
Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

Adrian Dziubek

Skaner 3D na bazie strukturalnego
oświetlenia

Praca magisterska

Praca wykonana pod kierunkiem
dr Andrzeja Łukaszewskiego

Wrocław 2009

2

Streszczenie

Celem niniejszej pracy jest implementacja, opis i upublicznienie programu skanera
3D o otwartym źródle bazującego na strukturalnym oświetleniu. Punktem wyjścia pracy
jest opis rozwiązania w pracy A low cost 3D scanner based on structured light [1] skon-
struowanego w celu dokumentacji dziedzictwa kulturowego. Skaner jest oparty o łatwo
dostępne na rynku urządzenia i ma się cechować łatwością instalacji i obsługi.

Projekt składa się z programu, jego dokumentacji, danych testowych i niniejszej pra-
cy. Rozdział pierwszy oferuje krótkie wprowadzenie do problemu skanowania oraz opis
pracy bazowej. W rozdziale drugim jest opisany zgeneralizowany algorytm stosowany
skanerach bazujących na oświetleniu strukturalnym składającym się z pasków. Rozdział
trzeci opisuje implementację programu oraz omawia napotkane problemy. W rozdziale
czwartym są opisane wykonane testy oraz napotkane błędy. Rozdział piąty opisuje moż-
liwe rozszerzenia. W dodatku A znajduje się instrukcja instalacji i obsługi programu,
a w dodatku B opis zawartości płyty CD dołączonej do pracy.

3

4

Spis treści

1 Wstęp 7
1.1 Przegląd metod . 7
1.2 Wybór rozwiązania . 7
1.3 Praca bazowa . 8
1.4 Cel pracy . 9

2 Algorytm 9
2.1 Historia rozwiązania . 9
2.2 Zasada działania . 9
2.3 Uproszczenia . 9
2.4 Założenia i układ współrzędnych . 10
2.5 Kalibracja . 10

2.5.1 Półproste . 10
2.5.2 Płaszczyzny . 11
2.5.3 Translacja płaszczyzn do globalnego układu współrzędnych 12

2.6 Generowanie równań . 13
2.6.1 Półproste . 14
2.6.2 Płaszczyzny . 14

2.7 Korekcja zniekształceń . 15
2.8 Wzory, wykrywanie i indeksowanie . 16

2.8.1 Wybór wzorów . 16
2.8.2 Wzory . 16
2.8.3 Indeksowanie . 17

2.9 Rekonstrukcja głębokości . 18
2.10 Rekonstrukcja powierzchni . 18

3 Implementacja 19
3.1 Środowisko i zależności . 19
3.2 Inżynieria programowania . 20
3.3 Architektura . 21

3.3.1 Moduł projektu . 21
3.3.2 Moduł konfiguracyjny . 23

3.4 Pakiet biblioteczny . 23
3.4.1 Interfejs . 23

3.5 Pakiet otrzymywania danych . 24
3.6 Pakiet rekonstrukcji . 24

3.6.1 Indekser . 24
3.6.2 Filtry . 27
3.6.3 Rekonstrukcja głębokości . 27
3.6.4 Rekonstrukcja powierzchni . 28

3.7 Pakiet wyjścia . 29
3.8 Program testu regresyjnego . 29

3.8.1 Funkcje testu . 29

5

4 Testy 31
4.1 Dane testowe . 31

4.1.1 Skrypt przygotowujący dane . 31
4.1.2 Zdjęcia . 31
4.1.3 Wycinki . 33
4.1.4 Symulacja . 33

4.2 Test filtrów . 34
4.3 Test na zdjęciach . 36
4.4 Test na danych symulowanych . 37
4.5 Test na wycinkach . 38

5 Podsumowanie 40
5.1 Trudności . 40
5.2 Możliwe rozszerzenia . 41

5.2.1 Sterownik aparatu . 41
5.2.2 Automatyczna kalibracja . 41
5.2.3 Korekcja zniekształceń . 42
5.2.4 Tekstura . 42
5.2.5 Automatyczne dostrajanie parametrów 42
5.2.6 Wydajność . 42
5.2.7 Pakiet projektu . 43
5.2.8 Przenośność . 43
5.2.9 Inne formaty 3D . 44
5.2.10 Graficzny interfejs użytkownika . 44
5.2.11 Alternatywne komponenty . 44
5.2.12 Inne pomysły . 44

A Instrukcja obsługi 45
A.1 Instalacja . 45
A.2 Skanowanie . 46

A.2.1 Przygotowanie . 46
A.2.2 Rozmieszczanie sprzętu i obiektów 46
A.2.3 Uruchomienie programu . 46
A.2.4 Udogodnienia . 47
A.2.5 Ustawianie projektora . 47
A.2.6 Ustawianie aparatu . 48
A.2.7 Generowanie wzorów . 48
A.2.8 Wykonywanie zdjęć . 48
A.2.9 Ładowanie zdjęć . 49
A.2.10 Rekonstrukcja modelu . 49
A.2.11 Wypisywanie modelu . 49
A.2.12 Konfiguracja . 50

A.3 Skrypty danych testowych . 51
A.4 Program testujący . 51

B Zawartość płyty 52

6

1 Wstęp

Skanery 3D to urządzenia, które zbierają dane o kształcie obiektu. Mogą też rejestrować
inne właściwości takie jak kolor. Dane są potem wykorzystywane do konstrukcji cyfrowego
trójwymiarowego modelu obiektu. Skanery mają szerokie zastosowanie w przemyśle filmo-
wym i przy produkcji gier komputerowych. Inne zastosowania to projektowanie, odwrotna
inżynieria, protetyka, kontrola jakości i dokumentacja dziedzictwa kulturowego.

1.1 Przegląd metod

Istnieje wiele rozwiązań dla problemu skanowania. Ze względu na mnogość zastosowań
i dość wysoką cenę, urządzenia są w dużym stopniu wyspecjalizowane. Każde z nich ma
swoje wady, zalety, ograniczenia i koszty. Wiele cech jest nie do pogodzenia. W zależno-
ści od zastosowania duże znaczenie mają: rozdzielczość, dokładność, powtarzalność, zakres
odległości, nieinwazyjność, odporność na wpływy środowiska i szybkość.

Kurs [8] oferuje szersze wprowadzenie i przegląd metod. Na podanej stronie znajduje się
też wyczerpująca lista odnośników do stron producentów urządzeń oraz oprogramowania
wspomagającego proces skanowania.

Rysunek 1: Taksonomia skanerów według [8]

1.2 Wybór rozwiązania

Spójrzmy na rysunek 1 w kontekście wyboru skanera do skanowania dzieł sztuki. Mu-
simy wykluczyć rozwiązania dotykowe ze względu na możliwość uszkodzenia skanowanego
obiektu. Wśród rozwiązań bezdotykowych, skanery prześwietlające są zbyt skomplikowane
i wymagają drogiego sprzętu, a ponieważ odtwarzamy tylko kształt obiektu, prześwietle-
nia nie są konieczne. Rozwiązania nieoptyczne nie oferują żądanej precyzji dla skanowania
rzeźb i służą głównie do skanowania obiektów znacznie większej skali. Radary mikrofalowe są
stosowane w samolotach i satelitach do uzyskiwania map terenu, a sonary na statkach do ba-
dania dna morskiego. Jedynie skanery laserowe bazujące na czasie lotu mają zastosowanie

7

w skanowaniu dziedzictwa kulturowego. Przykładem takiego zastosowania było skanowanie
Kaplicy Medyceuszów w projekcie Michelangelo [2].

Rozpatrzmy rozwiązania optyczne. Rozwiązania pasywne są nieodpowiednie, a ich roz-
wój dąży przede wszystkim do zastosowań w robotyce. Fotogrametria jest podatna na błędy
rekonstrukcji z powodu barwy obiektu i ma ograniczone zastosowanie dla obiektów o skom-
plikowanym kształcie. Metody odtwarzania kształtu z obrysów nie są w stanie odtworzyć
wklęsłych powierzchni. Odtwarzanie kształtu z ostrości jest nieprecyzyjne i wymaga specja-
listycznego sprzętu. Praca [4] oferuje opis typowego skanera pasywnego bazującego na ste-
reowizji.

Wśród urządzeń bazujących na aktywnym oświetleniu radar obrazujący jest stosowa-
ny do znacznie większej skali obiektów, natomiast interferometria jest podatna na błędy.
Jak widać najbardziej obiecujące są aktywne urządzenia optyczne bazujące na triangulacji,
w tym skanery laserowe i używające światła strukturalnego.

1.3 Praca bazowa

Autorzy pracy bazowej [1] mieli na celu stworzenie metody skanowania dzieł sztuki.
Urządzenie stara się wypełnić lukę pomiędzy tanimi komercyjnymi skanerami o niewystar-
czającej dla tego zastosowania precyzji, a tymi z wysokiej półki, których bardzo wysoka
cena hamuje ich zastosowanie. Jako przykład wysokobudżetowego przedsięwzięcia autorzy
cytują Digital Michelangelo Project [2].

Dokumentacja dziedzictwa kulturowego wymaga nie tylko wysokiej precyzji, ale również
dokładnego geometrycznie odwzorowania kształtu. Klasyczne narzędzia do modelowania
3D nie są więc odpowiednie do tego zastosowania, ponieważ wizualne podobieństwo nie jest
tutaj głównym celem. Dokładne geometrycznie odwzorowanie kształtu pozwala na wiele
ważnych w tej dziedzinie zastosowań modelu takich jak katalogowanie dzieł oraz jego użycie
do reprodukcji i odnawiania.

Praca bazowa opisuje rozwiązanie optyczne z aktywnym oświetleniem strukturalnym.
Aspekt ekonomiczny rozwiązano opierając się na popularnych urządzeniach konsumenckich:
aparacie i projektorze cyfrowym. Dzięki temu rozwiązanie korzysta z szybkiego rozwoju, jaki
postępuje w dziedzinach fotografii i projekcji cyfrowej. Zastosowanie projektora cyfrowego
jako źródła światła ma dodatkowe zalety:

� umożliwia łatwe eksperymentowanie z różnymi wzorami;

� zapewnia bezpieczeństwo skanowanego obiektu ze względu na brak ruchomych części
takich jak ramiona sterujące laserem, które mogłyby dokonać uszkodzeń;

� przyśpiesza proces otrzymywania danych poprzez oświetlenie większej powierzchni niż
rozwiązania stosujące laser.

Skaner ma kilka ograniczeń, które dobrze współgrają z wybranym zastosowaniem. Ze
względu na zastosowanie oświetlenia wieloma wzorami, obiekt musi być nieruchomy w czasie
otrzymywania danych. Ze względu na dolną granicę ostrości projektora cyfrowego, nadaje
się się do skanowania obiektów średniej skali. Jak każde rozwiązanie bazujące na oświetleniu
strukturalnym, skaner z pracy bazowej wymaga kontrolowanych warunków oświetleniowych.
Ponieważ jest rozwiązaniem optycznym, nie pozwala na otrzymywanie kształtu obiektów
przezroczystych i odbijających światło, jeśli nie zostaną tymczasowo pokryte warstwą od-
bijającą światło.

8

1.4 Cel pracy

Celem niniejszej pracy jest udostępnienie programu skanera o otwartym źródle. Program
ma być łatwy w instalacji i obsłudze. Architektura programu stara się umożliwić rozwój ela-
stycznego rozwiązania, którego poszczególne komponenty można by dostosować do potrzeb
konkretnej dziedziny. Jako punkt wyjścia program implementuje elementy pracy bazowej.

Tak jak w pracy, na której oparto rozwiązanie, program ogranicza się do uzyskiwania
jednego skanu, łączenie i wygładzanie pozostawiając zewnętrznym programom. Wejściem
dla programu są zdjęcia obiektu oświetlonego wzorami a wyjściem trójwymiarowy model
powierzchni. Program generuje również potrzebne do oświetlania wzory w wybranej roz-
dzielczości. Przedstawione rozwiązanie ogranicza się do implementacji i opisu programu
i nie obejmuje mechanicznych części pracy bazowej (rusztowania i zestawu oświetlenia).

2 Algorytm

2.1 Historia rozwiązania

Skanery bazujące na świetle strukturalnym zrodziły się z pomysłu zastąpienia jednego
z aparatów w skanerze stereoskopowym przez aktywny element w postaci projektora lub
lasera. Dzięki temu znacznie łatwiejszy staje się problem znajdowania odpowiadających
sobie punktów obrazu, który dla pasywnych systemów sprawia poważne problemy.

Wcześniejsze rozwiązania bazujące na projektorach analogowych cierpiały z powodu
błędów ułożenia kliszy. Ten problem nie istnieje dla rozwiązań bazujących na cyfrowym
urządzeniu (LCD/DLP), w których matryca znajduje się w stałym położeniu. Dodatkowo
projektor cyfrowy pozwala na elastyczny wybór wzorów [1] [6] dzięki czemu można łatwo
eksperymentować z ulepszeniami.

2.2 Zasada działania

Aktywny skaner optyczny uzyskuje informacje o położeniu i kształcie obiektu na pod-
stawie triangulacji. Triangulacja polega na obliczeniu miejsca przecięcia się płaszczyzny
i półprostej w przestrzeni.

Każdemu punktowi na obrazie aparatu odpowiada pewien promień światła (półprosta).
Każdemu rzutowi kolumny środków pikseli obrazu projektora (względnie wiersza, gdy pro-
jektor jest przesunięty w pionie względem aparatu) odpowiada pewna płaszczyzna. Znając
równania półprostych odpowiadających punktom obrazu aparatu i płaszczyzn odpowiada-
jących oświetlającym te punkty kolumnom, można odtworzyć jego położenie w przestrzeni.
Przedstawione w tej pracy rozwiązanie używa bocznego przesunięcia, więc w dalszych roz-
ważaniach zakładamy, że wzorami są pionowe pasy.

Skaner wykonuje zdjęcia obiektu oświetlone specjalnymi wzorami. Wzory pozwalają
na przyporządkowanie punktom obrazu numeru kolumny obrazu projektora. Na podstawie
tych danych, położenia projektora względem aparatu oraz parametrów obiektywów tych
urządzeń, da się odtworzyć równania półprostych i płaszczyzn odpowiadających punktom
obrazu. Proces ten jest opisany szczegółowo poniżej i zilustrowany na rysunku 2.

2.3 Uproszczenia

Przedstawiony powyżej model jest uproszczony. Obiektyw aparatu zbiera informacje
o danym pikselu w przybliżeniu z dwóch stożków o wspólnym wierzchołku w płaszczyźnie
ostrości, analogicznie projektor wyświetla piksel ostro tylko w jednej płaszczyźnie. Zakres

9

Rysunek 2: Zasada działania (na podstawie pracy [9])

ostrości jest jednak wystarczająco duży do większości zastosowań. W dalszych rozważaniach
pomijamy również geometryczne zniekształcenia obrazów projektora i aparatu, którymi
zajmiemy się w punkcie 2.7.

2.4 Założenia i układ współrzędnych

Zakładamy, że obraz obu urządzeń jest prostokątny a piksele mają równomierny rozkład.
Zakładamy, że obraz aparatu ma wspólną z obiektywem oś symetrii, natomiast matryca
projektora wspólną z obiektywem pionową płaszczyznę symetrii. Zdecydowana większość
urządzeń na rynku spełnia te założenia.

