Vulkan a OpenGL

poréwnanie wydajnosci na przykltadach

(Vulkan and OpenGL — performance comparison based on examples)

Damian Dyndo

Praca magisterska

Promotor: dr Andrzej Lukaszewski

Uniwersytet Wroctawski
Wydzial Matematyki i Informatyki
Instytut Informatyki

10 sierpnia 2017






Streszczenie

Vulkan to nowe API graficzne i obliczeniowe stworzone z mysla o najbardziej
wymagajacych aplikacjach, ktérego gtéwnym konceptem jest udostepnienie bardzo
niskopoziomowego dostepu do GPU i przesuniecie odpowiedzialno$é za kluczowe
aspekty obstugi sprzetu ze sterownikéw na twércow aplikacji. Vulkan z zalozenia
przynies¢ ma spory wzrost wydajnosci dzieki nizszemu narzutowi na CPU oraz udo-
stepnieniu wielu mozliwosci dla optymalizacji. W pracy tej zbadam czy rzeczywiste
wyniki potwierdza zapewnienia twércow i czy korzystajac z tego API mozemy uzy-
skaé¢ lepsza wydajnoéé¢ w poroéwnaniu z interfejsem OpenGL. Korzystaé bede przy
tym z dostepnych testow wydajno$ciowych poréwnujacych oba API oraz przepro-
wadze wlasne testy na autorskiej aplikacji napisanej na potrzeby tej pracy. Ponadto
praca zawiera krotkie oméwienie kluczowych elementéw API Vulkan.

Vulkan is a new graphics and compute API created for performance-demanding
applications. Its core concept is to expose very low-level access to GPU and shift
responsibility of key aspects of managing hardware from drivers to application’ cre-
ators. Vulkan should, by design, come with a performance gain due to its low over-
head on CPU and exposition of more possibilities for optimizations. In this paper
I will try to test if that is really the case and if we — by using Vulkan API —
can gain performance comparing to OpenGL interface. To do this, I will analyze
existing performance benchmarks comparing both APIs and perform my own tests
using testing application created for this paper. Furthermore, this paper will include
short overview of key Vulkan API elements.






Spis tresci

1. Wprowadzenie|

T2

Celpracy| . . . . . . . . e

[1.2.1. Analiza wydajnosci|. . . . . . ... ... ... ... ...

[1.2.2.  Analiza optacalnosci| . . . . . . . ... ... ... ...

p.7.

otaty potok| . . . . .. L

3.

Programowalny potok] . . . . . ... ... o 00000

P

OpenGLdzig| . . ... ... o

B. Vulkanl

BL

Wprowadzenie| . . . . . ... L L

B2

Ogoélny zarys APIl. . . . . . ..o o

[3.2.1. Instancja] . .. ... ... ...

[3.2.2. Urzadzenial . . . . . .. . .. ... .

[3.2.3. Warstwy|. . . . . . . ..

10

10

11

11

13

13

14

14

15

17



6 SPIS TRESCI
[3.2.8. Synchronizacjal . . . . . . . .. .. o 23

B.3. Podsumowaniel . . .. ... .. oo 25

4. Przeglad istniejacych testow| 27
4.1. Przeglad autorskich testow] . . . . . . ... ... ... 27
4.1.1. Test Khronos DevU w Seulul . . . ... .. ... ... ... 27

41.2. Demo Gnome Hordel . . . . . ... ... ... ... .. .. 28

[4.1.3. Demo Satelite navigation| . . . . .. . ... ... ... ..., 30
41.4. Demo Stardustl . . . .. .. ... o oo 31

415, Test ARMI. . .. oo oo oo 31

[4.2. Przeglad testow opartych na silnikach graficznychl . . . . . . . .. .. 31

/ Unity] . . . . . 31

M22 XenKd . . oo 32
E23T0me . . oo 32

|4.3. Przeglad testow opartych na grach komputerowych| . . . . . . . . .. 32
[4.3.1. The Talos Principles| . . . . . . ... ... ... ... ..... 32

43.2. Doom 2016l . . . ... ... . oo 33

4.4, Podsumowaniel . . . . . ... ... L o 34

[5. Przeprowadzone testy]| 35
.................................. 35
[5.1.1. Opis projektu| . . . . . . . .. ..o 35

5.2 estyl. . . . 35
[5.2.1. Elementy wspolne| . . . . . . ... ... 0oL 36

[5.2.2. Test 1 — scena statyczna z duza iloscia obiektow| . . . . . . . 36

[5.2.3. Test 2 — scena dynamiczna z terenem wykorzystujacym LoD| 37

[5.2.4. Test 3 — scena statyczna z mapowaniem cieni| . . . . . . . . 40

[5.2.5. Test 4 — czas inicjalizacjidemal . . . .. ... ... ... .. 42

[5.3. Metodologia testowanial . . . . . ... ... ... 0oL 42
[0.4. Pomiary czasow|. . . . . . . . . ..o 43




SPIS TRESCI

b.5.1. Wymikitestu ll . . . . . ... ... ... o

5.5.2. Wymnikitestu 2l . . . .. . ...

b.5.3. Wymnikitestu 3| . . . . ... ... oo

b.5.4. Wymniki testud| . . . . ... ... . o

[5.6.  Wyniki redakcji serwisu Phoronix|. . . . . .. ... ... ... ...

[6._ Whioskil
6.1. Wydajnose| . . . . . .. ..

[6.2. Naktady pracy| . . . . . . . . . . . . . ..

[A Projekt GL_vs_VK|
IA.l. Kod zrodlowy|. . . . . . . . .o

A2, Kompilacjal . . . . . . ... ..

44
47
48
48
50

53
53
o4
95

57
o7
o8
58
99
99

61






Rozdziat 1.

Wprowadzenie

1.1. Wstep

Przez ostatnie kilkanascie lat rynek procesorow graficznych dynamicznie sie
rozwijal. Nowe modele kart graficznych obstuguja coraz to nowszg i bardziej skom-
plikowana funkcjonalno$é¢, ktora w zatozeniu oferowaé ma szersze mozliwosci oraz
przy$pieszenie renderowania skomplikowanych wizualizacji tréojwymiarowych. Pro-
gramisci chcac tworzy¢ przenosne aplikacje multimedialne zmuszeni sa do korzysta-
nia z odpowiednich interfejséw programistycznych pozwalajacych na dostep do tych

urzadzen.

Interfejs programistyczny aplikacji (ang. Application Programming Inter-
face, API) jest to zestaw regul pozwalajacych na komunikowanie sie réznych mo-
dutéw we wspolny i zrozumialy dla siebie ”jezyk”. Interfejs taki specyfikuje sie na
poziomie kodu zrédlowego napisanego w odpowiednim jezyku programowania.

