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1 Wstęp
Celem pracy była implementacja i testowanie algorytmu wyznaczania widocznych obiek-
tów. Spośród wielu istniejących rozwiązań wybrano algorytm GVS Wonki [3] z 2006
roku. Został on poddany licznym modyfikacjom i rozszerzeniom mających wpływ na
zmniejszenie czasu działania. Jako przykładowe zastosowanie wybrano przyspiesze-
nie generowania obrazów metodą śledzenia promieni. Sprawdzono czas renderowania
w scenach mających ponad milion elementów, a poprzez redukowanie ich rozmiarów
poruszono problem przechodzenia scen w czasie rzeczywistym.

Dla potrzeb wyznaczania kolejnych zbiorów widocznych obiektów opracowano al-
gorytm aktualizujący, który bazując na istniejącym rozwiązaniu wyznacza widoczne
elementy z sąsiedniego obszaru. W odróżnieniu od metod badających widoczność dla
całej sceny np. Chhugani [10] i Bittner [11] jest to metoda przyspieszająca obliczenia
bez używania dodatkowej pamięci. Idea algorytmu jest bliska rozwiązaniu wyświetlania
dużych miast Koltuna [4], jednak nie wymaga ona założeń co do typu sceny.

W drugim rozdziale zostało opisane wyznaczanie widocznych obiektów wraz z wy-
branymi algorytmami. W rozdziale trzecim opisano algorytm GVS będący agresywnym
wyznaczaniem widocznych obiektów. Rozdział czwarty i piąty zawiera własne pomysły
związane z problematyką wyboru widocznych obiektów. Przedstawiono w nich roz-
szerzenia i modyfikacje algorytmu GVS. W piątym rozdziale został opisany przykład
zastosowania algorytmu widoczności oraz metoda aktualizacji zbioru widocznych obiek-
tów. W rozdziałach szóstym i siódmym zamieszczono wyniki i podsumowanie. Zaim-
plementowane algorytmy zostały opisane w dodatku A.

2 Problematyka i przegląd rozwiązań
Jednym z podstawowych problemów grafiki komputerowej jest określenie widocznych
obiektów sceny. Rozwiązaniem jest wygenerowany przez kartę graficzną obraz zawie-
rający widok z określonego punktu. Wyobrażając sobie w jaki sposób narysować scenę
rozważamy metodę polegającą na sprawdzaniu widoczności kolejnych obiektów. Innym
podejściem spotykanym również w malarstwie jest uwzględnienie najpierw dalekiego
planu, następnie bliższych drzew, budynków itd. Przyczynia się to do częściowego
zamalowania obszarów nakładając kolejne warstwy. Problem widoczności, czyli klasy-
fikacji obiektów na widoczne i zasłonięte, sprowadza się do wyznaczenia elementów,
które de facto znajdą się na obrazie.

Problem widoczności rozszerza się o widok we wszystkich kierunkach. Poprzez
odrzucenie niewidocznej geometrii sceny zmniejsza się zbiór obiektów, które należy
uwzględniać przy rysowaniu. Obecne wiele rozwiązań skupia się na odrzuceniu części
sceny schowanej pozostawiając wszystkie obiekty widoczne. Najpopularniejszy i pow-
szechnie stosowany jest Z-Buffer, który ma dodatkowo wsparcie sprzętowe. Wyznacza
on tylko widoczne punkty odrzucając każdy ukryty (zasłonięty).

Innymi technikami podczas określania widoczności są:

• uwzględnienie piramidy widzenia i odrzucanie geometrii sceny poza nią (ang.
view-frustum culling)

• pomijanie trójkątów (płaszczyzn) odwróconych tyłem (ang. back-face culling)
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• wyznaczanie zasłaniania się obiektów i obszarów sceny (ang. occlusion culling)

Z bardziej złożonym zadaniem znajdowania widocznych obiektów mamy do czynienia
w przypadku niepunktowego obszaru obserwatora np. prostopadłościanu lub wycinka
płaszczyzny. Obecnie jest to popularny problem, mający szerokie zastosowanie nie
tylko w grafice komputerowej. O ile wyznaczanie dokładnie wszystkich widocznych
elementów EVS (ang. exact visible set) jest zadaniem niezwykle złożonym, to ist-
nieje wiele rozwiązań aproksymacyjnych wyznaczających zbiór potencjalnie widocznych
obiektów PVS (ang. potentialy visible set) w krótszym czasie.

Algorytmy określania widocznej geometrii z obszaru zwykle klasyfikowane są jako:

• dokładne (ang. exact), których wynikiem jest EV S,

• agresywne (ang. aggressive) , wyznczające PV S, t.że, PV S ⊆ EV S,

• przybliżone (ang. approximate), PV S ≈ EV S,

• konserwatywne (ang. conservative), PV S ⊇ EV S

Ograniczenie rozmiaru sceny do widocznych obiektów jest jedną z metod przyspiesza-
nia generowania obrazu. Inną równie popularną techniką jest uwzględnienie poziomu
szczegółowości LOD ang. level of detail. Metody upraszczania geometrii wyznaczają
aproksymacje obiektów sceny, następnie podczas generowania obrazu obiekty zastępo-
wane są ich przybliżoną wersją.

2.1 Klasyfikacja scen

W literaturze traktującej o wyznaczaniu widocznej geometrii spotyka się klasyfikację
względem wymiaru sceny:

• sceny 2D reprezentujące np. piętra wieżowców, pomieszczenia. Sceny takie
można utożsamiać z planami budynków na płaszczyźnie. Wysokość ścian określona
jest przez płaszczyzny sufitu i podłogi.

• mapa wysokości 2.5D - sceny będące rozszerzeniem sceny 2D o wysokość ścian.
Często spotykanymi modelami 2.5D są miasta lub rzeźby terenu takie jak kaniony.

• scena 3D - model zawierający rozmieszczone dowolnie obiekty w przestrzeni
trójwymiarowej (najczęściej są to trójkąty).

2.2 Geometria sceny widoczna z punktu

Techniki używane podczas szukania obiektów sceny widocznych z punktu są podsta-
wowymi metodami grafiki komputerowej. Wśród nich znajdują się zarówno efektywne
algorytmy wyznaczania zasłoniętych obszarów jak również odrzucanie elementów poza
piramidą widzenia. Algorytmy te często znajdują zastosowanie w uogólnionym prob-
lemie wyznaczania widoczności z obszaru, a także w metodach śledzenia promieni. W
algorytmie MLRTA [13] zastosowano odrzucanie wierzchołków kd-drzewa, które nie
zawierają się w piramidzie widzenia.

Powszechnie wykorzystuje się hierarchiczne struktury danych typu kd-drzewa czy
drzewa ósemkowe, dzięki którym widoczność, a właściwie zasłonięcie, określa się dla
całych grup obiektów.
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2.2.1 Selekcja obiektów w polu widzenia

Piramida widzenia (ang. view frustum) V F wyznacza przestrzeń widzianą przez ob-
serwatora. Cztery płaszczyzny definiują ściany piramidy, które „przechodzą” przez
krawędzie ekranu. Często stosuję się dodatkowe dwie płaszczyzny określające głębokość
widzenia. Przestrzeń piramidy widzenia jest więc częścią wspólną odpowiednich pół-
przestrzeni, które zadane są przez płaszczyzny πi:

πi : ni · x + di = 0 i = 0, 1, ...5 (1)

gdzie, ni jest wektorem normalnym , di odległością , a x dowolnym punktem. Przyj-
mując półprzestrzeń wskazywaną przez wektor normalny za zewnętrzną (tj. obszar, z
którego widoczny jest „przód”) mówimy, że punkt x jest na zewnątrz płaszczyzny πi, gdy
ni · x + di > 0. Zatem x jest wewnątrz piramidy widzenia V F gdy jest po wewnętrznej
stronie wszystkich płaszczyzn.

Odrzucanie obiektów z użyciem piramidy widzenia (ang. view frustum culling)
polega na określeniu położenie obiektu względem każdej ze ścian. Elementy sceny
poza piramidą są traktowane jako niewidoczne przez co są pomijane podczas ren-
derowania. W celu przyspieszania powyższego testu wraz z obiektami pamiętane są
punkty ekstremalne, z którymi utożsamiany jest prostopadłościan zamykający ów ele-
ment (and. bounding box ). Równie popularne jest wykorzystywanie otaczających sfer
(ang. bounding spheres). Naiwny algorytm bazuje na sprawdzeniu wszystkich skraj-
nych wierzchołków „otoczki” względem piramidy. Relacja między prostopadłościanem
BB a piramidą widzenia V F może być następująca:

• BB leży w środku V F , gdy BB ∩ V F = BB

• BB na zewnątrz V F , gdy BB ∩ V F = ®
• BB przecina V F , w przeciwnym przypadku,

W połączeniu z hierarchiczną strukturą np. kd-drzewa możemy sklasyfikować całe
poddrzewo za widoczne lub nie.

Innym podejściem jest klasyfikacja wierzchołków względem kolejnych płaszczyzn
V F . Jeśli są na zewnątrz płaszczyzny to prostopadłościan jest od razu określony
jako niewidoczny. Taki algorytm prowadzi jednak do błędnych odpowiedzi, gdyż może
klasyfikować niewidoczny prostopadłościan jako przecinający się z piramidą widzenia.
Mimo tego podejście to zostało efektywnie zoptymalizowane przez Ulfa Assarssona i
Tomasa Möllera [12]. Zastosowano prostopadłościany, których ściany są odpowiednio
równoległe do płaszczyzn x = 0, y = 0, z = 0 (AABB, ang. axis-aligned bounding box ).
Ich reprezentacja sprowadza się do dwóch punktów ekstremalnych bmin i bmax. Idea
algorytmu jest następująca:

• dla każdej płaszczyzny πi (i = 1, 2, 3, 4) określa p-vertex i n-vertex będące
punktami ekstremalnymi (rysunek 1),

• wstawiając punkt do równania πi klasyfikujemy jego położenie.
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Rysunek 1: Określanie położenia bounding boxa względem płaszczyzny π z użyciem
punktów ekstremalnych.

• współrzędne punktów p-vertexj i n-vertexj, gdzie j = x, y, z wyznaczane są
następująco:

p-vertexj =
{
bmaxj dla nj > 0
bminj wpp.

n-vertexj =
{
bminj dla nj > 0
bmaxj wpp.

(2)

• jeśli istnieje płaszczyzna, dla której ni·n-vertex+di > 0, wtedy prostopadłościan
jest na zewnątrz,

• jeśli dla każdej płaszczyzny ni ·p-vertex+di < 0 prostopadłościan jest wewnątrz
piramidy widzenia,

• w pozostałych przypadkach algorytm klasyfikuje prostopadłościan jako przecina-
jący piramidę widzenia.

Problem określania przecięcia prostopadłościanu z piramidą widzenia można roz-
wiązać poprzez uwzględnienie płaszczyzn wyznaczających bounding box i przecinania
ich przez piramidę widzenia. Algorytm „inverse view frustum culling” został opisany w
publikacji Reshetova [13], jako jedna z metod przyspieszenia śledzenia promieni. Idea
algorytmu jest następująca:

• wszystkie promienie zawarte w piramidzie widzenia mają zgodne znaki dla
każdej współrzędnej. W przeciwnym przypadku piramida jest dzielona.

• w celu określenia jak piramida widzenia V F przecina prostopadłościan BB wierz-
chołka, tj. czy tylko lewe poddrzewo, tylko prawe lub obydwa, wyznacza się
położenie przecięcia V F z π. Jeśli jest poza prostopadłościanem BB, to
przecinane jest tylko jedno poddrzewo (rysunek 2),

• powyższy test przecięcia V F z π zredukowany jest tylko do jednej współrzęd-
nej (np. w sytuacji na rysunku 2 porównywane są wartości y),
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• liście drzewa poddawane są dodatkowemu testowi: dla wszystkich trzech możli-
wych par współrzędnych (xy, yz, zx) V F i BB rzutowane są na trzecią współ-
rzędną. Przypadki w których piramida widzenia omija liść są rozpoznawalne z
użyciem dwóch porównań np. dla pary xy prostopadłościan zadany jest jako

β = {(x, y) : bminx < x < bmaxx i bminy < y < bmaxy} (3)

zatem piramida widzenia omija BB gdy jeden z poniższych warunków:

min {yin} > max {xout}
min {xin} > max {yout} (4)

gdzie xin, xout wyznaczają przecięcia unormowanych promieni zawartych w V F
z płaszczyznami BB. Punkty r(xin) i r(xout) leżą odpowiednio na płaszczyznach
x = bminx i x = bmaxx, gdzie r(t) jest równaniem parametrycznym promienia.
Analogicznie dla yin i yout.

Rysunek 2: Określanie przecięcia piramidy widzenia V F i prostopadłościanu BB (π
jest płaszczyzną podziału wierzchołka kd-drzewa). Zakładamy, że V F przecina BB
oraz promienie zgrupowane w V F mają zgodny znak współrzędnej y. Piramida
przecina tylko górną (czerwoną) lub tylko dolną (niebieską) część gdy przecięcie z
płaszczyzną π (wartości min i max) jest poza prostopadłościanem.

2.2.2 Odrzucanie tylnych ścian

Założenie, że tylko jedna strona powierzchni płaskich jest widoczna, prowadzi do efek-
tywnych metod zmniejszania liczby elementów sceny, które wykorzystywane są podczas
wyświetlania obrazu (czy też uwzględniane są w kolejnych obliczeniach).

W związku z tym, że płaszczyzna dzieli przestrzeń na dwie części, tj. część z
przodu i z tyłu względem jej wektora normalnego, należy prostym testem sklasyfikować
położenie obserwatora. Mając dany trójkąt T reprezentowany przez wierzchołki v0, v1,
v2 określane jest położenie obserwatora O następująco:
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równanie płaszczyzny π : n · x + d = 0 (gdzie x jest dowolnym punktem na
płaszczyźnie) zawierającej T wyznaczamy obliczając:

n = (v1 − v0)× (v2 − v0)
d = −n · v0

(5)

następnie po podstawieniu O do równania π określamy trójkąt jako widoczny
z tyłu gdy otrzymamy wynik ujemny. Otrzymana wartość (bez znaku) jest
odległością punktu O od T , przemnożoną przez n · n.

Również sklasyfikowanie wielokąta T jako widocznego z tyłu jest możliwe poprzez
zbadanie czy n · (O − p) < 0, gdzie p jest dowolnym punktem z T .

2.2.3 Hierarchiczne odrzucanie tylnych ścian

Rozpatrując sytuację, w której położenie obserwatora nie jest stałe, tj. generując obraz
z różnych punktów obszaru sceny, obliczenia dla wszystkich trójkątów za każdym razem
staje się mało wydajne. Rozwiązaniem tego problemu jest grupowanie obiektów, tak
by klasyfikacja czy grupa jest odwrócona przodem czy tyłem odbywało się za pomocą
jednego testu. Subodh Kumar i Dinesh Manocha w [2] zaprezentowali hierarchiczne
odrzucanie odwróconych obiektów (ang. Hierarchical back-face culling). Idea tego
algorytmu jest następująca:

płaszczyzna każdego trójkąta dzieli przestrzeń 3D na obszary, z których jest
on widoczny z przodu lub z tyłu. Korzystając z reprezentacji płaszczyzn
w przestrzeni dualnej następuje ich grupowanie w klastry. W przypadku
dużej liczby elementów następują kolejne podziały na 4 lub 8 podgrup aż
do osiągnięcia minimalnej mocy podzbioru. Dla każdej grupy budowane są
podziały na1 (rysunek 3):

Rysunek 3: Określanie jak zorientowane są płaszczyzny względem dowolnych punk-
tów obszarów. Punkty obszarów z tyłu i z przodu są rozwiązaniami problemu pro-
gramowania liniowego zadanego nierównościami dla płaszczyzn.

1. region, z którego wszystkie trójkąty są widoczne z tylu (ang. back
region)

1Autorzy wykorzystują algorytmy rozwiązujące problem programowania liniowego oraz znajdowa-
nia otoczki wypukłej 3D
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2. region, z którego wszystkie trójkąty są widoczne z przodu (ang. front
region)

3. obszar mieszany zawierający obiekty widoczne z tylu lub z przodu
(ang. mixed region). Nie jest on pamiętany.

Wykrywanie obiektów zwróconych przodem do obserwatora odbywa się,
poprzez sklasyfikowanie do którego regionu należy punkt obserwatora dla
każdego klastra.

2.2.4 Łączenie zasłoniętych obszarów

Peter Wonka i Dieter Schmalstieg zaproponowali metodę szybkiego odrzucania nie-
widocznych obiektów dla scen 2.5D [5]. Sprowadza się ona do wykorzystania kart
graficznych do generowania obrazu zawierającego sumę zasłoniętych obszarów (rysunek
4).

Rysunek 4: Po lewej: Zasłonięty obszar δ wyznaczany jest na podstawie punktu ob-
serwatora i górnej krawędzi e obiektu zasłaniającego. Dzięki projekcji δ na podłoże π
powstaje mapa zasłonięcia która wraz z informacją o wysokości pozwala na określenie
widoczności z punktu. Po prawej: mapa zasłonięcia cull map. Wykorzystując z-bufor
i wsparcie sprzętowe rozwiązany jest problem nakładających się obszarów.