Ustalamy, że globalny układ współrzędnych jest prawoskrętny i zaczepiony w pozornym
ognisku obiektywu aparatu. Prosta X jest zwrócona w prawo, Y w dół, a Z w kierunku
skanowanego obiektu oraz boki obrazu aparatu są równoległe do prostych X i Y .

2.5 Kalibracja

Kalibracja ma na celu ustalenie współczynników równań płaszczyzn przecinających
skrajne kolumny obrazu projektora oraz współczynników kierunkowych półprostych prze-
cinających dwa przeciwległe narożniki obrazu aparatu.

Współczynniki te można uzyskać z różnych danych. Poniżej zakładamy, że dane są pozio-
my i pionowy kąt widzenia oraz rozdzielczość aparatu; poziomy kąt projekcji i rozdzielczość
oraz przesunięcie i obrót projektora.

2.5.1 Półproste

Niech H i V będą poziomą i pionową rozdzielczością obrazu aparatu a α i β będą
poziomym i pionowym kątem widzenia obiektywu. Rozpatrzmy półproste opisane układem
równań postaci:

10


y = ∆y · z
x = ∆x · z
z > 0.

(1)

(2)

(3)

Przy wyżej wymienionych założeniach półprosta odpowiadająca lewemu górnemu na-
rożnikowi obrazu ma następujące współczynniki:

∆x0 = − tan
α

2
, (4)

∆y0 = − tan
β

2
, (5)

a współczynniki półprostej przecinającej prawy dolny narożnik to:

∆xH−1 = tan
α

2
, (6)

∆yV−1 = tan
β

2
. (7)

Opisane półproste są zaznaczone na rysunku 4 ilustrującym ich interpolację omawianą
poniżej.

2.5.2 Płaszczyzny

Aby uzyskać równania płaszczyzn przecinających skrajne kolumny obrazu projektora
najpierw ustalimy ich równania w lokalnym układzie współrzędnych projektora, a następnie
przejdziemy z nimi do globalnego układu współrzędnych.

Ustalamy, że lokalny układ współrzędnych projektora jest, analogicznie do globalnego
układu współrzędnych aparatu, prawoskrętny i zaczepiony w pozornym ognisku obiektywu
projektora. Prosta X ′ jest zwrócona w prawo, Y ′ w dół, a Z ′ w kierunku oświetlanego
obiektu oraz płaszczyzna x = 0 jest płaszczyzną symetrii obrazu projektora.

Niech N będzie poziomą rozdzielczością projektora a γ poziomym kątem projekcji. Roz-
patrzmy równania płaszczyzn postaci:

A · x+B · y + C · z +D = 0. (8)

Równania płaszczyzny przecinającej skrajnie lewą i skrajnie prawą kolumnę w lokalnym
układzie współrzędnych to:

− 1 · x+ 0 · y + tan
γ

2
· z + 0 = 0, (9)

1 · x+ 0 · y + tan
γ

2
· z + 0 = 0. (10)

W dalszych rozważaniach, aby zwiększyć przejrzystość, oznaczmy współczynniki dla
skrajnie lewej i prawej płaszczyzny symbolicznie przez odpowiednio:

A′0 · x+B′0 · y + C ′0 · z +D′0 = 0, (11)

A′N−1 · x+B′N−1 · y + C ′N−1 · z +D′N−1 = 0. (12)

Opisane płaszczyzny są zaznaczone na rysunku 5 ilustrującym ich interpolację omawianą
poniżej.

11

2.5.3 Translacja płaszczyzn do globalnego układu współrzędnych

Niech ρ, π i υ (od angielskich roll, pitch, yaw) będą kątami przechyłu w lewo, pochylenia
do przodu, i skrętu w lewo obrazu projektora względem obrazu aparatu (wykonywanymi
na aktualnym lokalnym układzie współrzędnych projektora w tej kolejności). Niech sx, sy i
sz będą przesunięciami projektora względem aparatu o kierunkach i zwrotach odpowiada-
jących osiom X, Y i Z globalnego układu. Wtedy macierz M będąca złożeniem obrotów
i przesunięcia przekształca punkty P ′ = [x′, y′, z′, 1]T na P = [x, y, z, 1]T z lokalnego układu
współrzędnych projektora do globalnego układu współrzędnych aparatu:

M = SRρRπRυ, (13)

P = MP ′, (14)

gdzie Rρ, Rπ, Rυ są macierzami opisanych wyżej obrotów a S macierzą przesunięcia
zdefiniowanymi następująco:

Rρ =


cos ρ − sin ρ 0 0
sin ρ cos ρ 0 0

0 0 1 0
0 0 0 1

 , (15)

Rπ =


1 0 0 0
0 cosπ − sinπ 0
0 sinπ cosπ 0
0 0 0 1

 , (16)

Rυ =


cos υ 0 sin υ 0

0 1 0 0
− sin υ 0 cos υ 0

0 0 0 1

 , (17)

S =


1 0 0 −sx
0 1 0 −sy
0 0 1 −sz
0 0 0 1

 , (18)

Wtedy macierz Q przekształcająca współczynniki płaszczyzn ~N ′ = [A′, B′, C ′, D′]T w lo-
kalnym układzie współrzędnych projektora na ~N = [A,B,C,D]T w globalnym układzie
współrzędnych aparatu spełnia następujące równanie:

Q = (M−1)T , (19)

N = QN ′, (20)

stąd, ponieważ macierze obrotu są ortogonalne (dla każdej z nich (R−1)T = R), mamy:

Q = S′RρRπRυ. (21)

(22)

przy S′ zdefiniowanym następująco:

12

S′ =


1 0 0 0
0 1 0 0
0 0 1 0
sx sy sz 1

 , (23)

Mnożąc wynikową macierz przez współczynniki płaszczyzn przecinających skrajne ko-
lumny w lokalnym układzie – [A′0, B

′
0, C

′
0, D

′
0] oraz [A′N−1, B

′
N−1, C

′
N−1, D

′
N−1] – otrzymu-

jemy współczynniki równań płaszczyzn przecinających skrajne kolumny obrazu projektora
w globalnym układzie współrzędnych:

A0 · x+B0 · y + C0 · z +D0 = 0, (24)

AN−1 · x+BN−1 · y + CN−1 · z +DN−1 = 0. (25)

Rysunek 3 przedstawia rzut ortogonalny globalnego układu współrzędnych z naniesio-
nymi wektorami przesunięcia i obrotami.

Rysunek 3: Translacja układu współrzędnych

Dokładny opis konstrukcji macierzy translacji układów współrzędnych można znaleźć
w książce [11] w rozdziale 5. W szczególności wyprowadzenie równania 5.46 w tej książce
omawia przejście od macierzy translacji punktów do macierzy translacji współczynników
równań płaszczyzny.

2.6 Generowanie równań

Zauważmy, że przy podanych powyżej założeniach, liniowa interpolacja pomiędzy wekto-
rami współczynników skrajnych płaszczyzn pozwala na uzyskanie wektora współczynników
dla płaszczyzny przecinającej dowolną kolumnę projektora. Podobnie osobno interpolując li-
niowo pomiędzy współczynnikami pionowego i poziomego odchylenia skrajnych półprostych
możemy uzyskać układ równań opisujący półprostą przecinającą dowolny punkt obrazu apa-
ratu.

13

2.6.1 Półproste

Aby uzyskać współczynniki prostej przecinającej punkt obrazu o dowolnych współrzęd-
nych h i v, interpolujemy liniowo pomiędzy wartościami współczynników w narożnikach:

∆xh = ∆x0 ·
H − 1− h
H − 1

+ ∆xH−1 ·
h

H − 1
, (26)

∆yv = ∆y0 ·
V − 1− v
V − 1

+ ∆yV−1 ·
v

V − 1
, (27)

stąd mamy:

∆xh = tan
α

2
· 2h− (H − 1)

H − 1
, (28)

∆yv = tan
β

2
· 2v − (V − 1)

V − 1
. (29)

Rysunek 4 przedstawia rzut ortogonalny opisanych powyżej półprostych ze schematycz-
nie zaznaczonym aparatem i osiami układu.

Rysunek 4: Interpolacja półprostych

2.6.2 Płaszczyzny

Aby uzyskać współczynniki równania płaszczyzny przecinającej n-tą kolumnę:

An · x+Bn · y + Cn · z +Dn = 0. (30)

interpolujemy liniowo pomiędzy współczynnikami płaszczyzn przecinających skrajne ko-
lumny obrazu projektora:

14

An =
N − 1− n
N − 1

·A0 +
n

N − 1
·AN−1, (31)

Bn =
N − 1− n
N − 1

·B0 +
n

N − 1
·BN−1, (32)

Cn =
N − 1− n
N − 1

· C0 +
n

N − 1
· CN−1, (33)

Dn =
N − 1− n
N − 1

·D0 +
n

N − 1
·DN−1. (34)

Rysunek 5 przedstawia rzut ortogonalny opisanych powyżej płaszczyzn w lokalnym ukła-
dzie współrzędnych projektora ze schematycznie zaznaczonym projektorem i osiami układu.

Rysunek 5: Interpolacja płaszczyzn

2.7 Korekcja zniekształceń

Obiektywy obu urządzeń wprowadzają geometryczne zniekształcenia obrazu. Zniekształ-
cenia powodowane przez obiektyw aparatu łatwo jest usunąć nie zmieniając opisanego poni-
żej układu równań, ponieważ dla każdego wykrytego przecięcia generujemy osobną półpro-
stą. Aby usunąć zniekształcenia wprowadzane przez obiektyw projektora, trzeba równania
płaszczyzny zastąpić równaniami krzywych. Niniejsza praca pomija tę korekcję, co powoduje
jednak mniejsze błędy, ponieważ obiektywy projektorów mają mniejszy zakres ogniskowych
i mniej zniekształcają obraz niż te w aparatach.

Rozpatrzmy korekcję zniekształceń obiektywu aparatu. Niech d będzie różnowartościo-
wą funkcją zniekształcającą, która każdemu punktowi obrazu (rzutu perspektywicznego
o środku w ognisku pozornym obiektywu aparatu) (h, v) przyporządkowuje punkt na ma-
trycy aparatu o współrzędnych (h′, v′), wtedy istnieje funkcja odwrotna d−1, która punktom
matrycy przyporządkowuje punkty obrazu.

Korekcja zniekształceń sprowadza się do przekształcenia współrzędnych punktu matrycy
przez funkcję d−1. Można też usunąć aberrację chromatyczną poprzez zastosowanie osobnej
funkcji dla każdego koloru. Korekcji zniekształceń można dokonać wewnątrz skanera lub

15

przy użyciu zewnętrznego programu. Pierwsze rozwiązanie ma tę zaletę, że unika dodatko-
wych błędów numerycznych przy interpolacji nowych pozycji pikseli.

W roli funkcji d najczęściej używa się wielomianu czwartego stopnia zmiennej r bę-
dącej odległością od środka obrazu (r2 = (∆xh − ∆xH−1

2
)2 + (∆yh − ∆yH−1

2
)2), wtedy

d(r) = E · r4 + F · r3 + G · r2 + H · r + I. Parametry dla tego wielomianu można uzyskać
automatycznie – fotografując specjalnie przygotowane plansze, ręcznie – poprzez korekcję
obrazu zawierającego linie proste lub na podstawie zebranych wcześniej danych o aparacie
i obiektywie.

2.8 Wzory, wykrywanie i indeksowanie

W fazie indeksowania algorytm wykrywa przecięcia się środków wierszy matrycy aparatu
z obrazami pionowych pasów rzucanych przez projektor na rekonstruowany obiekt. Indekser
ustala położenie przecięcia w wierszu i odtwarza numer kolumny odpowiadającej wykrytemu
obrazowi paska. Ten numer, razem z danymi z fazy kalibracji pozwala na ustalenie równania
odpowiadającej mu płaszczyzny, a wykryta pozycja determinuje równanie półprostej.

Najprostszym sposobem przyporządkowania płaszczyzn kolumnom jest wykonanie dla
każdej z nich osobnego zdjęcia, na którym tylko jedna kolumna wzoru oświelającego obiekt
jest jasna. Analogiczne rozwiązanie jest stosowane w wielu skanerach laserowych, gdzie
używa się rozproszonego w płaszczyźnie lasera, na przykład w pracy [3]. Stosując inne
wzory można zmniejszyć ilość zdjęć potrzebnych do odtworzenia numeru kolumny.

2.8.1 Wybór wzorów

Praca bazowa [1], jak również moja implementacja opierają się na bezkontekstowym
rozwiązaniu problemu indeksowania. Rozwiązanie to stosuje kody Graya i wymaga log2N
zdjęć oświetlonych wzorami, gdzie N to pozioma rozdzielczość projektora. Rozwiązanie bez-
kontekstowe znacznie upraszcza indeksowanie, ponieważ każde odtwarzanie indeksu można
rozpatrywać lokalnie, bez analizowania większego otoczenia zdjęcia.

Autorzy rozpatrywali inne rozwiązania bazujące na kontekstowych wzorach, które po-
zwalają na indeksowanie z jednego zdjęcia. Uznali je jednak za niewłaściwe dla ich zastoso-
wań ze względu na możliwość błędnego odtworzenia indeksów w skomplikowanych topolo-
giach, w których części obiektu wzajemnie na siebie zachodzą z punktu widzenia aparatu,
oraz mniejszą odporność na błędy spowodowane barwą obiektu. Dodatkowo użycie innych
niż podstawowe kolory wprowadza błędy z użyciem projektorów LCD, gdzie kolory (RGB)
są wyświetlane obok siebie. Architektura programu zezwala na łatwe rozszerzenie lub wy-
mianę istniejącego generatora i indeksera na bardziej pasujące do innych zastosowań, jak
na przykład rozwiązanie z pracy [6].

2.8.2 Wzory

Użyte wzory składają się z pionowych pasów. Każda kolumna ma jednolity kolor, który
na k-tym wzorze odpowiada k-tej od końca cyfrze kodu Graya odpowiadającej kolumnie.
Zera są oznaczone kolorem czerwonym, jedynki niebieskim, a pozycje graniczne są zielone.
Na pierwszym wzorze pasy są najszersze, ponieważ cyfry kodu Graya zmieniają się rzadziej
na bardziej znaczących pozycjach (zobacz rysunek 6). Ostatni wzór odpowiada drugiemu
bitowi kodu (pierwszy bit byłby cały zielony).

Ciąg p(n) = 2k−1 + 2k · n generuje pozycje zielonych pasków na k-tym wzorze. Cie-
kawe spojrzenie na generowanie numerów pasków odpowiadających kodowi refleksyjnemu

16

Graya zawiera pierwszy rozdział książki [12]. Pozycje te ze wzorów ułożonych w odwrotnej
kolejności (tj. od najbardziej gęstych do najrzadszych) tworzą ciąg Józefa Flawiusza.

Autorzy pracy bazowej eksperymentowali ze standardowymi wzorami kodującymi cyfry
jako biały i czarny. W ostatecznej wersji zastosowali wzory kolorowe. Wzory kolorowe po-
zwalają na zwiększenie precyzji odtwarzania i ułatwiają wykrywanie ocienionych regionów
zdjęcia. Wykrywanie miejsca zmiany jest mniej precyzyjne niż wykrywanie środka paska.
Jest to spowodowane nieliniową czułością matrycy aparatu, niezerowym poziomem jasności
czarnej barwy w projektorze, przenikaniem kolorów (color crosstalk) oraz odbiciami. Wy-
krywanie środka zielonego paska jest wolne od dwóch pierwszych problemów i mniej podatne
na trzeci. Zielony pasek zachowuje położenie swojego środka w obecności obu z nich, jeśli
tylko jasność otaczających obszarów jest mniej więcej taka sama.

