliwe jest
zbadanie luki.

Przypadek v(rpw,) € PV'S jest analogiczny do prébkowania wstecznego. Mia-
nowicie w przypadku:

e braku nieciggtosci |predicted hit — hit| < tresh. Znalezione elementy tworza
powierzchnie. PV A dla obiektu T jest zastoniety catkowicie lub czesciowo przez
przyleglty obiekt v(7,,). Zatem analogicznie do metody rozszerzania obiektu
zastaniajacego o mu przylegte w algorytmie Schauflera [1] wystarczy zbada¢ PV A
dla obiektu v(7puq).
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e wystapienia nieciagtosci |predicted hit — hit| > tresh. Obiekt v(r) ogranicza
obszar PV A dla T. Zgodnie z analogia do probkowania wstecznego wystarczy
wyznaczy¢ promieni 7., omijajacy 1" i v(rpy,) (rysunek 27).

Rysunek 27: Przypadki nieciaglosci w probkowaniu wstecznym: (a) obiekt v(rpyq)
jest za obiektem T, 1., penetruje PV A; (b) obszar PV A ograniczony przez v(rpy,),
promien 7, nie istnieje; (c¢) obiekt v(rpy,) jest przed T

W algorytmie GVS reverse sampling nastepuje gdy spelniony zostanie warunek
predicted hit — hit > tresh, tj. gdy promien w otoczenie trafia w punkt blizszy
niz przewidywany. Jednak w przypadku analizy obszaréw PVA promieni r,., nalezy
wyznaczy¢ rowniez dla predicted hit — hit < —tresh. Powyzsze obserwacje prowadza
do algorytmu wyznaczania widocznych obiektow z obszaru obserwatora przesunietego
o wektor vgps:

1. dla kazdego obiektu PV'S i punktu jego trafienia wyznacz promienn r znajdz
przeciecie v(r),

2. dla kazdego v(r) bedacego juz w PV'S zbadaj obszar PV A oraz ewentualne
nieciggtodci,
3. wszystkie znalezione obiekty umie$é¢ w tymczasowym zbiorze PV'S’

4. zainicjuj algorytm GVS promieniami r : v(r) ¢ PV .S oraz znalezionym juz zbio-
rem PVS’

5.1 Probkowanie odslonietego obszaru PVA

Przypadek scen 3D i analiza odslonietego w niej obszaru po przesunieciu obserwa-
tora jest bardziej zlozony niz opisany wcze$niej problem 2D. Cho¢ badanie PV Ar
sprowadza si¢ do problemu widocznosci z obszaru, to wystarczajacymi probkami sa
promienie przechodzace otoczenie obiektu 7' (analogicznie jak pojedyncze promienie w
probkowaniu wstecznym wystarczajace sa do penetrowania niecigglto$ci miedzy obiek-
tami). Prowadzi to do zmodyfikowanych algorytmow uzytych w GVS

e poszerzania trojkata (enlarge) z uwzglednieniem wektora przesuniecia obserwa-
tora veps,
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e probkowania krawedzi (subdiv__edge), w ktorym zredukowana jest liczba podzi-
alow przez zastosowanie np. promieni w punkty brzegowe.

Na rysunku 28 przedstawiono dwa podejécia do probkowania odstonietego obszaru
PV A. Prostym lecz agresywnym podejsciem jest generowanie jednego promienia pen-

Rysunek 28: Generowanie promieni potencjalnie trafiajacych w obszar PVA. Po lewej
wyznaczanie pojedynczego promienia na podstawie punktu trafienia w obiekt T" i wek-
tora przesuniecia V,,,. Po prawej dokladniejsze probkowanie PV A wzdtuz krawedzi
obiektu 7.

etrujacego PV A (rysunek 28 po lewej). Bazujac na prostej obserwacji, w ktorej
rozmiar PV A maleje wraz ze wzrostem odlegtosci od obserwatora, rozwiazanie takie
jest wystarczajace dla odleglych obiektéw. Ow promien mozna tatwo wyznaczyé bazu-
jac na algorytmie wyznaczania punktu brzegowego (rozdzial 4.3.5). Dokladniejszym
rozwigzaniem badania odstonietego obszaru jest wyznaczenie krawedzi i analogiczne
postepowanie jak w adaptacyjnym probkowaniu otoczenia w GVS. Jednak zamiast
stosowania metody poszerzania trojkata 1" wystarczy przesunaé¢ krawedzie o € wzdtuz
wektora Vo (V. jest rzutem wektora Vs na plaszczyzne zawierajaca trojkat 7).
Uwzgledni¢ nalezy te krawedzie €] (przesuniete e; € T' o wektor V), ktore leza poza
T - de facto takie krawedzie sa co najwyzej dwie, a test jest trywialny (na rysunku 28
po prawej przedstawiono przypadek z jedng krawedzia).