Idea jest następująca:

• scena zostaje umieszczona w strukturze - regularnej siatce 2D. Każdy obiekt jest
umieszczony w jednej lub wielu komórkach.

• podczas wyświetlania sceny następuje dynamiczny wybór zbioru obiektów za-
słaniających, dla których rysowane są cienie w odpowiednim buforze cull map
(rysunek 4). Jako kryterium wyboru obiektów rzucających cień brana jest je-
dynie odległość od obserwatora.

• z każdym pikselem cull mapy utożsamiona jest odpowiada komórka w siatce 2D.
Razem z informacją o wysokości padającego cienia rysowane są jedynie obiekty
wyższe.

• w celu uzyskania konserwatywnego algorytmu należy skorygować rozmiar cienia.
Przy rasteryzacji piksel p należący do wielokąta W jest rysowany gdy jego środek
leży wewnątrz W . W algorytmie piksel reprezentuje kwadratowy obszar po-
wierzchni zatem poprawna mapa zasłonięcia zawierać powinna te obszary, które
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są całkowicie zawarte w cieniu, a nie tylko ich środek. Dotyczy to obszarów
leżących na brzegu wielokąta. Determinuje to zatem korekcje rozmiaru cieni
polegającą na ich zwężeniu.

Wyżej opisaną metodę można zastosować również dla dowolnych scen, wymaga on
jednak odpowiedniego jej przetworzenia, tj. wyodrębnienia np. budynków, drzew,
odcinków dróg oraz wyboru obiektów zasłaniających.

Pseudokod algorytmu rysującego potencjalnie widoczne obiekty:

for each C(i,j) in data grid
if C(i,j).z > cullmap(i,j)

for each object O(k) in C(i,j)
if O(k).z > cullmap(i,j).z and O(k) not already rendered

render O(k)

2.3 Geometria sceny widoczna z obszaru

W niniejszym rozdziale zostaną omówione wybrane algorytmy rozwiązujące problem
widoczności z obszaru wraz z metodami np. aproksymacji zasłoniętego obszaru, wyko-
rzystania algorytmów widoczności z punktu czy też przestrzeni dualnych.

Interesującymi rozwiązaniami są metody analizujące sceny w przestrzeniach du-
alnych. Spośród spotykanych rozwiązań na szczególną uwagę zasługują prace Koltuna
[4] i Nirensteina [7] opisane w rozdziałach 2.3.2 oraz 2.3.5. W pierwszej zaproponowano
wyznaczanie widocznych obiektów sceny 2.5D w dualnej przestrzeni promieni 2D.
Druga publikacja opisuje dokładny algorytm wyznaczania widoczności wykorzystując
reprezentacje obiektów i promieni w przestrzeni Plückera.

2.3.1 Algorytm Schauflera i przestrzeń zasłaniająca

Gernot Schaufler w [1] przedstawił wyznaczanie widocznych obiektów dzieląc przestrzeń
sceny i łącząc obszary ograniczające widoczność . Algorytm operuje na scenach zarówno
2.5D jak i 3D, opiera się on na dyskretyzacji sceny na komórki (np. sześciany) a następ-
nie określeniu, które z nich są widoczne. Ogólny zarys algorytmu jest następujący:

• w wolumetrycznej reprezentacji sceny, takiej jak drzewa ósemkowe (ang. oct-
trees) i drzewa czwórkowe (and. quadtrees) oznacza się liście jako puste,
wypełnione i brzegowe. Puste odpowiadają obszarom niezawierającym ele-
mentów sceny. Jako wypełnione oznaczone są woksle (ang. voksel) w całości za-
warte w obiektach. Pozostałymi są brzegowe, dla których dodatkowo wprowadza
się dokładniejszy podział co powoduje większą głębokość drzewa,

• algorytm dla wybranych obiektów oznacza zasłonięty przez nie obszar,

• w celu optymalizacji obliczeń jako obiekt zasłaniający traktuje się fragment prze-
strzeni w kształcie prostopadłościanu,

• wybór obiektów, czyli wypełnionych liści, blokujących promienie z obszaru
obserwatora następuje według kryteriów: odległości od obserwatora i rozmiaru.
Bliższe obiekty ograniczają większy obszar, natomiast duże są na mniejszej głę-
bokości w drzewie,
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• wybrany zasłaniający obszar jest odpowiednio powiększany o przyległe do
niego wypełnione wierzchołki tworząc w ten sposób duży obiekt ograniczający
widoczność (occluder fusion). Zasłonięte wierzchołki traktowane są również jako
wypełnione i służą powiększaniu prostopadłościanu (rysunek 5),

• definiując odpowiednio płaszczyzny styczne do zasłaniającego obszaru i obser-
watora oraz trawersując drzewo zaznaczane są niewidoczne wierzchołki. Hierar-
chiczna struktura danych pozwala na skrócenie ścieżki w drzewie.

Rysunek 5: Rozszerzanie obiektu zasłaniającego o wypełnione woksle. Dla obszaru O
rozszerzone obiekty A i B wyznaczają cienie α i β. Obszar γ jest zasłonięty dopiero po
powiększeniu B o C, który będąc w cieniu A traktowany jest jako wypełniony obszar.
Sklasyfikowanie C jako obszar pusty, wypełniony lub brzegowy nie jest uwzględniane.

W publikacji zostały opisane również specyficzne metody rozszerzania obiektu za-
słaniającego oraz reprezentacji zasłoniętego obszaru dla scen typu 2.5D oraz 3D.

2.3.2 Selekcja widoczności w dualnej przestrzeni promieni

Vladen Koltun, Yiorgos Chrysanthou i Daniel Cohen-Or zaprezentowali w [4] algorytm
wyznaczania widocznych elementów sceny z obszaru w przestrzeni dualnej promieni.
Jest on związany z problemem przechodzenia złożonej sceny i wyświetlania jej w czasie
rzeczywistym (ang. online walkthrough). Założenia oraz idea rozwiązania są następu-
jące:

• rozpatrywanie scen typu miasto (2.5D), dla których określamy podział na pro-
stopadłościany (komórki).

• zastosowanie kd-drzew do reprezentacji sceny.

• rozmiar obszaru, w którym porusza się obserwator jest tak dobrany, by czas
potrzebny na jego przejście był wystarczający do wyznaczenia PVS dla sąsied-
nich regionów. Autorzy zaprezentowali system, w którym wyznaczanie PVS
odbywa się na serwerze, a wyniki przesyłane są do aplikacji klienta.

• zrezygnowano z fazy preprocesingu, którym wyznacza się widoczne obiekty dla
wszystkich komórek.
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• dla danego obszaru obserwatora algorytm trawersuje kd-drzewo określając dla
każdego wierzchołka, czy bounding box z nim związany jest niewidoczny - co jest
zarazem warunkiem stopu przechodzenia ścieżki w drzewie.

• widoczność między dwoma komórkami zredukowana jest do widoczności między
dwoma krawędziami. Analizowana jest ona w dualnej dwuwymiarowej prze-
strzeni, w której każdemu promieniowi mającemu początek na jednej krawędzi i
przecinającej drugą odpowiada punkt w przestrzeni dualnej.

W ostatnim punkcie wykorzystane jest założenie o wymiarze sceny 2.5D, de facto
wymiar ten dotyczy wybranych obiektów zasłaniających niewidoczne obszary np. fasady
budynków. Problem widoczności między dwoma komórkami cell-to-cell został więc
zmodyfikowany do następującego zadania:

dla danych komórek A i B i zbioru obiektów S (2.5D) wystarczy określić
czy górne krawędzie ea i eb komórek A oraz B są całkowicie zasłonięte
przez elementy z S (rysunek 6).

Rysunek 6: Krawędzie ea i eb oraz obiekt zasłaniający si. U góry w uproszczonej scenie,
na dole w dualnej przestrzeni promieni

Zauważając, że obiekty (powierzchnie) z S przecinając płaszczyznę przechodzącą
przez ea i eb determinują zbiór odcinków S ′, redukujemy problem widoczności następu-
jąco:

• definiujemy zbiór punktów RS = {(x, y) : 0 ≤ x, y ≤ 1}, w którym punktowi
(x, y) odpowiada odcinek łączący ea(x) z eb(y).

• ograniczając się tylko do promieni między ea i eb elementowi s ∈ S ′ odpowiada
zamknięty obszar RS w postaci trapezu lub dwóch trójkątów (rysunek 6)
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• generując obraz (bitmapę) elementów S ′ w RS stwierdzamy, czy komórki A i B
są widoczne:

– tak - jeśli istnieje niezamalowany punkt w RS

– nie - jeśli RS został w całości pokryty elementami S ′

Wybór obiektów 2.5D zasłaniających obszary sceny został opisany m.in. w pracach
Isabla Navazo [15] i Vladena Koltuna [14].

2.3.3 Grupowanie i odrzucanie tylnych ścian

Jedną z metod redukcji liczby widocznych elementów jest odrzucanie obiektów odwró-
conych tyłem. Poprzez dyskretyzację obszaru obserwatora i reprezentację wybranymi
punktami możemy odrzuć te elementy, które widoczne są z tyłu ze wszystkich punktów.
Dzięki czemu możemy wykorzystać algorytmy widoczności dla pojedynczego punktu.
Również przeprowadzenie testu widoczności z tyłu dla jednej płaszczyzny okazuje się
być trywialnym zadaniem. Zakładając, że komórka obserwatora jest zadana punk-
tami ekstremalnymi bmin i bmax analogicznie jak w opisanym algorytmie frustum
culling wystarczy zbadać wartość równania płaszczyzny π dla odpowiedniego punktu
ekstremalnego p-vertex.

Jatin Chhugani w pracy doktorskiej[10] przedstawił m.in. interesujący algorytm
odrzucania obiektów „Cell-based hierarchical back-face culling” . Wykrywanie tylnych
ścian opiera się o konstrukcje stożków (and. bounding cone) zawierających wektory nor-
malne oraz wektory do obserwatora, a następnie badanie kątów między nimi (rysunek
7).

Rysunek 7: Po lewej: tworzenie otaczającego stożka bounding cone. Po prawej: użycie
stożków i kątów Γ, γ do wyznaczenia widocznych obiektów z przodu i z tyłu.

Algorytm jest następujący:

• danymi są komórka obserwatora O oraz zbiór figur płaskich zamkniętych w pro-
stopadłościanie B.

• wektory normalne powierzchni elementów zamykane są w stożku (podobna kon-
strukcja opisana jest w pracy Sederberga [16]):
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– stożek reprezentowany jest przez parę wektor Ai oraz kąt θi, stożek ten
zawiera wszystkie wektory, które tworzą z Ai kąt co najwyżej θi.

– zaczynając od pierwszego wektora N1 budowany jest stożek reprezentowany
przez wektor A1 = N1 i θ1 = 0.

– wyznaczając kolejne Ai+1 i θi+1 sprawdzamy kąt międzyAi a Ni+1. Jeśli
Ni+1 jest wewnątrz stożka to Ai+1 = Ai oraz θi+1 = θi. W przeciwnym
przypadku należy stożek rozszerzyć:

Ai+1 = (Nt + Ni+1)/ ‖Nt + Ni+1‖
cos(θi+1) = Ai+1 ·Ni+1

(6)

gdzie Nt leży na płaszczyźnie zawierającej Ai i Ni+1, tworzy kąt θi z Ai i
leży po drugiej stronie wektora Ai co Ni+1 (por. rysunek 7, α jest kątem
między wektorami Ai i Ni+1).

• (N, θ) zawiera wektory normalne i zaczyna się w dowolnym punkcie komórki B,
oznaczamy go przez v

• z v budowany jest (Vv, αv) - stożek widoczności (ang. visibility cone) zawierający
promienie z v w dowolny obszar O.

• wyznaczane są: najmniejszy i największy kąt między dowolnymi wektorami nor-
malnymi a wektorami widoczności:

Γv = cos−1(N · Vv) + θ + αv

γv = cos−1(N · Vv)− θ − αv
(7)

• obliczając (Vv, αv) i kąty Γv, γv w narożnikach B znajdujemy wartości ekstremalne:
maksymalny Γ i minimalny γ.

• jeśli γ jest większy od π/2, to wszystkie elementy są zwrócone tyłem. Jeśli Γ jest
mniejszy od π/2 wtedy wszystkie elementy zwrócone są przodem. W przeciwnym
przypadku zbiór elementów jest dzielony na pół i rekurencyjnie analizowany.

2.3.4 Wykorzystanie widoczności z punktu w algorytmie Wonki

Bazując na rozwiązaniu widoczności z punktu [5] Wonka, Schmalstieg wraz z Michaelem
Wimmerem rozszerzyli algorytm na wyznaczanie widoczności z obszaru w [6]. Algo-
rytm jest konserwatywny, a idea sprowadza się do dyskretyzacji sceny na komórki, dla
których wyznaczany jest zbiór charakterystycznych punktów obserwatora. Następnie
jest obliczana widoczność sceny jako suma wyników widoczności z punktów.

Rozwiązanie opiera się o następujące obserwacje:

• warunkiem wystarczającym widoczności z prostopadłościanu jest widoczność z
jego ścian,

• obiekt może zostać błędnie sklasyfikowany jako zasłonięty jeśli jest widoczny
jedynie z obszaru między punktami z P ,
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• obliczenie konserwatywnej aproksymacji widoczności jest możliwe poprzez zba-
danie jej dla dyskretnego zbioru punktów P , gdy dokona się korekcji zasłanianego
obszaru,

• zwężona powierzchnia zasłaniająca o ε determinuje mniejszy cień. Spełniona jest
wtedy własność:

obiekt B sklasyfikowany jako zasłonięty przez A′ (będący skurczonym
A o ε) z punktu obserwatora O pozostaje zasłonięty przez A (oryginalny
obiekt) z dowolnego punktu O′ przesuniętego o co najwyżej ε punktu
O ( ‖O′ −O‖ ≤ ε) (rysunek 8).

Rysunek 8: Obiekty B zasłonięty przez zmniejszony A′ jest również niewidoczny z
otoczenia O′, ponieważ przysłania go A

Należy zwrócić uwagę, że zwężanie obiektów zasłaniających różni się dla brył i po-
wierzchni. Zmniejszenie o ε jest wystarczające dla obiektów wolumetrycznych (ang.
volumetric occluder), co zostało udowodnione w publikacji Wonki [5]. Natomiast w
przypadku płaskich obiektów zasłaniających (ang. planar occluder) zwężanie w każdym
kierunku determinowane jest przez pozycję obserwatora i obiektu. Zatem analogiczne
zmniejszanie jak dla brył nie jest wystarczające. Przykład takiej sytuacji jest na ry-
sunku 9. Cień α figury płaskiej A′ (powstałego przez „skurczenie” A o ε) zawiera
elementy B i C. Przesunięcie obserwatora o ε sprawia, ze B staje się widoczny. Cień
β jest właściwie wyznaczony, tj. każdy obiekt w nim zawarty nie jest widoczny z
otoczenia O.

Algorytm selekcji widocznych obiektów sceny można opisać następująco:

1. podział sceny na komórki i wybór ε. Dla scen 2.5D zastosowano triangulację
Delaunaya.

2. zwężanie obiektów zasłaniających w zależności od ε

3. dla każdej komórki sceny:

• określenie wystarczającej liczby próbek reprezentujących komórkę

• wyznaczenie widoczności z każdego punktu

• wyznaczenie widoczności z komórki poprzez scalenie PVS uzyskanych dla
punktów lub wygenerowanych cieni (rozdział 2.2.4)
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Rysunek 9: Obiekt B ∈ α zasłonięty przez zmniejszony A′ o ε jest widoczny z otoczenia
O′. Po uwzględnieniu położenia obiektu względem obserwatora obiekt C ∈ β pozostaje
zasłonięty przez A

2.3.5 Dokładny algorytm widoczności Nirentseina

Nirenstein, Blake i Gain opublikowali interesujący algorytm odrzucania niewidocznych
obiektów [7]. W przeciwieństwie do dużej liczby rozwiązań aproksymacyjnych jest to
algorytm dokładny, tj. wyznaczający tylko widoczne obiekty z zadanego obszaru. W
praktyce, z powodu błędów numerycznych powstających przy reprezentacji i obliczeni-
ach, wynik nie gwarantuje jednak selekcji wszystkich widocznych elementów. Algorytm
jest w stanie operować na bardzo złożonych scenach, w których liczba trójkątów jest
rzędu miliona. Idea algorytmu polega na reprezentacji wielokątów (z przestrzeni R3) i
linii przecinających je L (ang. stabbing lines) w pięciowymiarowej przestrzeni euklides-
owej otrzymanej z przestrzeni Plückera a następnie odejmowaniu zasłoniętych linii ze
zbioru L.