Istnieje kilka popularnych i szeroko wykorzystywanych interfejsow programi-
stycznych pozwalajacych na korzystanie z procesoréw graficznych do skomplikowa-
nych celéw, takich jak renderowanie zaawansowanej grafiki dwuwymiarowej i tréj-
wymiarowej, czy wykonywanie skomplikowanych obliczen wykorzystujac przy tym
rownolegla architekture procesorow graficznych. Najpopularniejszymi z nich sa:

e Direct3D
¢ OpenGL
e Vulkan

o Metal

API te ciggle ewoluuja by nadazaé za zmianami wprowadzanymi w sprzecie oraz
by moc zaoferowaé najwieksza wydajnosé i elastycznosé. Kazdy z tych interfejséw ma



10 ROZDZIAL 1. WPROWADZENIE

swoje wady i zalety, zatem warto je znaé, by wiedzie¢, ktory z nich bedzie najlepszy

do danego zastosowania.

Na przestrzeni ostatnich kilkunastu lat zauwazy¢ mozemy trend w architektu-
rze tych interfejsow pokazujacy przenoszenie coraz to wiekszej odpowiedzialnoéci ze
sterownikow urzadzen na programistow. Dzieje sie tak, gdyz to tworcy danej apli-
kacji wiedza najlepiej jak dane zasoby zostana uzyte i nie musza oni zgadywac jak
dana aplikacja bedzie si¢ zachowywala.

1.2. Cel pracy

Celem pracy jest poréwnanie nowego API graficznego i obliczeniowego Vulkan z
istniejacym wiele lat i szeroko wykorzystywanym interfejsem OpenGL. Kluczowymi
elementami badanymi w tej pracy beda:

e wplyw API na wydajnoéé¢ aplikacji,

e subiektywna ocena oplacalnosci wyboru tego API.

Aby osiagnac te cele, przejrzymy dostepne testy aplikacji wspierajacych oba in-
terfejsy graficzne i przeanalizujemy je pod wzgledem wydajnosci. Na potrzeby pracy
stworzone zostaly rowniez autorskie testy skupiajace sie na poréwnaniu réznic wy-
dajnosci obu API. Testy te sktadaja sie z kilku identycznych scen renderowanych w
obu API i pozwalaja zbada¢ miedzy innymi ich narzut. Dodatkowo, postaram sie
opisaé¢ kluczowe elementy interfejsu Vulkan, ze szczegblnym uwzglednieniem aspek-

téw wydajnosciowych.

1.2.1. Analiza wydajnosci

Najwazniejsza zapowiadang zaleta nowszego API jest mozliwosé uzyskania znacz-
nie lepszej wydajnosci wzgledem dostepnych dotychczas interfejsow. Tworcy Vulkana
zapewniaja, ze samo korzystanie z niego bedzie wigzaé sie z zyskiem wydajnoscio-
wym wynikajacym z nizszego narzutu na CPU przez odchudzenie sterownikéw. Ko-
lejnym waznym elementem jego architektury jest fakt, ze zostal on zaprojektowany
z my$la o efektywnym wykorzystywaniu w aplikacjach wielowatkowych. Vulkan udo-
stepnia rowniez bardzo niskopoziomowe mechanizmy do zarzadzania zasobami urza-
dzen go obstugujacych, co przetozy¢ ma sie na lepsze ich wykorzystanie. To wszystko
powinno pozwolié¢ na otrzymanie zauwazalnie wyzszej wydajnosci, szczegdlnie w apli-
kacjach wykonujacych duza iloé¢ obliczen na gtéwnym procesorze (CPU).

Vulkan niestety nie wprowadza duzych zmian w kwestii pracy wykonywanej
przez procesor graficzny (GPU), co prawdopodobnie przelozy sie na male zyski lub
ich brak w aplikacjach silnie ograniczonych przez moc GPU.



1.3. OMOWIENIE ROZDZIALOW 11

1.2.2. Analiza optacalnosci

Istotnym elementem, od ktérego zalezy tempo rozwoju i przyswojenia nowego
API jest poziom trudnosci zwigzany z jego nauka, zrozumieniem oraz efektywnym
wykorzystywaniem w praktyce. By API odniosto sukces, powinno by¢ relatywnie
proste, zrozumiate, a korzystanie z niego nie powinno wymagaé¢ znacznie wiekszych
naktadow pracy niz w przypadku korzystania z innych API. Pracujac nad aplika-
cjami testujacymi wydajnosé sprébuje subiektywnie ocenié¢ pod tym wzgledem jak

nowy interfejs wypada na tle swojego poprzednika.

1.3. Omowienie rozdzialéw

Rozdziat 2. OpenGL

W tym rozdziale przypomne pokrotce historie tego API, om6wie na przyktadach
jak ewoluowalo ono przez te wszystkie lata by stac sie tym, czym jest dzis, oraz —
na koniec — opowiem o tym jak wyglada ono i jak stosowane jest dzis.

Rozdzial 3. Vulkan

Rozdziat ten skupiony bedzie na réznych aspektach tytutowego API. Oméwie w
nim jego architekture, kluczowe elementy, ktére zostaly wprowadzone — zwracajac
przy tym szczegdlng uwage na te elementy, ktérych nie znajdziemy w jego poprzed-
niku. Ponadto postaram sie réwniez poréwnaé je ze starszym interfejsem i wskazaé

elementy wprowadzone z nastawieniem na wydajnos¢.

Rozdzial 4. Przeglad istniejacych testéow

Znajda sie tutaj omdéwienia dostepnych w sieci testéw poréwnujacych wydajnosé
oraz wykorzystanie zasobéw aplikacji wykorzystujacych oba interfejsy. Analizowane
testy przedstawione zostana tu w trzech kategoriach:

1. Testy oparte na autorskim oprogramowaniu stworzonym w tym celu.
2. Testy oparte na silnikach graficznych.

3. Testy oparte na wydanych dotychczas grach komputerowych.

Rozdzialt 5. Przeprowadzone testy

W rozdziale tym znajda sie informacje na temat stworzonego przeze mnie na
cele tej pracy projektu, ktorym postuze sie do przetestowania wydajnosci uzyskanej



12 ROZDZIAL 1. WPROWADZENIE

przy zastosowaniu kazdego z omawianych interfejséw. Omoéwiony bedzie pokrotce
sam projekt, a nastepnie szerzej opisany kazdy stworzony test wraz zagadnieniami
specyficznymi dla implementacji w kazdym z testowanych API. Nastepnie podane

zostang informacje o sposobie przeprowadzenia testéw oraz ich wyniki wraz z analiza.