5.2 Algorytm

Idea algorytmu polega na sprawdzeniu czy zmienil sie zbiér widocznych obiektow z
poprzedniego obszaru, probkowaniu obszaréw odstonietych oraz zastosowaniu GVS
do badania nowych obszaréw sceny. Pseudokod algorytmu jest nastepujacy:

main(pvs, vobs)
EPVS = empty;
for each (t, hit) in pvs
x = (xp, hit - xp);
handle_ray(x);
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GVS.PVS+= EPVS;

for each (t, hit) in EPVS
pva_sampling(t, hit, vobs);

GVS.main()

handle_ray (x)
if v(x) in pvs
if v(x) not in EPVS
EPVS+= v(x);
else
GVS.handle_ray(x);

pva_sampling(t, hit, vobs)
m = edgepoint(t, hit, hit + vobs, o)
xm = (xp, m - xXp)
GVS.handle_ray(x) ;
t’ = enlarge(t, vobs);
for each edge(pl,pr) in t’
process_edge(pl,pr)

process_edge(pl,pr)
check_discountinuity((xp, pr-xp));
m = pl;
while ( |m - pl| < |pr - pll - tresh)
check_discountinuity((xp, m-xp));
if v(m) = v(pr)
return;
m= edgepoint(v(m), m, pr, o)

check_discontinuity(x)
if |predicted_hit(x) - hit(x)| > tresh
xn = reverse_sampling(x)
if start(xn) in view cell
GVS.handle_ray(xn)

gdzie:

e pvs i vobs sa parametrami wywotania algorytmu: poprzedni PVS oraz wektor
przesuniecia obszaru obserwatora Vs

e v(x) jest pierwszym obiektem przecietym przez promien x,

e edgepoint jest algorytmem wyznaczania punktu brzegowego opisanym w roz-
dziale 4.3.5,

W wyniku dziatania algorytmu wyznaczony zostaje zbiér potencjalnie widocznych
obiektéw wraz z punktami trafienia. Otrzymane dane wystarczajace sa do dalszych
przesunieé¢ obszaru obserwatora.
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5.3 Przechodzenie sceny

W problemie przechodzenia sceny i wyswietlania jej z réznych obszaréw nastepuje
odrzucanie niewidocznych obiektow. Zaktadajac duza liczbe elementoéw wystepuja-
cych w scenie oraz stosunkowo maty rozmiar widocznych obiektéw operowanie na PVS
umozliwia przemieszczanie sie w scenie w czasie rzeczywistym. Majac dany podziat
sceny wraz z odpowiednimi PVS | ktoére zostaly obliczone w fazie preprocessingu obser-
wator przechodzac z komorki do komorki uwzglednia zredukowana scene. W niektorych
opublikowanych rozwigzaniach (np. w 2.3.2) rezygnuje sie z wcze$niejszego przygotowa-
nia podzialu sceny a zbiér widocznych obiektéw wyznaczany jest ad hoc. Podejscie
takie opisane zostalo wtagnie w pracy Kumara [4|. Dla odpowiednio wyznaczonego ob-
szaru obserwatora czas potrzebny na wyznaczenie PVS dla sasiednich komorek oraz
przestanie wyniku z serwera do klienta jest wystarczajacy na selekcje wlasciwych
obiektow. Przy generowaniu obrazu metodami s$ledzenia promieni nalezy dodatkowo
uwzglednié¢ czas potrzebny na zmodyfikowanie struktury danych (kd-drzewo) lub zbu-
dowanie jej od nowa.
Laczac opisane wyzej techniki mozna stworzy¢ systemy, w ktorych:

e wszystkie obliczenia dokonywane sg przed rozpoczeciem poruszania sie po scenie,

e podziat sceny na komorki i odpowiadajace nim zbiory wyznaczane sa przed prze-
chodzeniem, a kd-drzewa budowane sa ad-hoc

e PVS jak i kd-drzewo budowane sa na zgdanie.

5.3.1 Szybkie budowanie kd-drzewa

Schemat znajdowania PVS i budowy kd-drzewo ad hoc jest o tyle ciekawy, ze obstuguje
on réwniez sceny dynamiczne, w ktorych zbiér PVS zmienia sie nie tylko pod wptywem
przesuniecia obserwatora, lecz réwniez z powodu zmian w scenie np. poruszajacych
sie obiektow. Jednym z opublikowanych efektywnych algorytmow jest réwnoleglte bu-
dowanie kd-drzewa opisane w pracy Maxima Shevtova, Alexeia Soupikova i Alexander
Kapustina Highly Parallel Fast KD-tree Construction for Interactive Ray Tracing of
Dynamic Scenes [17|, ktorego idea jest nastepujaca:

e w oparciu o algorytm budowania kd-drzewa Havrana [18] dla wierzchotkow zaw-
ierajacych co najmniej 32 elementy stosuje sie aproksymacje SAH. Sprowadza
sie to do regularnego podzialu przestrzeni wzgledem 31 plaszczyzn. Wyz-
naczajg one 32 kubelki, z ktorymi zwigzane sg liczby zawieranych elementéw.
Pozwala to na proste wyznaczenie liczby obiektéw po kazdej stronie ptaszczyzny.
W przypadku co najwyzej 32 elementéow obliczany jest doktadny SAH.

e w trakcie ,rozrzucania” obiektéow do kubeltkéw stosowane jest adaptacyjne pomi-
janie elementéw. Mianowicie uwzgledniony jest jedynie co I-ty element, gdzie
[l =1logioN, a N jest liczba wszystkich obiektow w danym wierzchotku.

e w wyniku podziatu wierzchotka ptaszczyzng obiekty czesto trafiaja do lewego
i prawego poddrzewa. Powoduje to wzrost wymaganej pamieci i uniemozliwia
wykorzystanie tego samego obszaru pamieci komputera. Shevtov zaproponowal
modyfikacje zarzadzania pamiecia:
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— obszary pamieci (kontenery) poltaczone sa w liste, tak, ze ostatnio uzywany
kontener jest na koncu listy.

— dla kazdego obszaru pamietany jest wskaznik poczatkowy, rozmiar i wskaznik
na koniec. Obszar miedzy wskaznikami odpowiada uzywanej pamieci.

— przydzielanie oraz zwalnianie pamieci odbywa sie poprzez przesuniecie kon-
cowego wskaznika o odpowiednig ilos¢.