Współrzędne i hiperppowierzchnia Plückera

Współrzędne Plückera są niezwykle użyteczne w operacjach na liniach i promieniach
3D jako wektorach w szesciowymiarowej przestrzeni. Przekształcenie Π : R6 → P5 jest
zdefiniowane następująco:

Niech l będzie promieniem (lub linią) przechodzącą przez punkty P, Q ∈ R3

w postaci odpowiednio (px, py, pz) i (qx, qy, qz).
Wtedy Π(l) = (π0, π1, π2, π3, π4, π5), gdzie:

π0 = qx − px π3 = qzpy − qypz

π1 = qy − py π4 = qxpz − qzpx

π2 = qz − pz π5 = qypx − qxpy

(8)

Własności:

• współrzędne (π0, π1, π2, π3, π4, π5) są jednorodne, tj. przemnożenie wszystkich
współrzędnych przez dowolny dodatni skalar daje w wyniku inną reprezentację
tej samej linii,

• przekształcenie Π jest różnowartościowe,
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• przestrzeń rzutową P5 można interpretować jako R5 wraz z połączonymi hiper-
płaszczyznami w nieskończoności w dodatnim i ujemnym kierunku. Zgodnie z
pierwszym punktem szóstkę można podzielić przez wybraną współrzędną np. π3,
następnie operować na elementach R5. Należy dodatkowo zadbać o odpowiednią
przesunięcie linii w scenie by nie dzielić przez zero.

• nie każdy punkt (szóstka współrzędnych Plückera) odpowiada linii w 3D,

• definiując następująco iloczyn skalarny π i x (π, x ∈ P5):

Dπ(x) : P5 → R
Dπ(x) = π0x3 + π1x4 + π2x5 + π3x0 + π4x1 + π5x2

(9)

zbiór rozwiązań Dπ(x) = 0 określa dualną płaszczyznę π w P5 - hiperpłaszczyznę
Plückera.

W celu ograniczenia zbioru do obrazu linii 3D względem przekształcenia Π definiuje się
hiperpowierznię Plückera. Idea polega na ograniczeniu się do elementów dla których
iloczyn skalarny z samym sobą daje w wyniku 0, mianowicie:

G = {x ∈ P5 : Dx(x) = 0} \ {0} (10)

Praktyczne zastosowanie współrzędnych Plückera

Badanie wartości iloczynu skalarnego Dπ(x) umożliwia określenie położenia wzglę-
dem siebie dwóch promieni. Jeśli wartość wynosi zero, wtedy dwa promienie przecinają
się. W przeciwnym przypadku drugi promień mija pierwszy z prawej lub lewej strony
(patrząc na promień „z góry” przypomina to obieganie zgodnie z ruchem wskazówek
zegara lub w stronę przeciwną). Interpretacja graficzna przedstawiona jest na rysunku
10.

Rysunek 10: Interpretacja graficzna wartości iloczynu skalarnego DΠ(a)(Π(b)): a i b -
promienie w R3. Po lewej: promień b omija a w przeciwną stronę do ruchu wskazówek
zegara. Na środku: a i b incydentne. Po prawej: promień b omija a zgodnie z ruchem
wskazówek zegara.

Dzięki powyższym własnościom dość łatwo zaimplementować jest algorytm wykry-
wania przecięcia promienia r z wielokątem T . Traktując krawędzie figury jako odpowied-
nio skierowane promienie ei promień r przecina T gdy:

Dπ(Π(r)) > 0,∀π ∈ {Π(e1), Π(e2), · · · , Π(en)} (11)
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Innym ciekawym algorytmem wykorzystującym współrzędne i przestrzeń Plückera jest
wyznaczanie przecięcia promienia z zastosowaniem SIMD [21].

Algorytm wyznaczania widocznych obiektów

Idea selekcja widocznych obiektów jest zbliżona do rozwiązania Vladena Koltuna
[4] (rozdział 2.3.2):

• widoczność wyznaczana jest poprzez testowanie czy para powierzchni jest wza-
jemnie widoczna,

• powierzchnie są wzajemnie widoczne gdy istnieje promień je przecinający, który
nie trafia w żaden obiekt zasłaniający. Analogicznie do algorytmu Koltuna, w
którym w scenach 2.5 wymiarowych problem redukuje się do wzajemnej wido-
czności górnych krawędzi,

• zbiór rozpatrywanych linii L między parą płaszczyzn (wielokątów) reprezentowany
jest w hiperpowierzchni Plückera. Jest to zbiór spełniający nierówność 11 dla
dwóch wielokątów.

• każdy zasłaniający wielokąt - de facto trójkąt - blokuje część linii Oi redukując
zatem zbiór możliwych promieni L.

• para płaszczyzn jest wzajemnie widoczna gdy L pozostanie niepuste,
tj. L \ ⋃

i∈I Oi 6= ®.
• do odejmowania zbiorów zastosowano algorytm oparty oCSG (ang. Constructive

Solid Geomtery) w 5D.

2.4 Poziom szczegółowości

Wprowadzenie poziomu szczegółowości LOD (ang. Level of detail) jest naturalną
metodą upraszczania geometrii sceny polegającą na wyświetlaniu uproszczonych mod-
eli znajdujących się daleko od obserwatora. W przypadku scen, których złożoność
graniczy z pojemnością pamięci operacyjnych komputerów klasy PC, stosowanie LOD
jest konieczne. Poniżej przedstawiona została klasyfikacja spotykanych rozwiązań.

Systemy stosujące poziomy szczegółowości LOD oraz aproksymacje modeli sceny,
można podzielić na:

• dyskretne (statyczne) - wyznaczają zbiór aproksymacji każdego modelu, wraz
z współczynnikiem błędu. Podczas działania zamieniają odpowiednią wersję
obiektu w zależności od obserwatora tj. orientacji obiektu i odległości od niego,
np. przez zbadanie ilorazu odległości i współczynników błędu. O stosowanych
technikach można przeczytać m.in. w pracach C.Eriksona, D. Manocha [23] opisu-
jącej kontrukcję LOD dla dużych statycznych (jak i dynamicznych) scen. Natomi-
ast w pracy M.Garlanda i P. Heckberta [24] przedstawiono metody aproksymacji
powierzchni.

• ciągłe (progresywne) - wyznaczają hierarchię aproksymacji oryginalnego modelu.
Opis metody można znaleźć w pracy H. Hoppe [25].
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• zależne od widoku - są rozszerzeniem systemu ciągłego o uwzględnienie orientacji
modelu względem obserwatora. Dzięki czemu bliższa część modelu jest wyświ-
etlana z większą dokładnością. Metoda jest szczególnie użyteczna w przypadku
dużych a zarazem szczegółowych modeli. Została on opublikowana w pracy Xia
i Varshneya [26].

3 Ukierunkowane próbkowanie widoczności
Powstanie efektywnych algorytmów śledzenia promieni jak np. [13] otworzyło drogę
metodom selekcji widocznych obiektów opartych na śledzeniu promieni. Takim al-
gorytmem jest ukierunkowane próbkowanie widoczności GVS (ang. Guided visiblility
sampling) opublikowane w pracy [3] autorstwa: Peter Wonka, Michael Wimmer, Kaichi
Zhou, Stefan Maierhofer, Gerd Hesina i Alexander Reshetov. Opracowana metoda
służy do rozwiązywania następującego problemu:

• mając dany zbiór trójkątów T określić, które są w całości lub częściowo widoczne
z wyznaczonego obszaru (powierzchni)

Bazując na modelu promieni i przecinanych obiektów rozwiązanie można przybliżyć
do obserwatora, który ogląda scenę w dowolnych kierunkach i porusza się po wyznac-
zonej powierzchni. Utożsamiamy w ten sposób widoczny w danym kierunku obiekt z
promieniem i trójkątem w 3D.
Mówiąc bardziej formalnie specyfikacje zadania można przedstawić następująco:
Niech:

• Ω - zbiór wszystkich promieni wychodzących z zadanego obszaru,

• T - zbiór trójkątów sceny,

• v : Ω → T funkcja widoczności zdefiniowana następująco:

v(r) jest pierwszym trójkątem przeciętym przez promień r

Trójkąt t ∈ T jest widoczny, wtedy i tylko wtedy gdy istnieje trafiający w niego
promień r ∈ Ω.

Zadanie wyznaczania widocznych obiektów sprowadza się wiec do znalezienia zbioru
promieni Ψ takiego, że v(Ψ) zawiera wszystkie widoczne trójkąty. Oczywistym faktem
jest, że spośród możliwych rozwiązań lepszymi są takie, które zawierają mniejszą ilość
promieni (Ω jest także rozwiązaniem).

Algorytm GVS jest agresywną techniką, która skupia się na wyznaczeniu w
sposób przyrostowy zbioru Ψi, który określa widoczny podzbiór sceny Ti. Bazując na
znalezionych już obiektach wyznacza kolejne promienie eksplorujące otoczenie Ti jak
również luki. W opublikowanej pracy rozwiązanie jest złożeniem trzech następujących
algorytmów:

• random sampling - losowe generowanie promieni, używane w celu zainicjowania
kolejnych algorytmów.
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• adaptive border sampling - (adaptacyjne próbkowanie krawędzi) - odpowiada za
szybkie analizowanie sąsiednich trójkątów poprzez próbkowanie krawędzi znale-
zionego obszaru (tj. otoczenia znalezionych widocznych trójkątów).

• reverse sampling (próbkowanie wstecz) - w celu zbadania obszarów sceny będą-
cych na granicy widoczności (np. luki między trójkątami).

Kolejne podrozdziały zawierają szczegółowy opis wyżej wymienionych algorytmów.

3.1 Próbkowanie pseudo-losowe

Podstawowym i za razem najprostszym algorytmem wyznaczania promieni znajdują-
cych widoczne obiekty sceny jest losowanie z rozkładem jednostajnym elementu ze
zbioru Ω. Algorytm składa się z dwóch faz:

1. losowanie punktu na płaszczyźnie, tj położenia początku promienia

2. losowanie kierunku promienia.

Należy jednak zwrócić uwagę na drugi punkt, gdyż wylosowany kierunek nie może być
dowolny. Mianowicie wyznaczany wektor jest akceptowalny, tylko wtedy, gdy tworzy
wektorem normalnym płaszczyzny kąt co najwyżej 90o. Warunek taki jest spełniony
gdy ~v ◦ ~n, gdzie ~n jest wektorem normalnym powierzchni, po której porusza się ob-
serwator. Przykładów rozwiązań jest wiele, a wybór nie ma dużego znaczenia, gdyż
algorytm GVS korzysta głównie z metod opisanych w następnych rozdziałach.

Zastosowany algorytm wyznaczania losowego promienia (położenia i kierunku):

u = ξ1, v = ξ2, φ = 2πξ3, θ = arcsinξ4

gdzie ξi ∈ [0, 1] są wartościami pseudolosowymi (sekwencje Haltona [20]).

3.2 Adaptacyjne próbkowanie otoczenia

Próbkowanie adaptacyjne krawędzi (ABS, ang. adaptive border sampling) jest algo-
rytmem opartym na mutacji promieni, który w oparciu o trafiony trójkąt wyznacza
deterministycznie kolejne promienie. ABS analizuje przyległe trójkąty w scenie nie
zmieniając położenia początku promienia.

Ideą algorytmu jest dopasowanie próbkowania do geometrii sceny, tak aby dalekim
złożonym obszarom, skupiającym większą liczbę trójkątów, wyznaczyć więcej promieni
skierowanych w ich kierunku. W ten sposób nie zostaną pominięte obiekty małe lub
położone daleko od obserwatora. Prawdopodobieństwo znalezienia ich jest większe
niż w przypadku algorytmów próbkujących regularnie. Warto zauważyć, że badanie
otoczenia znalezionego obiektu jest idealną metodą do wyznaczania widocznych frag-
mentów powierzchni, która to w praktyce jest po prostu zbiorem przylegających trój-
kątów.
Algorytm jest następujący:

Trójkąt t trafiony pierwszy raz przez promień r jest minimalnie powiększany. Bazu-
jąc na otrzymanym wielokącie t′, próbkowanie odbywa się względem jego krawędzi. W
przypadku gdy w końcach badanego odcinka zostały znalezione różne obiekty następuje
jego podział. Rekurencyjnie analizowane zostają kolejne części krawędzi (rysunek 11).
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Rysunek 11: Próbkowanie krawędzi e. Promienie r1 i r2 skierowane w kierunku końców
odcinka e trafiają w dwa różne obiekty. Determinuje to rekurencyjne dzielenie odcinka
i kolejne próbkowania ri, rj itd.

Rysunek 12: Powiększanie trójkąta. Po lewej: próbkowanie otoczenia skutkuje
znalezieniem przyległych trójkątów powierzchni. Po prawej: wyznaczanie otoczenia
t′, wektory di,i są prostopadłe do wektora vp.

Kształt t′ jest wyznaczany nie tylko na podstawie bazowego trójkąta t. Ze względu
na niedokładności obliczeń numerycznych i błędów zaokrągleń pod uwagę brane są
również:

1. ułożenie trójkąta względem obserwatora, tj. jak trójkąt jest obrócony

2. odległość trójkąta od obserwatora - mające kluczowe znaczenie dla dalekich obiek-
tów

Uwzględniając dodatkowo małe odległości między krawędziami z t′ a t istnieje ryzyko,
że promienie trafią znowu w bazowy trójkąt t. Zaproponowana metoda wyznaczania
t′ jest następująca: Dla każdego wierzchołka trójkąta (rysunek 12) pi wyznaczane są
trzy wektory di,i−1, di,i, di,i+1. Wektory te są prostopadłe do promienia padającego na
wierzchołek trójkąta oraz odpowiednio do krawędzi trójkąta (z wyjątkiem di,i, który jest
kombinacją dwóch sąsiednich wektorów). Poprzez przesunięcie wierzchołków odpowied-
nio o wektory di,j zostaje wyznaczonych 9 wierzchołków wielokąta t′ (de facto łamanej,
gdyż wszystkie wierzchołki xi,j nie leżą na jednej płaszczyźnie):
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di,i−1 = Norm((pi − xp)× (pi+1 − pi))
di,i+1 = Norm((pi − xp)× (pi − pi−1))

di,i =

{
Norm(di,i−1 + di,i+1) if di,i−1 · di,i+1 > 0
Norm((pi − xp)× di,i−1 + di,i+1 × (pi − xp)) else

xi,j = pi + ε · |pi − xp| · di,j

(12)

gdzie Norm jest operatorem normalizacji. Należy zwrócić uwagę, że w przypadku
gdy trójkąt jest widoczny z tyłu należy zamienić wektory di,j na przeciwne.

Wadą algorytmu jest brak możliwości analizy luk między trójkątami, które widoczne
są jedynie z innego punktu sceny. Również obszary sceny z wieloma małymi nie połąc-
zonymi siatkami trójkątów są niemal niemożliwe do eksplorowania. Sceny zawierające
losowo ułożone trójkąty, np. las, w którym każdy liść jest reprezentowany przez np. 2
trójkąty, pozostają ciągle dużym wyzwaniem.

3.3 Próbkowanie wsteczne

Próbkowanie wstecz służy generowaniu promieni w obszary będące na granicy wido-
czności. Główną wadą omówionego w poprzednim podrozdziale rozwiązania był brak
możliwości penetrowania luk między trójkątami. Luki takie widoczne były jedynie
z innych punktów sceny. Choć pytanie, czy z danego obszaru widzenia znaleziona
luka jest widoczna jest de facto problem widoczności, to okazało się możliwe w wielu
przypadkach wyznaczenie wektora omijającego bliższy trójkąt, który skierowany jest
w niezbadany obszar (rys 13).

Rysunek 13: Próbkowanie luki między dwoma trójkątami. Po lewej: znalezione prze-
cięcie promienia z trójkątem (punkt E2), przewidywane trafienie (punkt E1) wygen-
erowane podczas adaptive border sampling, widoczne trafienie w bliższy trójkąt. Po
prawej: wygenerowanie nowego promienia, który wyznacza nowy zarodek dla ABS,
wektor ~r leży na płaszczyźnie wyznaczonej przez punkty E1, E2 i O.

Działanie algorytmu jest następujące. Niech (patrz rysunek 13):

• E2 - punkt przecięcia promienia z trójkątem t,

• E1 - jeden z punktów należących do powiększenia trójkąta t′,
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• O - punkt początkowy - położenie obserwatora,

jeśli podczas próbkowania krawędzi t′ zostanie znaleziony obiekt bliższy, wyznacz pro-
mień r który:

• leży na płaszczyźnie wyznaczonej przez punkty E1, E2 i O

• omija bliższy obiekt przechodząc jak najbliżej jego krawędzi

Przecięcie promienia r z obszarem widzenia wyznacza nowy punkt dla obserwatora,
zaś promień o przeciwnym zwrocie penetruje lukę. Staję się on kolejnym punktem
dyskretyzacji obszaru obserwatora i zarazem zarodkiem dla próbkowania adaptacyj-
nego.

3.4 Algorytm GVS

Z połączenia powyższy trzech metod powstał następujący algorytm GVS wyznaczania
widocznych obiektów z obszaru:

main()
while (not finished)

(xp,xd) = generate_random_ray()
handle_ray((xp,xd))
while (not queue.empty())

adaptive_border_sampling(queue.dequeue()))

handle_ray(x)
if v(x) not in PVS

PVS+=v(x)
queue+=x

adaptive_border_sampling(x)
t’ = enlarge(v(x), eps)
for each point(p) in t’

handle_ray((xp, p-xp))
for each edge(pl, pr) in t’

subdiv_edge(pl, pr)

subdiv_edge(pl, pr)
x = (xp, pl - xp)
y = (xp, pr - xp)
check_discontinuity(x)
check_discontinuity(y)
if v(x) = v(y) or |hit(x) - hit(y)| < eps

return
else

p = (pl + pr) /2
handle_ray((xp, p - xp))
subdiv_edge(pl, p)
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subdiv_edge(p, pr)

check_discontinuity(x)
if |predicted_hit(x) - xp| - |hit(x) - xp| > tresh

xn = reverse_sampling(x)
if start(xn) in view cell

handle_ray(xn)

gdzie:

• v(x) - pierwszy trójkąt przecięty przez promień x,

• hit(x) - punkt trafienia promieniem x trójkąta v(x)

• predicted_hit(x) - przewidywany punkt trafienia. W przypadku rozszerzania
trójkąta t punkt ten określany jest jako przecięcie promienia x z płaszczyzną
zawierającą trójkąt t. Równie dobrym przybliżeniem jest punkt leżący na t′.