Rozdzial 6. Wnioski

Rozdzial ten zawieraé bedzie podsumowanie informacji zawartych w tej pracy
oraz wynikéw uzyskanych w trakcie jej tworzenia. Postaram si¢ w nim zwiezle przed-
stawi¢ wnioski wyplywajace z zebranych danych oraz odpowiedzie¢ na dwa kluczowe

pytania zadane wczesniej w tym rozdziale, czyli:

1. Czy korzystanie z nowszego interfejsu pozwala zapewnié¢ wigksza wydajnosé?

2. Jak wygladaja réznice pomiedzy naktadem pracy potrzebnym na stworzenie
aplikacji w tych API?

Dodatek A. Projekt GL_vs_VK

Rozdzial ten opisuje stworzony na potrzeby tej pracy projekt pozwalajacy na
testowanie obu API graficznych w kilku przygotowanych scenariuszach testowych.
Zawiera on krétki opis kodu zrédtowego, uzytych bibliotek oraz informacje o budo-
waniu i korzystaniu z projektu.



Rozdziat 2.

OpenGL

2.1. Historia

Interfejs OpenGL zostal stworzony w roku 1992 przez firme Silicon Graphics,
aktualnie znana pod nazwa SGI, jako odpowiedz na éwczesne zapotrzebowanie prze-
noénego i wspélnego API dla szerokiego grona dostepnych kart graficznych. Powstat
on poprzez przeksztalcenie swojego protoplasty — interfejsu IrisGL — w otwarty
standard oraz odchudzenie go ze zbednych — z punktu widzenia renderowania gra-
fiki — funkcjonalnosci. Jego gléwna zaleta byla woéwczas mozliwosé uzywania go
na szerokiej klasie procesorow graficznych, co z czasem i pojawieniem sie innych
interfejséw przestalo odgrywaé tak wielka role. Interfejs ten ciagle ma wiele zalet
w stosunku do jego aktualnej konkurencji, z ktérych najwazniejsza wydaje sie by¢
wieloplatformowo$¢ i przenosnosé na rézne systemy operacyjne, w przeciwienstwie
do innych swoich rywali, takich jak — wydanego przez firme Microsoft — Direct3D,
ktory dziata tylko na systemach z rodziny Windows.

Aktualnie API rozwijane jest przez Khronos Group, ktéra powstala w roku
2006 i zrzesza wiele firmy z branzy takich jak Advanced Micro Devices, Intel
Corporation czy NVIDIA. Organizacja ta skupia si¢ na tworzeniu i rozwijaniu
otwartych i darmowych standardéw i interfejséw programistycznych.

Pierwsze wersje API byly relatywnie proste i opieraly sie na stalym potoku
graficznym oferujac podstawowe mozliwosci i mala elastycznosé. Z czasem, by daé
programistom wiecej swobody, udostepniono programowalny potok graficzny, ktory
byt swego rodzaju rewolucjag w tym jak tworzono aplikacje graficzne. Zapewnialt
on réwniez znacznie wiekszg funkcjonalnosé co pozwolilo na implementacje duzo
bardziej skomplikowanych i efektownych algorytméw.

Aby przyépieszy¢ rozwdj interfejsu, wprowadzony zostal mechanizm rozsze-
rzen. Pozwalal on tworcom procesoréw graficznych oraz firmom zaangazowanym
w rozwdj interfejsu na wprowadzanie wtasnych, niestandardowych rozszerzen. Naj-

lepsze i najprzydatniejsze rozszerzenia z czasem, juz w stabilnej postaci, zostawaly

13



14 ROZDZIAL 2. OPENGL

wcielane do podstawowej wersji API. Dzigki temu mechanizmowi programisci mieli
znacznie szybszy dostep do funkcjonalnosci pojawiajacej sie w najnowszych genera-
cjach sprzetu. Minusem tego rozwiazania byla fragmentacja dostepnych elementéw
API pomiedzy konkretnymi procesorami graficznymi oraz sprzetem réznych firm,
przez co pisanie wydajnych aplikacji sprowadzalo sie do implementowania podsys-
teméw graficznych na kilka sposobéw i wybraniu aktualnego w zaleznosci od tego
jakie elementy interfejsu sa dostepne na danym sprzecie.

OpenGL czesto przedstawiane jest jako wielka maszyna stanéw, na ktéra mozna
wplywaé poprzez wywolywanie odpowiednich funkcji interfejs. Tak skonstruowane
— ze wzgledu na domyslng konfiguracje wielu elementéw — jest bardzo proste w
uzytkowaniu. Architektura taka jednak czesto byla krytykowana i prowadzila do
wielu probleméw, ktoérych czeéé nie zostala — i prawdopodobnie nie zostanie juz
nigdy — rozwiazana. Przykladem takiego problemu moze byé¢ brak mozliwosci uzy-
wania API na wielu watkach i niezaleznego jego wykorzystania przez kilka bibliotek

jednoczesnie.

2.2. Staty potok

Staly potok (ang. fized-function pipeline) to proces renderowania grafiki do-
stepny w API OpenGL od pierwszych jego wersji. Polegal on na udostepnieniu pro-
gramistom ustalonego procesu renderowania, na ktory mogli oddziatywaé tylko w
minimalny sposéb poprzez ustawienie odpowiednich zmiennych. Po wywotaniu me-
tody rysujacej, procesor graficzny, posiadajac wszystkie dane, przeprowadzal usta-
lone obliczenia zgodne z ustawieniami stalego potoku. Staty potok byt chwalony za
swoja prostote i z tego wzgledu czesto wykorzystywany w najprostszych aplikacjach
graficznych. Wraz z wersja 3.0, twércy API wprowadzili mechanizm deprecjono-
wania przestarzatej funkcjonalnosdci, w tym réwniez statego potoku. Wersja 3.1 usu-
neta z gtéwnego kontekstu wszystkie oznaczone tak elementy interfejsu, wymuszajac
przy tym na programistach przepisanie oprogramowania z wykorzystaniem bardziej
elastycznego mechanizmu programowalnego potoku. Obstuga statego potoku zostala
jednak zachowana we wstecznie-kompatybilnym kontekécie, przez co w wickszoéci
implementacji jest dostepna w nim do dzis.