Rysunek 6: Kolorowe wzory dla rozdzielczości 12x4

Skaner przedstawiony w tej pracy korzysta od początku z kolorowych wzorów. Ponieważ
od czasu publikacji znacznie wzrosła rozdzielczość aparatów cyfrowych w stosunku do roz-
dzielczości projektorów, możliwe stało się zastosowanie jednopikselowych pasów zielonych
(w pracy bazowej autorzy zastosowali dwupikselowe pasy).

Rysunek 7: Wycinek zdjęcia z zaznaczonym pikselem

Rysunek 8: Interpretacja barwy wybranego piksela

Znaczenie: RBBRBRBBGI,
Kod Graya zielonego paska wykrytego na zdjęciu: g = 01101011(7710),
Numer zdjęcia na którym został wykryty pasek, licząc od końca: b = 2,

Całkowity indeks paska licząc od jedności: n = 2b−1 + g · 2b = 2 + 77 · 4 = 309

2.8.3 Indeksowanie

Indeksowanie ma za zadanie wykrycie odtworzenie numerów pasków odpowiadających
punktom przecięcia płaszczyzn i półprostych. To zadanie przekłada się na rozpoznanie ko-
loru, jakim oświetlony jest przetwarzany punkt na każdym ze zdjęć.

17

Wzory wyświetla się kolejno od reprezentujących najbardziej znaczące do reprezentu-
jących najmniej znaczące cyfry. Piksel jest więc oświetlany kolejno kolorami odpowiada-
jącymi cyfrom numeru płaszczyzny przecinającej ten piksel w kolejności od najbardziej
do najmniej znaczącej, aż do napotkania koloru zielonego lub do wyczerpania wzorów bez
wykrycia płaszczyzny. Wiedza z poprzednich k − 1 zdjęć pozwala na odtworzenie numerów
wszystkich granic na k-tym zdjęciu, więc indeksowanie może działać progresywnie.

Przykład indeksowania jest przedstawiony na rysunkach 7 i 8. Indekser przekształca
kolory niebieski (B) i czerwony (R) na cyfry kodu aż do napotkania zielonego (G), dane
z kolejnych wzorów są ignorowane (I). Z pierwszych 8 zdjęć indekser odtwarza indeks zie-
lonego paska na 9 wzorze (g = 77). Następnie wiedząc, że jest to wzór reprezentujący bit
(b = 2), przekształca ten indeks na całkowity indeks paska (n = 309).

2.9 Rekonstrukcja głębokości

Rekonstrukcja głębokości polega na odtworzeniu głębokości odpowiadającej wykrytym
przecięciom płaszczyzn i prostych. Wynikiem jest zbiór punktów w globalnym układzie
współrzędnych.

Niech h, v będą współrzędnymi wykrytego punktu przecięcia. Niech n będzie numerem
paska, uzyskanym w fazie indeksowania, odpowiadającego płaszczyźnie przecinającej ten
punkt. Wtedy możemy wygenerować równanie tej płaszczyzny (współczynniki An, Bn, Cn
i Dn), jak i współczynniki kierunkowe półprostej odpowiadającej temu punktowi obrazu
(∆xh i ∆yv). Po podstawieniu do równania płaszczyzny xh,v i yh,v z układu równań pół-
prostej otrzymujemy:

0 = An ·∆xh · zh,v +Bn ·∆yv · zh,v + Cn · zh,v +Dn (35)

Rozwiązaniem jest głębokość punktu względem ogniska pozornego obiektywu aparatu
(początku układu współrzędnych):

zh,v = −Dn/(An ·∆xh +Bn ·∆yv + Cn) (36)

Punkt uznajemy za prawidłowy tylko jeśli zh,v jest dodatnia. Współrzędne xh,v i yh,v
odtwarzamy podstawiając zh,v z powrotem do równania półprostej:

xh,v = ∆xh · zh,v (37)

yh,v = ∆yv · zh,v (38)

2.10 Rekonstrukcja powierzchni

Rekonstrukcja powierzchni polega na dopasowaniu powierzchni do odtworzonej chmu-
ry punktów. Ponieważ dany jest rzut chmury punktów na matrycę aparatu i wiadomo, że
wektory normalne punktów mają składową z zwróconą w kierunku aparatu, to zadanie to
możemy rozwiązywać w dwóch wymiarach, poprzez tworzenie grafu planarnego łączącego
punkty rzutu. Jest to znacznie łatwiejsze zadanie, niż odtwarzanie topologii obiektu z chmu-
ry punktów bez takiego rzutu. Do odtwarzania powierzchni możemy skorzystać też z danych
z indeksera, które pozwalają na łatwe połączenie punktów na przecięciu jednej płaszczyzny.

18

Rysunek 9: Rekonstrukcja głębokości

Mając dane wierzchołki i krawędzie możemy utworzyć powierzchnię złożoną z trójkątów dla
każdej trójki punktów, która jest ze sobą połączona.

Rezultatem tego (ostatniego już) kroku jest trójwymiarowy model powierzchni obiektu.
Model ten zawiera luki w miejscach, które nie są widoczne na obrazie z punktu widzenia
aparatu lub punktu projekcji projektora. Aby otrzymać kompletny model w większości
przypadków należy wykonać kilka uruchomień skanera fotografując obiekt z różnych stron.
Aby połączyć poszczególne części trzeba użyć zewnętrznego programu.

3 Implementacja

Poniższy rozdział opisuje implementację skanera oraz test regresyjny. W kolejnych punk-
tach opisane są cechy aktualnej wersji. Do wytłumaczenia pewnych aspektów i poparcia
podjętych decyzji odwołano się do pierwszej częściowo działającej wersji skanera – 0.40.
Wskazała ona wiele problemów i pozwoliła określić dalszy kierunek rozwoju. Głównym po-
wodem dalszego rozwoju była potrzeba zastąpienia indeksera, który nie sprawdził się przy
przetwarzaniu danych testowych. Również konstrukcja testu regresyjnego wymusiła wiele
poprawek i gruntowną reorganizację programu.

3.1 Środowisko i zależności

Do napisania i testowania projektu użyto systemów operacyjnych Kubuntu 9.04 i De-
bian 5.0 . Systemy te są wyposażone w system zarządzania pakietami apt i współdzielą
większość pakietów, od których zależy program. Zaletami tych systemów są:

19

http://ubuntu.com
http://debian.org/
http://debian.org/

� łatwa i spójna instalacja Pythona wraz z bibliotekami,

� szeroki zestaw darmowych UNIXowych narzędzi przydatnych w procesie rozwoju pro-
gramu, w szczególności standardowa powłoka bash i system kontroli wersji git ,

� łatwość instalacji dodatkowych programów, co pozwala na nie włączanie ich do dys-
trybucji programu bez tworzenia znacznych barier dla użytkownika (instrukcja obsługi
w punkcie A.1 podaje jedną łatwą komendę, która instaluje wszystkie zależności).

Program skanera oraz test regresyjny są napisane w języku programowania Python.
Oprócz bogatej biblioteki standardowej tego języka moduły skanera korzystają następują-
cych bibliotek i programów:

� Python Imaging Library do czytania, zapisu i przetwarzania obrazów,

� biblioteki do zastosowań naukowych SciPy i pakietu numerycznego NumPy ,

� biblioteki decorator ,

� biblioteki readline w interfejsie,

� programu ExifTool przy automatycznej kalibracji aparatu,

Skrypty do przetwarzania danych korzystają z języka powłoki bash i wywołują następu-
jące programy:

� wget do ściągania danych testowych,

� UFRaw do przetwarzania surowych zdjęć testowych na format PNG ,

� convert należący do pakietu ImageMagick przy przygotowaniu wycinków testowych,

� modeler 3D Blender do renderowania scen symulacyjnych i obrazów referencyjnych.

3.2 Inżynieria programowania

Historia rozwoju projektu jest dostępna w repozytorium rozproszonego systemu kontroli
wersji git , część historii została zaimportowana ze starszego repozytorium systemu kontroli
wersji Subversion. Korzystanie z repozytorium, nawet w projekcie rozwijanym przez jed-
ną osobę, wspiera liniowość procesu programowania oraz zapobiega utracie kodu. Historia
programu stanowi też dokumentację jego rozwoju i pomaga uniknąć powtarzania błędów.

Moduły programu głównego posiadają testy jednostkowe, do których uruchamiania uży-
to programu py.test . Testy pokrywają większość funkcjonalności i były dodawane zarówno
w trakcie jej implementacji, jak i po wykryciu błędów. Testy jednostkowe wspomagają pro-
jektowanie interfejsów i stabilizują program. Służą także jako dokumentacja i pozwalają
łatwo powrócić do pracy nad fragmentem programu nawet po dłuższej przerwie.

W roli testu integracyjnego wykorzystano test regresyjny, który jest opisany szczegóło-
wo w rozdziale 3.8. Automatyczna ocena jakości skanu byłaby bardziej skomplikowana niż
sam program skanera. Test regresyjny pozwala uniknąć żmudnego powtarzania ręcznych te-
stów, ale pozwala na łatwy przegląd wyjścia programu. Dane z odpluskwiacza były bardzo
pomocne w znajdowaniu bardziej skomplikowanych błędów.

Źródło programu jest udostępnione na licencji GPLv2 . Kod używa w nazwach i ko-
mentarzach języka angielskiego oraz przestrzega standardu kodowania Pythona zawartego
w dokumencie PEP 8 , aby projekt był dostępny szerszemu gronu programistów. Program
posiada również dokumentację w języku angielskim, na którą składają się:

20

http://python.org/
http://www.gnu.org/software/bash/
http://git-scm.com/
http://python.org/
http://www.scipy.org/
http://numpy.scipy.org/
 http://www.phyast.pitt.edu/~micheles/python/documentation.html
http://tiswww.case.edu/php/chet/readline/rltop.html
http://www.gnu.org/software/bash/
http://www.gnu.org/software/wget/
http://ufraw.sourceforge.net/
http://www.w3.org/Graphics/PNG/
http://www.imagemagick.org/script/index.php
http://blender.org/
http://git-scm.com/
http://subversion.tigris.org/
http://pytest.org
http://www.gnu.org/licenses/gpl-2.0.html
http://python.org/
http://www.python.org/dev/peps/pep-0008/

� skrócona historię zmian,

� lista planowanych rozszerzeń,

� lista zależności dla każdego pliku wykonywalnego,

� instrukcja obsługi,

� wzór nagłówka pliku,

� architektura indeksera w formacie programu Umbrello,

� podstawowe informacje i licencja (pliki README i LICENSE w głównym katalogu).

3.3 Architektura

Na rysunku 10 znajduje się diagram zależności modułów programu. Strzałki biegną
od modułów importujących do importowanych. Dla zwiększenia przejrzystości diagram nie
zawiera zależności zewnętrznych, modułu odpluskwiania oraz testów jednostkowych. Pomi-
nięte moduły są istotne tylko w procesie testowania.

Punktami wejścia do programu są dwa pliki wykonywalne tronscan.py – program ska-
nera i regression.py – test regresyjny. Centralnym punktem programu wiążącym całość
funkcjonalności jest moduł project zawierający klasę projektu. Obiekt tej klasy zbiera
komponenty skanera i konstruuje wyjściowy model wykonując kolejne kroki procesu skano-
wania. W głównym katalogu źródłowym znajduje się jeszcze moduł konfiguracyjny config
oraz definicja interfejsu cli. Pozostałe funkcjonalności skanera są podzielone na cztery pa-
kiety, które są opisane dokładniej w podpunktach poniżej:

� pakiet uzyskiwania danych acquire,

� pakiet rekonstrukcji reconstr,

� pakiet wyjścia output i

� pakiet biblioteczny lib.

3.3.1 Moduł projektu

Moduł projektu zbiera funkcjonalności skanera w jednym miejscu i tworzy rodzaj nie-
formalnego interfejsu do komunikacji dla poszczególnych komponentów. W aktualnej wersji
dane z poszczególnych faz (takie jak numery pasków, przesunięcia, głębokości, trójki two-
rzące ściany) są przechowywane w formacie pary tablica-maska.

Drugą ważną funkcją modułu jest zapisywanie i wczytywanie projektu do i z pamięci
stałej. W aktualnej wersji program korzysta z modułu pickle biblioteki standardowej, za-
pewniającego zachowanie obiektu w prostym formacie. Zapisać można same ustawienia lub
dodatkowo odtworzony model.

Pliki wykonywalne – program skanera i test regresyjny – najpierw budują obiekt projek-
tu przy użyciu wybranych komponentów, a następnie sterują nim w procesie skanowania.
Program skanera wykonuje polecenia użytkownika za pośrednictwem modułu interfejsu cli.
Test regresyjny korzysta z obiektu projektu bezpośrednio, więc jest wolny od skutków zmian
w interfejsie. Jako wynik takiej architektury, moduły cli i regression importują większość
modułów z funkcjonalnością.

21

http://uml.sourceforge.net/

Rysunek 10: Architektura

Rysunek 11: Architektura wersji 0.40

Porównując aktualną architekturę programu (rysunek 10) z tą z wersji 0.40 (rysunek 11),
można odnieść wrażenie, że uległa znacznemu skomplikowaniu. Widoczne zmiany wymusiły
na niej budowa testu regresyjnego oraz dodanie możliwości zapisywania stanu obliczeń. Obie
funkcjonalności opierają się o nowy moduł projektu.

W wersji 0.40 barierę przy implementacji testu regresyjnego stanowiło silne powiązanie
interfejsu i głównej funkcjonalności w module tronscan. Nie było oczywistej drogi połącze-
nia testu regresyjnego z tym modułem.

Problemy przy zachowywaniu stanu obliczeń wynikały z niejasnej roli modułu model,
który zawierał w sobie funkcjonalności modułów acquire.camera i acquire.emitter. Mo-
duł ten posiadał zbyt dużą wiedzę o reszcie programu i ukrywał w sobie kod inicjalizujący
komponenty skanera, przez to kod nim sterujący nie mógł mieć wpływu na ich wybór i kon-
figurację.

22

Nowa architektura stosuje wzorzec projektowy odwrócenia kontroli (inversion of con-
trol). Moduł projektu nie importuje funkcjonalności bezpośrednio, tak jak robił to jego od-
powiednik model z wersji 0.40. Zamiast tego program skanera i test regresyjny konstruują
obiekt projektu z wybranych komponentów. Dzięki temu obiekt ten nie potrzebuje dużej
wiedzy o komponentach. Zmniejsza to ich wzajemne powiązanie i pozwala na łatwiejszą
wymianę lub dodawanie alternatywnych, jak to miało miejsce w wypadku indeksera.

3.3.2 Moduł konfiguracyjny

Moduł konfiguracyjny wczytuje i dostarcza innym modułom konfigurację w wygodnej
formie. Oprócz zwykłego interfejsu bazującego na funkcjach, definiuje również klasę do dzie-
dziczenia automatycznej konfiguracji. Obiekty klas dziedziczących zostają zainicjalizowane
atrybutami na podstawie sekcji konfiguracji odpowiadającej ich nazwie.

Konfiguracja jest wczytywana warstwami: moduł zapewnia wartości domyślne, następ-
nie wczytywana jest konfiguracja systemowa, jeśli jest dostępna, a na końcu konfiguracja
użytkownika. Każda kolejna część nadpisuje wartości poprzednich. Moduł konfiguracyjny
zajmuje się też ustawieniem systemu logowania.