Koniec algorytmu następuje, gdy zostanie spełniony jeden z następujących warunków:

• wygenerowano 10 milionów promieni,

• nie więcej niż 50 nowych trójkątów zostało znalezionych po sprawdzeniu 1 miliona
promieni.

4 Rozszerzenia algorytmu GVS

4.1 Obszar obserwatora

Stosunkowo łatwo jest uogólnić pole widzenia view cell na dowolny obszar. Rozszerzenie
sprowadza się jedynie do znalezienia algorytmu generowania próbek losowych z nowego
otoczenia obserwatora. Dodatkowo dla potrzeb algorytmu próbkowania wstecznego
(ang. reverse sampling) należy zwrócić uwagę, by znajdowanie przecięć promienia z
komórką obserwatora było łatwo obliczalne. Efektywnym rozwiązaniem jest wybranie
prostopadłościanu AABB (rysunek 14).

Rysunek 14: Prostopadłościan jako obszar widzenia

Losowanie z rozkładem jednostajnym następuje według poniższego algorytmu:
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• wylosuj scianę Pi z prawdopodobieństwem

ppb(Pi) = area(Pi)/
6∑

k=1

area(Pk)

gdzie area(P ) to pole powierzchni P

• wylosuj promień wychodzący ze ściany wyznaczając[19]:

– (u, v) - początek promienia, leżący na Pi

– r1, r2 - (pseudo) losowe liczby z przedziału [0, 1]

– oblicz losowy wektor jednostkowy (z uwzględnieniem wektora normalnego
powierzchni Pi) np.:

rx = cos(2πr1)
√

1− r2
2

ry = sin(2πr1)
√

1− r2
2

rz = r2

Powyższe wartości odpowiadają powierzchni z wektorem normalnym ~n =
[0, 0, 1]. W pozostałych przypadkach obliczenia są analogiczne (otrzymane
wartości można też odpowiednio przestawić lub też przemnożyć przez -1 by
zmienić zwrot wektora).

Przecięcie promienia z bounding boxem jest jednym z podstawowym zadań w grafice
komputerowej. Jego rozwiązanie pozwala na weryfikację, czy dany promień omija scenę,
czy też skierowany jest w jej wnętrze. Zatem do sprawdzenia czy promień wsteczny
przecina obszar obserwatora można zastosować efektywny algorytm Liang-Barsky Line
Clipping 2.

4.2 Klasyfikacja promieni

Generowane przez GVS promienie, dzięki którym znajdowane są kolejne widoczne ele-
menty sceny, można sklasyfikować następująco:

• wsteczne - penetrujące nieciągłości (luki) w próbkowaniu wstecznym,

• punktowe i krawędziowe - skierowane w punkty i krawędzie wyznaczone przez
próbkowanie adaptacyjne otoczenia

• losowe - promienie inicjujące, wyznaczane przez próbkowanie losowe.

Warto zauważyć, że czas działania algorytmu ściśle związany jest z liczbą promieni.
Zakładając niewielki rozmiar PVS względem sceny3 i liczby rozpatrywanych promieni
(zdeterminowanej przez sam algorytm oraz warunek stopu) czas działania algorytmu
uzależniony jest od:

• liczby losowych promieni,
2źródło: http://www.siggraph.org/education/materials/HyperGraph/scanline/clipping/cliplb.htm
3W zaprezentowanych wynikach w [3] wyznaczany PVS stanowił 0,1% całej sceny.
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• promieni skierowanych w krawędzie, de facto liczby różnych obiektów wykrytych
przy jej analizie.

Chcąc otrzymać w krótszym czasie PVS, nawet za cenę większego błędu, należy zatem
ograniczyć występowanie powyższych dwóch przypadków. Osiągnąć to można poprzez
ograniczenie maksymalnej liczby promieni oraz modyfikację algorytmu próbkowania
adaptacyjnego poprzez:

• dobór wartości tresh określającej minimalną długość dzielonej krawędzi

• zmianę sposobu podziału krawędzi zamiast dzielenia na pół.

4.3 Strategie próbkowania krawędzi

Czas analizy otoczenia obiektu związanej z próbkowaniem punktów i odcinków w
głównej mierze zależy od krawędzi, tj. liczby widocznych obiektów, które przecinane są
przez promienie skierowane w krawędź. Bardziej formalnie mówiąc, czas poświęcany
przez algorytm na uwzględnienie krawędzi E1E2 z punktu obserwatora O zależy od
liczby obiektów przecinanych przez wycinek 6 E1OE2 płaszczyzny wyznaczonej przez
punkty E1, O, E2. Dzielenie krawędzi i rekurencyjne analizowane jej części zdetermi-
nowane jest przez dwa cele:

• znalezienie jak największej liczby widocznych obiektów z O na krawędzi E1E2,

• wyznaczenie zasłaniającego obszaru, bardziej formalnie: ograniczenie długości
promieni przecinających odcinek, które wyznaczają pustą przestrzeń w płaszczyź-
nie E1OE2.

Głównym czynnikiem decydującym o kolejnych podziałach krawędzi jest określe-
nie czy promienie skierowane w jej końce trafiają w ten sam obiekt T . Z tego faktu
oraz z założenia, że trójkąty są obiektami wypukłymi, wynika, iż każdy promień w od-
cinek trafi w T lub obiekt bliższy. Algorytm zatem nie znajduje dokładnie wszystkich
widocznych obiektów (zgodnie z jego klasyfikacją do agresywnych algorytmów wyz-
naczających widoczność). Stąd też wniosek, iż określanie zasłanianego obszaru służy
zredukowaniu liczby generowanych promieni przy analizie krawędzi. Drugim, mniej
znaczącym warunkiem stopu jest minimalny rozmiar krawędzi. Jej wielkość ma oczy-
wisty wpływ na czas algorytmu.

Należy zwrócić tu również uwagę na fakt, że dla wszystkich promieni krawędziowych
badane są nieciągłości sceny i inicjowany jest algorytm reverse sampling. Poniższa
tabela 1 zawiera przykładową statystykę wyznaczanego PVS dla sceny sibenik.

Zbiór widocznych obiektów został wyznaczony dla otoczenia obserwatora, z którego
widok na scenę jest na rysunku 15.

W kolejnych częściach rozdziału przedstawiona została analiza oraz mutacje algo-
rytmu podziału odcinka uwzględniające:

• maksymalną liczbę podziałów danego odcinka (tj. głębokość rekurencji),

• odległości odcinka od punktu obserwatora,

• wykrywanie przyległych obiektów.
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Tablica 1: Statystyka promieni algorytmu GVS dla sceny Sibenik zawierającej 75 tys.
trójkątów.

rozmiar PVS 7,494
liczba promieni w krawędzie 549,626
liczba promieni w punkty 22,482
liczba wykrytych nieciągłości 319,415
liczba promieni w nieciągłości 116,146

Rysunek 15: Widok z badanego obszaru obserwatora na zbiór widocznych obiektów.

Powyższe modyfikacje przyczyniają się do przyspieszenia algorytmu analizy krawędzi
(poprzez redukcję liczby generowanych promieni) kosztem zwiększenia prawdopodo-
bieństwa pominięcia widocznego elementu w trakcie obliczeń.

4.3.1 Głębokość rekursji

Modyfikacja warunku stopu: v(x) = v(y) or |hit(x) - hit(y)| < tresh poprzez
zwiększenie wartości tresh wpływa na głębokość rekurencji. Mniejsza wartość powoduje
dokładniejszą analizę, gdyż generowanie większej liczby promieni wpływa na prawdo-
podobieństwo znalezienia obiektu. Z drugiej strony jednak zwiększa liczbę przypadków
brzegowych, tj. próbkowanie brzegów obiektów przy których wystąpić mogą błędy nu-
meryczne. Związane są one z reprezentacją promienia i odcinka, jak również z błędami
obliczeń. Konsekwencją może być ominięcie przysłaniającego obiektu i dodanie do
zbioru elementów, które są niewidoczne. Przykładem takiej sytuacji jest próbkowanie
otoczenia wierzchołków trójkątów należących do triangulacji powierzchni.

Zwiększenie wartości tresh zmniejsza prawdopodobieństwo trafienia obiektu, jed-
nak jednocześnie znacznie przyśpiesza działanie całego algorytmu.

Warto zauważyć, że zmniejszenie maksymalnej głębokości rekurencji o k wiąże się ze
zwiększeniem tresh 2k razy, a zastosowana wartość tresh wGVS wynosi w przybliżeniu
2−14 ≈ 6 · 10−5.

W celu porównania algorytmów dla różnych wartości tresh można określić prawdo-
podobieństwo trafienia obiektu „leżącego na krawędzi”. Rozważając płaszczyznę wyz-
naczoną przez próbkowany odcinek i punkt obserwatora szansa trafienia obiektu jest
proporcjonalna do rozmiaru jego rzutu (rysunek 16). Poniżej zdefiniowano Rzut obiektu
na widoczny odcinek. Jest to podobna konstrukcja widoczności między dwoma od-
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cinkami w dualnej przestrzeni promieni jaka została opisana w rozdziale 2.3.2.

Niech:

• E1E2 odcinek o długości 1

• O - punkt początkowy promieni.

• r(t) - promień o początku O przecinający krawędź E1E2 w punkcie

E(t) = E1 + t · (E2 − E1)

Odcinek wyznaczony przez punkty E(a) i E(b) jest rzutem obiektu T na odcinek E1E2

wtedy i tylko wtedy gdy a i b są odpowiednio minimalnym i maksymalnym elementem
zbioru:

AT = { t : r(t) przecina T }

Rysunek 16: Rzut obiektu T na odcinek E1E2 z punktu O

Z powyższej definicji wynika, że promień r(x) trafia we wszystkie obiekty Ti, których
rzut na odcinek spełnia warunek: 0 < ai < x < bi < 1. Stąd z szansą znalezienia
obiektu zwiążemy wartość Px - prawdopodobieństwo trafienia rzutu Ti:

Px = 2 · Pai<x · Px<bi
= 2x · (1− x)

Interpretacja graficzna jest następująca. Na układzie współrzędnych (b,a) każdy
punkt (bi, ai) reprezentuje odcinek między E(ai) a E(bi). Wprowadzając ograniczenia:
ai, bi > 0 i ai, bi < 1 oraz ai < bi, wszystkie możliwe odcinki zawarte są w trójkącie
wyznaczonym przez równania: a < b, a < 1 , b > 0. Zbiór trafianych odcinków
przez promień r(x) jest prostokątem o bokach x i 1 − x, zaczepionym górnym lewym
narożnikiem w punkcie (x, x) (rysunek 17)

Rozwiązaniem problemu znajdowania najlepszego promienia (tj. o największej
szansie trafienia w obiekt) jest promień r(1/2). Badając funkcję p(x) = 2x · (1 − x)
można wykazać, że osiąga ona maksimum w punkcie x = 1/2 i wynosi Px = 0.5 . Co
ostatecznie również uzasadnia wyznaczanie podziału na pół.

Zwiększenie liczby promieni zwiększa szanse trafienia obiektu. Równocześnie zm-
niejsza się prawdopodobieństwo pominięcia obiektu (przeciwne zdarzenie). Można
rozważyć jedynie promienie wychodzące z danego punktu i przecinające badaną krawędź.
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Rysunek 17: Interpretacja graficzna prawdopodobieństwa trafienia przez r(x)

Na ich podstawie możemy określić prawdopodobieństwo trafienia obiektu podczas prób-
kowania adaptacyjnego krawędzi. Poniżej pokazujemy, że zmniejszenie głębokości
rekurencji d o 1 zwiększa szanse pominięcia o co najwyżej 21−d.

Niech A będzie rzutem obiektu T na odcinek E1E2 zakładając, że

• |E1E2| = 1

• promienie w końce odcinka trafiają w różne obiekty. Jest to warunek konieczny
dla zainicjowania kolejnych podziałów

Niech Xk
i będzie zbiorem odcinków o długości co najwyżej 2−k przecinanych przez

promień rk
i ) (rysunek 18).

Rysunek 18: Interpretacja graficzna zbiorów Xk
i . Po prawej zbiór wszystkich odcinków

trafianych przez promienie przedstawiony jako suma zbiorów Xk
i .

Zauważmy, że podczas działania algorytmu z każdym wywołaniem (podziałem)
możemy określić zbiór Xk

i . Wraz z pierwszym wywołaniem analizy krawędzi wyznac-
zony zostaje promień r0

1 = r(0.5). Zbiór rzutów (tj. odcinków), które przecinane są
przez r0

1 zawiera wszystkie elementy (a, b), takie, że a < 0.5 i b > 0.5 bez ograniczenia
długości odcinków. Interpretacja graficzna takiego zbioru przedstawiona jest na ry-
sunku 18. Wywołanie procedury dla lewej i prawej części inicjuje budowanie zbiorów
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X1
1 i X1

2 . Ograniczenie długości odcinków w nich zawartych determinuje uwzględ-
nienie tylko tych, których nie przecina r0

1. W kolejnych krokach sytuacja się pow-
tarza. Mianowicie wywołania rekurencyjne na poziomie k budują rozłączne zbiory
Xk

1 , Xk
2 , ..., Xk

2k
. Tym sposobem zbiór wszystkich trafianych odcinków można podzielić

na zbiory rozłączne. Jeśli: X - zbiór wszystkich odcinków trafianych przez promienie
rk
i , to

X =
⋃

i∈K,j∈D

Xj
i (13)

Niech Zk
i określa zdarzenie przecięcia promieniem rk

i odcinka o długości co najwyżej
2−k, czyli odcinków zawartych w Xk

i . Wtedy:

P (Zk
i ) = Sk

i /S (14)

gdzie Sk
i jest polem powierzchni zawierającej odcinki Xk

i i wynosi: Sk
i = (2−k)2, a S

jest polem powierzchni zawierającej wszystkie odcinki. (patrz interpretacja graficzna
na rysunku). Rozłączność zbiorów Xk

i implikuje niezależność zdarzeń Zk
i . Więc

P (Zk
i ∩ Z l

j) = 0 i 6= j ∨ k 6= l (15)

Zatem prawdopodobieństwo trafienia w odcinek wynosi przy maksymalnym poziomie
rekurencji d:

Pd = P (
⋃

i∈K,j∈{1..d}
Zj

i ) =
d∑

k=1

∑

i

P (Zk
i ) (16)

Zmiana maksymalnej głębokości wywołań rekurencyjnych o 1 powoduje zmianę
powyższej wartości:

Pd−1 =
d∑

k=1

∑

i

P (Zk
i ) = Pd −

∑

i

P (Zd
i ) (17)

Szacując sumę po prawej stronie mającą maksymalnie 2d składników:

∑

i

P (Zd
i ) ≤

2d∑

i=1

Sd
i /S = 2 ·∑

i

(2−d)2 = 21−d (18)

Biorąc pod uwagę fakt, że podczas działania algorytmu poziom, na którym kolejne
podziały nie są już uwzględniane, nie zawsze jest maksymalny, Pd maleje o s ·2−d, gdzie
s to liczba wystąpień maksymalnych głębokości rekurencji tj. de facto liczby spełnień
warunku |hit(x) - hit(y)| < tresh.

4.3.2 Odległość odcinka

Prostą modyfikacją algorytmu jest heurystyka polegająca na uwzględnieniu odległości
odcinka od obserwatora. Idea polega na generowaniu większej liczby próbek w obiekty
bliższe. Jeśli l jest odległością środka odcinka E1E2 od punktu O to wartość tresh
zostaje zwiększona przez l, tj. tresh = tresh · l. W przeciwieństwie do jednakowego
ograniczenia maksymalnego poziomu wywołań, uwzględnianie odległości ma wpływ na
nią dynamiczny. Mianowicie maksymalna głębokość rekurencji zmniejszy się o k =
dlog2le
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4.3.3 Przyległe obiekty

Z analizy algorytmu podziału odcinka i rekurencyjnego próbkowania jego części można
wywnioskować, iż maksymalny poziom rekurencji zostanie osiągnięty przynajmniej raz,
wtedy gdy końce odcinka E1E2 wskazują różne obiekty. Rozważając przypadek tylko
dwóch obiektów przyległych widocznych dla obserwatora z punktu O (przedstawiony
na rysunku 19) wygenerowanych zostanie d promieni, gdzie d to maksymalny poziom
wywołań algorytmu. Test czy dwa obiekty są przyległe (tj. mogą być traktowane
jako jeden obiekt zasłaniający scenę) sprowadza się sprawdzenia jednego z promieni
skierowanych w okolice ich brzegów. Należy zwrócić uwagę, że dwa obiekty są przyległe
względem punktu obserwatora analogicznie do nieciągłości między dwoma obiektami,
która jest widoczna w zależności od obszaru patrzenia.