2.3. Programowalny potok

7 czasem metoda stalego potoku okazala sie niewystarczajaca do renderowania
coraz to bardziej realistycznej grafiki i programistom udostepniono — poczatkowo w
formie rozszerzen, ktére oficjalnie zostaly czesciag API w wersji 2.0 — mechanizm pro-
gramowalnych shaderéw (ang. programmable pipeline). Sa one malymi programami
pisanymi w jezyku GLSL, ktéry przypomina jezyk C. Dzieki nim programista moze
wplywaé na czesci potoku, przez ktore przechodzily wygenerowane wierzchotki oraz



2.4. OPENGL DZIS 15

fragmenty, co pozwolilo na stworzenie i implementacje catkiem nowych i zdecydo-
wanie bardziej skomplikowanych i efektownych algorytméw, ktérych wykonywanie
wczesniej nie bylo praktyczne. Idea programowalnych potokow zyskala na popular-
nosci i dzi$ sa one dostepne w jakiej$ postaci w praktycznie wszystkich najpopu-
larniejszych interfejsach. Z biegiem czasu programisci uzyskali kontrole nad wieksza
iloscig etapow potoku. Na dzien dzisiejszy programista moze uzy¢ nastepujacych
rodzajow shaderdw:

e shader wierzcholkéw,
e shader fragmentéw (lub pikseli),
e shader geometrii,

e shader teselacji.

Listing 2..1: Przyktadowy kod shadera wierzchotkéw w jezyku GLSL.

#version 330 core

layout (location = 0) in vec4 input_position;

uniform mat4 MVP;

void main ()
{

gl_Position = MVP * input_position;

2.4. OpenGL dzis

API OpenGL znacznie ewoluowalo od jego pierwszej wersji. W aktualnej wersji
— na czas pisania jest to wersja 4.5 — programista ma do dyspozycji znacznie wiecej
niskopoziomowych mechanizméw, tak, by méc jak najlepiej wykorzystywac¢ aktualne
procesory graficzne i uzyska¢ na nich jak najlepsza wydajno$¢. Funkcjonalnoéé¢ ta
pojawialta sie w formie rozszerzen, z ktorych spora ilos¢ znalazla sie juz w standardzie

wersji 4.5, i ciggle jest powickszana.

Dostepne sa rowniez rozszerzenia do API, ktore staraja sie udostepnié¢ funkcjo-
nalnos¢ podobng do tej znanej z Vulkana E[) i DirectX 12, czy nawet wytaczy¢ pewne

elementy walidacji, by uzyskaé efekt podobny do warstwowej architektury nowszego
API[].

Warto rowniez wspomnieé, ze wérdéd programistéw wyksztalcily sie pewne tech-

niki programowania — znane miedzy innymi jako AZDO (ang. Approaching Zero

IPrzyktadem moze byé rozszerzenie NV_command_list.
2Umozliwié to ma dopiero rozwijane rozszerzenie KHR_no_error.



16 ROZDZIAL 2. OPENGL

Drier Overhead) — ktére maja na celu w znacznym stopniu zminimalizowanie lub

nawet catkowite wyeliminowanie wad architektury tego interfejsu.



Rozdziat 3.

Vulkan

3.1. Wprowadzenie

Vulkan to nowy interfejs graficzny i obliczeniowy stworzony przez Khronos
Group jako nastepca interfejsu OpenGL. Udostepniony zostal publicznie w lutym
2016 roku na wielu platformach wspierajac przy tym takie systemy operacyjne jak
Windows 7 i nowsze, Linux, Android oraz Tizen.

Gléwnymi motywacjami do stworzenia nowego API byl brak istniejacego in-
terfejsu dobrze modelujacego architekture aktualnie dostepnych procesoréw graficz-
nych, oraz stworzenie nowoczesnego i czystego API, ktére w tatwy sposéb pozwala-
toby na niskopoziomows komunikacje z szeroka gama urzadzen na réznych platfor-
mach. Bazuje on w duzej mierze na przekazanym przez AMD, wlasnoéciowym API
nazwanym Mantle, jednak rézni sie on pewnymi elementami od swojego protopla-

sty.

Vulkan celuje w najbardziej zasobozerne i wymagajace aplikacje multimedialne
oraz gry. Przerzuca on spora czes$¢ odpowiedzialnosci dotychczas cigzacej na sterow-
nikach na programistéw, przez co uwazany jest za duzo bardziej niskopoziomowe API
niz OpenGL. Ma to na celu udostepnienie programiscie mozliwosci do wykorzystanie
dostepnych zasobéw w najlepszy mozliwy sposéb zgodnie z zamierzonym sposobem
ich uzycia. Waznym elementem jest réwniez idea bardzo niskiego narzutu interfejsu,
ktéra wynika z odchudzenia sterownikéw. Sterowniki obstugujace to API bowiem
moga by¢ znacznie 1zejsze, gdyz nie musza sprawdzaé poprawnosci wszystkich zapy-
tan oraz — wynikajaca ze wzgledu na pseudo-obiektows architekture — aktualnego
globalnego stanu, a jedynie odnosza sie do konkretnych obiektéw. Ponadto dotych-
czas to sterowniki odpowiadaly za takie operacje jak alokacja pamieci czy automa-
tyczne czyszczenie zasobow, co — nie znajac sposobu w jaki dziata aplikacja — byto
ciezkim i wymagajacym zasobow zadaniem. Vulkan wymaga od programisty sporej
wiedzy na temat tego, co zostanie wykonane jeszcze przed wykonaniem czegokol-
wiek, dzieki czemu sterowniki moga lepiej zaplanowaé prace, ktorg beda wykonywaé

17



18 ROZDZIAL 3. VULKAN

oraz wykonaé¢ ja w pelni optymalnie.

Vulkan zaprojektowany jest w sposéb warstwowy, dzieki czemu programista
moze wlaczy¢ dodatkowe warstwy walidujace sposéb wykorzystania interfejsu. Po-
zwala to zaoszczedzi¢ naktad pracy normalnie przeznaczony na sprawdzanie popraw-
noéci aplikacji w gotowym i sprawdzonym produkcie oraz wtaczenie ich tylko w trak-
cie rozwijania aplikacji, co przeklada sie na znacznie nizszy narzut. Dotychczasowo

wylaczenie walidacji w istniejacych API nie bylo mozliwe.

3.2. Ogéblny zarys API

Interfejs ten zostal zaprojektowany w nowoczesny i przemyélany sposob. Jego
architektura przypomina dobrze znany programistom interfejs obiektowy, czego przy-
ktadem moze by¢ koniecznoéé¢ podania uchwytu do obiektu na ktérym bedziemy
wykonywaé dang czynno$é¢ jako pierwszy argument funkcji. Dzieki dobremu nazew-
nictwu elementéw interfejsu, poruszanie si¢ po nim jest stosunkowo proste. API to
nie korzysta z ogromnej maszyny stanéw oraz listy globalnie aktywowanych obiek-
téw, a prawie kazda operacja wykonywana jest z perspektywy wskazanego obiektu
i wymaga podania uchwytéw do wszystkich obiektéw, do ktorych sie wlasnie odno-

simy.