— jesli w kontenerze nie ma wystarczajaco miejsca, tworzony jest nowy. Zwykle
operacja tworzenia nowego obszaru odbywa si¢ 2-4 razy podczas catej kon-
strukcji drzewa.

Podczas konstrukcji kd-drzewa ,z gory na dot’ i budowania najpierw lewego,
a poézniej prawego poddrzewa wymagane jest uzycie dwoch puli. Odpowiadajg
one lewym i prawym poddrzewom. Tym sposobem odwolywanie si¢ do pamieci
kazdej puli odbywa si¢ w ostatnim na liscie kontenerze.

Wedlug autoréw algorytmu [17] konstrukcja kd-drzewa mozliwa jest w czasie 1.7
sekundy dla sceny z 7 milionami tréjkatow, 2.4 sekuny dla 10 milionéw trojkatow.

6 Implementacja i wyniki

Wiekszo$¢ czasu poswiecona pracy zostata pochlonieta przez implementacje oraz testo-
wanie algorytmoéw. Do reprezentacji scen uzyto formatu mgf. Zaimplementowane w
jezyku C++ z wykorzystaniem biblioteki STL i OpenGL zostaly algorytmy opisane w
rozdziale 3 wraz z rozszerzeniami (roz. 4) oraz przeliczanie PVS wraz z szybka budowa
kd-drzewa (opisane w rozdziale 5). Wazniejszymi z zaimplementowanych algorytmow,
ktore nie zostaly opisane, sa: wybrane metody budowania i trawersowania kd-drzewa
opisane w pracy Havrana [18], podstawowy algorytm sledzenia promieni z modelem
o$wietlenia Blinna-Phonga. Dla potrzeb testéw na rozmaitej gamie modeli zaimple-
mentowano generatory scen. Wszystkie zaimplementowane algorytmy zamieszczone sa
na dotaczonej do pracy ptycie CD. Ich opis znajduje sie w dodatku A.

Przedstawione w niniejszym rozdziale wyniki algorytmoéw wyznaczania widocznych
obiektow zawieraja nastepujace wartosci:

e rozmiar PVS - liczba potencjalnie widocznych obiektéw, ktore zostaly wyzna-
czone przez algorytmy,

e bledne piskele - $rednia liczba blednych pikseli okreslajaca doktadno$é oblic-
zonego PVS. Blad wyznaczony jest na podstawie n = 1,000,000 probek generu-
jacych obrazy 1000 x 1000 (piramida widzenia o kacie 60°):

— sceny zawierajacej wszystkie obiekty
— sceny ograniczonej do zbioru PVS.
Btad okreslono przez liczbe promieni, dla ktérych otrzymano rézne wyniki prze-

ciecia ze sceng. Na podstawie dziesieciu réznych obrazow, dla ktorych wyznac-
zono bledna liczbe pikseli zostat okreslony sredni btad.
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e liczba promieni - GV S polega na probkowaniu sceny promieniami, tj. zna-
jdowaniu ich przecie¢. Liczba takich promieni jest $cisle zwigzana z czasem
dziatania algorytmu. Ze wzgledu na rézne mozliwe (istniejace) algorytmy i im-
plementacje rozwiazujace problem przeciecia promienia ze scena (np. OpenRT,
MLRTA) czas dzialania moze sie znaczaco rozni¢. Stad niezaleznie nawet od
mocy obliczeniowej podawana jest liczba generowanych promieni.

e czas dzialania - czas dziatania zaimplementowanych algorytméw. Testy prze-
prowadzono na notebooku ASUSA6RP o nastepujacej specyfikacji:

— procesor: Intel Celeron M 1.6 GHz

— pamie¢ RAM: 1 GB

— karta graficzna: Ati Radeon XPRESS 200M 128MB

— system operacyjny: linux UBUNTU.
Nalezy zwroci¢ uwage, ze czas Sledzenia miliona promieni z wykorzystaniem al-
gorytmow opisanych w pracy Havrana[l8] wyniost nawet 40 s. Zastosowanie
MLRTA, wykorzystanie SSE oraz wieksza moc obliczeniowa pozwala na Sledze-

nie do 800 tys. do 1,2 mln promieni na sekunde, w porywach nawet do kilku

milionow. Wyniki takie zostaly zaprezentowane w pracy Wonki [3], gdzie uzyto
komputera: Intel Pentium4 3.2GHz, 4GB RAM.

6.1 Strategie probkowania krawedzi

Rysunek 29: Katedra widziana od wewnatrz.

Opisane algorytmy probkowania krawedzi wplywaja na czas dziatania jak i na
doktadno$é otrzymanego rozwiazania, tj. zbioru PVS. Czas dziatania jest Scisle zwigzany
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z liczba generowanych promieni i szukaniu przeciecia w scenie. Zatem redukcja pro-
mieni w krawedzie jest najprostsza metoda przyspieszenia GVS. Testy zostaty przepro-
wadzone na scenach:

e sibenik - scena katedry. Zawiera okolo 75000 trojkatéw. Uwzgledniono dwa
obszary obserwatora, z ktorych przyktadowe widoki na katedre widoczne sa na
rysunkach 29 (ze srodka katedry) oraz 30 (z ,Jlotu ptaka”).

e trojkaty - scena zawierajaca ptaska powierzchnie ztozong z potaczonych ze soba
20,000 trojkatow. Widok sceny przedstawiony jest na rysunku 30.