Rysunek 19: Próbkowanie krawędzi E1E2 dla obiektów przyległych wyznaczających
obszar niewidoczny za nimi. Po lewej rekurencyjny podział odcinka. Po prawej promień
rq skierowany w otoczenie lewego obiektu trafia w prawy, mu przyległy.

Warto zauważyć, że ostatnie dwa wygenerowane promienie przez algorytm rekuren-
cyjnego podziału wyznaczają właśnie dwie próbki brzegowe. Do sprawdzenia czy
obiekty sąsiadują ze sobą na linii badanego odcinka E1E2 wystarczy więc jeden pro-
mień: Niech:

• E(t) = E1 + t(E2 − E1) będzie równaniem parametrycznym odcinka E1E2,

• r(t) będzie promieniem trafiającym w punkt E(t) z punktu O,

• v(r) będzie obiektem trafionym przez promień r.

Oznaczając obiekty trafiane przez promienie r(0) i r(1) jako T1 i T2 (rysunek 19) oraz
definiując dwa zbiory:

L = {t : v(r(t)) = T1)}
R = {t : v(r(t)) = T2)} (19)

możemy wywnioskować, że dwa obiekty widziane z O są przyległe gdy Lmax = max(L) ≥
min(R) = Rmin. Zatem w celu sprawdzenia czy dwa elementy tworzą spójny obiekt
zasłaniający scenę dla obserwatora w punkcie O wystarczy sprawdzić czy:

v(r(Lmax + ε)) = T2 albo v(r(Rmin − ε)) = T1
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Podczas testu wystarczy sprawdzenie jednego z powyższych warunków. Graficzna
interpretacja tak wygenerowanego promienia jest widoczny na rysunku 19 (promień
rq).

Na podstawie powyższej analizy można stworzyć algorytm, którego idea opiera
się na generowaniu promieni w punkty brzegowe znajdowanych obiektów. Agresywny
algorytm próbkowania w kierunku krawędzi można opisać następująco:

process_edge(pl,pr)
check_discountinuity((xp, pr-xp));
m = pl;
while ( |m - pl| < |pr - pl| - tresh) {

check_discountinuity((xp, m-xp));
if v(m) = v(pr)

return;
m = edgepoint(v(m), m, pr, o)

}

gdzie edgepoint(v(M),M, Pr, O) jest algorytmem wyznaczania punktu z brzegu obiektu
v(M), który leży w wycinku płaszczyzny 6 MOPr. Powyższy algorytm wyznacza
promienie brzegowe z prawej strony dla kolejno znajdowanych (od lewej) obiektów.
Dochodząc ostatecznie do obiektu wskazywanego przez promień przecinający prawy
koniec odcinka. Algorytm zostanie opisany w rozdziale 4.3.5.W celu zwiększenia praw-
dopodobieństwa znalezienia obiektu przed krawędzią prostą modyfikacją jest wymusze-
nie uwzględnienia promienia w środek odcinka, np. poprzez zmianę metody enlarge
tak, by generowała dla każdej krawędzi dodatkowy punkt w jej środku.

Wyznaczenie promienia w reverse samping jest analogiczne do obliczenia punktu
brzegowego. Na rysunku 20 przedstawiono znajdowanie promienia i punktu, który leży
w zadanej płaszczyźnie. Obydwa problemy sprowadzają się do wyznaczenia przecięcia
krawędzi trójkąta z dowolną płaszczyzną.

4.3.4 Wyznaczanie przecięcia

Przecięcie krawędzi trójkąta T z zadaną płaszczyzną zostało zilustrowane na rysunku
20. Intuicyjnym rozwiązaniem jest znalezienie przecięć trzech promieni ~V0V1, ~V1V2

~V2V0

z trójkątem ∆OE1E2 poprzez użycie np. algorytmu Möller’a [8] lub przecięć dwóch
trójkątów ∆OE1E2 i ∆V0V1V2 [9]. Jednak wiążą się z tym niepotrzebne obliczenia
(np. współrzędnych parametrycznych trójkąta znalezionego przecięcia). Należy zatem
rozwiązać zadanie algebraicznie, podobnie jak zrobili to Möller i Trumbore [8].

Równanie trójkąta T w postaci parametrycznej jest następujące:

T (u, v) = (1− u− v)V0 + uV1 + vV2 (20)

Zauważmy, że interesują nas punkty na krawędziach, więc rozpatrując trzy przypadki
u = 0, v = 0, u + v = 1 otrzymujemy trzy równania z jednym parametrem. Każde
sprowadza się do równania odcinka (zakładając V3 = V0) :

T (u) = A + u · (B − A) gdzie : A = Vi, B = Vi+1, i = 0, 1, 2 (21)
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Rysunek 20: Znajdowanie promienia między obiektami T1 i T , leżącego na płaszczyźnie
wyznaczonej przez punkty O, E1, E2. Po lewej: reverse sampling w którym ~OE1

przecina T . Po prawej: uogólnienie problemu dla dowolnych O, E1, E2, punkt Z na
prostej zawierającej E1E2 określa promień trafiający w punkt brzegowy X

Zgodnie z przedstawioną sytuacją na rysunku 20, wektor przechodzący przez X prze-
cina odcinek E1E2 w punkcie Z. Można go przedstawić jako przesunięcie E1 o wektor

~E2E1 przemnożony przez skalar s:

Z(s) = E1 + sE
E = E2 − E1

(22)

Oczywistym jest, że X leży na prostej przechodzącej przez O i Z, więc:

X(t) = O + t · (Z −O)
X(t, s) = O + t · (E1 + sE −O)

(23)

Otrzymujemy równanie T (u) = X(t, s), któremu odpowiada:

A + u(B − A) = O + t · (E1 + sE −O)
ts(−E) + u(B − A) + t(O − E1) = O − A

(24)

podstawiając r = ts, XBA = B − A, Y = O − E1, TA = O − A równanie 24 można
przedstawić jako:

[−E, XBA, Y ]




r
u
t


 = TA (25)
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Rozwiązaniem powyższego równania (korzystając z zasady Cramera dla układów n×n)
jest:




r
u
t


 =

1

| − E, XBA, Y |



| TA, XBA, Y |
| −E, TA, Y |
| −E, XBA, TA |


 (26)

Obliczanie wyznacznika |A,B, C| (macierzy 3× 3) można zrobić na wiele sposobów
używając iloczynu wektorowego i skalarnego (dowód jest trywialny, chociażby poprzez
rozpisanie lewych stron poniższych równań metodą Sarrusa)

|A,B, C| = (A×B) · C
|A,B, C| = −(A× C) ·B
|A,B, C| = −(C ×B) · A

(27)

Korzystając z zależności (27) otrzymujemy ostatecznie równanie:



r
u
t


 =

1

(E × Y ) ·XBA




(TA ×XBA) · Y
(E × Y ) · TA

(TA ×XBA) · E


 =

1

P ·XBA




QAB · Y
P · TA

QAB · E


 (28)

gdzie QAB = TA ×XBA i P = E × Y .

Bazując na powyższym równaniu oraz założeniu r = ts, możemy wyznaczyć wartości
parametru s:

s = r · 1

t
=

QAB · Y
P ·XBA

· P ·XBA

QAB · E =
QAB · Y
QAB · E (29)

W powyższym wywodzie dolne indeksy AB i A zostały tak dobrane by podkreślić
zależność od wyboru wierzchołków trójkąta T (patrz równanie 21). Mając do wyboru
dwa wierzchołki z trzech otrzymujemy trzy wartości si (i = 0, 1, 2). Aby nie wyznaczać
wszystkich możliwych należałoby określić która wartość si jest tą właściwą, inaczej
mówiąc, które wierzchołki trójkąta należy wziąć pod uwagę. Wystarczającym testem
jest zbadanie parametru u występującego w zmodyfikowanym równaniu trójkąta (21).
Wybór wierzchołków prowadzi do poprawnego rozwiązania gdy 0 < u < 1, wtedy punkt
leży na krawędzi opisanej wzorem (21). Wartość u otrzymujemy z równania (27):

u =
P · TA

P ·XAB

(30)

Warto zauważyć, że P nie zależy od wierzchołków trójkąta T i wystarczy wyznaczyć
go tylko raz. Zatem punkty A i B są dobrze określone gdy:

0 < P · TA ∧ P · TA < P ·XAB

lub

P · TA < 0 ∧ P ·XAB < P · TA

Należy zwrócić uwagę, że istnieją co najwyżej dwa punkty leżące na przecięciu krawędzi
trójkąta i płaszczyzny (oczywiście poza zdegenerowanymi przypadkami gdy krawędź
leży w całości na płaszczyźnie). W celu zastosowania algorytmu do reverse sampling
należy brać pod uwagę wynik z s > 0.
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4.3.5 Algorytm

Dane:

• V [0], V [1], V [2] - wierzchołki trójkąta (dla uproszczenia V [3] = V [0])

• E2, E1, O - punkty określające powierzchnie.

Wynik:

• wartość parametru s na podstawie którego obliczamy promień R(t) trafiający w
krawędź trójkąta:

R(t) = O + t · (Z −O)
Z = E1 + s · (E2− E1)

(31)

Czas działania Opisany algorytm jest szybszy od metody opartej o znajdowanie
przecięcia krawędzi z trójkątem. Średnie czasy działania algorytmów są o 30% lepsze
mimo optymalizacji w znajdowaniu przecięcia Mölera polegającej na nie wyznaczaniu
parametrów u i v. Wynika to z następującej własności:

wyznaczanie zamiast punktu na brzegu trójkąta promienia przez niego prze-
chodzącego jest efektywniejsze.

Algorytm:

edgepoint(V, E1, E2, O)
edge = E2 - E1
edge1 = O - E1
edge2 = O - E2
pvec = CROSS(edge, edge1)

for (i = 0; i < 3; i++) {
X = V[i+1] - V[i];
T = O - V[i];
l = DOT(pvec, T)
m = DOT(pvec, X)

if ( 0 < l && l < m ) || (l < 0 && m < l ) ) {
qvec = CROSS(T,X)
m = DOT(qvec, edge)
if (m != 0) {

s = DOT(Q, edge1) / m
if (s > 0)

return s;
} else

return 0
}

}
return 0;
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4.4 Obiekty wypukłe

Opublikowany algorytm GVS operuje na scenie zawierającej jedynie trójkąty, jednak
już po krótkiej jego analizie można dojść do wniosku, że można go uogólnić na dowolne
typy obiektów. Pierwszym krokiem jest zdefiniowanie otoczenia danego elementu
sceny, które jest widoczne z badanego punktu obserwatora. Kolejnym i za razem os-
tatnim jest ustalenie sposobu wyznaczania promienia dla próbkowania wstecznego.
Mianowicie takiego, który penetruje obszar między dwoma obiektami, omijając je jak
najbliżej zgodnie z ideą algorytmu. O ile zbiór punktów z otoczenia t′ nie wymaga
założeń co do elementów sceny, to w przypadku analizy krawędzi wymagane jest, by
trafiane przez ABS obiekty były wypukłe. Zgodnie z poniższą definicją takiego obiektu:

Obiekt wypukły. Obiekt zawierający w całości odcinki między dowolnie wybra-
nymi punktami obiektu

Algorytm próbkowania otoczenia, w szczególności warunek stopu kiedy oba końce
wskazują ten sam obiekt, zawęża elementy sceny do obiektów wypukłych. Przykła-
dem takiego obiektu jest kula.

4.4.1 Kula

Jednym z praktycznych zastosowań innych obiektów niż trójkąt jest użycie kuli ze
względu na:

• szybkie znajdowanie przecięcia promienia ze sferą

• zmniejszenie złożoności sceny poprzez wyeliminowanie triangulacji sfery i zastąpi-
enie kilkunastu (a nawet kilkudziesięciu) trójkątów jednym obiektem.

• wygląd wyrenderowanej kuli.

Algorytm ABS polega na próbkowaniu otoczenia obiektu, które jest wyznaczone
w niewielkiej odległości od obiektu. W celu analizy otoczenia kuli należy wyznaczyć
zbiór punktów Epoints i krawędzi Eedges, takich, że promienie z obszaru obserwatora (a
właściwie aktualnie rozpatrywanego punktu położenia) w ich kierunku omijały możli-
wie jak najbliżej obiekt. O ile wyznaczenie elementów Epoints jest dość trywialne, to w
przypadku krawędzi tj. stycznych wydaje się być bezcelowe, a rozsądniejszym wydaje
się rozpatrzenie łuków (rysunek 21).

Rysunek 21: Przykładowe otoczenie kuli widziane z punktu obserwatora. Od lewej:
zbiór punktów, odcinki, łuki.

Jednak analiza łuków, czy nawet całego okręgu będącego otoczeniem kuli, mija
się z ideą rekurencyjnego podziału „krawędzi”. W przypadku odcinka można założyć,
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że trafienie tego samego obiektu w końcach odcinka (tj. promieni skierowanych w
jego końce) jest warunkiem stopu. Z definicji obiektu wypukłego, a z założenia tylko
takie występują w scenie, odcinek między dowolnymi jego dwoma punktami jest w
nim zawarty. W przypadku wycinka łuku zdanie takie jest fałszywe (choć odcinek
miedzy końcami łuku jest zawarty) i prowadzić może do zbyt wczesnego zakończenia
próbkowania (rysunek 22). Należy zatem pozostać przy otoczeniu złożonego z odcinków
stycznych do obiektu.

Rysunek 22: Warunek stopu w rekurencyjnym podziale odcinka lub łuku. Promienie w
końce łuku trafiają w obiekt A powodując zakończenie analizowania otoczenia obiektu
t′ i pominięcia B.

Końce odcinków otoczenia kuli leżą na okręgu. Jest on określony przez obszar sty-
czny między kulą a stożkiem mającym początek w punkcie obserwatora. W związku z
czym obliczenia sprowadzają się do wyznaczenia odpowiednich punktów na okręgu.

Z występowaniem kul w scenie, jak również dowolnych brył, wiąże się niezbędna
modyfikacja przy wyznaczaniu promienia podczas próbkowania wstecznego. Rozpa-
trując jedynie trójkąty algorytm polega na znalezieniu promienia w wyznaczonej pła-
szczyźnie, tak by omijał minimalnie bliższy trójkąt. Z promieniem tymmożna utożsamić
prostą przechodzącą przez dwa punkty:

• należący do otoczenia dalszego obiektu,

• należący do otoczenia obiektu bliższego.

Działanie algorytmu można również przedstawić jako obrót promienia wychodzącego
z punktu E1 aż do momentu trafienia w otoczenie bliższego trójkąta (rysunek 23 po
lewej). Pojawia się jednak problem w przypadku kul, ponieważ obrót promienia przy-
czyni się do przecięcia dalszego obiektu (rysunek 23 w środku). Należy wziąć pod
uwagę, iż próba przesunięcia początku promienia (punkt E1) prowadzi do analogicznego
problemu (rysunek 23 po prawej).

Zakładając, że dwa rozpatrywane elementy sceny przez reverse sampling są kulami,
znalezienie promienia sprowadza się do wyznaczenia prostej stycznej do tychże dwóch
obiektów. Dodatkowo, zgodnie z algorytmem, styczna ta leży na płaszczyźnie wyz-
naczonej przez punkty: O, E1, E2 (punkt Rhit także leży na płaszczyźnie i może być
użyty). Korzystając z faktu, że przecięcie sfery płaszczyzną jest zawsze okręgiem (w
szczególnym przypadku punktem, jednak taki przypadek nie zachodzi, ponieważ pro-
mień ~OE2 nie wyznacza stycznej w E2) algorytm sprowadza się do prostego zadania
na płaszczyźnie:
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Rysunek 23: Wyznaczanie promienia penetrującego przestrzeń między obiektami
poprzez przesunięcie. Po lewej: poprawnie wyznaczony promień w przypadku trój-
kątów, w środku: przecięcie z dalszym obiektem, po prawej: przecięcie z obiektem
bliższym po przesunięciu E1.

Mając dane dwa dowolne okręgi na płaszczyźnie, wyznaczyć prostą styczną
do nich, taką, że okręgi leżą po przeciwnych jej stronach

Rysunek 24: Styczna przechodząca między kulami określona przez punkty xi.

Próbkowanie wsteczne dla kul obliczane jest poprzez wyznaczenie (rysunek 24):

• przecięć kul z płaszczyzną: Oi - rzuty środków kul, ri - promieni okręgów po-
wstałych w wyniku przecięcia.

• wektorów hi leżących na płaszczyźnie, prostopadłych do O1O2

• punktów xi będących przesunięciem środków okręgów o wektor ~hi.

Długość hi oblicza się wzorem:

hi = ri

√√√√ d2

d2 − (r1 + r2)2
(32)
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gdzie d jest długością odcinka O1O2.

Zmiany w algorytmie nie mają wpływu na wyznaczanie promienia wstecznego
między dwoma trójkątami. Używając wzoru 32 do obliczeń dla konstrukcji stycznej
dla kuli i trójkąta należy dodatkowo określić środek Oi i promień ri okręgu:

• gdy obiekt dalszy jest trójkątem: Oi = E1, ri = 0,

• gdy obiekt bliższy jest trójkątem: Oi = E3, ri = 0,

Przykładowo dla dwóch trójkątów wartości hi wyniosą 0, a promień wsteczny zdeter-
minowany jest przez środki okręgów, czyli punkty z otoczenia trójkątów.