3.4 Pakiet biblioteczny

Pakiet biblioteczny zawiera zwarte zestawy funkcjonalności, przygotowane do wydziele-
nia z programu:

� bibliotekę interaktywnego interfejsu – wraploop,

� funkcje do przetwarzania okna danych z iteratora – window,

� funkcje do konwersji obrazów z Python Imaging Library na tablice liczb z pakietu
NumPy i odwrotnie – pil numpy,

� moduł narzędzi do testowania i odpluskwiania – tuti (wyłączony z diagramu zależ-
ności).

3.4.1 Interfejs

Program posiada interaktywny interfejs tekstowy. Obsługuje go biblioteka wraploop
napisana na potrzeby programu. Biblioteka udostępnia metody wybranego obiektu jako
komendy programu. W programie skanera tym obiektem jest CLI z modułu cli.

Biblioteka wraploop wspiera auto-uzupełnianie, rozwijanie nazw plików oraz dostarcza
komendę pomocy na podstawie inspekcji metod oraz ich dokumentacji. Na standardowe
wejście można wysyłać skrypty składające się z dostępnych komend. Instrukcja obsługi
w dodatku A zawiera więcej informacji o funkcjonalności interfejsu.

W przeciwieństwie do aktualnej wersji, interfejs wersji 0.40 był oparty na podkomen-
dach. Program główny tronscan akceptował trzy komendy: help – dla pomocy programu,
pattern – do generowania wzorów oraz reconstr – do rekonstrukcji i generowania modelu.
Interfejs tej wersji borykał się z kilkoma problemami:

� Nie było możliwości zachowania parametrów rekonstrukcji lub zrekonstruowanych da-
nych. Aby uzyskać dane w dwóch formatach trzeba powtórzyć obliczenia oraz wpisać
lub skopiować wszystkie dostarczone parametry.

23

http://numpy.scipy.org/

� Argumentów pozycyjnych było za dużo, przez co bez wyświetlonej pomocy, ciężko
było wpisać je w odpowiedniej kolejność.

� Argumentów dla jednej komendy nie można było wykorzystać w drugiej, dlatego ko-
menda reconstr musiała znowu otrzymać rozdzielczość projektora, mimo że została
ona już podana przy okazji wykonania pattern.

� Silne powiązanie interfejsu z głównym modułem utrudniało budowanie skryptów na ba-
zie tej wersji, dlatego przed napisaniem testu regresyjnego konieczna była zmiana
architektury.

3.5 Pakiet otrzymywania danych

Pakiet otrzymywania danych acquire zawiera trzy moduły camera, emitter i pattern.
Dwa pierwsze zawierają klasy modelujące urządzenia użyte do skanowania – aparat i projek-
tor. Moduł pattern implementuje generator wzorów do oświetlania. Pakiet ten, nie licząc
reorganizacji, nie przeszedł poważniejszych zmian od wersji 0.40.

Obiekt aparatu jest odpowiedzialny za kalibrację aparatu i generowanie równań pół-
prostych. Te kroki algorytmu są opisane szczegółowo w punktach 2.5.1 i 2.6.1. Instrukcja
w punkcie A.2.6 omawia dostępne w interfejsie funkcje obiektu aparatu. Aparat jest inicja-
lizowany automatycznie, jeśli zdjęcia zawierają potrzebne metadane w formacie EXIF .

Obiekt projektora jest odpowiedzialny za kalibrację projektora, jego translację i gene-
rowanie równań płaszczyzn. Te kroki algorytmu są opisane szczegółowo w punktach 2.5.2,
2.5.3 i 2.6.2. Instrukcja w punkcie A.2.5 omawia dostępne w interfejsie funkcje obiektu
projektora.

Generator wzorów jest inicjalizowany przez obiekt projektora, dzięki temu wzory zawsze
odpowiadają jego rozdzielczości i obsługa generatora wewnątrz programu jest łatwiejsza.
Generator najpierw oblicza pozycje zielonych pasków, a następnie na ich podstawie tworzy
i wypisuje obrazy. Przykładowy wynik tej operacji dla fikcyjnego projektora o rozdziel-
czości 12x4 jest pokazany na rysunku 6. Generator generuje też biały wzór o wskazanej
rozdzielczości używany do wykrywania cienia.

3.6 Pakiet rekonstrukcji

Główną część programu stanowi pakiet rekonstrukcji. To on zawiera większość opisanego
w rozdziale 2 algorytmu. Pakiet zawiera moduły indexer, filters, depth i triangulator,
które implementują odpowiednio indekser, filtry obrazu, rekonstrukcję głębokości oraz re-
konstrukcję powierzchni.

3.6.1 Indekser

Indekser stanowi najbardziej skomplikowany fragment programu. To głównie od jego
działania, przy współpracy z modułem filtrów, zależy jakość i kompletność wygenerowanego
modelu. Inne moduły, jeśli pominąć wpływ błędów numerycznych, powodują tylko regularne
zniekształcenia obrazu lub potęgują problemy indeksera związane z kompletnością obrazu.

Indeksowanie składa się z kilku faz. Indekser najpierw filtruje obrazy przy użyciu modułu
filtrów, a następnie wykrywa cień. Potem w pętli głównej indekser dla każdego zdjęcia
oświetlonego kolorowym wzorem ustala numery zielonych pasków oraz wykrywa ich pozycje
przecięcia z wierszami obrazu. Rysunek 13 przedstawia wyjście z odpluskwiacza indeksera,
a poniżej kroki są opisane bardziej szczegółowo:

24

http://exif.org/

filtrowanie Zobacz punkt 3.6.2.

wykrywanie cienia Do ustalenia maski cienia indekser używa zdjęcia oświetlonego białym
wzorem. Maska cienia służy wykluczeniu obszarów ocienionych z dalszych obliczeń.
Na tych obszarach nie są wykrywane zielone paski. Wykrywanie cienia przedstawia
rysunek 12.

wyznaczanie numeru Do wyznaczenia numerów zielonych pasków indekser korzysta z ta-
blicy, w której zbiera wyniki wykrywania obszarów czerwonych i niebieskich. W mo-
mencie wykrywania zielonych pasków, tablica ta zawiera informacje o podziale na ob-
szary czerwone i niebieskie ze wszystkich poprzednich zdjęć (na zdjęciu pierwszym
tablica jest wypełniona zerami). Indekser stosuje algorytm ustalania numerów opisa-
ny w punkcie 2.8.3. Wynikiem jest lista pikseli, będących kandydatami na paski wraz
z ich numerami.

wyznaczanie pozycji Przy wyznaczaniu pozycji przecięcia indexer rozpatruje kandyda-
tów z kolejnych wierszy obrazów. Najpierw ustala piksele, które leżą w środku grupy
kandydatów o tym samym numerze, a następnie rozpatrując okno wokół tego obszaru
ustala z podpikselową dokładnością pozycję przecięcia się paska z wierszem.

Rysunek 12: Wykrywanie cienia

1 2

1 – zdjęcie oświetlone białym wzorem, 2 – wykryty cień
Wyjście odpluskwiacza zostało pokolorowane, żeby odróżnić białą barwę od pustej kartki.

Rysunek 13: Działanie indeksera

1 2 3

1 – wejście dla bitu 9, 2 – wykryte zielone paski, 3 – wykryte obszary czerwone i niebieskie
Wyjście odpluskwiacza zostało pokolorowane, żeby odróżnić białą barwę od pustej kartki.

Do ustalenia miejsca przecięcia z podpikselową dokładnością, algorytm korzysta z pomy-
słu z pracy [7]. Do wartości z okna wiersza kanału zielonego dopasowywana jest parabola

25

o ramionach zwróconych w dół metodą najmniejszych kwadratów. Za środek paska jest
brana pozycja jej maksimum. Rysunek 14 przedstawia wykrywanie środka opisaną metodą.

Rysunek 14: Dopasowywanie paraboli

czarna linia – pozycja maksimum, zielona linia – próg dla rozpatrywania wartości,
zielone kropki – wartości w oknie wiersza kanału zielonego,

czerwona krzywa – dopasowana parabola

Indekser w wersji 0.40 zadziałał na danych symulacyjnych, natomiast zupełnie nie spraw-
dził się na rzeczywistych zdjęciach. Oprócz tego jego wydajność była około cztery razy gor-
sza od aktualnej wersji z domyślnymi ustawieniami. Głównym powodem problemów z ja-
kością było na sztywno ustalone trzypikselowe okno, które nie obejmowało całości obrazu
paska na zdjęciach. Niepasujący do rzeczywistości model odtwarzania przesunięć, genero-
wał właściwie losowe dane. Wydajność cierpiała z powodu przetwarzania pikseli poprzez
wywołania funkcji, które są Pythonie kosztowne. 6 milionów wywołań dla każdego kroku
stanowiło znaczne obciążenie.

Poprzedni indekser był przykładem negatywnych skutków zbyt wczesnej optymalizacji.
Dane, w celu zaoszczędzenia pamięci były przetrzymywane w skomplikowanym formacie
binarnym i poszczególne obliczenia stosowały maski bitowe w celu ich ekstrakcji. Aktual-
na wersja indeksera skorzystała z doświadczeń poprzedniej i poszczególne kroki wykonuje
w osobnych tablicach. Jest przez to o wiele bardziej czytelna. Odbywa się to kosztem zuży-
cia pamięci, jest jednak wiele miejsc, gdzie da się je poprawić, a testy nie wykazały jeszcze

26

http://python.org/

takiej konieczności.
Nowy indekser opiera się na bibliotekach NumPy i SciPy i większość opisanych opera-

cji wykonuje na tablicach danych. Dzięki temu korzysta z szybkiego kodu pętli napisanych
w języku C. Tylko kod generujący przesunięcia wywołuje funkcje Pythona. Na 6 mega-
pikselowym obrazie program wykrywa około 200’000 przecięć i jak widać z wyników testu
w tabelce 1, program działa wystarczająco szybko.

3.6.2 Filtry

Aby polepszyć wyniki działania indeksera, wczytane zdjęcia są najpierw filtrowane. Słu-
ży do tego moduł filters, z którego korzysta tylko indekser. Przy pomocy konfiguracji
można poszczególne filtry włączać i wyłączać. Punkt 4.2 zawiera opis testów, na podstawie
których ustalono domyślne wartości konfiguracji. Dostępne w programie filtry to:

filtr rozmywający zdjęcie (Gaussian blur) Jest stosowany do zdjęcia oświetlonego bia-
łym światłem. Zwiększa odporność wykrywania cienia na szum oraz błędy interpolacji
obecne na zdjęciu.

filtr zwiększający poziomy kontrast Jest stosowany do zielonego kanału na zdjęciach
oświetlonych wzorami. Ułatwia wykrywanie pasków na zdjęciu. Filtr powstał za przy-
kładem pracy [7].

filtr klepsydrowy Jest stosowany do zielonego kanału na zdjęciach oświetlonych wzorami.
Filtr rozmywa obraz poprzez pomnożenie przez macierz o wartościach przypominają-
cych klepsydrę. Zwiększa to spójność pasków na zdjęciu, wygładza nierówności spo-
wodowane zastosowaniem interpolacji z matrycy Bayera oraz zmniejsza wpływ szumu
i barwy obiektu na wykrywanie środków pasków. Filtr również powstał za przykładem
pracy [7].

filtr zwiększający separację kolorów Jest stosowany do zdjęć ze wzorami w celu usu-
nięcia przenikania kolorów (color crosstalk). Filtr identyfikuje obszary o najbardziej
nasyconych kolorach. Na podstawie informacji z tych obszarów konstruuje macierz
przekształcają czyste kolory (czerwony, zielony i niebieski) na zaburzone kolory ze
zdjęcia. Odwrotność tej macierzy jest następnie aplikowana do całego zdjęcia, w celu
usunięcia tych zaburzeń.

3.6.3 Rekonstrukcja głębokości

Rekonstrukcja głębokości w module depth korzysta bezpośrednio z równań przedstawio-
nych w rozdziale 2.9. Aby uzyskać współczynniki kierunkowe półprostych pozycje punktów,
dla których odtworzono indeksy, są przekazywane do skalibrowanego obiektu aparatu, któ-
ry generuje współczynniki kierunkowe. Tablicę indeksów kolumn otrzymuje skalibrowany
obiekt projektora, który na jej podstawie generuje współczynniki płaszczyzn.

Wynikiem rekonstrukcji głębokości jest tablica współrzędnych z oraz maska pikseli,
dla których powiodło się odtworzenie głębokości. Współrzędne x oraz y program odtwarza
przekazując obiektowi aparatu przefiltrowane za pomocą maski pozycje punktów obrazu.
Piksele, których głębokość jest ujemna (wypadają za aparatem), są uznawane za błędne
i nie są włączane do modelu.

27

http://numpy.scipy.org/
http://www.scipy.org/
http://python.org/

Rysunek 15: Działanie filtrów

1a 1b 2a 2b

3a 3b 4a 4b

5a 5b 6a 6b

1 – filtr rozmywający, 2 – filtr zwiększający poziomy kontrast, 3 – filtr klepsydrowy,
4 – filtry klepsydrowy i zwiększający kontrast, 5 – filtr zwiększający separację kolorów,

6 – filtr zwiększający separację kolorów (zielony kanał);
a – przed zastosowaniem, b – po zastosowaniu

3.6.4 Rekonstrukcja powierzchni

Rekonstrukcją powierzchni zajmuje się moduł triangulator. Buduje on powierzchnię
jako siatkę trójkątów. Użyty algorytm jest bardzo prosty. Działa on na rzucie dwuwymiaro-
wym odtworzonych punktów na obraz aparatu. Tworzy graf planarny tego rzutu w dwóch
krokach:

� łącząc wierzchołki o tym samym numerze paska pionowo,

� a następnie łącząc najbliższe wierzchołki z sąsiadujących pasków.

Wierzchołki nie są łączone powyżej pewnej ustalonej w konfiguracji odległości. Wynikiem
rekonstrukcji powierzchni są trójki numerów wierzchołków tworzących ściany oraz maska
wierzchołków (czyli pikseli), dla których powiodło się łączenie. Rekonstrukcja powierzchni
nie bierze pod uwagę podpikselowych przesunięć z indeksera, dzięki temu pracuje na liczbach
całkowitych.

Ten prosty algorytm zastąpił użytą w wersji 0.40 triangulację Delaunaya [5] również
działającą na dwuwymiarowym zbiorze wierzchołków. Implementację oparto o opracowa-
nie algorytmu dziel i zwyciężaj na stronie Samuela Petersona [13], jak również skorzystano

28

z dostępnych na tej stronie przykładów do konstrukcji testów. Algorytm zupełnie się nie
sprawdził, ponieważ nie były spełnione jego założenia i wiele wierzchołków było współli-
niowych. Uruchomienie go na danych symulacyjnych skutkowało prawie losowym łączeniem
wierzchołków w poziomie, natomiast na danych rzeczywistych powodowało przepełnienie
stosu i zatrzymanie programu.

3.7 Pakiet wyjścia

Pakiet wyjścia zawiera dwa moduły obsługujące wypisywanie odtworzonego modelu –
png do wypisywania dwuwymiarowych map głębokości lub pasków oraz wfobj wypisujący
model w formacie Wavefront OBJ. Moduł dla map dwuwymiarowych jest bardziej skompli-
kowany i obsługuje kilka parametrów zmieniających rodzaj obrazu oraz włączanie funkcji
do interpolacji danych. Parametry są opisane w instrukcji obsługi w punkcie A.2.11, a ry-
sunek 16 przedstawia wyjście z testu symulacyjnego przy zastosowaniu tych parametrów.