Rysunek 30: Po lewej: katedra z ,lotu ptaka”. Po prawej: prostopadto$cian obserwatora
oraz podzielona ptaszczyzna na trojkaty

W testach algorytmu GVS zastosowano:

e warunek stopu rozszerzony o maksymalng liczbe losowych promieni - 1 mln
probek.

e nastepujace modyfikacje algorytmy analizy krawedzi:

— ograniczenie gltebokodci wywotan rekurencyjnych (oznaczone: d4, d8, gus,
d16), rozdziat 4.3.1,

— uwzglednianie odlegtosci do krawedzi od obserwatora (adt), rozdzial 4.3.2,

— wykrywanie przylegtych obiektow (brzegowy), rozdzial 4.3.3,

Na wykresach (rysunki 31, 32, 33) przedstawiono poréwnanie rozmiaru wyznac-
zonego PVS z liczba generowanych promieni w krawedzie (po lewej), oraz ich $red-
nig ilos¢ wzgledem liczby znalezionych obiektéw podczas probkowania krawedzi (po
prawej). Tabele 2, 3, 4 zawieraja czas wyznaczania poszczegolnych PVS wraz z uzy-
skanym Srednim btedem.

Doktadnym rozwigzaniem widocznosci dla sceny siatki trojkatow z umieszczonym
nad nig obserwatorem sa wszystkie obiekty. Powstate bledy podczas dziatania GVS
wynikaja zaréwno z niedoktadnosci reprezentacji promieni i obliczeri. Wraz z wiek-
szg odlegtoscig trojkatoéw od obserwatora rosnie kat miedzy wektorem do obserwatora
(lezacym na promieniu trafiajacym trojkat) a wektorem normalnym powierzchni co
powoduje dodatkowo probkowanie otoczenia w odleglosci duzo wiekszej niz obrany e.
Na rysunku 34 pokazane zostaly nieznalezione trojkaty.
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Rysunek 32: Statystyki krawedzi dla sceny katedry z obserwatorem wewnatrz niej.
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Rysunek 33: Statystyki krawedzi dla sceny katedry z obserwatorem na zewngtrz.

6.2 Obiekty wypukle

Zastosowanie obiektow wypuktych zamiast powierzchni trojkatow bedacych triangu-
lacjg sfer wpltywa na zmniejszenie liczby rozpatrywanych elementoéw sceny. W zwiazku
7z czym zmniejsza sie znacznie czas potrzebny na wezytanie sceny, budowe kd-drzewa,
znajdowanie przeciecia promienia oraz wyznaczanie widocznych obiektow. Ponizej
zostaly przedstawione wyniki GV'S z obstuga kul i trojkatow.
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Tablica 2: Wynik algorytmu GVS (z ograniczeniem losowych promieni do 10 tys.) dla
obserwatora wewnatrz katedry. Rozmiar sceny: 76,650.

Algorytm PVS (%) | Liczba iteracji | Bledne piksele | Czas (s)
a4 | 29,627 (38%) 039,727 14| 6457
gvs | 38,206 (49%) 4213,010 1] 286.13

brzegowy | 29,642 (38%) 585,874 33.09

Tablica 3: Wynik algorytmu GVS (z ograniczeniem losowych promieni do 10 tys.) dla
obserwatora na zewnatrz katedry. Rozmiar sceny: 76,650.

Algorytm PVS (%) | Liczba iteracji | Btedne piksele | Czas (s)
a4 5,530 (7%) 178,086 122 8.26
gvs | 8,221 (10%) 038,041 4051

brzegowy | 6,016 (7%) 138,136 1 5.95

Tablica 4: Wynik algorytmu GVS (z ograniczeniem losowych promieni do 10 tys.)
dla obserwatora nad siatka trojkatéw. Rozmiar sceny: 20,000. Wszystkie trojkaty sa
widoczne.

Algorytm | PVS | Liczba iteracji | Bledne piksele | Czas (s)
d4 19,971 500,597 2 7.02
ovs | 19,083 1,210,404 1| 16.06

brzegowy | 19973 352,121 2 136

Rysunek 34: Nieznalezione obiekty (ciemnoszare) z powodu duzej odlegtosci od obser-
watora i btedéw numerycznych.

Testy przeprowadzono na dwodch scenach:

1. kule - okoto 13 tys. kul, ktore zostaly zawarte w prostopadtoscianie o wymiarach
40 x 40 x 40.

2. kule i trojkaty - jest to poprzednia scena, w ktorej zastapiono potowe kul trojka-
tami,
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3. duze i mate kule - 13 tys. kul o losowych rozmiarach zawartych w scenie o
wymiarach 40 x 40 x 40.

Widok obiektéw sceny zaprezentowany jest na rysunku 35. PVS pierwszej sceny
zostal wyznaczony przez GVS z oryginalnym warunkiem stopu - co spowodowalo
wygenerowanie okolo 2 milionéw promieni. Na rysunku 35 po prawej przedstawiono
widok PVS kul i trojkatéow wyznaczonym z ograniczeniem do co najwyzej 100 tys.
losowych promieni.

Rysunek 35: Obrazy PVS wygenerowane metoda $ledzenia promieni. Po lewej scena
kul, po prawej losowych kul i trojkatow. Na czerwono zaznaczono obiekty nie znalezione

przez GVS.

Na rysunku 36 przedstawiono zasloniete elementy z innego widoku niz obszar dla
ktorego wyznaczono PVS.

W algorytmie GVS dla tak losowych scen jak 11 2 okoto 50% promieni jest gen-

erowanych losowych, co powoduje zwiekszony czas dziatania algorytmu. Uzyskany btad
(tabela 5) spowodowany jest glownie poprzez bledy numeryczne.