4.4.2 Inne obiekty

W celu zastosowania algorytmu GVS dla dowolnych obiektów wypukłych, analogicznie
jak w przypadku kul należy zdefiniować otoczenie widziane z zadanego punktu obser-
watora oraz określić wyznaczanie promienia wstecznego. O ile otoczenie jest problem
prostym, to próbkowanie wsteczne między różnymi obiektami może okazać się zadaniem
nietrywialnym.

4.4.3 Badanie nieciągłości

Algorytm reverse sampling zastosowany w GVS występuje w szczególnych przypadkach
działania algorytmu próbkującego otoczenie obiektu. Poprzez określenie przewidy-
wanego punktu przecięcia promienia (ang. predicted hit) a następnie wyznaczenie
rzeczywistego przecięcia ze sceną, możliwe stało się badanie luk - nieciągłości sceny.
Mianowicie przerwa między dwoma obiektami może być niewidoczna w zależności od
miejsca z którego widzi ją obserwator. Sprawdzając odległość miedzy przewidywanym
a rzeczywistym punktem przecięcia zostaje zainicjowane szukanie promienia penetru-
jącego obszar między dwoma elementami sceny.

Zastosowanie różnych obiektów determinuje różne „rodzaje” wyznaczania otoczenia.
W związku ze znanym przewidywanym punktem przecięcia (punkt w otoczeniu lub w
płaszczyźnie zwierającej obiekt) możliwe jest badanie nieciągłości sceny. W przed-
stawionym algorytmie analiza taka odbywa się jedynie w przypadku krawędzi, choć
mogłaby być również przeprowadzona dla punktów:

• otoczenie składające się jedynie z punktów uniemożliwia inicjowanie reverse sam-
pling,

• w punktach może występować nieciągłość, która nie zostaje wykryta przy badaniu
krawędzi,

• nieciągłość zostanie pominięta gdy wyznaczony penetrujący ją promień nie prze-
cina obszaru obserwatora. Badanie nieciągłości w punkcie zwiększa prawdopo-
dobieństwo analizy luk niewielkim kosztem.

Algorytm ABS można zmodyfikować następująco:

39



adaptive_border_sampling(x)
t’ = enlarge(v(x), e)
for each p in t’ {

handle_ray((xp, p-xp)
check_discountinuity((xp, p-xp));

}
...

Dodatkowo należy uwzględnić fakt, że przewidywanego punktu przecięcia nie da się
poprawnie określić dla promieni losowych. Również może okazać się to niemożliwe dla
promieni punktowych z ABS. Również definicja predicted hit z pracy [3] jako przecięcie
promienia przechodzącego przez otoczenie t′ z płaszczyzną zawierającą trójkąt t może
prowadzić do wartości w „nieskończoności”. Przykładem takiej sytuacji jest obserwator
leżący na płaszczyźnie trójkąta. Problem ten można jednak obejść poprzez użycie
punktów z otoczenia jako przewidywanego trafienia.

4.5 Promienie losowe i warunek stopu

Promienie losowe wyznaczane są w celu zainicjowania algorytmu próbkowania adapta-
cyjnego. W zaproponowanym rozwiązaniu GVS jedyną kontrolą nad ich liczbą są dwa
warunki stopu. Pierwszy określa maksymalną liczbę promieni. Drugi jest spełniony,
gdy liczba nowo znajdowanych obiektów przypadających na ostatnie n promieni będzie
zbyt mała. W [3] jest to 50 obiektów na ostatnie n = 1mln promieni. Próbkowanie
losowe używane jest jedynie, gdy pozostałe algorytmy nie wyznaczyły nowych obiek-
tów i kolejnych promieni. Rozważając wielowątkowość można rozpatrzeć następującą
sytuację: każdy z k wątków losuje promień, znajduje jego przecięcie następnie używa
ABS i reverse sampling do wyznaczania PVS. Uzyskanie analogicznego efektu możemy
otrzymać poprzez modyfikację GVS, polegającą na początkowym wygenerowaniu k
promieni. Powstają więc dwie heurystyki:

1. k promieni na końcu (strategia leniwa last) - oryginalne działanie algorytmu GVS
z dodatkowym ograniczeniem na liczbę losowych promieni.

2. k promieni na początku (strategia gorliwa first) - polegająca na wylosowaniu k
promieni inicjujących GVS.

Zakładając, że losowane promienie z 1 i 2 są takie same, np. pseudolosowe z takim
samym zarodkiem, występuje istotna różnica podczas działania algorytmu. Mianowi-
cie:

• algorytm w 1 przypadku kończy działanie wyznaczając mniej niż k promieni
losowych. Spowodowane jest to spełnieniem jednego z warunków stopu. Warto
zauważyć, że przyczynić się to może do pominięcia próbkowania widocznej części
sceny. Jest to przypadek, w którym GVS analizuje złożony obszar sceny w danym
kierunku (np. wzdłuż ulicy miasta) i osiąga maksymalną liczbę promieni. Po-
zostawia on niezbadaną część sceny w pozostałych kierunkach, np. przeciwnym.

• wymuszając wygenerowanie dokładnie k losowych promieni (np. określając go
jako główny warunek stopu) analizę opisane heurystyki można porównać pod
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względem liczby zarodków. Zarodkami są punkty w obszarze obserwatora, w
których mają początek promienie GVS. Ich liczba i różnorodność wpływa na
budowane otoczenie widocznych obiektów, czyli na przestrzeń analizowaną przez
ABS. Należy zwrócić uwagę, że zarodki powstają zarówno przy próbkowaniu
losowym i wstecznym. Jednak w strategii last jest ich znacznie mniej, gdyż
promień losowy trafić może w obiekt już widoczny.

5 Zmiana obszaru obserwatora
Algorytm Petera Wonki Guided visibility sampling można przedstawić na przykładzie
dwu wymiarowym. Scena będąca płaszczyzną zawiera elementy - np. odcinki. Algo-
rytm GVS generując losowe promienie z obszaru obserwatora znajduje odcinki inicju-
jące poszukiwania widocznych elementów w ich otoczeniu. Adaptacyjne próbkowanie
polega na rozszerzeniu odcinka i sprawdzeniu promieni przechodzących przez jego
końce, natomiast próbkowanie wsteczne wyznacza promienie omijające elementy, tj.
penetrujące nieciągłości między nimi (rysunek 25).

Rysunek 25: Interpretacja algorytmuGVS na przykładzie sceny 2-wymiarowej. Przed-
stawione zastały trzy metody próbkowania.

Jedną z zaproponowanych w [3] metod modyfikacji algorytmu GVS jest znalezienie
odpowiednich promieni inicjujących zamiast początkowych promieni losowych. Jest
to efektywna optymalizacja algorytmu, która powoduje szybsze i dokładniejsze wyz-
naczanie PVS. W przypadku algorytmów i scen, dla których określamy zbiór obiektów
zasłaniających (np. fasady budynków, powierzchnie dróg itd.) odrzucane są elementy
przez nie zasłonięte. Takie podejście zostało opisane w 2.3.2 i 2.3.4. Możliwe jest
więc zatem zdefiniowanie promieni inicjujących jako tych, które trafiają w wybrane
obiekty ograniczające widoczność. Rozważając dowolną scenę i zbiór idealnych inicju-
jących promieni GVS wyznaczyłby dokładnie wszystkie widoczne obiekty. Obserwacja
ta prowadzi do modyfikacji polegającej na rozszerzeniu wyniku PVS o punkty pier-
wszego trafienia każdego obiektu lub odpowiadające im promienie. Warunek stopu
„liczby nowych znalezionych obiektów na ostatnie k promieni” zostałby spełniony po
|PV S| + k próbkowaniach. Tak obrany zbiór inicjujących promieni posłużyć może do
wyznaczenia PVS dla zmodyfikowanego obszaru obserwatora poprzez:

• przesunięcie - oczekując, że widoczność odległej części sceny zostanie niezmieniona.
Ewentualnie zostanie ona przysłonięta. Zatem wynik GVS zawiera podzbiór

41



poprzedniego PVS oraz zbiór nowych obiektów znalezionych przez algorytmy
próbkowania adaptacyjnego i wstecznego.

• powiększenie - dla którego istotna różnica leży w próbkowaniu wstecznym, tj.
promieni penetrujących nieciągłości sceny widocznych po rozszerzeniu obszaru
obserwatora. Łatwo zauważyć, że jest to szczególny przypadek przesunięcia ob-
szaru, w którym nie zmniejszono poprzedniego zbioru PV S.

Przesunięcie obserwatora (obszaru) o wektor vobs powoduje zmianę zasłanianego
regionu (rysunek 26). Z jednej strony część widocznej do tej pory sceny zostaje się
zasłonięta, z drugiej powstaje potencjalnie widoczny obszar (PVA). W związku z ideą
próbkowania do znajdowania PVS generowane są promienie skierowane w PVA, zami-
ast sprawdzania które z obiektów przestały być widoczne. Szukanie przecięć promieni
inicjujących mających trafić w PVS automatycznie spowoduje odrzucenie niewidocz-
nych już obiektów.

Rysunek 26: Obszar S(T ) zasłaniany przez obiekt T . Przesunięcie pola widzenia
powoduje odsłonięcie niewidocznej do tej pory części sceny PVA (potentialy visible
area).

Badanie widoczności obszaru PVA jest analogiczne do adaptacyjnego próbkowania
w GVS. Poniżej zostały przedstawione możliwe trafienia promieniem rpva, który omija
obiekt T (rysunek 26) i przechodzi przez jego otoczenie. Jeśli v jest funkcją widoczności
wówczas:

• v(rpva) /∈ PV S - znaleziony został nowy obiekt, dla którego (jak i dla jego
otoczenia) widoczność jest badana przez GVS,

• v(rpva) ∈ PV S - obszar widoczny również z poprzedniego pola widzenia. Określa-
jąc przewidywane trafienie (ang. predicted hit) przez punkt należący do otoczenia
rozszerzenia T i sprawdzając odległość rzeczywistego trafienia (hit) możliwe jest
zbadanie luki.

Przypadek v(rpva) ∈ PV S jest analogiczny do próbkowania wstecznego. Mia-
nowicie w przypadku:

• braku nieciągłości |predicted hit − hit| < tresh. Znalezione elementy tworzą
powierzchnię. PV A dla obiektu T jest zasłonięty całkowicie lub częściowo przez
przyległy obiekt v(rpva). Zatem analogicznie do metody rozszerzania obiektu
zasłaniającego o mu przyległe w algorytmie Schauflera [1] wystarczy zbadać PV A
dla obiektu v(rpva).
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• wystąpienia nieciągłości |predicted hit − hit| ≥ tresh. Obiekt v(r) ogranicza
obszar PV A dla T . Zgodnie z analogią do próbkowania wstecznego wystarczy
wyznaczyć promień rrev omijający T i v(rpva) (rysunek 27).

Rysunek 27: Przypadki nieciągłości w próbkowaniu wstecznym: (a) obiekt v(rpva)
jest za obiektem T , rrev penetruje PV A; (b) obszar PV A ograniczony przez v(rpva),
promień rrev nie istnieje; (c) obiekt v(rpva) jest przed T .

W algorytmie GVS reverse sampling następuje gdy spełniony zostanie warunek
predicted hit − hit > tresh, tj. gdy promień w otoczenie trafia w punkt bliższy
niż przewidywany. Jednak w przypadku analizy obszarów PVA promień rrev należy
wyznaczyć również dla predicted hit − hit < −tresh. Powyższe obserwacje prowadzą
do algorytmu wyznaczania widocznych obiektów z obszaru obserwatora przesuniętego
o wektor vobs:

1. dla każdego obiektu PV S i punktu jego trafienia wyznacz promień r znajdź
przecięcie v(r),

2. dla każdego v(r) będącego już w PV S zbadaj obszar PV A oraz ewentualne
nieciągłości,

3. wszystkie znalezione obiekty umieść w tymczasowym zbiorze PV S ′

4. zainicjuj algorytm GVS promieniami r : v(r) /∈ PV S oraz znalezionym już zbio-
rem PV S ′

5.1 Próbkowanie odsłoniętego obszaru PVA

Przypadek scen 3D i analiza odsłoniętego w niej obszaru po przesunięciu obserwa-
tora jest bardziej złożony niż opisany wcześniej problem 2D. Choć badanie PV AT

sprowadza się do problemu widoczności z obszaru, to wystarczającymi próbkami są
promienie przechodzące otoczenie obiektu T (analogicznie jak pojedyncze promienie w
próbkowaniu wstecznym wystarczające są do penetrowania nieciągłości między obiek-
tami). Prowadzi to do zmodyfikowanych algorytmów użytych w GVS

• poszerzania trójkąta (enlarge) z uwzględnieniem wektora przesunięcia obserwa-
tora vobs,
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• próbkowania krawędzi (subdiv_edge), w którym zredukowana jest liczba podzi-
ałów przez zastosowanie np. promieni w punkty brzegowe.

Na rysunku 28 przedstawiono dwa podejścia do próbkowania odsłoniętego obszaru
PV A. Prostym lecz agresywnym podejściem jest generowanie jednego promienia pen-

Rysunek 28: Generowanie promieni potencjalnie trafiających w obszar PVA. Po lewej
wyznaczanie pojedynczego promienia na podstawie punktu trafienia w obiekt T i wek-
tora przesunięcia Vobs. Po prawej dokładniejsze próbkowanie PV A wzdłuż krawędzi
obiektu T .

etrującego PV A (rysunek 28 po lewej). Bazując na prostej obserwacji, w której
rozmiar PV A maleje wraz ze wzrostem odległości od obserwatora, rozwiązanie takie
jest wystarczające dla odległych obiektów. Ów promień można łatwo wyznaczyć bazu-
jąc na algorytmie wyznaczania punktu brzegowego (rozdział 4.3.5). Dokładniejszym
rozwiązaniem badania odsłoniętego obszaru jest wyznaczenie krawędzi i analogiczne
postępowanie jak w adaptacyjnym próbkowaniu otoczenia w GVS. Jednak zamiast
stosowania metody poszerzania trójkąta T wystarczy przesunąć krawędzie o ε wzdłuż
wektora V ′

obs (V ′
obs jest rzutem wektora Vobs na płaszczyznę zawierającą trójkąt T ).

Uwzględnić należy te krawędzie e′i (przesunięte ei ∈ T o wektor Vobs), które leżą poza
T - de facto takie krawędzie są co najwyżej dwie, a test jest trywialny (na rysunku 28
po prawej przedstawiono przypadek z jedną krawędzią).

5.2 Algorytm

Idea algorytmu polega na sprawdzeniu czy zmienił się zbiór widocznych obiektów z
poprzedniego obszaru, próbkowaniu obszarów odsłoniętych oraz zastosowaniu GVS
do badania nowych obszarów sceny. Pseudokod algorytmu jest następujący:

main(pvs, vobs)
EPVS = empty;
for each (t, hit) in pvs

x = (xp, hit - xp);
handle_ray(x);
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GVS.PVS+= EPVS;
for each (t, hit) in EPVS

pva_sampling(t, hit, vobs);
GVS.main()

handle_ray(x)
if v(x) in pvs

if v(x) not in EPVS
EPVS+= v(x);

else
GVS.handle_ray(x);

pva_sampling(t, hit, vobs)
m = edgepoint(t, hit, hit + vobs, o)
xm = (xp, m - xp)
GVS.handle_ray(x);
t’ = enlarge(t, vobs);
for each edge(pl,pr) in t’

process_edge(pl,pr)

process_edge(pl,pr)
check_discountinuity((xp, pr-xp));

m = pl;
while ( |m - pl| < |pr - pl| - tresh)

check_discountinuity((xp, m-xp));
if v(m) = v(pr)

return;
m= edgepoint(v(m), m, pr, o)

check_discontinuity(x)
if |predicted_hit(x) - hit(x)| > tresh

xn = reverse_sampling(x)
if start(xn) in view cell

GVS.handle_ray(xn)

gdzie:

• pvs i vobs są parametrami wywołania algorytmu: poprzedni PVS oraz wektor
przesunięcia obszaru obserwatora Vobs

• v(x) jest pierwszym obiektem przeciętym przez promień x,

• edgepoint jest algorytmem wyznaczania punktu brzegowego opisanym w roz-
dziale 4.3.5,

W wyniku działania algorytmu wyznaczony zostaje zbiór potencjalnie widocznych
obiektów wraz z punktami trafienia. Otrzymane dane wystarczające są do dalszych
przesunięć obszaru obserwatora.