Zanim powstał rekonstruktor powierzchni konieczne było napisanie wyjścia dwuwymia-
rowego tak, aby dało się ocenić jakość wyjściowych danych. Podjęto nawet próby staty-
stycznego porównania tych danych z głębokością referencyjną wygenerowaną przez symu-
lator (patrz rysunek 25: 1d i 2d). Jak się później okazało symulacja była zniekształcona
geometrycznie, czego nie udało się dostrzec na dwuwymiarowej mapie i dane do siebie nie
pasowały. Trójwymiarowy model jest tworzony dość prostolinijnie, jednak Blender nie wczy-
tuje wierzchołków nie tworzących ścian, stąd dla obejrzenia modelu było najpierw konieczne
stworzenie rekonstruktora powierzchni.

3.8 Program testu regresyjnego

Program stanowi interfejs do szybkiego przeprowadzania testów. Wykonuje on prze-
biegi skanera na przygotowanych danych, porównuje wyniki z wygenerowanymi wcześniej
i zgłasza różnice. Dzięki niemu można szybko sprawdzić, czy jakaś funkcjonalność skanera
przestała działać po wprowadzonych zmianach oraz porównać jakość wygenerowanych ob-
razów i modeli do tych z poprzednich wersji. Instrukcja wykonania tych czynności znajduje
się w punkcie A.4.

W wypadku, gdy test wykrywa błąd na styku kilku komponentów, należy ten błąd na-
prawić. W wypadku, gdy błąd jest wynikiem defektu jednego komponentu, oprócz naprawy
błędu, należy uzupełnić testy jednostkowe tego komponentu. Test regresyjny jest zbudowany
w oparciu o moduł projektu, omija więc problemy związane z interfejsem programu.

3.8.1 Funkcje testu

Program testu regresyjnego pozwala na zachowanie wyników z kilku wykonań i spraw-
dzanie aktualnego wyjścia względem dowolnego z nich. Program zachowuje wraz z wynikami
plik projektu, użytą konfigurację oraz log operacji. Wyjściem dla każdego testu są obra-
zy zindeksowanych pasków, wykrytej głębokości oraz model w formacie Wavefront OBJ.
Oprócz tego włączany jest tryb odpluskwiania i tworzony jest katalog z obrazami danych
w trakcie przebiegu algorytmu. Dane te zawierają (jeśli wszystkie filtry są włączone):

� wejście dla indeksera,

� maskę dla wykrytego cienia,

� maski użyte w filtrze separacji kolorów,

29

http://blender.org/

Rysunek 16: Rodzaje wyjścia dwuwymiarowego

1a 1b 1c

1d 1e 1f

2a 2b 2c

2d 2e 2f

1 – wyjście głębokości, 2 – wyjście pasków,
a – czarno-białe, przezroczyste tło, b – czarno-białe, czarne tło,

c – czarno-białe, liniowa interpolacja wierszy, d – kolorowe, przezroczyste tło,
e – kolorowe, czarne tło, f – kolorowe, liniowa interpolacja wierszy,

30

� wyjście filtra separacji kolorów,

� zielony kanał przed filtrowaniem,

� wyjście filtra klepsydrowego na zielonym kanale,

� wyjście filtra zwiększającego poziomy kontrast na zielonym kanale,

� maskę czerwonych i niebieskich obszarów,

� maskę wykrytych zielonych pasków,

Testy można przeprowadzić selektywnie tylko na części danych. Pozwala na przykład na szyb-
kie sprawdzenie poprawności przy pomocy uruchomienia na małych wycinkach, których
przetworzenie zabiera niewielką ilość czasu.

4 Testy

4.1 Dane testowe

Na dane testowe składają się wykonane w grudniu 2007 roku zdjęcia (rysunek 17),
wycinki jednego z nich testujące pewne sytuacje brzegowe (rysunek 18) oraz dwie symulacje
wykonane przy pomocy Blendera (rysunek 19).

Dane testowe początkowo były przechowywane w repozytorium, jednak powodowało to
spowolnienie jego działania i praktyczne problemy z jego klonowaniem. Dane zostały odfil-
trowane z repozytorium i w wersji 0.49 został dodany skrypt do ich ściągania. Dzięki temu
rozmiar repozytorium skurczył się z ponad 300 megabajtów do 3 megabajtów. Repozyto-
rium nadal zawiera dane dla testów jednostkowych.

4.1.1 Skrypt przygotowujący dane

Dane testowe są dostępne w wersji surowej. Zdjęcia zapisane są w surowym własnościo-
wym formacie Nikon Electronic Format, a symulacja jest zapisana jako plik projektu Blen-
dera. Aby otrzymać dane gotowe do użycia w skanerze, trzeba uruchomić skrypt make.sh.
Skrypt przygotowuje trzy zbiory danych:

� konwertuje zdjęcia przy pomocy programu UFRaw do plików w formacie PNG . Pod-
czas konwersji do zdjęć nie jest aplikowana krzywa Gamma ani profile koloru. Nie są
też używane zaawansowane algorytmy mające na celu polepszenie wyników wizualnych
interpolacji. Zamiast tego zdjęcia są interpolowane dwuliniowo;

� tworzy wycinki zdjęcia PNG zawierające jego szczególne cechy korzystając z programu
convert z biblioteki ImageMagick ;

� wykonuje symulację otrzymywania danych w Blenderze przy pomocy danych wzorów
oświetlających.

4.1.2 Zdjęcia

Zdjęcia zostały wykonane przy pomocy aparatu Nikon D70s z obiektywem Tamron AF
SP 17-50 f/2.8 XR Di-II Asp. Obiekty zostały oświetlone przy pomocy projektora LCD
firmy Epson o rozdzielczości 1024x768 wypożyczonego z Instytutu Informatyki Uniwersytetu
Wrocławskiego. Wykonano zdjęcia 13 różnych scen i do testu regresyjnego wybrano 6 z nich,

31

http://blender.org/
http://blender.org/
http://blender.org/
http://ufraw.sourceforge.net/
http://www.w3.org/Graphics/PNG/
http://www.w3.org/Graphics/PNG/
http://www.imagemagick.org/script/index.php
http://blender.org/

Rysunek 17: Wybrane do testów obiekty

1 2

2 4

5 6

1 – przód pojemnika na jajka, 2 – tył pojemnika na jajka, 3 – pas do kimono i pilot,
4 – gąbka i kubek, 5 – papierowy cylinder, 6 – ciemny but

które najlepiej reprezentowały możliwe do napotykania przy skanowaniu problemy (wśród
dostępnych podczas testowania obiektów).

Rysunek 17 przedstawia wybrane zdjęcia. Zdjęcie 1. pochodzi z przykładu testu skanera
na wnętrzu pojemnika na jajka, jest to obiekt o dość skomplikowanym kształcie. Przykład 2.
testuje odporność na kolor powierzchni na zewnętrznej stronie tego samego pojemnika.
Przykład 3. sprawdza zachowanie na ostrych krawędziach złożonego pasa do kimono oraz
na małych szczegółach takich jak przyciski od pilota do projektora. Przykład 4. testuje ska-
ner na gąbce i kubku. Oba te przedmioty są trudne ze względu na odpowiednio pochłanianie
i odbijanie światła. Kubek jest również pomalowany nieneutralnym kolorem. Przykład 5.
to test na walcu z papieru. Model powinien się okazać prosty do skanowania, jednak poru-
szenie aparatu wywołało regularne błędy. Ostatni, przykład 6. sprawdza sprawność skanera
na trudnym ciemnym i błyszczącym bucie rowerowym.

32

4.1.3 Wycinki

Wycinki testują przypadki brzegowe na pierwszym ze zdjęć testowych. Zostały wybrane
takie miejsca, gdzie spodziewane lub napotykane były problemy z odtwarzaniem indeksów
lub powierzchni.

Na rysunku 18 przedstawione są reprezentatywne bity dla wycinków. Wyjaśnienia wy-
magają tylko dwa ostatnie wycinki. Przedostatni testuje problemy z indeksowaniem na ob-
szarach, gdzie poświata wynikająca z odbicia może powodować błędy w wykrywaniu czer-
wonych i niebieskich obszarów. Ostatni został dodany w miejscu niewyjaśnionych dziur
w modelu. Prawdopodobną przyczyną jest poruszenie aparatu na pierwszym ze zdjęć, co
spowodowało błędy w indeksowaniu znajdującego się tam paska.

Rysunek 18: Wybrane do testów wycinki

1 2 3 4

5 6 7 8

1 – łatwy obszar (bit 9), 2 – ocieniony fragment (bit 9), 3 – gęsty wzór (bit 10),
4 – całość w cieniu (bit 9), 5 – fragment z literami (bit 9), 6 – rzadki wzór (bit 10),

7 – odbita poświata (bit 2), 8 – niespodziewane dziury (bit 9)

4.1.4 Symulacja

Test ten symuluje idealne warunki. Kolory są czyste i odseparowane od siebie, obraz jest
ostry a scena przedstawia proste obiekty. Skrypt uruchamiający symulację generuje również
referencyjne mapy głębokości.

Pierwsza symulacyjna scena została wykonana przed zdjęciami i posłużyła do przete-
stowania pierwszej implementacji indeksera. W wersji 0.40 skaner zadziałał na symulacji,
jednak odtworzenie powierzchni się nie powiodło. Próba porównania odtworzonej głębokości
do obrazu referencyjnego nie przyniosła spodziewanych wyników tj. liniowe przekształcenie
głębokości nie wystarczyło, aby dopasować model do obrazu referencyjnego.

Druga symulacja powstała, gdy pojawiło się podejrzenie, że dane o przesunięciu wprowa-
dzone są błędnie. Wygenerowany model był dobrej jakości jednak skrzywiony i przesunięty
względem oryginału. Symulacja stara się ona ułatwić wprowadzanie parametrów poprzez
umieszczenie odpowiedników aparatu i projektora w jednej płaszczyźnie. Skrzywienie w
drugiej symulacji było jednak takie samo jak w pierwszej, jego prawdopodobne przyczyny
są omówione w punkcie 4.4.

Rysunek 19 przedstawia obrazy wygenerowane przez symulator. Obiektami testowymi
są sześcian i sfera złożona z trójkątów.

33

Rysunek 19: Sceny symulacji i referencyjne mapy głębokości

1 2

2 4

1 – pierwsza scena symulacji, 2 – referencja dla pierwszej sceny,
3 – druga (płaska) scena symulacji, 4 – referencja dla drugiej sceny symulacji

4.2 Test filtrów

Test filtrów i ustawień miał za zadanie ustalenie domyślnych ustawień skanera. Do uru-
chomienia testu użyto programu testu regresyjnego na pierwszym zdjęciu z przykładów przy
użyciu kilku konfiguracji. Wyniki zostały ocenione na podstawie wygenerowanych modeli
widocznych na rysunku 20 oraz danych ilościowych z logu wykonań zebranych w tabeli 1.

Tabela 1 przedstawia czasy, liczbę wykrytych wierzchołków, krawędzi i trójkątnych ścian
oraz stosunek czasu i ilości ścian do wyniku wybranej domyślnej konfiguracji. Rysunek 20
przedstawia wycinek modeli wygenerowanych przez poszczególne konfiguracje.

Test wykazał przydatność filtru klepsydrowego dla zmniejszenia szumów, mimo zmniej-
szenia się ilości wykrytych wierzchołków. Filtr zwiększający poziomy kontrast okazał się
mało skuteczny w zwiększaniu liczby wykrytych ścian (2% wzrostu) i spowodował zwiększe-
nie się błędów. Test wykazał zupełną nieprzydatność filtra separującego kolor w skanerze,
a jego zastosowanie przedłuża czas przetwarzania ponad ośmiokrotnie. Domyślnie został
włączony tylko filtr klepsydrowy i rozmywający.

Filtr separujący kolory powstał w celu redukcji przenikania kolorów, podejrzewanego
o powodowanie regularnych błędów przesunięcia pasków. Mimo że wyniki testu jednost-
kowego wykazały jego skuteczność w założonym zadaniu, filtr pogarsza wyniki działania
skanera. Okazało się, że za błędy jest odpowiedzialne poruszenie aparatu. W instrukcji
(A.2.8) podajemy sposób na jego uniknięcie.

34

T
ab

el
a

1:
W

yn
ik

i
te

st
u

fil
tr

ów

na
zw

a
te

st
u

w
in

do
w

5
w

in
do

w
7

bl
ur

su
bp

ix
el

h
ou

rg
la

ss
ba

nd
co

nt
ra

st
b

ot
h

cr
os

st
al

k
ro

zm
ia

r
ok

na
5

7
7

7
7

7
7

7
fil

tr
ro

zm
yc

ia
ni

e
ni

e
ta

k
ta

k
ta

k
ta

k
ta

k
ta

k
p

od
pi

ks
el

ow
a

do
kł

ad
no

ść
ni

e
ni

e
ni

e
ta

k
ta

k
ta

k
ta

k
ta

k
fil

tr
kl

ep
sy

dr
ow

y
ni

e
ni

e
ni

e
ni

e
ta

k
ni

e
ta

k
ta

k
fil

tr
zw

.
p

oz
io

m
y

ko
nt

ra
st

ni
e

ni
e

ni
e

ni
e

n
ie

ta
k

ta
k

ta
k

fil
tr

se
pa

ru
ją

cy
ko

lo
ry

ni
e

ni
e

ni
e

ni
e

n
ie

ni
e

ni
e

ta
k

cz
as

ła
do

w
an

ia
53

.8
5s

52
.0

6s
52

.3
8s

50
.8

3s
50

.7
8s

50
.4

9s
51

.3
6s

50
.2

6s
cz

as
in

de
ks

ow
an

ia
18

.4
7s

19
.2

0s
18

.5
5s

81
.1

0s
81

.6
2s

77
.6

1s
78

.8
6s

78
.8

6s
cz

as
fil

tr
ow

an
ia

36
.7

2s
36

.1
8s

36
.1

7s
36

.1
2s

40
.2

4s
75

6.
42

s
73

3.
10

s
28

57
.5

2s
cz

as
r.

gł
ęb

ok
oś

ci
51

.4
3s

54
.1

3s
49

.5
6s

52
.1

5s
53

.5
0s

50
.7

2s
50

.4
6s

48
.8

9s
cz

as
za

pi
sy

w
an

ia
pa

sk
ów

53
.3

8s
53

.6
6s

52
.3

2s
52

.1
7s

52
.1

3s
53

.5
1s

53
.8

1s
50

.3
1s

cz
as

za
pi

sy
w

an
ia

gł
ęb

ok
oś

ci
54

.1
5s

53
.8

7s
51

.8
3s

51
.7

2s
51

.7
3s

51
.4

3s
51

.3
3s

51
.0

7s
cz

as
za

pi
sy

w
an

ia
m

od
el

u
6.

78
s

6.
45

s
6.

57
s

6.
42

s
6.

37
s

6.
62

s
6.

66
s

5.
36

s
cz

as
ca

łk
ow

it
y

29
7.

34
s

29
8.

55
s

29
5.

71
s

35
8.

82
s

36
5.