Tablica 5: Wyniki dziatania algorytmu GVS dla scen z kulami.

Scena Rozmiar | PVS | Liczba iteracji | Bledne piksele | Czas (s)
kule 10,116 | 6,096 2,035,198 25 29.96
kule i trojkaty 10,116 | 7,422 2,075,007 38 30.05

W przypadku triangulacji kul rozmiar sceny zwiekszyl sie do okolo 1 mln, co
wplyneto na wzrost liczby potrzebnych iteracji do 10 mln (spowodowane bardzo duzym
rozmiarem PV'S| tj. okoto 60-70 % sceny). W wyniku btedéw numerycznych w PV'S
znajdowane byly réwniez niewidoczne czesci kul, tj. zastoniete trojkaty nalezace do
triangulacji danej kuli.
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Rysunek 36: Niewidoczne obiekty (ciemnoszare) z tytu sceny.

Redukcja liczby losowych promieni do 100 tys. przyczynia sie do szybszego za-
konczenia dziatania algorytmu kosztem wiekszego btedu, ktory spowodowany jest malym
prawdopodobienistwem trafienia losowym promieniem w obiekt. Na rysunku 35 po
prawej zaznaczone na czerwono nieznalezione elementy znajduja si¢ na obrzezach sceny.
Elementy te nie stanowia spojnego obszaru (modelu) ani tez nie ograniczaja widoczno-
$ci, przez co ani ABS, ani prébkowanie wsteczne nie klasyfikuje ich jako widoczne.
Tabela 6 zawiera wyniki algorytmu GVS po uwzglednieniu 100 tys. losowych promieni.

Tablica 6: Wyniki dziatania algorytmu GVS dla scen z kulami z ograniczeniem losowych
promieni.

Scena Rozmiar PVS (%) | Liczba iteracji | Bledne piksele | Czas (s)
kule i trojkaty 10,116 | 7,495 (74%) 1,118,050 1482 16.79
duze i mate kule 11,301 | 1,101 (9%) 278,660 17 1.51

6.3 Promienie losowe
Strategie probkowania losowych promieni:
o first - gorliwa, w ktorej promienie losowe rozpatrywane sa na poczatku GVS,

e last - leniwa, w ktorej promienie losowe rozpatrywane sa gdy kolejka GVS jest
pusta,

Zostaly one poddane nastepujacym testom:

e scena losowych 10 tys. trojkatow i kul (rysunek 37 po lewej):,
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e sibenik - katedra zawierajaca okoto 80 tys. trojkatoéw, obszar obserwatora nad
katedra (rysunek 37 na srodku),

e miasto ztozone z 770 tys. elementow, obszar obserwatora na jednym ze skrzyzowan
(rysunek 37 po prawej).

Rysunek 37: Widoczne obiekty znajdowane przez algorytm GVS

Scena zawierajgca losowe obiekty jest przyktadem bedgcym duzym wyzwaniem dla
wszelkich algorytméw wyznaczajacych zbiér widocznych obiektéw. Stosunkowo duzy
rozmiar PVS stanowiacy 70% sceny i brak przylegtych powierzchni, powoduje duze
bledy przy stosowaniu matej liczby losowych promieni. Dla sceny sibenik juz samo
probkowanie adaptacyjne wyznacza satysfakcjonujace rozwigzanie. Scena miasta jest
standardowym przyktadem duzej sceny, w ktorej znaczna liczba trojkatow jest zastani-
ana przez obiekty widoczne - fasady budynkow. Poprzez ustawienie obszaru obserwa-
tora na skrzyzowaniu drog algorytm GVS znajduje obiekty wzdtuz ulic ukierunkowujac
probkowanie w obszary jeszcze nie zbadane.

Przyblizenie zbioru widocznych obiektéw o stosunkowo nieduzej liczbie btednych
pikseli (rysunek 38) jest tym lepsze im wiecej zostalo wygenerowanych losowych pro-
mieni. Rowniez réznica w liczbie zarodkéw uzyskanych przy 200 tys. losowych probek
powoduje, ze strategia first obarczona jest mniejszym btedem. Przyktadowo dyskre-
tyzacja obszaru obserwatora punktami, z ktorych szukano widocznych obiektéow wynio-
sta 3,201 punktow dla strategii first oraz 742 punkty dla last). Nalezy jednak zwrocié
uwage, ze nie jest znana liczba promieni losowych, ktore ostatecznie wygeneruje ory-
ginalny GVS. Liczbe losowych probek trzeba wiec okreslic np. na podstawie liczby
obiektow w scenie. W otrzymywanych wynikach juz przy 100 tys. promieni otrzymano
mniejsza liczbe blednych piskeli.

Wykres na rysunku 39 pokazuje wzrost zbioru widocznych elementéow wzgledem
kolejnych iteracji algorytmu, tj. wygenerowania kolejnych probek. Strategia losowa-
nia na poczatku promieni efektywniej wyznacza PVS. Rowniez srednia liczba btednych
pikseli, pokazana na rysunku 39 jest mniejsza

W przypadku sceny zawierajacej katedre algorytmy znajdowaly podobny PVS,
ktory zawieral okoto 6300 trojkatow. Maksymalny btad 15 pikseli zaobserwowano dla

dwoch strategii, zas w przypadku leniwej strategii promieni losowych juz po pierwszym
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Rysunek 38: Rozmiar PVS i liczba btednych pikseli dla sceny losowych trojkatow i kul.
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Rysunek 39: Po lewej: rozmiar PVS w trakcie kolejnych iteracji algorytmu dla sceny
losowych trojkatow i kul. Po prawej: Liczba blednych pikseli wzgledem liczby losowych
promieni dla sceny miasta.

promieniu trafiajacym w scen¢ GVS wyznacza niemal wszystkie widoczne trojkaty.
Stad wniosek, ze kolejnosé losowych promieni nie ma istotnego znaczenia dla tego
typu scen. Zgodnie z oczekiwaniami probkowanie adaptacyjne skutecznie wyznacza
widoczne powierzchnie ztozone z przyleglych trojkatow, natomiast probkowanie wsteczne
efektywnie analizuje nieciagtosci. Promienie znalazty okoto 1500 obiektow.