45



5.3 Przechodzenie sceny

W problemie przechodzenia sceny i wyświetlania jej z różnych obszarów następuje
odrzucanie niewidocznych obiektów. Zakładając dużą liczbę elementów występują-
cych w scenie oraz stosunkowo mały rozmiar widocznych obiektów operowanie na PVS
umożliwia przemieszczanie się w scenie w czasie rzeczywistym. Mając dany podział
sceny wraz z odpowiednimi PVS , które zostały obliczone w fazie preprocessingu obser-
wator przechodząc z komórki do komórki uwzględnia zredukowaną scenę. W niektórych
opublikowanych rozwiązaniach (np. w 2.3.2) rezygnuje się z wcześniejszego przygotowa-
nia podziału sceny a zbiór widocznych obiektów wyznaczany jest ad hoc. Podejście
takie opisane zostało właśnie w pracy Kumara [4]. Dla odpowiednio wyznaczonego ob-
szaru obserwatora czas potrzebny na wyznaczenie PVS dla sąsiednich komórek oraz
przesłanie wyniku z serwera do klienta jest wystarczający na selekcje właściwych
obiektów. Przy generowaniu obrazu metodami śledzenia promieni należy dodatkowo
uwzględnić czas potrzebny na zmodyfikowanie struktury danych (kd-drzewo) lub zbu-
dowanie jej od nowa.

Łącząc opisane wyżej techniki można stworzyć systemy, w których:

• wszystkie obliczenia dokonywane są przed rozpoczęciem poruszania się po scenie,

• podział sceny na komórki i odpowiadające nim zbiory wyznaczane są przed prze-
chodzeniem, a kd-drzewa budowane są ad-hoc

• PVS jak i kd-drzewo budowane są na żądanie.

5.3.1 Szybkie budowanie kd-drzewa

Schemat znajdowania PVS i budowy kd-drzewo ad hoc jest o tyle ciekawy, że obsługuje
on również sceny dynamiczne, w których zbiór PVS zmienia się nie tylko pod wpływem
przesunięcia obserwatora, lecz również z powodu zmian w scenie np. poruszających
się obiektów. Jednym z opublikowanych efektywnych algorytmów jest równoległe bu-
dowanie kd-drzewa opisane w pracy Maxima Shevtova, Alexeia Soupikova i Alexander
Kapustina Highly Parallel Fast KD-tree Construction for Interactive Ray Tracing of
Dynamic Scenes [17], którego idea jest następująca:

• w oparciu o algorytm budowania kd-drzewa Havrana [18] dla wierzchołków zaw-
ierających co najmniej 32 elementy stosuje się aproksymacje SAH. Sprowadza
się to do regularnego podziału przestrzeni względem 31 płaszczyzn. Wyz-
naczają one 32 kubełki, z którymi związane są liczby zawieranych elementów.
Pozwala to na proste wyznaczenie liczby obiektów po każdej stronie płaszczyzny.
W przypadku co najwyżej 32 elementów obliczany jest dokładny SAH.

• w trakcie „rozrzucania” obiektów do kubełków stosowane jest adaptacyjne pomi-
janie elementów. Mianowicie uwzględniony jest jedynie co l-ty element, gdzie
l = log10N , a N jest liczbą wszystkich obiektów w danym wierzchołku.

• w wyniku podziału wierzchołka płaszczyzną obiekty często trafiają do lewego
i prawego poddrzewa. Powoduje to wzrost wymaganej pamięci i uniemożliwia
wykorzystanie tego samego obszaru pamięci komputera. Shevtov zaproponował
modyfikację zarządzania pamięcią:
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– obszary pamięci (kontenery) połączone są w listę, tak, że ostatnio używany
kontener jest na końcu listy.

– dla każdego obszaru pamiętany jest wskaźnik początkowy, rozmiar i wskaźnik
na koniec. Obszar miedzy wskaźnikami odpowiada używanej pamięci.

– przydzielanie oraz zwalnianie pamięci odbywa się poprzez przesunięcie koń-
cowego wskaźnika o odpowiednią ilość.

– jeśli w kontenerze nie ma wystarczająco miejsca, tworzony jest nowy. Zwykle
operacja tworzenia nowego obszaru odbywa się 2-4 razy podczas całej kon-
strukcji drzewa.

Podczas konstrukcji kd-drzewa „z góry na dół” i budowania najpierw lewego,
a później prawego poddrzewa wymagane jest użycie dwóch puli. Odpowiadają
one lewym i prawym poddrzewom. Tym sposobem odwoływanie się do pamięci
każdej puli odbywa się w ostatnim na liście kontenerze.

Według autorów algorytmu [17] konstrukcja kd-drzewa możliwa jest w czasie 1.7
sekundy dla sceny z 7 milionami trójkątów, 2.4 sekuny dla 10 milionów trójkątów.

6 Implementacja i wyniki
Większość czasu poświęcona pracy została pochłonięta przez implementację oraz testo-
wanie algorytmów. Do reprezentacji scen użyto formatu mgf. Zaimplementowane w
języku C++ z wykorzystaniem biblioteki STL i OpenGL zostały algorytmy opisane w
rozdziale 3 wraz z rozszerzeniami (roz. 4) oraz przeliczanie PVS wraz z szybką budową
kd-drzewa (opisane w rozdziale 5). Ważniejszymi z zaimplementowanych algorytmów,
które nie zostały opisane, są: wybrane metody budowania i trawersowania kd-drzewa
opisane w pracy Havrana [18], podstawowy algorytm śledzenia promieni z modelem
oświetlenia Blinna-Phonga. Dla potrzeb testów na rozmaitej gamie modeli zaimple-
mentowano generatory scen. Wszystkie zaimplementowane algorytmy zamieszczone są
na dołączonej do pracy płycie CD. Ich opis znajduje się w dodatku A.

Przedstawione w niniejszym rozdziale wyniki algorytmów wyznaczania widocznych
obiektów zawierają następujące wartości:

• rozmiar PVS - liczba potencjalnie widocznych obiektów, które zostały wyzna-
czone przez algorytmy,

• błędne piskele - średnia liczba błędnych pikseli określająca dokładność oblic-
zonego PVS. Błąd wyznaczony jest na podstawie n = 1, 000, 000 próbek generu-
jących obrazy 1000× 1000 (piramida widzenia o kącie 60◦):

– sceny zawierającej wszystkie obiekty

– sceny ograniczonej do zbioru PVS.

Błąd określono przez liczbę promieni, dla których otrzymano różne wyniki prze-
cięcia ze sceną. Na podstawie dziesięciu różnych obrazów, dla których wyznac-
zono błędną liczbę pikseli został określony średni błąd.
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• liczba promieni - GV S polega na próbkowaniu sceny promieniami, tj. zna-
jdowaniu ich przecięć. Liczba takich promieni jest ściśle związana z czasem
działania algorytmu. Ze względu na różne możliwe (istniejące) algorytmy i im-
plementacje rozwiązujące problem przecięcia promienia ze sceną (np. OpenRT,
MLRTA) czas działania może się znacząco różnić. Stąd niezależnie nawet od
mocy obliczeniowej podawana jest liczba generowanych promieni.

• czas działania - czas działania zaimplementowanych algorytmów. Testy prze-
prowadzono na notebooku ASUSA6RP o następującej specyfikacji:

– procesor: Intel Celeron M 1.6 GHz
– pamięć RAM: 1 GB
– karta graficzna: Ati Radeon XPRESS 200M 128MB
– system operacyjny: linux UBUNTU.

Należy zwrócić uwagę, że czas śledzenia miliona promieni z wykorzystaniem al-
gorytmów opisanych w pracy Havrana[18] wyniósł nawet 40 s. Zastosowanie
MLRTA, wykorzystanie SSE oraz większa moc obliczeniowa pozwala na śledze-
nie do 800 tys. do 1,2 mln promieni na sekundę, w porywach nawet do kilku
milionów. Wyniki takie zostały zaprezentowane w pracy Wonki [3], gdzie użyto
komputera: Intel Pentium4 3.2GHz, 4GB RAM.

6.1 Strategie próbkowania krawędzi

Rysunek 29: Katedra widziana od wewnątrz.

Opisane algorytmy próbkowania krawędzi wpływają na czas działania jak i na
dokładność otrzymanego rozwiązania, tj. zbioru PVS. Czas działania jest ściśle związany
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z liczbą generowanych promieni i szukaniu przecięcia w scenie. Zatem redukcja pro-
mieni w krawędzie jest najprostszą metodą przyspieszenia GVS. Testy zostały przepro-
wadzone na scenach:

• sibenik - scena katedry. Zawiera około 75000 trójkątów. Uwzględniono dwa
obszary obserwatora, z których przykładowe widoki na katedrę widoczne są na
rysunkach 29 (ze środka katedry) oraz 30 (z „lotu ptaka”).

• trójkąty - scena zawierająca płaską powierzchnię złożoną z połączonych ze sobą
20,000 trójkątów. Widok sceny przedstawiony jest na rysunku 30.

Rysunek 30: Po lewej: katedra z „lotu ptaka”. Po prawej: prostopadłościan obserwatora
oraz podzielona płaszczyzna na trójkąty

W testach algorytmu GVS zastosowano:

• warunek stopu rozszerzony o maksymalną liczbę losowych promieni - 1 mln
próbek.

• następujące modyfikacje algorytmy analizy krawędzi:

– ograniczenie głębokości wywołań rekurencyjnych (oznaczone: d4, d8, gvs,
d16 ), rozdział 4.3.1,

– uwzględnianie odległości do krawędzi od obserwatora (adt), rozdział 4.3.2,
– wykrywanie przyległych obiektów (brzegowy), rozdział 4.3.3,

Na wykresach (rysunki 31, 32, 33) przedstawiono porównanie rozmiaru wyznac-
zonego PVS z liczbą generowanych promieni w krawędzie (po lewej), oraz ich śred-
nią ilość względem liczby znalezionych obiektów podczas próbkowania krawędzi (po
prawej). Tabele 2, 3, 4 zawierają czas wyznaczania poszczególnych PVS wraz z uzy-
skanym średnim błędem.

Dokładnym rozwiązaniem widoczności dla sceny siatki trójkątów z umieszczonym
nad nią obserwatorem są wszystkie obiekty. Powstałe błędy podczas działania GVS
wynikają zarówno z niedokładności reprezentacji promieni i obliczeń. Wraz z więk-
szą odległością trójkątów od obserwatora rośnie kąt między wektorem do obserwatora
(leżącym na promieniu trafiającym trójkąt) a wektorem normalnym powierzchni co
powoduje dodatkowo próbkowanie otoczenia w odległości dużo większej niż obrany ε.
Na rysunku 34 pokazane zostały nieznalezione trójkąty.
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Rysunek 31: Statystyki krawędzi dla sceny siatki trójkątów

Rysunek 32: Statystyki krawędzi dla sceny katedry z obserwatorem wewnątrz niej.

Rysunek 33: Statystyki krawędzi dla sceny katedry z obserwatorem na zewnątrz.

6.2 Obiekty wypukłe

Zastosowanie obiektów wypukłych zamiast powierzchni trójkątów będących triangu-
lacją sfer wpływa na zmniejszenie liczby rozpatrywanych elementów sceny. W związku
z czym zmniejsza się znacznie czas potrzebny na wczytanie sceny, budowę kd-drzewa,
znajdowanie przecięcia promienia oraz wyznaczanie widocznych obiektów. Poniżej
zostały przedstawione wyniki GV S z obsługą kul i trójkątów.
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Tablica 2: Wynik algorytmu GVS (z ograniczeniem losowych promieni do 10 tys.) dla
obserwatora wewnątrz katedry. Rozmiar sceny: 76,650.

Algorytm PVS (%) Liczba iteracji Błędne piksele Czas (s)
d4 29,627 (38%) 939,727 44 64.57
gvs 38,206 (49%) 4,213,010 1 286.13

brzegowy 29,642 (38%) 585,874 4 33.09

Tablica 3: Wynik algorytmu GVS (z ograniczeniem losowych promieni do 10 tys.) dla
obserwatora na zewnątrz katedry. Rozmiar sceny: 76,650.

Algorytm PVS (%) Liczba iteracji Błędne piksele Czas (s)
d4 5,530 (7%) 178,086 122 8.26
gvs 8,221 (10%) 938,041 2 40.51

brzegowy 6,016 (7%) 138,136 1 5.95

Tablica 4: Wynik algorytmu GVS (z ograniczeniem losowych promieni do 10 tys.)
dla obserwatora nad siatką trójkątów. Rozmiar sceny: 20,000. Wszystkie trójkąty są
widoczne.

Algorytm PVS Liczba iteracji Błędne piksele Czas (s)
d4 19,971 500,597 2 7.02
gvs 19,983 1,210,404 1 16.06

brzegowy 19973 352,121 2 4.36

Rysunek 34: Nieznalezione obiekty (ciemnoszare) z powodu dużej odległości od obser-
watora i błędów numerycznych.

Testy przeprowadzono na dwóch scenach:

1. kule - około 13 tys. kul, które zostały zawarte w prostopadłościanie o wymiarach
40× 40× 40.

2. kule i trójkąty - jest to poprzednia scena, w której zastąpiono połowę kul trójką-
tami,
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3. duże i małe kule - 13 tys. kul o losowych rozmiarach zawartych w scenie o
wymiarach 40× 40× 40.

Widok obiektów sceny zaprezentowany jest na rysunku 35. PVS pierwszej sceny
został wyznaczony przez GVS z oryginalnym warunkiem stopu - co spowodowało
wygenerowanie około 2 milionów promieni. Na rysunku 35 po prawej przedstawiono
widok PVS kul i trójkątów wyznaczonym z ograniczeniem do co najwyżej 100 tys.
losowych promieni.

Rysunek 35: Obrazy PVS wygenerowane metodą śledzenia promieni. Po lewej scena
kul, po prawej losowych kul i trójkątów. Na czerwono zaznaczono obiekty nie znalezione
przez GVS.

Na rysunku 36 przedstawiono zasłonięte elementy z innego widoku niż obszar dla
którego wyznaczono PVS.

W algorytmie GVS dla tak losowych scen jak 1 i 2 około 50% promieni jest gen-
erowanych losowych, co powoduje zwiększony czas działania algorytmu. Uzyskany błąd
(tabela 5) spowodowany jest głównie poprzez błędy numeryczne.

Tablica 5: Wyniki działania algorytmu GVS dla scen z kulami.

Scena Rozmiar PVS Liczba iteracji Błędne piksele Czas (s)
kule 10,116 6,096 2,035,198 25 29.96

kule i trójkąty 10,116 7,422 2,075,007 38 30.05

W przypadku triangulacji kul rozmiar sceny zwiększył się do około 1 mln, co
wpłynęło na wzrost liczby potrzebnych iteracji do 10 mln (spowodowane bardzo dużym
rozmiarem PV S, tj. około 60-70 % sceny). W wyniku błędów numerycznych w PV S
znajdowane były również niewidoczne części kul, tj. zasłonięte trójkąty należące do
triangulacji danej kuli.
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Rysunek 36: Niewidoczne obiekty (ciemnoszare) z tyłu sceny.

Redukcja liczby losowych promieni do 100 tys. przyczynia się do szybszego za-
kończenia działania algorytmu kosztem większego błędu, który spowodowany jest małym
prawdopodobieństwem trafienia losowym promieniem w obiekt. Na rysunku 35 po
prawej zaznaczone na czerwono nieznalezione elementy znajdują się na obrzeżach sceny.
Elementy te nie stanowią spójnego obszaru (modelu) ani też nie ograniczają widoczno-
ści, przez co ani ABS, ani próbkowanie wsteczne nie klasyfikuje ich jako widoczne.
Tabela 6 zawiera wyniki algorytmu GVS po uwzględnieniu 100 tys. losowych promieni.

Tablica 6: Wyniki działania algorytmu GVS dla scen z kulami z ograniczeniem losowych
promieni.

Scena Rozmiar PVS (%) Liczba iteracji Błędne piksele Czas (s)
kule i trójkąty 10,116 7,495 (74%) 1,118,050 1482 16.79
duże i małe kule 11,301 1,101 (9%) 278,660 17 1.51

6.3 Promienie losowe

Strategie próbkowania losowych promieni:

• first - gorliwa, w której promienie losowe rozpatrywane są na początku GVS,

• last - leniwa, w której promienie losowe rozpatrywane są gdy kolejka GVS jest
pusta,

Zostały one poddane następującym testom:

• scena losowych 10 tys. trójkątów i kul (rysunek 37 po lewej):,
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• sibenik - katedra zawierająca około 80 tys. trójkątów, obszar obserwatora nad
katedrą (rysunek 37 na środku),

• miasto złożone z 770 tys. elementów, obszar obserwatora na jednym ze skrzyżowań
(rysunek 37 po prawej).

Rysunek 37: Widoczne obiekty znajdowane przez algorytm GVS

Scena zawierająca losowe obiekty jest przykładem będącym dużym wyzwaniem dla
wszelkich algorytmów wyznaczających zbiór widocznych obiektów. Stosunkowo duży
rozmiar PVS stanowiący 70% sceny i brak przyległych powierzchni, powoduje duże
błędy przy stosowaniu małej liczby losowych promieni. Dla sceny sibenik już samo
próbkowanie adaptacyjne wyznacza satysfakcjonujące rozwiązanie. Scena miasta jest
standardowym przykładem dużej sceny, w której znaczna liczba trójkątów jest zasłani-
ana przez obiekty widoczne - fasady budynków. Poprzez ustawienie obszaru obserwa-
tora na skrzyżowaniu dróg algorytm GVS znajduje obiekty wzdłuż ulic ukierunkowując
próbkowanie w obszary jeszcze nie zbadane.