Vulkan wprowadza wiele nowych obiektéw modelujacych w niskopoziomowy
sposob elementy dostepnego sprzetu czy potoku renderujacego. Czesé¢ z tych elemen-
téw wprowadzona jest, by da¢ programiscie wiekszg elastycznoé¢ w tym co zamierza
zrobi¢, a cze$¢ wprowadzona zostata gloéwnie by umozliwié¢ lepsze wykorzystanie
sprzetu w typowych zastosowaniach i pozwoli¢ na lepsza optymalizacje aplikacji. In-
terfejs jest przy tym spdjny i zachowuje swoje konwencje w nazewnictwie, przez co
poruszanie sie po funkcjach, statych czy wartosciach wyliczen jest proste i intuicyjne.
Dodatkowo API to korzysta z dobrodziejstw nowszych standardéw jezykéw progra-
mowania oraz zalecanych wzorcéw projektowych, czego przyktadem moze by¢ fakt
rozdzielenia wszystkich wartosci wyliczeniowych w osobne typy. O ile w jezyku C nie
daje to kompletnego bezpieczenstwa typow, o tyle jest to zdecydowany krok naprzéd
wzgledem swojego poprzednika — gdzie wszystkie wartosci enumeracji nalezaty do
jednego, wspdlnego typu — oraz pozwala to na stworzenie bibliotek opakowujacych
ten interfejs i uzyskujacych pelne bezpieczenstwo typéwE

Podobnie jak OpenGL, Vulkan réwniez wspiera mechanizm rozszerzen, ktore

moga by¢ zdefiniowane na réznych poziomach:

e poziom instancji — funkcjonalnosé¢ dostepna dla catej aplikacji,

e poziom urzadzenia — funkcjonalnos¢ dostepna na wybranym urzadzeniu.

!Przyktadem takiej biblioteki moze by¢ oficjalny wrapper API w jezyku C4-+ o nazwie Vulkan-
Hpp. Wykorzystuje on obiektows architekture interfejsu by ulatwi¢ korzystanie z niego implemen-

tujac znane wzorce projektowe.



3.2. OGOLNY ZARYS API 19

3.2.1. Imnstancja

Kazda aplikacja korzystajaca z tego interfejsu musi stworzy¢ jej wlasng instancje
Vulkana, ktéra bedzie skupiata w sobie caly swdj stan oraz wiazala ze soba wszystkie
stworzone na potrzeby aplikacji obiekty. W stosunku do architektury OpenGL, wy-
daje sie to by¢ znacznie lepszym rozwiazaniem niz ogromna i ciezka w zrozumieniu
maszyna stanéw, w ktorej latwo sie zgubié.

Tworzac instancje, programista musi sprecyzowaé z ktérych rozszerzen bedzie
korzystal oraz ktére warstwy powinny zosta¢ wlaczone. Ponadto programista prze-
kazuje informacje na temat uruchamianej aplikacji oraz silnika, z ktérego korzysta.
Pozwala to w latwy sposéb na zidentyfikowanie przez sterownik graficzny urucha-
mianej aplikacji i wykorzystanie ewentualnych optymalizacji zaimplementowanych
dla konkretnego silnika graficznego.

Majac wlasng instancje Vulkana, programista moze sprawdzié¢ jakie urzadzenia
fizyczne sg dostepne i zaczaé na nich prace.

3.2.2. Urzadzenia

Vulkan udostepnia programiscie dwa typy obiektéw zwiazanych z urzadzeniami,
ktére moga wykonywaé polecania Vulkana:

e Urzadzenia fizycznie,

e Urzadzenia logiczne.

Urzadzenia fizyczne modelujg procesory graficzne i obliczeniowe, ktére obstu-
guja sprzetowo lub programowo ten interfejs. Pozwala to programiécie miedzy in-
nymi na wybor odpowiedniego urzadzenia na systemach posiadajacych kilka takich
urzadzen (na przyklad zintegrowana z procesorem karte graficzna oraz dedykowana
karte graficzna), co nie byto mozliwe w przypadku jego poprzednika. Z urzadzeniami
fizycznymi wiazg sie odpowiednie struktury opisujace dostepna funkcjonalno$é oraz
obowiazujace dla niego nim limity i wielkosci dostepnych zasobdéw.

Urzadzenia logiczne to abstrakcyjne uchwyty wykorzystywane w wiekszosci
funkcji API. Odpowiadaja one logicznemu urzadzeniu, ktore wykorzystywaé bedzie
aplikacja. Dzieki nim programista — po wybraniu danego urzadzenia fizycznego —
nie musi przejmowaé sie jego szczegdtami. W przyszlosci mozliwe bedzie réwniez
stworzenie urzadzenia logicznego, ktére grupuje zestaw urzadzen fizycznych, ktore
beda rozdzielaly miedzy soba prace i dzielity wspdélnie zasoby. E|

2Funkcjonalnoéé taka wymagaé bedzie dostepnych kilku rozszerzef, m.in. VK_KHX_device_group,
ktére aktualnie sa w trakcie rozwoju.



20 ROZDZIAL 3. VULKAN

3.2.3. Warstwy

Jak wspomniano wczedniej, Vulkan zaprojektowany jest w sposdb warstwowy.
Sprowadza si¢ to do dynamicznego wywolywania funkcji z API w zaleznosci od
wlaczonych warstw. Jesli wszystkie warstwy sa wylaczone, po wywotaniu funkcji z
API sterowanie przechodzi bezpoérednio do sterownika. Jesli jednak ktores warstwy
sa wlaczone, to sterowanie najpierw przechodzi przez wszystkie aktywne warstwy
by w konicu trafi¢ do sterownika. Dzigki temu mozliwe jest uzyskanie efektow takich
jak:

Sprawdzanie czy API uzywane jest poprawnie,
e Mierzenie wydajnosci,

e Zapisywanie uzytych polecen,

Wspomaganie debugowania aplikacji,

I wiele innych...

Aktualnie dostepnych jest kilka warstw sprawdzajacych poprawnos$é uzywa-
nia API oraz wspomagajacych debugowanie aplikacji. Dodatkowo programisci moga
tworzy¢ wlasne warstwy i rozszerzaé istniejace o wlasng funkcjonalnosé. Wszystko
to daje programiscie ogromna elastycznos¢ oraz pozwala na zaoszczedzenie zasobéw,
gdy aplikacja zostanie juz w pelni przetestowana.

3.2.4. Kolejki

Kolejki to elementy API reprezentujace abstrakcyjne kolejki zadan do ktérych
programista moze wysyla¢ swoje polecenia by zostaly wykonane na urzadzeniu.
Kazda kolejka moze wspiera¢ wybrany podzbiér nastepujacych operacji:

e Operacje graficzne,
e Operacje obliczeniowe,

e Operacje transferowe,

e Operacje zarzadzania zasobami rzadkimi (ang. sparse).