6.4 Wyswietlanie duzych scen

Generowanie obrazu metoda $ledzenia promieni pozwala na szybkie wys$wietlenie sceny,
gdy pomija sie odbite promienie i wyznaczanie cieni. O$wietlenie wraz z padajacymi na
scenie cieniami mozna aproksymowacé poprzez wyznaczenie zbioru widocznych obiektow
ze Swiatlta - co jednak pozwala jedynie na zweryfikowanie czy dany obiekt jest caly w
cieniu lub czy jest czeSciowo o$wietlony. Dokladniejsza metoda przyblizania oswietlenia
zostala zaprezentowana w pracy [1].

Zakladajac, ze wszystkie obiekty sa w catodci oswietlone przechodzenie ztozonej
sceny mozna zaprogramowaé jako wyznaczanie zbioru widocznych obiektéw, nastepnie
budowanie kd-drzewa i wyswietlenie obiektow. Taka metoda okazuje sie przydatna
przy scenach zawierajacych kilka milionéw obiektéow. Na rysunku 40 przedstawiono
widok na scene wygenerowanego miasta, ktore zawiera okoto 2.8 miliona tréjkatow.
Statystyka sceny miasta:
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Rysunek 40: Przyktadowa scena miasta zawierajaca 2,8 mln trojkatow.

liczba obiektow: 2,759,991,
e rozmiar pliku mgf: 19.5 MB,

e czas wczytania sceny: 39.11 s,

czas doktadnej budowy kd-drzewa: 209,99 s.

Umieszczenie obserwatora wewnatrz sceny determinuje rozmiar zbioru widocznych
obiektow stanowiacy nieraz 0.1% calego modelu. Sredni czas generowania obrazu up-
roszczong metoda $ledzenia promieni (obraz o rozdzielczosci 320 x 240:

e 6.5 - 10.4 s. - z uzyciem kd-drzewa dla wszystkich trojkatow,

e 0.06 - 0.9 s. - z zastosowaniem kd-drzewa zawierajacego jedynie obiekty widoczne.

Powyzsze czasy nie uwzgledniaja wyznaczania PVS ani przebudowy struktur danych
sceny. Sredni czas GVS wyniost 83 sekundy, za$ zredukowanie liczby generowanych
promieni w krawedzie zmniejszyto czas o prawie potowe do 46 sekund. Podczas prze-
chodzenia sceny czasy algorytmow aktualizowania PVS i przebudowe kd-drzewa (opi-
sanych w rozdziale 5) wynosity od 4 do 33 sekund. Wykresy zawierajace statystyki
wyznaczania PVS i budowy kd-drzew przedstawione sg na rysunku 41

Opisana selekcja widocznych obiektéw z rozdzialu 5 jest metoda agresywna, co
powoduje pojawienie sie artefaktow np. w scenie miasta brakujacych scian. Sa one
jednak nieraz niezauwazalne, szczegdlnie gdy obserwator nie wie jak wyglada doktadna
scena. Przyktadowe obrazy PVS podczas przechodzenia sceny miasta pokazane sa na
rysunku 42.

Warto zauwazy¢, ze zastosowanie algorytmu MLRTA pozwolitoby na doktadniejsze
wyznaczanie widocznych obiektow w duzo krotszym czasie, co ostatecznie umozliwitoby
wyswietlanie ztozonych scen w czasie rzeczywistym.
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Rysunek 41: Wyniki kolejnych aktualizacji widocznego zbioru. Po lewej: czas wyz-
naczania PVS oraz czas przebudowy kd-drzewa (wykres prawie pokrywajacy sie z osia
OX). Po prawej: liczba generowanych promieni oraz rozmiar PVS.
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Rysunek 42: Wybrane obrazy generowane metoda $ledzenia promieni podczas prze-
chodzenia sceny miasta.

7 Podsumowanie

Problem wyznaczania widocznych obiektow stosunkowo niedawno doczekal sie efekty-
wnych algorytmow. Wsrod wielu rozwiazaniach w wiekszosci aproksymacyjnych ist-
nieje zaledwie kilka algorytmoéw dokladnych np. Nirenstein [7] w 3D i Bittner [22]
w 2.5D. W publikacji [3| przedstawiono poréwnanie algorytmu GVS z dokladnym
algorytmem Nirensteina. Roéznica miedzy otrzymywanymi wynikami byta niewielka,
lecz to wtasnie algorytm GVS lepiej dokonywal selekcji widocznych obiektow. Pow-
stale roznice nie wynikaja jednak z idei owych rozwigzan lecz z bledéw obliczen nu-
merycznych. Przykladowo testujac algorytm Mollera mozna zauwazyé¢, ze promie-
nie skierowane w krawedzie odlegtego trojkata omijaja go. Konsekwencja tego jest
dtuzszy czas dziatlania GVS oraz bledna klasyfikacja niewidocznych elementéw sceny.
W wyniku zatem paradoksalnie mozna otrzymac¢ konserwatywny zbiéor widocznych
obiektow.