Przybliżenie zbioru widocznych obiektów o stosunkowo niedużej liczbie błędnych
pikseli (rysunek 38) jest tym lepsze im więcej zostało wygenerowanych losowych pro-
mieni. Również różnica w liczbie zarodków uzyskanych przy 200 tys. losowych próbek
powoduje, że strategia first obarczona jest mniejszym błędem. Przykładowo dyskre-
tyzacja obszaru obserwatora punktami, z których szukano widocznych obiektów wynio-
sła 3,201 punktów dla strategii first oraz 742 punkty dla last). Należy jednak zwrócić
uwagę, że nie jest znana liczba promieni losowych, które ostatecznie wygeneruje ory-
ginalny GVS. Liczbę losowych próbek trzeba więc określić np. na podstawie liczby
obiektów w scenie. W otrzymywanych wynikach już przy 100 tys. promieni otrzymano
mniejszą liczbę błędnych piskeli.

Wykres na rysunku 39 pokazuje wzrost zbioru widocznych elementów względem
kolejnych iteracji algorytmu, tj. wygenerowania kolejnych próbek. Strategia losowa-
nia na początku promieni efektywniej wyznacza PVS. Również średnia liczba błędnych
pikseli, pokazana na rysunku 39 jest mniejsza

W przypadku sceny zawierającej katedrę algorytmy znajdowały podobny PVS,
który zawierał około 6300 trójkątów. Maksymalny błąd 15 pikseli zaobserwowano dla
dwóch strategii, zaś w przypadku leniwej strategii promieni losowych już po pierwszym
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Rysunek 38: Rozmiar PVS i liczba błędnych pikseli dla sceny losowych trójkątów i kul.

Rysunek 39: Po lewej: rozmiar PVS w trakcie kolejnych iteracji algorytmu dla sceny
losowych trójkątów i kul. Po prawej: Liczba błędnych pikseli względem liczby losowych
promieni dla sceny miasta.

promieniu trafiającym w scenę GVS wyznacza niemal wszystkie widoczne trójkąty.
Stąd wniosek, że kolejność losowych promieni nie ma istotnego znaczenia dla tego
typu scen. Zgodnie z oczekiwaniami próbkowanie adaptacyjne skutecznie wyznacza
widoczne powierzchnie złożone z przyległych trójkątów, natomiast próbkowanie wsteczne
efektywnie analizuje nieciągłości. Promienie znalazły około 1500 obiektów.

6.4 Wyświetlanie dużych scen

Generowanie obrazu metodą śledzenia promieni pozwala na szybkie wyświetlenie sceny,
gdy pomija się odbite promienie i wyznaczanie cieni. Oświetlenie wraz z padającymi na
scenie cieniami można aproksymować poprzez wyznaczenie zbioru widocznych obiektów
ze światła - co jednak pozwala jedynie na zweryfikowanie czy dany obiekt jest cały w
cieniu lub czy jest częściowo oświetlony. Dokładniejsza metoda przybliżania oświetlenia
została zaprezentowana w pracy [1].

Zakładając, że wszystkie obiekty są w całości oświetlone przechodzenie złożonej
sceny można zaprogramować jako wyznaczanie zbioru widocznych obiektów, następnie
budowanie kd-drzewa i wyświetlenie obiektów. Taka metoda okazuje się przydatna
przy scenach zawierających kilka milionów obiektów. Na rysunku 40 przedstawiono
widok na scenę wygenerowanego miasta, które zawiera około 2.8 miliona trójkątów.
Statystyka sceny miasta:
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Rysunek 40: Przykładowa scena miasta zawierająca 2,8 mln trójkątów.

• liczba obiektów: 2,759,991,

• rozmiar pliku mgf: 19.5 MB,

• czas wczytania sceny: 39.11 s,

• czas dokładnej budowy kd-drzewa: 209,99 s.

Umieszczenie obserwatora wewnątrz sceny determinuje rozmiar zbioru widocznych
obiektów stanowiący nieraz 0.1% całego modelu. Średni czas generowania obrazu up-
roszczoną metodą śledzenia promieni (obraz o rozdzielczości 320× 240:

• 6.5 - 10.4 s. - z użyciem kd-drzewa dla wszystkich trójkątów,

• 0.06 - 0.9 s. - z zastosowaniem kd-drzewa zawierającego jedynie obiekty widoczne.

Powyższe czasy nie uwzględniają wyznaczania PVS ani przebudowy struktur danych
sceny. Średni czas GVS wyniósł 83 sekundy, zaś zredukowanie liczby generowanych
promieni w krawędzie zmniejszyło czas o prawie połowę do 46 sekund. Podczas prze-
chodzenia sceny czasy algorytmów aktualizowania PVS i przebudowę kd-drzewa (opi-
sanych w rozdziale 5) wynosiły od 4 do 33 sekund. Wykresy zawierające statystyki
wyznaczania PVS i budowy kd-drzew przedstawione są na rysunku 41

Opisana selekcja widocznych obiektów z rozdziału 5 jest metodą agresywną, co
powoduje pojawienie się artefaktów np. w scenie miasta brakujących ścian. Są one
jednak nieraz niezauważalne, szczególnie gdy obserwator nie wie jak wygląda dokładna
scena. Przykładowe obrazy PVS podczas przechodzenia sceny miasta pokazane są na
rysunku 42.

Warto zauważyć, że zastosowanie algorytmu MLRTA pozwoliłoby na dokładniejsze
wyznaczanie widocznych obiektów w dużo krótszym czasie, co ostatecznie umożliwiłoby
wyświetlanie złożonych scen w czasie rzeczywistym.
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Rysunek 41: Wyniki kolejnych aktualizacji widocznego zbioru. Po lewej: czas wyz-
naczania PVS oraz czas przebudowy kd-drzewa (wykres prawie pokrywający się z osią
OX). Po prawej: liczba generowanych promieni oraz rozmiar PVS.

Rysunek 42: Wybrane obrazy generowane metodą śledzenia promieni podczas prze-
chodzenia sceny miasta.

7 Podsumowanie
Problem wyznaczania widocznych obiektów stosunkowo niedawno doczekał się efekty-
wnych algorytmów. Wśród wielu rozwiązaniach w większości aproksymacyjnych ist-
nieje zaledwie kilka algorytmów dokładnych np. Nirenstein [7] w 3D i Bittner [22]
w 2.5D. W publikacji [3] przedstawiono porównanie algorytmu GVS z dokładnym
algorytmem Nirensteina. Różnica między otrzymywanymi wynikami była niewielka,
lecz to właśnie algorytm GVS lepiej dokonywał selekcji widocznych obiektów. Pow-
stałe różnice nie wynikają jednak z idei owych rozwiązań lecz z błędów obliczeń nu-
merycznych. Przykładowo testując algorytm Möllera można zauważyć, że promie-
nie skierowane w krawędzie odległego trójkąta omijają go. Konsekwencją tego jest
dłuższy czas działania GVS oraz błędna klasyfikacja niewidocznych elementów sceny.
W wyniku zatem paradoksalnie można otrzymać konserwatywny zbiór widocznych
obiektów.

Dzięki prostej idei algorytmu GVS w dość łatwy sposób można dokonywać jego
modyfikacji. Zarówno dowolny kształt obszaru obserwatora jak i uogólnienie na obiekty
wypukle pozwoliły na obliczanie PVS z użyciem OORT (ang. Object-Oriented Ray
Tracing). Jedynym problem stanowiło wyznaczanie promienia w reverse sampling,
które dla zróżnicowanych figur geometrycznych nie jest już trywialne. Opracowane i
opisane w rozdziale 4 metody redukcji liczby generowanych promieni doprowadziły do
znacznego przyspieszenia algorytmu. Ograniczenia te wpływają jednak na aproksy-
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mację zbioru PVS, choć w wielu przypadkach, tj. w scenach przedstawiających rzeczy-
wiste modele a nie losowe zbiory trójkątów, liczba błędnych pikseli była nieznacznie
większa. Również idea aktualizacji PVS z wykorzystaniem opisanych w rozdziale 5 pro-
mieni inicjujących przyczyniła się do szybszej selekcji widocznych obiektów. Poprzez
zredukowanie liczby generowanych promieni w wielu przypadkach wyznaczanie PVS
można przyspieszyć nawet siedmiokrotnie.

W pracy przetestowano wykorzystanie PVS podczas śledzenia promieni. Zgodnie
z oczekiwaniami znacznie przyspieszyło to generowanie obrazów, jednak wpływa to je-
dynie na promienie początkowe. Użycie promieni odbitych wymaga uwzględnienia już
całej sceny. Analogiczny problem pojawia się w oświetleniu pośrednim i bezpośred-
nim. Również i tu możliwa jest aproksymacja z zastosowaniem metod wyznaczania
widoczności z obszaru (obliczenie oświetlenia opisał np. Schaufler w [1]).

Przechodzenie sceny miasta okazało się być nietrywialnym problemem, a wyz-
naczanie widocznych obiektów z kolejnych obszarów obserwatora nie zawsze satys-
fakcjonujące. Zarówno wyniki metody aktualizowania zbioru PVS jak i algorytmu
GVS dla obszarów w scenie miasta zależą od wielu czynników. Próbkowanie wido-
czności z powierzchni obszaru powoduje pominięcie widocznych obiektów w przypadku
dużego obszaru obserwatora lub obszaru, którego powierzchnia jest bliska obiektom
sceny lub je przecina.

Ciekawym i niedawno opublikowanym rozwiązaniem jest algorytm Bittnera [11].
Idea jest zbliżona do GVS, jednak tu próbkowanie odbywa się w dwóch kierunkach:
dla każdego promienia dodatkowo badany jest promień przeciwny. Tym sposobem
znajdowane są dwa obiekty, które widoczne są ze wszystkich obszarów, przez które
przeszły promienie. W wyniku otrzymujemy zbiory PVS dla wszystkich obszarów
obserwatora.

Poza powstawaniem kolejnych algorytmów widoczności i efektywnych metod śle-
dzenia promieni następuje rozwój architektury komputerowej. Znane już od kilku lat
instrukcje SSE wprowadzone w procesorach Pentium III umożliwiły wykonywanie dzi-
ałań na 4-elementowych wektorach. Zastosowanie ich w algorytmie MLRTA [13] miało
znaczny wpływ na efektywność algorytmu śledzenia promieni. Obecnie szczególną
uwagę należy zwrócić na rozwój GPU (ang. graphics processing unit) i wykorzystanie
wielu koprocesorów graficznych. Zarówno konstrukcja GPU w Larrabbe Intela jak i
rozwiązanie śledzenia promieni w NVIRT przyczynią się do znacznego przyspieszenia
ray tracingu. Warto zauważyć, że dzięki temu wyznaczanie widocznych obiektów będzie
jeszcze efektywniejsze.
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A Zaimplementowane programy

A.1 Lista programów

• fpvs - wyznaczanie PVS i zapis do pliku,

• gcmppvs - porównanie dwóch wyników PVS, wyświetlenie ich i oznaczenie kolorami
(OpenGL),

• pvserror - wyznaczanie błędu PVS, generuje obraz PPM,

• rvs - wyznaczanie kolejnych zbiorów PVS i zapis ich do plików (program pomoc-
niczy),

• rtrt - wyświetlanie scen (OpenGL) z ograniczonym widokiem do zbioru PVS,
przechodzenie sceny, aktualizacja zbioru PVS,

• cpvs.hpp - („calculate pvs”) moduł opakowujący algorytmy wyznaczania widocznych
obiektów.

A.2 Kompilacja

W katalogu src/makefiles znajdują się wszystkie pliki makefile służące kompilacji pro-
gramów. Plik MAKE_xxx odpowiada programowi xxx. Plik wykonywalny zostaje
umieszczony w katalogu bin.
Kompilacja wszystkich programów:

sh scripts/compile_all.sh

Kompilacja wybranego programu:

sh scripts/compile_<prog>.sh

gdzie <prog> = fpvs | gpvs | gcmppvs | pvserror | rvs | rtrt

A.3 Uruchamianie

A.3.1 Programy

fpvs, którego wywołanie jest następujące:

./fpvs <properties> [-edgediv <int>] [-maxdepth <int>] [-edgetype <0|1> ]
[-maxrand <int>] [-randstep <0|1>] [-eeps <double>] [-pvsout <file>]

gdzie:

<properties> - plik z ustawieniami programu, zawiera m.in. ścieżkę do pliku
sceny, współrzędne obserwatora, definiuje obszar widzenia

-edgediv K - wymuszenie podziału krawędzi otoczenia na K części

-maxdepth D - ograniczenie głębokości rekursji algorytmu podziału krawędzi
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-edgetype 0|1 - typ przetwarzania krawędzi, 0 - gvs, 1 - punkt brzegowy

-maxrand N - maksymalna liczba losowych promieni

-randstep 0|1 - jeśli 1, to zostaną generowane jedynie losowe promienie - algorytm
RAND

-eeps E - wartość epsilon - odległość otoczenia od obiektu (metoda „enlarge”)

-pvsout P - zapis PVS do pliku P

gcmppvs, którego wywołanie jest następujące:

./gcmppvs <properties>

gdzie <properties> zawiera informacje o scenie, obserwatorze oraz ścieżkach do dwóch
plików z PVS:

PVS_FILENAME - plik z pierwszym PVS

PVS2_FILENAME - opcjonalny parametr, jeśli niezdefiniowany, tylko pierwszy
PVS jest wyświetlany

pvserror, którego wywołanie jest następujące:

./pvserror <properties> [ -rand <long> | [-pvs <file>] [-limitpvs <long>]
[-ppm <filename>] ]

gdzie:

properties - plik z ustawieniami programu

rand R - tryb losowych promieni, bez generowania obrazu, w wyniku liczba błęd-
nych ’pikseli’

pvs F - pliku wejściowy z PVS

limitpvs K - ograniczenie PVS do pierwszych K obiektów

ppm F - obraz wynikowy w formacie PPM

rvs, którego wywołanie jest następujące:

./rvs <properties> -vec vec[0] vec[1] vec[2] -steps <steps> -inpvs <file>
-outpvs <file>

gdzie:

properties - plik z ustawieniami programu

vec v0 v1 v2 - wektor przemieszczania po scenie [v0,v1,v2]

steps S - liczba kroków (max 999)

inpvs FIN - wejściowy plik z PVS
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outpvs FOUT - wyjściowy "PREFIX"pliku z PVS

uwaga: w wyniku działania powstaje wiele wynikowych PVS zatem są one zapisywane
w plikach ze zmienianym sufiksem: jeśli FOUT = pvs_out_xxx.txt wówczas zostaną
wygenerowane: pvs_out_001.txt, pvs_out_002.txt .... pvs_out_<S>.txt.

rtrt
./rtrt <properties>

gdzie <properties> jest plikiem z ustawieniami który zawiera informacje m.in. o
obszarze i położeniu obserwatora, scenie itd.

A.3.2 Moduły, kod źródłowy, klasy

Główny moduł cpvs opakowuje algorytmy wyznaczanie widocznych obiektów. Zawiera
on metody:

• cpvs_RAND - algorytm RAND - generowanie losowych próbek, znajdowanie prze-
cięcia, które klasyfikuje obiekt jako widoczny,

• cpvs_GVS - algorytm GVS z pracy Wonki "Guided Visibility Sampling"[3],

• cpvs_RVS - algorytm aktualizujący PVS.

Poniżej został opisany kod źródłowy według katalogów:

• gvs/ - klasy i metody związane z algorytmem GVS wraz z rozszerzeniami, m.in.
metody rozszerzania obiektów („enlarge”),

• pvs/ - klasa reprezentacji zbioru widocznych obiektów,

• rt/ - klasy i metody związane ze śledzeniem promieni wg prac Havrana [18] i
Shevtova [17], tj.:

– implementacja kd-drzewa wraz z algorytmem szybkiego budowaniem struk-
tury,

– moduł zarządzania pamięcią przy budowanie kd-drzewa
– trawersowanie drzewa
– metody i klasy uproszczonej wersji RayTracera

• scene/ - klasy i metody wczytywania (w formacie MGF) oraz reprezentacji w
pamięci świateł, materiałów i obiektów sceny. Obiekty - primitives - zawierają
funkcje opakowujące metody wykorzystywane w GVS (np. enlarge)

• settings/ - moduł służący do przechowywania parametrów dla zaimplementowanych
aplikacji. Przykładowe pliki definujace ustawienia znajdują się w katalogu tests

• utils/ - wydzielone makra i przydatne funkcje m.in.: obsługa kamery, mapowanie
tonów.

A.3.3 Plik z ustawieniami

Opis parametrów znajduje się w pliku src/settings/settings.hpp
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A.4 Sceny

A.4.1 Generatory scen

• citymaze - generator mapy miasta w postaci 01 (0 - pusty blok, 1 wypełniony)

• citygen - generator sceny miasta do pliku mgf, opcjonalnie wykorzystuje wynik
citymaze

• mesh - generator płaszczyzny podzielonej na trójkąty

• sphtrigen - generator sceny złożonej z losowych trójkątów i kul

A.4.2 Kompilacja i uruchamianie

Kompilacja wszystkich generatorów możliwa jest za pomocą skryptu scripts/compile_all.sh.
W celu kompilacji wybranego programu ze względu na ich prostotę wystarczy np.
polecenie: gcc src/program.cpp -o bin/programNa płycie dołączono skrypt generate_scenes.sh
generujący pliki mgf na których przeprowadzano testy algorytmów.

Więcej szczegółów w pliku readme oraz plikach nagłówkowych.
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