Kolejki pogrupowane sa w rodziny kolejek, w ktérych kazda kolejka wspiera
taki sam zestaw funkcjonalnodci. W praktyce rodziny kolejek odpowiadaja zazwy-
cza] dostepnemu fizycznie sprzetowi, zatem programista majac do dyspozycji kilka
kolejek, moze wykonywaé roézne operacje jednocze$nie. Czesta praktyka jest udo-
stepnianie kolejki obstugujacej wszystkie dostepne operacje oraz osobnej kolejki ob-
stugujacych tylko transfer danych, przez co programista moze w optymalny sposéb



3.2. OGOLNY ZARYS API 21

przesylaé¢ dane pomiedzy pamiecig RAM oraz VRAM jednocze$nie wykonujac inne

obliczenia.

Warto dodaé, ze w przypadku obstugi przez sprzet funkcjonalnosci asynchro-
nicznych obliczen (ang. async compute), implementacja jest w stanie wykonywaé
jednoczeénie operacje obliczeniowe oraz operacje renderujace. Taka funkcjonalno$é
wspierana jest aktualnie tylko przez najnowsze karty graficzne firmy AMD.[14] 15] E|

3.2.5. Bufory komend

Wszystkie operacje wykonywanie na procesorze graficznym muszg zosta¢ wy-
stane do kolejki danego urzadzenia. Wysylane zadania sa pogrupowane wewnatrz
buforéw komend, a proces dodawania komend do bufora nazywa sie ,nagrywaniem
bufora komend”. Bufor taki to abstrakcyjna struktura opakowujaca specyficzne dla
danej implementacji struktury przechowujace dodane komendy. Dzicki nie progra-
mista moze dodaé kolejne komendy do wykonania na urzadzeniu bez znajomosci

szczegotow implementacyjnych sterownikéw.

Nagrywanie komend do bufora odbywa sie w trzech krokach:

1. Zasygnalizowanie rozpoczecia nagrywania. Jesli bufor byt juz nagrany, nalezy
go wezedniej zresetowaé by moégt by¢ znéw uzywany. Ponadto jedli bufor byt
wystany do urzadzenia, nalezy upewni¢ sie przed jego modyfikacja, ze urza-
dzenie zakonczylo wykonywanie operacji odwotujacych sie do tego bufora.

2. Wykonanie po stronie aplikacji funkcji dodajacych dane komendy do bufora.
Kazda komenda przyjmuje jako pierwszy argument uchwyt bufora, a wszyst-
kie parametry uzyte w komendach sg kopiowane do bufora. Z tego wzgledu
zasoby stworzone na jej potrzeby moga zostaé¢ zwolnione zaraz po wywola-
niu danej funkcji. stworzone na jej potrzeby. Wykonywanie tych funkcji musi
byé¢ synchronizowane przez aplikacje — to znaczy dwa rézne watki nie moga
jednoczeénie wykonywaé operacji na tym samym buforze komend.

3. Zasygnalizowanie zakonczenia nagrywania. Wszystkie ewentualne sprawdzenia
btedéw sg odroczone do tego miejsca i uzytkownik dowie sie o ewentualnych

problemach dopiero na tym etapie.

Tak nagrany bufor moze zostaé¢ wystany do kolejki, gdzie wszystkie zapisane w
nim komendy zostana asynchronicznie wykonane. Po jego wykonaniu, programista
moze go zniszczy¢, zwalniajac tym samym jego zasoby, zresetowaé, by mdc ponownie
go wypelni¢ innymi komendami, lub wystaé¢ jeszcze raz te same komendy. Dzigki
temu programista moze wielokrotnie wykonywaé polecenia nagrane tylko jeden raz.

3Funkcjonalnoéé ta jest wspierana przez karty graficzne oparte o architekture Graphics Core
Nezt [13] uzyta w wybranych modelach z serii Radeon HD 7000 i nowszych.



22 ROZDZIAL 3. VULKAN

Kazdy bufor komend musi zostaé¢ stworzony z obiektu VkCommandPool repre-
zentujacego abstrakcyjng pule zasobow. Powodem tego jest che¢ zminimalizowania
ilos¢ alokacji pamieci i przyspieszenie tworzenia tych obiektéw. Bardzo waznym ele-
mentem tej architektury jest rowniez fakt, iz dostep do bufora komend oraz obiektu
reprezentujacego pule zasobow, z ktorych zostal utworzony, musi by¢ synchroni-
zowany przez programiste. Pozwala to programiscie w srodowisku wielowatkowym
utworzy¢ osobne dla kazdego watku pule zasobdéw, z ktorych beda tworzone bufory
komend uzywane na danym watku. Korzystajac z interfejsu Vulkana w taki sposob,
programista moze wykonywaé¢ prace na wielu watkach bez korzystania z zadnych

zewnetrznych mechanizméw synchronizacji zasobéw.

Warto zauwazy¢, ze nagrywanie buforéw komend jest jedng z najbardziej wyma-
gajacych operacji, zatem programista powinien upewni¢ sie, ze robi to w najbardziej
optymalny sposéb.

3.2.6. Potoki i deskryptory

We wczesniejszych interfejsach obiekty opisujace aktualnie wykonywany potok
graficzny — lub obliczeniowy — byly ustawiane czesciowo poprzez ustawianie pew-
nych jego elementéw. Wiagzalo sie to z tym, ze implementacja danego API nigdy nie
wiedziata do konica co nastapi za chwile i nie zawsze potrafita w pelni zoptymalizo-
waé prace. Vulkan wprowadza tu zmiane i udostepnia obiekt bedacy reprezentacja
calego potoku, ktéry z gory precyzuje wszystkie jego etapy oraz jawnie informuje
o wszystkich wykorzystywanych w nim danych i sposobie ich przeptywu pomiedzy
kolejnymi etapami. Majac do dyspozycji pelna wiedzy na temat sposobu uzycia in-
terfejsu przez aplikacje, sterownik moze lepiej zoptymalizowaé prace wykonywana w
takim potoku.

Zmienil sie réwniez sposob aktualizacji uniforméw, ktére w starszych interfej-
sach jak OpenGL byly ustawiane pojedynczo. W Vulkanie zgrupowane sg one w
zbiory deskryptorow co pozwala ustawié¢ wszystkie jednoczeénie. Pozwala to réwniez
w latwy sposdb pogrupowaé wykorzystywane uniformy wedlug czestotliwosci ich
zmian i w jednej operacji zaktualizowaé tylko te, ktére zmienily sie od ostatniego
polecenia rysowania.

By przyspieszy¢ tworzenie deskryptordéw, alokowane sg one — tak jak bufory
komend — z obiektéw reprezentujacych pewne pule zasobdéw.