28
s

10
75

.0
1s

10
53

.5
6s

31
65

.1
3s

ilo
ść

w
ie

rz
ch

oł
kó

w
24

21
48

24
23

64
24

25
10

24
25

10
24

06
37

24
68

78
24

60
14

21
51

32
ilo

ść
kr

aw
ęd

zi
46

76
97

46
84

39
46

87
30

46
87

30
46

41
21

47
60

90
47

53
92

35
50

06
ilo

ść
tr

ój
ką

tó
w

46
18

56
46

25
87

46
28

77
46

28
77

45
90

72
47

04
24

47
03

05
34

54
35

%
tr

ój
ką

tó
w

ho
ur

gl
as

s
10

0.
61

10
0.

77
10

0.
83

10
0.

83
10

0
10

2.
47

10
2.

45
75

.2
5

%
cz

as
u

ho
ur

gl
as

s
81

.4
81

.7
3

80
.9

5
98

.2
3

10
0

29
4.

3
28

8.
43

86
6

T
ab

el
a

pr
ze

ds
ta

w
ia

w
yn

ik
i

na
p

od
st

aw
ie

lo
gó

w
w

yk
on

ań
p

os
zc

ze
gó

ln
yc

h
ko

nfi
gu

ra
cj

i.
N

a
gó

rz
e

ta
b

el
i

są
p

od
an

e
kr

ót
ki

e
na

zw
y

uż
yt

yc
h

ko
nfi

gu
ra

cj
i,

w
ko

le
jn

yc
h

w
ie

rs
za

ch
są

w
ys

zc
ze

gó
ln

io
ne

p
os

zc
ze

gó
ln

e
op

cj
e

uż
yt

e
w

ty
ch

ko
nfi

gu
ra

cj
ac

h.
N

as
tę

pn
ie

są
w

ym
ie

ni
on

e
cz

ąs
tk

ow
e

i
ca

łk
ow

it
e

cz
as

y
w

yk
on

ań
,

w
yn

ik
i

ilo
śc

io
w

e
i

na
ko

ńc
u

ic
h

p
or

ów
na

ni
e

do
w

yb
ra

ne
j

do
m

yś
ln

ej
ko

nfi
gu

ra
cj

i
ho

ur
gl

as
s.

35

Rysunek 20: Rendering testu filtrów

1 2 3 4

5 6 7 8

1 – window5, 2 – window7, 3 – blur, 4 – subpixel, 5 – hourglass, 6 – bandcontrast,
7 – both, 8 – crosstalk

4.3 Test na zdjęciach

Rysunek 21 przedstawia kolorową mapę głębokości wygenerowaną przez skaner dla te-
stów na zdjęciach. Wyjście zostało przycięte do obszaru zawierającego model. Wariacje ko-
loru są skutkiem użycia względnej skali. Kolory nie przekładają się na absolutne odległości.
Głębokość jest zakodowana w odcieniu: najbliższe obiekty mają kolor czerwony a najdalsze
fioletowy.

Rysunek 22 przedstawia wygenerowane przez skaner przy użyciu domyślnych ustawień
modele. Porównując to wyjście z mapą głębokości widać, że modele są mniej kompletne.
Szczególnie duże różnice widać na wynikach z czwartego modelu. Za dodatkowe braki jest
odpowiedzialny rekonstruktor powierzchni, który łączy tylko wierzchołki zindeksowane z
sąsiadującymi numerami indeksów.

1 – przód pojemnika na jajka Ten model został najlepiej odtworzony. Skaner wykazał
się pewną odpornością na niewielkie napisy znajdujące się wewnątrz pojemnika. Zo-
stało nawet odtworzone odbicie kartki w tle od ławki na której stały przedmioty.

2 – tył pojemnika na jajka Skaner znacznie gorzej przetworzył większe kolorowe po-
wierzchnie tyłu pojemnika. Widać też wyraźnie, że poprawy wymaga rekonstrukcja
powierzchni. Rysunek 23 pokazuje błędy spowodowane kolorem.

3 – pas do kimono i pilot W modelu widać dziury w miejscach, gdzie występują paski
reprezentujące szósty bit od końca. Wskazuje to na poruszenie aparatu podczas wyko-
nywania zdjęcia, które odpowiada temu bitowi. Fragment ten jest pokazany na rysunku
24.2. Widać też, że wyraźne poruszenie nastąpiło też przy otrzymywaniu ostatniego
bitu.

4 – gąbka i kubek Zgodnie z przewidywaniami skaner źle radzi sobie z obiektami roz-
praszającymi oraz odbijającymi światło. Odbicie w kubku wpłynęło też negatywnie
na automatycznie ustaloną ekspozycję i spowodowało, że skaner nie odtworzył nawet
znajdującej się w tle kartki.

36

Rysunek 21: Wyniki przetwarzania zdjęć – głębokość

1 2

3 4

5 6

1 – przód pojemnika na jajka, 2 – tył pojemnika na jajka, 3 – pas do kimono i pilot,
4 – gąbka i kubek, 5 – papierowy cylinder, 6 – ciemny but

5 – papierowy cylinder Wynik odtwarzania prostej białej powierzchni jest dobry, jednak
jak wszystkie modele zaburzony poruszeniem aparatu. Zaburzenia te są przedstawione
na rysunku 24.1.

6 – ciemny but Zastosowanie stałego progu cienia, powoduje że skaner nie odtwarza ciem-
nych regionów zdjęcia. Z buta zostały odtworzone tylko odblaskowe elementy.

4.4 Test na danych symulowanych

Wyniki testu na danych symulowanych przedstawia 25. Wyjście jest zniekształcone geo-
metrycznie. Jest skrzywione tak, że lewa strona znajduje się bliżej aparatu i przesunięte
w tył względem oryginału. Może być to wynikiem błędów zaokrągleń albo niewłaściwej in-
terpolacji w programie. Innym powodem może być zniekształcenie rzucanego obrazu przez
Blendera. Ponieważ planowana jest zmiana generowanych wzorów, tak aby pominąć krań-
cowe zielone paski i zmniejszyć liczbę wzorów dla rozdzielczości będących potęgami dwójki,
ten problem nie został dokładnie zbadany.

Test na symulacji pokazał jak ważne jest odpowiednie ustalenie okna odtwarzania. Usta-
lenie go na wielkość 7 (jak na przykładach) a większą niż podwójna odległość pomiędzy

37

http://blender.org/

Rysunek 22: Rendering wyników przetwarzania zdjęć

1 2 3

4 5 6

1 – przód pojemnika na jajka, 2 – tył pojemnika na jajka, 3 – pas do kimono i pilot,
4 – gąbka i kubek, 5 – papierowy cylinder, 6 – ciemny but

Rendering został wykonany z punktu widzenia w prawo i do góry od projektora. Projektor
był ustawiony po prawej stronie aparatu.

Rysunek 23: Błędy spowodowane kolorem

1 2

1 – model, 2 – odpowiadający fragment zdjęcia

paskami powoduje poważne błędy w odtwarzaniu prostych powierzchni. Ustalenie wielkości
okna na 4 usunęło te błędy. Rysunek 26 porównuje odtworzone modele dla obu wielkości
okna.

4.5 Test na wycinkach

Test na wycinkach służył głównie weryfikacji programu. Jego uruchomienie na tym zbio-
rze danych trwało najwyżej kilka minut przy najbardziej intensywnych obliczeniowo usta-
wieniach i dawało w praktyce pewność działania programu na większych danych.

38

Rysunek 24: Błędy spowodowane poruszeniem aparatu

1 2
1 – zaburzenia na modelu papierowego cylindra, 2 – zaburzenia na modelu pasa

Rysunek 25: Wyniki przetwarzania symulacji

1a 1b 1c 1d

2a 2b 2c 2d

3

1 – pierwsza scena symulacji, 2 – druga (płaska) scena symulacji,
a – wyjście głębokości, b – wyjście a odwrócone, c – obraz referencyjny, d – różnica,

3 – zniekształcenie modelu względem oryginału (druga scena symulacji), zrekonstuowany
model został przesunięty do przodu, aby uwidocznić problem

Dane z odpluskwiacza były bardzo pomocne przy badaniu wpływu parametrów na wy-
niki działania na poszczególnych wycinkach. Modele wygenerowane z wycinków były znie-
kształcone, ze względu na użycie tych samych danych o obiektywie aparatu, co dla przykła-

39

Rysunek 26: Błędy spowodowane za dużym oknem

1 2

1 – okno wielkości 7, 2 – okno wielkości 4

dowych zdjęć.

5 Podsumowanie

Projekt doprowadził do stworzenia działającego skanera o otwartym źródle. Program
jest łatwy w obsłudze, co zaowocowało krótką instrukcją w dodatku A. Kod programu jest
dobrej jakości, zawiera dokumentację newralgicznych punktów i wiele testów jednostkowych,
które pozwalają na jego zrozumienie i dalszy rozwój.

Jest jednak wiele koniecznych poprawek, jeśli wyniki mają dorównać konkurencyjnym
rozwiązaniom takim jak to z pracy [3]. Otrzymanie wyjścia akceptowalnej jakości wymaga
ręcznego ustawienia parametrów, co znacznie utrudnia podstawowy proces. Pewnych części
programu nie udało się zaimplementować ze względu na ograniczenia czasowe. W szczegól-
ności w stosunku do pracy bazowej [1] brakuje:

� systemu kalibracji i redukcji zniekształceń,

� sterownika aparatu i projektora,

� zestawu oświetlenia i programu do pozyskiwania koloru powierzchni.

5.1 Trudności

Najczęściej pojawiającym się błędem było stosowanie zbyt skomplikowanych rozwiązań
dla napotykanych problemów. Bez próby rozwiązania zadania prostymi środkami, trudno
jest dostrzec rzeczywisty problem. Często wyrafinowane rozwiązanie skupia się na rozwią-
zywaniu nie tego problemu. Z większości takich decyzji trzeba się było wycofać, bo nie
zadziałały w praktyce. Przykładami tego były:

� oszczędzanie pamięci w indekserze dla zwiększenia wydajności poprzez stworzenie bi-
narnego formatu, zamiast zwyczajnych tablic z danymi,

� triangulacja Delaunaya w celu odtworzenia optymalnej triangulacji zamiast prostego
rozwiązania zastosowanego później,

� skomplikowany filtr separujący kolory, który co prawda zadziałał, ale okazało się, że
to nie kolory są powodem atakowanych błędów zamiast jednolinijkowego wyzwalacza
aparatu,

40

� zastosowanie programu trac do zarządzania rozwojem programu (przez jeden dzień)
zamiast zwyczajnych plików tekstowych.

Praca była pierwszym tak dużym projektem napisanym samodzielnie. Pierwszy raz za-
stosowałem test integracyjny. Pisanie programu i pracy pisemnej zmotywowało mnie do uży-
cia nowych narzędzi takich jak:

� narzędzia py.test ,

� odpluskwiacza języka Python, programu pdb,

� systemu kontroli wersji git i

� narzędzi z zestawu graphviz .

W obliczu mnogości możliwych rozszerzeń, które są omówione w punkcie 5.2, zacząłem
prowadzić dokumentację projektu i planować rozszerzenia jako kamienie milowe kolejnych
wersji.

5.2 Możliwe rozszerzenia

Plany rozwoju programu są zebrane w dokumentacji, natomiast pomysły lokalnych po-
prawek w komentarzach. Poniżej rozpatrywane są możliwe rozszerzenia programu, które
pozwoliłyby na redukcję błędów, przyśpieszenie procesu skanowania i ułatwienie obsługi
programu.

Część brakujących funkcjonalności można zrekompensować użyciem zewnętrznych pro-
gramów. Na przykład zastosowanie programu UFRaw z biblioteką lensfun pozwala na usu-
nięcie geometrycznych zniekształceń obrazu wprowadzanych przez aparat (patrz punkt
5.2.3).

5.2.1 Sterownik aparatu

W aktualnej wersji proces otrzymywania zdjęć jest niezautomatyzowany. Ręczne stero-
wanie procesem sprawia, że w wypadku nieużycia samowyzwalacza pojawiają się regularne
błędy. Ich przykład można zaobserwować na rysunku 24.

Program można rozszerzyć o automatyczne sterowanie aparatem oraz projektorem. Roz-
szerzenie takie ma dodatkową zaletę, że skraca proces otrzymywania zdjęć. Dzięki temu
można otrzymać również skany obiektów, które pozostają w bezruchu tylko przez krótki
okres czasu, na przykład zdjęcia twarzy. Biblioteka gphoto2 implementuje protokoły PTP
i MTP, wspierane przez wiele modeli aparatów cyfrowych, które mogą zostać użyte do tego
celu.

5.2.2 Automatyczna kalibracja

Proces kalibracji jest źródłem zniekształceń geometrycznych modelu. Aktualna wersja
automatycznie kalibruje aparat, jeśli zdjęcia zawierają metadane w formacie EXIF . Do
tego celu program używa narzędzia ExifTool napisanego w języku Perl , które wyczerpująco
implementuje standard jak i wiele rozszerzeń wprowadzonych przez producentów aparatów.
Kalibracja projektora jest w aktualnej wersji nieprecyzyjna i pracochłonna.

Program stara się używać do kalibracji łatwo dostępnych danych o aparacie, aby zwięk-
szyć dokładność, jednak na pewno nie spełnia założeń z bazowej pracy i nie nadaje się
do pozyskiwania dokładnych geometrycznie modeli rzeźb. Praca bazowa zawiera system

41

http://trac.edgewall.org/
http://pytest.org
http://python.org/
http://docs.python.org/library/pdb.html
http://git-scm.com/
file:www.graphviz.org
http://ufraw.sourceforge.net/
http://www.gphoto.org/proj/gphoto2/
http://exif.org/
http://www.perl.org/

kalibracji oparty o specjalne koliste wzory. Służy on do kalibracji aparatu, projektora, jak
również do eliminacji zniekształceń, o której mowa w następnym punkcie.

Utworzenie łatwego w obsłudze systemu kalibracji jest możliwym rozszerzeniem. Archi-
tektura programu, która używa obiektów do generowania współczynników promieni i płasz-
czyzn pozwala na takie rozszerzenie. Dobrym pomysłem byłoby oparcie kalibracji o stan-
dardowe rozmiary papieru (A4/Letter) lub dostarczenie wzorów w formacie PDF.

5.2.3 Korekcja zniekształceń

Eliminacja zniekształceń aparatu jest omówiona w rozdziale 2.7. Aktualnie można użyć
zewnętrznej korekcji na przykład w programie UFRaw , która jednak wprowadza dodat-
kowe błędy interpolacji. Aby polepszyć jakość można by użyć korekcji bezpośrednio przy
generowaniu prostych. Odpowiednie współczynniki można uzyskać z tego samego źródła –
biblioteki lensfun.

5.2.4 Tekstura

Do omawianego typu skanerów dość łatwo jest dodać pozyskiwanie danych o barwie
obiektu. W aktualnej wersji, program wykonuje zdjęcia potrzebne do teksturowania obiek-
tu z punktu widzenia aparatu. Pewną barierę stanowi skąpa dokumentacja wyjściowego
formatu Wavefront OBJ, dlatego program pomija ten krok. Ponieważ model jest rekonstru-
owany z punktu widzenia aparatu, a więc aparat znajduje się w początku układu współ-
rzędnych, to teksturę taką można nałożyć ręcznie, poprzez projekcję z tego punktu i dość
łatwo skalibrować.

Praca pomija również zastosowany w pracy bazowej zestaw oświetlenia, który pozwala
na eliminację z tekstury wpływu odbić. Takie rozszerzenie wymaga skonstruowania odpo-
wiedniego zestawu oświetlenia.