Dzieki prostej idei algorytmu GVS w doséé tatwy sposéb mozna dokonywaé jego
modyfikacji. Zaréwno dowolny ksztalt obszaru obserwatora jak i uogélnienie na obiekty
wypukle pozwolity na obliczanie PVS z uzyciem OORT (ang. Object-Oriented Ray
Tracing). Jedynym problem stanowilo wyznaczanie promienia w reverse sampling,
ktore dla zréznicowanych figur geometrycznych nie jest juz trywialne. Opracowane i
opisane w rozdziale 4 metody redukcji liczby generowanych promieni doprowadzity do
znacznego przyspieszenia algorytmu. Ograniczenia te wplywaja jednak na aproksy-
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macje zbioru PVS, choé¢ w wielu przypadkach, tj. w scenach przedstawiajacych rzeczy-
wiste modele a nie losowe zbiory trojkatow, liczba btednych pikseli byta nieznacznie
wicksza. Rowniez idea aktualizacji PVS z wykorzystaniem opisanych w rozdziale 5 pro-
mieni inicjujacych przyczynita sie do szybszej selekcji widocznych obiektéw. Poprzez
zredukowanie liczby generowanych promieni w wielu przypadkach wyznaczanie PVS
mozna przyspieszy¢ nawet siedmiokrotnie.

W pracy przetestowano wykorzystanie PVS podczas §ledzenia promieni. Zgodnie
z oczekiwaniami znacznie przyspieszyto to generowanie obrazéw, jednak wpltywa to je-
dynie na promienie poczatkowe. Uzycie promieni odbitych wymaga uwzglednienia juz
calej sceny. Analogiczny problem pojawia sie w oswietleniu posrednim i bezposred-
nim. Roéwniez i tu mozliwa jest aproksymacja z zastosowaniem metod wyznaczania
widocznosci z obszaru (obliczenie o$wietlenia opisal np. Schaufler w [1]).

Przechodzenie sceny miasta okazalo sie by¢ nietrywialnym problemem, a wyz-
naczanie widocznych obiektéw z kolejnych obszaréw obserwatora nie zawsze satys-
fakcjonujace. Zaréwno wyniki metody aktualizowania zbioru PVS jak i algorytmu
GVS dla obszaréw w scenie miasta zaleza od wielu czynnikéw. Probkowanie wido-
czno$ci z powierzchni obszaru powoduje pominiecie widocznych obiektéw w przypadku
duzego obszaru obserwatora lub obszaru, ktérego powierzchnia jest bliska obiektom
sceny lub je przecina.

Ciekawym i niedawno opublikowanym rozwiazaniem jest algorytm Bittnera [11].
Idea jest zblizona do GVS, jednak tu probkowanie odbywa sie w dwoch kierunkach:
dla kazdego promienia dodatkowo badany jest promien przeciwny. Tym sposobem
znajdowane sa dwa obiekty, ktore widoczne sa ze wszystkich obszaréw, przez ktore
przeszty promienie. W wyniku otrzymujemy zbiory PVS dla wszystkich obszaréow
obserwatora.

Poza powstawaniem kolejnych algorytméw widocznosci i efektywnych metod $le-
dzenia promieni nastepuje rozw6j architektury komputerowej. Znane juz od kilku lat
instrukcje SSE wprowadzone w procesorach Pentium III umozliwity wykonywanie dzi-
atan na 4-elementowych wektorach. Zastosowanie ich w algorytmie MLRTA [13] miato
znaczny wplyw na efektywnosé algorytmu sSledzenia promieni. Obecnie szczegolng
uwage nalezy zwrocié¢ na rozwoj GPU (ang. graphics processing unit) i wykorzystanie
wielu koprocesoréw graficznych. Zaréwno konstrukcja GPU w Larrabbe Intela jak i
rozwiazanie §ledzenia promieni w NVIRT przyczynia sie do znacznego przyspieszenia
ray tracingu. Warto zauwazy¢, ze dzieki temu wyznaczanie widocznych obiektéw bedzie
jeszcze efektywniejsze.
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A Zaimplementowane programy

A.1 Lista programoéw
e fpvs - wyznaczanie PVS i zapis do pliku,

e gcmppvs - porownanie dwoch wynikéw PVS, wyswietlenie ich i oznaczenie kolorami

(OpenGL),
e pvserror - wyznaczanie btedu PVS, generuje obraz PPM,

e rvs - wyznaczanie kolejnych zbiorow PVS i zapis ich do plikow (program pomoc-
niczy),

e rtrt - wyswietlanie scen (OpenGL) z ograniczonym widokiem do zbioru PVS,
przechodzenie sceny, aktualizacja zbioru PVS,

e cpvs.hpp - (,calculate pvs”) modut opakowujacy algorytmy wyznaczania widocznych
obiektow.
A.2 Kompilacja

W katalogu src/makefiles znajduja sie wszystkie pliki makefile stuzace kompilacji pro-
gramow. Plik MAKE xxx odpowiada programowi xxx. Plik wykonywalny zostaje
umieszczony w katalogu bin.