3.2.7. Pamieé

Programista korzystajacy z Vulkana ma bezposredni dostep do wszystkich zaso-
bow pamieci widocznych z punktu widzenia implementacji interfejsu. R6zne rodzaje
zasob6w pamieci pogrupowane sa w sterty, z ktérych kazda rézni sie rozmiarem oraz
pewnymi cechami. Przyktadowo jedna sterta moze reprezentowaé¢ pamie¢ VRAM, a



3.2. OGOLNY ZARYS API 23

inna pamie¢ RAM. Niektore pamieci moga by¢ widoczne bezposérednio przez aplika-

cje, a inne mogg by¢ widoczne tylko dla urzadzenia.

Kazda sterta posiada kilkanascie typéw pamieci, jaka moze by¢ z zaalokowana.
Typy te zazwyczaj odpowiadajg konkretnym zasobom, do jakich mozna je uzy¢. Dla
przyktadu obiekty obrazéw moga wymagaé innego typu pamieci niz obiekty bufo-
row. Typy réowniez moga rézni¢ sie tym, czy sa spdjne, czy moze wymagaja jawnych
czyszczen pamieci cache, o ile jej uzywaja. Zasoby obrazéw posiadajg réwniez stan
nazywany ukladem (ang. layout). Ustawienie odpowiedniego uktadu dla konkret-
nej operacji jest wymagane, a korzystanie z zasobu bedacego w zlym stanie moze
prowadzi¢ do ciezkich w zdiagnozowaniu bteddéw.

Programista odpowiada za poprawne alokowanie, uzywanie oraz zwalnianie pa-
mieci i obiektow. Odpowiada rowniez za wybor odpowiedniego typu z odpowiedniej
sterty, co moze mie¢ drastyczny wplyw na wydajnoéé¢ aplikacji. Dlatego wiec kwe-
stia odpowiedniego zarzadzania pamiecia w Vulkanie jest bardzo istotna. Na koniec
nalezy wspomnieé, ze aplikacja ma pewne limity na to jak z pamieci korzysta. Przy-
ktadowo istnieje odgérny limit maksymalnej iloéci alokacji pamieci. Z tego powodu
faworyzuje sie wykonywanie matej ilosci duzych alokacji pamieci wewnatrz API oraz
sub-alokowanie zasobéw w ramach pozyskanych wczesniej pul zasobéw.

3.2.8. Synchronizacja

Odpowiedzialnos¢ za synchronizacja w API Vulkan jest — podobnie jak za-
rzadzanie pamiecia — w calosci przerzucona na aplikacje. Programista nie moze
zakladaé, ze kolejnos¢ wykonywania komend bedzie taka sama, jak kolejnosé ich
nagrywania i zgodna z kolejnoécig dodawania do kolejki buforéw komend. Chcac
upewnié sie, ze kolejne komendy ,widzg” efekty poprzednich, od ktorych zaleza,
programista musi wskazaé takie miejsca i jawnie w nich zsynchronizowaé¢ dostep do
tych zasobéw. Ponadto programista musi upewnié sig, ze Vulkan zakonczyl swoje
obliczenia wykorzystujace dane obiekty, aby moéc je zwolni¢ lub skorzysta¢ z nich na

nowo.

W tym celu API udostepnia programistom kilka typéw prymitywdw synchroni-

zujgeych pozwalajacych na synchronizacje pracy i dostepu do zasobow.

Obiekty grodzace

Obiekty grodzace (VkFence) wykorzystywane sa do synchronizacji pomiedzy
procesorem graficznym i procesorem ogdélnym. Dzieki nim mozemy poprosi¢ o za-
trzymanie pracy CPU do czasu, az dana operacja zakonczy sie wykonywaé¢ na GPU.
Ze wzgledu na swoj wysoki narzut, obiekty te powinny by¢ stosowane tylko w sytu-
acjach, w ktérych chcemy sie¢ upewnié, ze mozemy kontynuowaé prace spodziewajac



24 ROZDZIAL 3. VULKAN

sie, ze operacje zostaly juz zakonczone, lub wtedy, gdy czeka¢ musimy niezaleznie
od tego faktu.

Przykladem wykorzystania tych obiektow moze by¢ cheé zwolnienia utworzo-
nych wczesniej obiektéw. Ze wzgledu na manualne zarzadzanie pamiecia to progra-
mista jest odpowiedzialny za zniszczenie utworzonych obiektéw, ale moze zrobié¢ to,
dopiero gdy wszystkie operacje wystane do wykonania na GPU zostaly zakonczone.
Zamiast czeka¢ na zakonczenie wszystkich operacji na GPU mozemy poczekaé tylko
na te, ktére go wykorzystywaly.

Semafory

Semafory (VkSemaphore) pozwalaja na synchronizacje pracy wykonywanej
przez GPU zaréwno wewnatrz pojedynczej kolejki jak i pomiedzy réznymi kolejkami.
Precyzuja one kiedy dany zasob zostanie udostepniony i na zakonczenie jakich ope-
racje dalsze wykonywanie powinno zaczekaé¢. Programista ma tylko kilka dostepnych
miejsc, w ktorych moze zlecié czekanie na dany semafor lub zleci¢ jego sygnalizacje.

Przykladem wykorzystania semaforéw moze byé zwyklta prezentacja wyrende-
rowanego obrazu. Prezentacja powinna odby¢ sie dopiero po zakonczeniu rendero-
wania, zatem powinnidmy poleci¢ zasygnalizowanie danego semafora w momencie
zakonczenia renderowania oraz wymusi¢ czekanie na jego zasygnalizowanie zanim

zaprezentujemy nowsg klatke.

Zdarzenia

Zdarzenia (VkEvent) to obiekty przypominajace obiekty grodzace, jednak w
przeciwienstwie do nich:

e moga one by¢ uzywane tylko w obrebie jednej kolejki,
e moga one by¢ ustawiane i resetowane zaréwno po stronie CPU jak i GPU,

e czekanie na sygnalizacje moze odbywaé sie tylko po stronie GPU.

Bariery pamieci

Bariery pamieci (VkMemoryBarrier) to kolejne obiekty pozwalajace na syn-
chronizacje pracy wykonywanej na GPU. Dostepnych jest kilka rodzajéw tych urza-
dzen, ktore roéznig sie rodzajem zasobdéw jakie chronia:

e bariery pamieci,

e bariery pamieci buforéw,



3.3. PODSUMOWANIE 25

e bariery pamieci obrazéw.

Wykorzystywane sa do precyzyjnego oznaczania zaleznosci pomiedzy opera-
cjami generujacymi konkretne dane oraz operacjami, ktére dane te wykorzystuja.
Dzieki temu implementacja API dokladnie wie kiedy i na jakie dane musi zaczekaé.
Ponadto bariery pamieci obrazéw moga by¢ wykorzystane do zmiany ich ukiadow,
ktorych poprawne i dokladne ustawienie dla danej operacji, pozwala na szybszy
dostep do zasobdw.