5.2.5 Automatyczne dostrajanie parametrów

W aktualnej wersji większość parametrów dla indeksera i filtrów jest ustalana przy
pomocy plików konfiguracyjnych. Automatyczne dostosowanie ich wartości przy pomocy
statystyk na zdjęciach może polepszyć jakość modelu. Takie podejście ułatwi również proces
skanowania i uodporni go na zmiany ustawień aparatu i zmiany warunków środowiska.
Dobrym pomysłem byłoby automatyczne uzyskanie:

� odległości pomiędzy paskami,

� wartości progu wykrywania cienia,

� balansu pomiędzy czerwonymi a niebieskimi regionami,

5.2.6 Wydajność

Problemom wydajności skanera poświęcono niewiele czasu. Co prawda nowy indekser
jest znacznie szybszy od poprzedniej implementacji, jednak jest dużo miejsca na poprawę.
Kilka nasuwających się pomysłów to:

� zmniejszenie ilości zdjęć o jedno w wypadku użycia projektora o rozdzielczości będącej
potęgą dwójki;

42

http://ufraw.sourceforge.net/

� pominięcie interpolacji i użycie surowych danych na wejściu. Zmniejszyłoby to trzy-
krotnie wielkość danych do przetworzenia oraz narzut pamięciowy programu, ale skom-
plikowałoby przetwarzanie danych;

� zrównoleglenie programu. Wiele części programu mogłoby się wykonywać w osobnych
wątkach lub procesach, ponieważ są one od siebie niezależne. Dało by to znaczną
poprawę prędkości na nowszych wielordzeniowych procesorach;

� zmniejszenie narzutu pamięciowego programu, poprzez aktywne zwalnianie już niepo-
trzebnych danych. Program był testowany na systemie wyposażonym w 2GB pamięci
na zdjęciach o rozdzielczości 3039x2014 i zajmował w najgorszym wypadku około
połowę tej pamięci;

� przetwarzanie danych w miejscu, tam gdzie jest to możliwe. Usunięcie niepotrzebnego
rozpakowywania danych;

� użycie rzadkich struktur danych do przechowywania pasków. Aktualna wersja w całym
procesie używa tablicy liczb z maską bitową. W niektórych miejscach taka struktura
może się okazać nieefektywna;

� zmiana układu pamięci reprezentującej zdjęcia na RGBRGB... (zamiast RR...GG...BB...)
w miejscach, gdzie program wykonuje obliczenia na kilku kanałach na raz;

� użycie liczb całkowitych do obliczeń;

� użycie innych, szybszych wywołań biblioteki SciPy , na przykład skorzystanie z trans-
formaty Fouriera;

� przepisanie części kodu w języku C i zintegrowanie z programem przy pomocy dowią-
zań.

Oczywiście jakiekolwiek zmiany należy poprzedzić sesją z programem profilującym, któ-
ry wskaże miejsca rzeczywiście przyczyniające się do strat w wydajności.

5.2.7 Pakiet projektu

Skonstruowanie pakietu dla programu znacznie poprawiłoby wygodę instalacji. Aktual-
na wersja jest w całości napisana w Pythonie, więc można skorzystać z form dystrybucji
dostępnych dla tego języka. Innym wyjściem jest zastosowanie pakietów specyficznych dla
systemu operacyjnego, pozwala to na włączenie do zależności zewnętrznych narzędzi używa-
nych przez program. W aktualnym stanie program nadaje się do użycia po zainstalowaniu
potrzebnych bibliotek dla użytego interpretera Pythona.

5.2.8 Przenośność

Program był pisany z myślą o systemach UNIXowych, jednak lista problemów związa-
nych z przenośnością powinna być niewielka. Przygotowania wymaga odpowiednia konfigu-
racja systemu, która uwzględni inne położenie programów lub spowoduje ich automatyczne
wyszukanie. Wszystkie z koniecznych do uruchomienia programu bibliotek i narzędzi są
przenośne pomiędzy najczęściej używanymi systemami operacyjnymi.

43

http://www.scipy.org/
http://python.org/

5.2.9 Inne formaty 3D

Udostępnienie skanów w innych niż Wavefront OBJ formatach byłoby pomocne. Szcze-
gólnie kuszące jest użycie interpretera języka Python w Blenderze, przez co można by wywo-
łać narzędzia dostępne w tym programie takie jak wygładzanie, upraszczanie i rzutowanie
tekstury. Można by również uzupełnić model położeniem projektora, dodatkowymi danymi
o obiektywach projektora i aparatu oraz referencyjnym obrazem jednego metra.

5.2.10 Graficzny interfejs użytkownika

Dużym udogodnieniem byłby graficzny interfejs użytkownika, ponieważ część użytkowni-
ków nie radzi sobie z programami obsługiwanymi z linii poleceń. Dobry interfejs wspierałby
walidację wprowadzanych danych. Mógłby zaprezentować graficznie rozmieszczenie apara-
tu, projektora i spodziewane położenie obiektu, zapobiegając błędom przed wykonaniem
kosztownych obliczeń.

Dobrym wzorem interfejsu dla programu skanera byłby kreator. Prowadziłby on użyt-
kownika kolejno przez wszystkie wymagane kroki oraz wskazywałby potrzebne dane. Aktu-
alnie opis procesu zawiera instrukcja. Interfejs mógłby być zintegrowany ze sterownikiem
aparatu z punktu 5.2.1.

W trakcie implementacji programu została podjęta próba stworzenia graficznego inter-
fejsu użytkownika, jednak późniejsze zmiany i brak czasu spowodowały, że nie został on
dokończony i włączony do aktualnej wersji. W historii zmian znajduje się pakiet z przygo-
towanymi oknami do kalibracji aparatu i projektora.

Aktualna wersja separuje interfejs od kodu programu. Wywołania metod obiektu Project
z modułu project są wystarczająca do wykonania wszystkich funkcji programu. Do tego
modułu odwołuje się zarówno interfejs linii poleceń (moduł cli), jak również skrypt testu
regresyjnego (regression). Stworzenie analogicznego do modułu cli kontrolera dla potrzeb
GUI, będzie dzięki temu nieinwazyjne.

5.2.11 Alternatywne komponenty

indekser Indekser z pracy bazowej wymaga wykonania aż 10 zdjęć dla typowej rozdzielczo-
ści projektora. Dodanie indeksera do innych zastosowań, na przykład tego z pracy [6],
było by ciekawym rozszerzeniem. Można by też stworzyć rozwiązanie hybrydowe, które
pierwszą część zdjęć wykonywałoby przy użyciu wzorów bezkontekstowych, a dopiero
od pewnej rozdzielczości stosowałoby wzory kontekstowe.

rekonstruktor powierzchni Aktualny rekonstruktor powierzchni jest bardzo prosty. Je-
go działanie w całości opiera się na dwuwymiarowym obrazie wykrytych punktów
oraz na numerach pasków. Nie bierze on pod uwagę wielu dostępnych danych. Zasto-
sowanie dodatkowego przebiegu w celu lepszego dopasowania powierzchni lub próba
wypełnienia dziur znacznie poprawiłaby jakość wyjściowego modelu. Praca bazowa
stosuje odtwarzanie powierzchni na podstawie metody opisanej w [10].

5.2.12 Inne pomysły

przetłumaczenie programu Aby udostępnić program szerszej bazie użytkowników trze-
ba przetłumaczyć wyjście programu oraz dokumentację.

44

czytelny format projektu W nowej wersji Pythona jest dostępna biblioteka zapisujące
obiekty w języku YAML. Jej użycie zwiększyło by czytelność formatu projektu skanera
oraz zezwoliło na jego łatwiejszą inspekcję i edycję zewnętrznymi narzędziami.

filtr koloru Błędy na kolorowych powierzchniach wskazują na możliwość polepszenia ja-
kości modelu poprzez implementację filtra, który redukowałby wpływ koloru na pod-
stawie zdjęcia oświetlonego białym światłem.

filtry rozmywające Zdjęcia pokazały, że odbicia obiektów są czasami odtwarzane lepiej
niż same obiekty. Wskazuje to na możliwość zastosowania filtrów rozmywających w ce-
lu wyrównania modelu.

przetwarzanie regionami Skaner ma problemy z nieregularnie zabarwionymi obiektami.
Aby pozwolić na lepsze odtwarzanie takich obiektów, należałoby rozpatrywać zdjęcia
regionami i dobierać dla nich osobno parametry filtrów.

test interfejsu Możliwym rozszerzeniem testu regresyjnego jest dodanie testu interfejsu,
poprzez wysyłanie skryptów na jego wejście. Dzięki temu uruchomienie testu dawałoby
pewność, że program jest gotowy do użytku.

A Instrukcja obsługi

A.1 Instalacja

Zakładamy, że używany do uruchomienia skanera komputer jest wyposażony w system
Debian 5.0 lub Kubuntu 9.04 z zainstalowanym serwerem graficznym. Aby ściągnąć najnow-
szą wersję skanera potrzebujemy najpierw systemu kontroli wersji git . Żeby go zainstalować
wykonujemy następujące polecenie:

sudo apt-get install git-core

Aby ściągnąć najnowszą wersję programu do podkatalogu tronscan aktualnego katalogu
(wraz z całą historią projektu), należy wykonać polecenie:

git clone http://tite.mine.nu/~dhill/repos/tronscan.git tronscan

Następnie trzeba zainstalować wszystkie zależności programu. Poniższe polecenie insta-
luje te zależności, bibliotekę Codespeak potrzebną do uruchomienia testów jednostkowych,
program do wyświetlania obrazów gwenview oraz zależności testu regresyjnego i skryptów
przygotowujących dane:

sudo apt-get install exiftool python python-decorator python-imaging \
python-numpy python-readline python-scipy libreadline python-codespeak-lib \
gwenview bash wget ufraw imagemagick blender gphoto2

Aby sprawdzić czy proces instalacji przebiegł poprawnie, można uruchomić testy jed-
nostkowe dla programu w katalogu źródłowym, powinny one wskazać ewentualne problemy:

cd tronscan/src
py.test

45

http://python.org/
http://www.yaml.org/
http://debian.org/
http://ubuntu.com
http://git-scm.com/
http://codespeak.net/py/dist/
http://gwenview.sourceforge.net/

A.2 Skanowanie

A.2.1 Przygotowanie

Aby wykonać skan potrzebne są:

� skanowany obiekt,

� cyfrowy projektor LCD/DLP,

� cyfrowy aparat fotograficzny,

� komputer z zainstalowanym programem skanera (patrz punkt A.1),

� statyw dla aparatu,

� taśma lub inne narzędzie do mierzenia odległości,

� kątomierz do pomiaru kąta projekcji,

� wyciemnione pomieszczenie,

� zdalny wyzwalacz migawki aparatu (zalecane).

A.2.2 Rozmieszczanie sprzętu i obiektów

Przed rozpoczęciem należy ustawić i podłączyć:

� skanowany obiekt,

� aparat,

� projektor,

� komputer z programem skanera.

Aparat powinien być skierowany na obiekt, a projektor powinien być ustawiony z boku
aparatu, tak aby kąt widzenia względem środka obiektu różnił się o około 20–30°. Projektor
należy podłączyć do komputera i ustawić rozdzielczość obrazu tak, aby nie występowa-
ło jego skalowanie oraz wyłączyć korekcję kształtu obrazu w projektorze, w przeciwnym
wypadku obraz wzorów będzie niewyraźny. Należy również ustawić długość ogniskowej (w
obiektywach o zmiennej długości) i ostrość w obiektywie aparatu. Zmiany tych parametrów
powodują zmiany kąta widzenia aparatu, dlatego podczas skanowania należy wyłączyć au-
tomatyczne nastawianie ostrości.

A.2.3 Uruchomienie programu

Program skanera znajduje się w katalogu tronscan/src, aby go uruchomić wpisujemy:

cd tronscan/src
./tronscan.py

Program wypisuje powitanie i wyświetla znak zachęty >. Poniżej, dla rozróżnienia,
wszystkie komendy programu są poprzedzone tym znakiem.

46

A.2.4 Udogodnienia

Program zawiera system uzupełniania komend oraz rozwija znaki specjalne w celu uła-
twienia wprowadzania nazw plików. Przycisk TAB uzupełnia nazwy komend oraz parametrów
korzystając z biblioteki readline. Na przykład wpisanie:

> w[TAB]p[TAB] 10*x7??/

uzupełnia linię komend do poniższej, która wypisze wzory do katalogu pasującego do wzor-
ca (na przykład 1024x768):

> write_patterns 10*x7??/

Interfejs zawiera pomoc on-line, dostępną przez wydanie komendy help bez parame-
trów, która wypisuje kolejność kroków skanowania i wyświetla listę komend. Aby uzyskać
dodatkowe informacje na temat parametrów wybranej komendy, należy podać jej nazwę
jako parametr, na przykład:

> help setup_emitter

Innym udogodnieniem jest możliwość zachowania stanu projektu, co pozwala na ponow-
ne wykorzystanie danych oraz zachowanie czasochłonnych obliczeń. Do zachowania stanu
służy komenda save, która bierze za parametr nazwę pliku. Do zachowania obliczeń służy
przełącznik save model=1. Zachowany projekt można wczytać przy pomocy komendy load.

A.2.5 Ustawianie projektora

Na ustawienie projektora składają się następujące dane (w nawiasach są podane przy-
kładowe wartości):

� poziomy kąt projekcji projektora (20°),

� rozdzielczość (1024x768),

� przesunięcia:

w prawo (1,2m),

w dół (10cm),

do przodu (3cm),

� kąty:

przechyłu w lewo (1°),

pochylenia do przodu (-3°),

skrętu w lewo (20°).

Aby wprowadzić dane wymienione w przykładzie należy wydać następującą komendę:

> setup_emitter hfov=20. res=(1024,768) loc=(1200,100.,30.) rot=(1.,-3.,20.)

47

http://tiswww.case.edu/php/chet/readline/rltop.html

A.2.6 Ustawianie aparatu

Krok ten trzeba wykonać tylko, gdy użyty do skanowania aparat nie zapisuje potrzeb-
nych do odtworzenia ustawień metadanych w formacie EXIF . Jeśli metadane są dostępne,
aparat zostanie ustawiony automatycznie po załadowaniu zdjęć. Aby sprawdzić czy auto-
matyczne ustawienie się powiodło, wystarczy należy wykonać komendę status.

Do ustawienia aparatu potrzeba danych o:

� wielkości sensora (36mm × 24mm),

� ogniskowa obiektywu (50mm),

� odległość płaszczyzny ostrości (1,8m).

Aby wprowadzić dane wymienione w przykładzie należy wydać następującą komendę:

> setup_camera sensor_size=(36.,24.) focal_len=50. focus_dist=1800.

W wypadku automatycznego ustawiania program odtwarza wielkość sensora z rozdziel-
czości i wielkości piksela. Ta druga wielkość bywa czasem podana niedokładnie, przez co
mogą pojawić się zniekształcenia geometryczne. Zaletą takiego rozwiązania1 jest możliwość
przetwarzania zdjęć przyciętych przez aparat do mniejszej rozdzielczości.