Kompilacja wszystkich programéw:

sh scripts/compile _all.sh
Kompilacja wybranego programu:

sh scripts/compile_ <prog>.sh

gdzie <prog> = fpvs | gpvs | gcmppvs | pvserror | rvs | rtrt

A.3 Uruchamianie
A.3.1 Programy
fpvs, ktorego wywotanie jest nastepujace:

./fpvs <properties> [-edgediv <int>| [-maxdepth <int>] [-edgetype <0|1> ]
[-maxrand <int>] [-randstep <0|1>] [-eeps <double>] [-pvsout <file>]

gdzie:

<properties> - plik z ustawieniami programu, zawiera m.in. $ciezke do pliku
sceny, wspolrzedne obserwatora, definiuje obszar widzenia

-edgediv K - wymuszenie podziatu krawedzi otoczenia na K czesci

-maxdepth D - ograniczenie glebokosci rekursji algorytmu podziatu krawedzi
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-edgetype 0|1 - typ przetwarzania krawedzi, 0 - gvs, 1 - punkt brzegowy
-maxrand N - maksymalna liczba losowych promieni

-randstep 0|1 - jesli 1, to zostang generowane jedynie losowe promienie - algorytm

RAND
-eeps E - wartosé epsilon - odlegtosé otoczenia od obiektu (metoda ,enlarge”)
-pvsout P - zapis PVS do pliku P
gcmppvs, ktorego wywotanie jest nastepujace:
./gcmppvs <properties>

gdzie <properties> zawiera informacje o scenie, obserwatorze oraz $ciezkach do dwoch
plikow z PVS:

PVS FILENAME - plik z pierwszym PVS

PVS2 FILENAME - opcjonalny parametr, jesli niezdefiniowany, tylko pierwszy
PVS jest wyswietlany

pvserror, ktérego wywotanie jest nastepujace:

./pvserror <properties> [ -rand <long> | [-pvs <file>] [-limitpvs <long>]
[-ppm <filename>] |

gdzie:
properties - plik z ustawieniami programu

rand R - tryb losowych promieni, bez generowania obrazu, w wyniku liczba bted-
nych ’pikseli’

pvs F - pliku wejsciowy z PVS
limitpvs K - ograniczenie PVS do pierwszych K obiektow
ppm F - obraz wynikowy w formacie PPM

rvs, ktorego wywolanie jest nastepujace:

./rvs <properties> -vec vec|0] vec[l] vec[2] -steps <steps> -inpvs <file>
-outpvs <file>

gdzie:
properties - plik z ustawieniami programu
vec v0 v1 v2 - wektor przemieszczania po scenie [v0,v1,v2]
steps S - liczba krokow (max 999)

inpvs FIN - wejsciowy plik z PVS
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outpvs FOUT - wyjsciowy "PREFIX"pliku z PVS

uwaga: w wyniku dzialania powstaje wiele wynikowych PVS zatem sg one zapisywane
w plikach ze zmienianym sufiksem: jesli FOUT = pvs out xxx.txt wowczas zostana
wygenerowane: pvs_out 00L.txt, pvs _out 002.txt .... pvs_out <S>.txt.

rtrt
./rtrt <properties>

gdzie <properties> jest plikiem z ustawieniami ktory zawiera informacje m.in. o
obszarze i potozeniu obserwatora, scenie itd.

A.3.2 Moduly, kod Zrédlowy, klasy

Glowny modul cpvs opakowuje algorytmy wyznaczanie widocznych obiektow. Zawiera
on metody:

e cpvs RAND - algorytm RAND - generowanie losowych probek, znajdowanie prze-
ciecia, ktore klasyfikuje obiekt jako widoczny,

e cpvs_GVS - algorytm GVS z pracy Wonki "Guided Visibility Sampling" 3],
e cpvs_RVS - algorytm aktualizujacy PVS.
Ponizej zostal opisany kod Zrodtowy wedtug katalogow:

e gvs/ - klasy i metody zwiazane z algorytmem GVS wraz z rozszerzeniami, m.in.
metody rozszerzania obiektow (enlarge”),

e pvs/ - klasa reprezentacji zbioru widocznych obiektow,

e rt/ - klasy i metody zwiazane ze Sledzeniem promieni wg prac Havrana [18] i
Shevtova [17], tj.:

— implementacja kd-drzewa wraz z algorytmem szybkiego budowaniem struk-
tury,
— modul zarzadzania pamiecig przy budowanie kd-drzewa
— trawersowanie drzewa
— metody i klasy uproszczonej wersji RayTracera
e scene/ - klasy i metody wezytywania (w formacie MGF) oraz reprezentacji w

pamieci Swiatel, materialow i obiektéw sceny. Obiekty - primitives - zawieraja
funkcje opakowujace metody wykorzystywane w GVS (np. enlarge)

e settings/ - modul stuzacy do przechowywania parametréw dla zaimplementowanych
aplikacji. Przyktadowe pliki definujace ustawienia znajduja si¢ w katalogu tests

e utils/ - wydzielone makra i przydatne funkcje m.in.: obstuga kamery, mapowanie
tonow.

A.3.3 Plik z ustawieniami

Opis parametrow znajduje sie w pliku src/settings/settings.hpp
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A.4 Sceny

A.4.1 Generatory scen

e citymaze - generator mapy miasta w postaci 01 (0 - pusty blok, 1 wypelniony)

e citygen - generator sceny miasta do pliku mgf, opcjonalnie wykorzystuje wynik
citymasze

e mesh - generator ptaszczyzny podzielonej na trojkaty

e sphtrigen - generator sceny ztozonej z losowych trojkatow i kul

A.4.2 Kompilacja i uruchamianie

Kompilacja wszystkich generatorow mozliwa jest za pomoca skryptu scripts/compile _all.sh.
W celu kompilacji wybranego programu ze wzgledu na ich prostote wystarczy np.
polecenie: gcc src/program.cpp -o bin/program Na plycie dotaczono skrypt generate scenes.sh
generujacy pliki mgf na ktorych przeprowadzano testy algorytmoéw.

Wiecej szczegotow w pliku readme oraz plikach nagtowkowych.
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