A.2.7 Generowanie wzorów

Po ustawieniu projektora można wygenerować wzory do oświetlania obiektu. Aby zapisać
wzory do katalogu wzory w katalogu domowym użytkownika należy wykonać komendę:

> write_patterns ~/wzory

A.2.8 Wykonywanie zdjęć

Do wykonywania zdjęć używamy aparatu oraz programu wyświetlającego zdjęcia na
pełnym ekranie na przykład gwenview . W roli zdalnego wyzwalacza można użyć programu
gphoto2 , jeśli aparat obsługuje protokół PTP. W tym wypadku, aby wykonać zdjęcie należy
wpisać:

gphoto2 --capture-image-and-download --frames 1 --filename scan%k%M%S.nef

Takie podanie nazwy pliku, sprawi, że pliki będą ułożone alfabetycznie, jeśli tylko proces
skanowania nie będzie wykonywany na przełomie dnia. Rozszerzenie nef to pliki w forma-
cie Nikon Electronic Format. Oczywiście jest to tylko przykład. Program błędnie używa
rozszerzenia jpg, w wypadku użycia zmiennej %c.

Podczas wykonywania zdjęć trzeba wyciemnić pomieszczenie i kolejno oświetlać obiekt
wygenerowanymi wzorami. Wzory są tak nazwane, aby wyświetlenie ich w kolejności alfa-
betycznej było poprawne. Na końcu można jeszcze wykonać zdjęcie przy neutralnym oświe-
tleniu do użycia przy teksturowaniu.

Najlepiej wykonywać zdjęcia w formacie surowym, w szczególności ważne jest, żeby
nie aplikować korekcji gamma. Poniżej podane jest przykładowe uruchomienie programu
ufraw-batch, które przetworzy surowe zdjęcia w odpowiedni sposób:

1wobec braku alternatywnych

48

http://exif.org/
http://gwenview.sourceforge.net/
http://www.gphoto.org/proj/gphoto2/

ufraw-batch --gamma=1.0 --wb=camera --clip=digital --saturation=1 \
--interpolation=bilinear --wavelet-denoising-threshold=0 --black-point=0 \
--shrink=1 --rotate=camera --out-type=png --out-depth=8 --exif *.nef

Format TIFF, jako wyjściowy mógłby się wydawać bardziej odpowiedni, jednak proble-
my napotkane przy przetwarzaniu plików przy pomocy Python Imaging Library skłaniają
do użycia PNG . 8 bitowa głębia kolorów również jest wynikiem ograniczeń tej biblioteki.

A.2.9 Ładowanie zdjęć

Do ładowania zdjęć służy komenda load images. Aby załadować zdjęcia, przy założeniu,
że znajdują się w katalogu i nazywają się scan01.png, scan02.png... itd. należy wykonać
komendę:

> load_images scan*.png scan01.png

Zauważmy, że w przykładzie powtarzamy nazwę pierwszego zdjęcia na końcu listy. W ak-
tualnej wersji program nie wspiera teksturowania, ale z użyciem zewnętrznych programów,
można łatwo nałożyć teksturę, ponieważ aparat jest w początku układu współrzędnych. Po-
mimo braku funkcjonalności program oczekuje dodatkowego zdjęcia zawierającego teksturę
ze względu na planowane rozszerzenie, można w tym miejscu podać mu do wczytania zdję-
cie oświetlone białym wzorem. W obecnej wersji plik jest ignorowany, ale liczba podanych
plików jest sprawdzana w celu weryfikacji podanej rozdzielczości projektora.

A.2.10 Rekonstrukcja modelu

Interfejs zawiera możliwość uruchomienia poszczególnych faz rekonstrukcji osobno lub
jako całości. Pozwala to na powtórzenie tylko części obliczeń oraz zachowanie częściowo
wyliczonych danych. Wypisanie wyniku indeksowania w dwóch wymiarach nie wymaga
odtwarzania głębokości, więc dla otrzymania tego wyjścia wystarczy wykonać indeksowanie.
Wypisanie głębokości nie wymaga odtwarzania powierzchni, więc można je pominąć, gdy
wypisujemy obraz głębokości. Całość procesu można uruchomić komendą:

> reconstr

natomiast poszczególne fazy uruchamia się komendami:

> index
> depth
> faces

Program wypisuje dość szczegółowo postęp w każdym z kroków.

A.2.11 Wypisywanie modelu

Do wypisywania modelu służą dwie komendy write model i write image. Pierwsza
z nich wypisuje model w formacie Wavefront OBJ a druga służy do wypisywania mapy
wykrytych pasków i mapy głębokości jako obrazu w formacie PNG . Obie akceptują nazwę
pliku jako argument. Oprócz tego komenda write image akceptuje argumenty wskazujące
rodzaj danych i sposób ich przedstawienia.

Następujące po tej liście przykłady ilustrują:

49

http://www.w3.org/Graphics/PNG/
http://www.w3.org/Graphics/PNG/

� wypisanie modelu (domyślnie do pliku model.obj),

� wypisanie głębokości w kolorze na czarnym tle (domyślnie do pliku depth.png),

� wypisanie głębokości w kolorze na przezroczystym tle,

� wypisanie pasków w czerni i bieli na przezroczystym tle (domyślnie do pliku stripes.png),

� wypisanie pasków w kolorze z wygładzaniem.

> write_model
> write_image what=depth mode=black color=True
> write_image what=depth mode=alpha color=True
> write_image what=stripes mode=alpha color=False
> write_image what=stripes mode=smooth color=True

A.2.12 Konfiguracja

Dla uzyskania lepszych wyników może być konieczna konfiguracja programu. Program
tworzy swój katalog w standardowym dla systemów Unixowych miejscu (~/.tronscan).
Plik konfiguracyjny (~/.tronscan/config) jest wczytywany na starcie programu.

Następujące po liście przykłady (nie licząc nagłówka w nawiasach klamrowych), ilustrują
domyślne ustawienia indeksera:

� włączenie podpikselowej dokładności,

� włączenie rozmywania białego obrazu z promieniem 1,8 piksela,

� wyłączenie filtra separacji kolorów,

� wyłączenie filtra zwiększającego kontrast poziomy,

� włączenie filtra klepsydrowego,

� ustalenie poziomu cienia na wartość 20 i mniej,

� ustalenie poziomu wykrywania zielonego paska na więcej niż 25,

� ustalenie 10 pikseli ramki cienia,

� ustalenie szerokości okna wykrywania paska na 7.

[NumpyIndexer]
subpixel: True
blur_radius: 1.8
reduce_crosstalk: False
hourglass_blur: True
band_contrast: False
shadow_thres: 20
green_thres: 25
shadow_edge: 10
stripe_window: 7

Szczególnie ważnymi opcjami jest szerokość okna, poziom cienia i przełączniki filtrów.
Szerokość okna powinna wynosić mniej więcej tyle co średnia odległość pomiędzy paskami
i mniej niż dwukrotność najmniejszej odległości, poziom cienia zależy od ekspozycji, przy
zastosowaniu korekcji gamma (niezalecane) powinien być o wiele wyższy (ok. 120).

50

A.3 Skrypty danych testowych

Do ściągania i przygotowania danych testowych służą dwa skrypty fetch.sh i make.sh.
Znajdują się one w katalogu dla danych testu regresyjnego tronscan/test data/regression.
Uruchomienie ich kolejno po zainstalowaniu zależności spowoduje ściągnięcie danych z ser-
wera i ich przetworzenie z wersji surowej do formatu PNG . Skrypty wywołuje się polece-
niami:

./fetch.sh

./make.sh

Skrypt do ściągania ściąga tylko brakujące dane i nie nadpisuje już ściągniętych plików,
dlatego wielokrotne użycie skryptu pozwala na zaktualizowanie danych.

A.4 Program testujący

Program testujący wykonuje program skanera na danych testowych. Program znajduje
się w katalogu źródłowym tronscan/src. Program wykonuje trzy czynności:

� przeprowadza test,

� zachowuje wyniki przeprowadzonego testu do porównywania z kolejnymi uruchomie-
niami,

� porównuje aktualne wyniki z zapisanym wcześniej testem.

Poniższy przykład używa test1 jako nazwy testu. Do wykonania wymienionych wyżej
czynności służą odpowiednio wywołania:

./regression.py run

./regression.py set test1

./regression.py check test1

Komendy akceptują również dodatkowy parametr, który pozwala na selektywne urucho-
mienie testów. Aby uruchomić testy na pierwszym zdjęciu i na wycinkach, można wydać
odpowiednio następujące polecenia:

./regression.py run example01

./regression.py run crop

W wypadku, gdy zachowane do porównania wyniki zawierają inne pliki niż te w aktu-
alnym uruchomieniu, program pomija ich porównywanie oraz wypisuje tę informację.

Z testu regresyjnego można też skorzystać w celu utworzenia plików projektów do testo-
wania programu głównego. Dla szybkiego ich uzyskania, można wykonanie testu przerwać
kombinacją klawiszy [Ctrl]+C. Pliki projektów odwołujące się do danych testowych znajdu-
ją się w katalogu tronscan/test data/regression/data/ i mają rozszerzenie tronscan.
Można je załadować do programu stosując komendę load.

51

http://www.w3.org/Graphics/PNG/

B Zawartość płyty

Na płycie znajduje się praca w wymaganych przez uczelnię formatach, repozytorium
projektu, ściągnięte z serwera dane testowe (w wersji surowej) oraz wyniki dla testu filtrów.
Położenie tych danych przedstawia się następująco:

� praca w formacie PDF i TEX(o rozszerzeniu TXT) znajduje się w głównym katalogu

� repozytorium projektu znajduje się w katalogu tronscan i zawiera:

- dokumentację: katalog doc oraz pliki README i LICENSE

- źródła pracy pisemnej: podkatalog paper

- kod źródłowy programu: podkatalog src

- dane i wyniki testów: podkatalog test data

Literatura

[1] C. Rocchini, P. Cignoni, C. Montani, P. Pingi and R. Scopigno
A low cost 3D scanner based on structured light
Eurographics 2001, Volume 20, Number 3
http://www.vs.inf.ethz.ch/edu/SS2005/DS/papers/projected/rocchini-3dscanner.

pdf

[2] M. Levoy, K. Pulli, B. Curless et al.
The Digital Michelangelo Project: 3D scanning of large statues
ACM SIGGRAPH 2000, Addison Wesley, July 24-28 2000, pp. 131–144.
http://graphics.stanford.edu/papers/dmich-sig00/dmich-sig00-nogamma-comp-low.

pdf

[3] Simon Winkelbach, Sven Molkenstruck, and Friedrich M. Wahl
Low-Cost Laser Range Scanner and Fast Surface Registration Approach
Deutsche Arbeitsgemeinschaft für Mustererkennung 2006, LNCS 4174,
http://www.david-laserscanner.com/swi_2006_09_konferenz_dagm.pdf

[4] Daniel Scharstein, Richard Szeliski
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
International Journal of Computer Vision 47(1/2/3), pp. 7–42, April-July 2002
http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf

[5] Leonidas Guibas, Jorge Stolfi
Primitives for the Manipulation of General Subdivisions and the Computation of
Voronoi Diagrams
ACM Transactions on Graphics, Vol.4, No.2, April 1985

[6] Philipp Fechteler, Peter Eisert, Jürgen Rurainsky
Fast And High Resolution 3d Face Scanning
IEEE International Conference on Image Processing, September 2007
http://iphome.hhi.de/eisert/papers/icip07b.pdf

52

http://www.vs.inf.ethz.ch/edu/SS2005/DS/papers/projected/rocchini-3dscanner.pdf
http://www.vs.inf.ethz.ch/edu/SS2005/DS/papers/projected/rocchini-3dscanner.pdf
http://graphics.stanford.edu/papers/dmich-sig00/dmich-sig00-nogamma-comp-low.pdf
http://graphics.stanford.edu/papers/dmich-sig00/dmich-sig00-nogamma-comp-low.pdf
http://www.david-laserscanner.com/swi_2006_09_konferenz_dagm.pdf
http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf
http://iphome.hhi.de/eisert/papers/icip07b.pdf

[7] Philipp Fechteler, Peter Eisert
Adaptive Colour Classification for Structured Light Systems
IET Computer Vision 2008
http://iphome.hhi.de/eisert/papers/ietcv09.pdf

[8] Brian Curless, Steve Seitz
Course on 3D Photography
Sigraph 2000
http://www.cs.cmu.edu/~seitz/course/3DPhoto.html

[9] Fausto Bernardini, Holly Rushmeier
The 3D Model Acquisition Pipeline
Computer Graphics Forum, Volume 21 (2002), number 2 pp. 149–172
http://www1.cs.columbia.edu/~allen/PHOTOPAPERS/pipeline.fausto.pdf

[10] L. Alboul, G. Kloosterman, C.R. Traas, and R.M. van Damme
Best data-dependent triangulations
Tech. Report TR-1487-99, University of Twente, 1999.

[11] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Philips
Wprowadzenie do grafiki komputerowej
Wydawnictwa Naukowo-Techniczne, Warszawa 1995
ISBN 83-204-1840-2

[12] R.L. Graham, D.E. Knuth, O.Patashnik
Matematyka konkretna
Wydawnictwo Naukowe PWN, wydanie czwarte, Warszawa 2002
ISBN 83-01-13906-4

[13] http://www.geom.uiuc.edu/~samuelp/del_project.html

53

http://iphome.hhi.de/eisert/papers/ietcv09.pdf
http://www.cs.cmu.edu/~seitz/course/3DPhoto.html
http://www1.cs.columbia.edu/~allen/PHOTOPAPERS/pipeline.fausto.pdf
http://www.geom.uiuc.edu/~samuelp/del_project.html

	Wstęp
	Przegląd metod
	Wybór rozwiązania
	Praca bazowa
	Cel pracy

	Algorytm
	Historia rozwiązania
	Zasada działania
	Uproszczenia
	Założenia i układ współrzędnych
	Kalibracja
	Półproste
	Płaszczyzny
	Translacja płaszczyzn do globalnego układu współrzędnych

	Generowanie równań
	Półproste
	Płaszczyzny

	Korekcja zniekształceń
	Wzory, wykrywanie i indeksowanie
	Wybór wzorów
	Wzory
	Indeksowanie

	Rekonstrukcja głębokości
	Rekonstrukcja powierzchni

	Implementacja
	Środowisko i zależności
	Inżynieria programowania
	Architektura
	Moduł projektu
	Moduł konfiguracyjny

	Pakiet biblioteczny
	Interfejs

	Pakiet otrzymywania danych
	Pakiet rekonstrukcji
	Indekser
	Filtry
	Rekonstrukcja głębokości
	Rekonstrukcja powierzchni

	Pakiet wyjścia
	Program testu regresyjnego
	Funkcje testu

	Testy
	Dane testowe
	Skrypt przygotowujący dane
	Zdjęcia
	Wycinki
	Symulacja

	Test filtrów
	Test na zdjęciach
	Test na danych symulowanych
	Test na wycinkach

	Podsumowanie
	Trudności
	Możliwe rozszerzenia
	Sterownik aparatu
	Automatyczna kalibracja
	Korekcja zniekształceń
	Tekstura
	Automatyczne dostrajanie parametrów
	Wydajność
	Pakiet projektu
	Przenośność
	Inne formaty 3D
	Graficzny interfejs użytkownika
	Alternatywne komponenty
	Inne pomysły

	Instrukcja obsługi
	Instalacja
	Skanowanie
	Przygotowanie
	Rozmieszczanie sprzętu i obiektów
	Uruchomienie programu
	Udogodnienia
	Ustawianie projektora
	Ustawianie aparatu
	Generowanie wzorów
	Wykonywanie zdjęć
	Ładowanie zdjęć
	Rekonstrukcja modelu
	Wypisywanie modelu
	Konfiguracja

	Skrypty danych testowych
	Program testujący

	Zawartość płyty