Ich poprawne uzycie jest nieoczywiste, a che¢ zachowania maksymalnej wydaj-
nosci wymaga starannego przemyslenia gdzie powinny sie one znalezé oraz uzycia
minimalnej ilosci potrzebnych barier z podanymi odpowiednimi etapami potokéw
tak, by praca GPU nie byla wstrzymana dtuzej niz jest to konieczne.

W poréwnaniu do pozostalych obiektéw, pozwalaja na bardzo dokltadna syn-
chronizacje — z dokladno$cia do konkretnych etapéw potoku — dzieki czemu sa
idealnym sposobem na synchronizacje pomiedzy kolejnymi po sobie operacjami.

Przyktadem sytuacji, w ktérej wymagane sa bariery pamieci jest renderowanie z
algorytmem deferred shading [44l, [45] — kolejne jego etapy zaleza od poprzednich, a
wiec wymagaja zakonczenia nad nimi prac. Gdyby nie zastosowano zadnych mecha-
nizméw synchronizujacych, implementacja API moglaby wykonaé je jednoczeénie
lub w niepozadanej kolejnosci, co mogto by skutkowaé wyrenderowaniem ,S$mieci”.

3.3. Podsumowanie

Jak widzimy, API Vulkan rézni sie znaczaco od swojego poprzednika. W jego
architekturze widzimy wzorowanie sie na aktualnych trendach i uznanych wzorcach
projektowania interfejsow, dzicki czemu API wydaje si¢ przyjemne i tatwe w uzyciu.
Zauwazy¢ od razu mozna tez to, jak bardzo ,opisowy” on jest — na kazdym kroku
wymaga od jego uzytkownika sprecyzowania wszystkich zamiaréw ,,do przodu”. Na-
wet jesli pewna funkcjonalnosé nie bedzie uzywana, musimy o tym zawczasu poin-

formowaé¢ implementacje.

Interfejs rozwiazuje réwniez wiele probleméw znanych z jego poprzednikéw w
sensowny sposob, co jest zdecydowang zaleta. Ponadto znacznie lepiej modeluje ak-
tualny sprzet i udostepnia elementy pozwalajace na lepsze wykorzystanie dostepnego
sprzetu.

Znacznie wyzszy poziom trudnosci poprawnego uzycia, wynikajacy miedzy in-
nymi ze wzgledu na reczne zarzadzanie pamiecia oraz synchronizacje, moze nie przy-
pas$é¢ wszystkim do gustu i z tego powodu API prawdopodobnie nie bedzie tak czesto
uzywane — szczegélnie w przypadku prostych i niewymagajacych wysokiej wydaj-
noéci aplikacji.






Rozdziatl 4.
Przeglad istniejacych testow

Od wydania Vulkana minal juz ponad rok. Przez ten czas powstalto wiele aplika-
¢ji z niego korzystajacych, a takze wiele os6b postanowito zbadaé jak na tle innych
interfejséw wypada on w praktyce pod wzgledem wydajnosci. Stworzone zostaty
liczne aplikacje testowe, silniki graficzne i gry obstugujace jednoczeénie kilka inter-
fejséw graficznych. W pracy tej skupie sie na oméwieniu wynikow poréwnujacych
wydajnosé Vulkana z jego poprzednikiem — API OpenGL.

Warto jednak pamietaé, ze czes$¢ z tych testéw zostata przeprowadzona na weze-
snych wersjach sterownikéw, ktore nie sa jeszcze tak zoptymalizowane jak sterow-
niki dostepne od ponad dwoéch dekad dla interfejsu OpenGL. Ponadto czes$¢ aplikacji
wprowadzila obstuge nowego API jako wrapper na juz zaimplementowane systemy
renderujace korzystajace ze starszych, juz wykorzystywanych interfejséw, co moze
generowa¢ dodatkowy narzut negatywnie wplywajacy na wydajnosé i sprawiaé, ze
aplikacja nie korzysta z wszystkich zalet Vulkana.

4.1. Przeglad autorskich testow

4.1.1. Test Khronos DevU w Seulu

W roku 2016, na warsztatach Khronos DevU zorganizowanych w Seulu przed-
stawiony zostal prosty test stworzony przez Corta Strattona — osobe pracujaca
nad niskopoziomowym kodem renderujacym w konsolach PS3 oraz PS4. Test opisany
w [30] sklada sie z jednej statycznej sceny — pokoju wypelnionego obracajacymi sie
obiektami. Kazdy obiekt sklada sie z okolo 800 wierzchotkéw, co przeklada sie na
okoto 1400 trojkatéw. Kazdy obiekt posiada unikalne zasoby takie jak tekstury i
bufory danych. Wszystko to rysowane jest dwukrotnie aby zasymulowaé osobne ren-
derowanie dla kazdego oka. Ilos¢ rysowanych obiektow zmienia sie w przedziale od
5 do 500 obiektéw, a czasy mierzone sg jako srednia z 60 wyrenderowanych klatek.

27



28 ROZDZIAL 4. PRZEGLAD ISTNIEJACYCH TESTOW

15 — OpenGL CPU
== OpenGL GPU

— Vulkan CPU
-- Vulkan GPU
Vulkan CPU (baked)

Frame time (both eyes) in ms

Draw calls (per eye)

© Copyright Khronos Group 2016 - Page

Rysunek 4.1: Wyniki testu przedstawionego na warsztatach Khronos DevU w Seulu.
[30]

Na wynikach mozemy zaobserwowaé¢ dwie rzeczy:

e (Czas jaki GPU potrzebuje do wykonywana operacji jest bardzo zblizony w obu
API. Réznice sa minimalne na niekorzysé Vulkana, co moze sugerowaé gorsza

optymalizacje wowczas dostepnych sterownikéw.

e Wraz ze wzrostem iloSci renderowanych obiektéw, czas potrzebny na wyko-
nanie operacji po stronie CPU ro$nie w obu przypadkach liniowo, jednak dla
API OpenGL ro$nie on znacznie szybciej. Sredni stosunek czasu wykonywa-
nia klatki po stronie CPU dla API OpenGL i Vulkan odczytany z powyzszego
wykresu wynosi 2.8 i warto$é ta odpowiada wielkosci narzutu starszego API
wzgledem swojego nastepnika.

Po wynikach pomiaréw dla catych klatek zaprezentowano réwniez wyniki po-
miaréw rysowania tylko jednego ,oka”, jednak réznica wzgledna miedzy wynikami
w poszczegdlnych API jest bardzo zblizona do wczesniej uzyskanych wynikéw. Na
koniec zaprezentowany zostal réwniez wykres przedstawiajacy czasy z wielokrotnym
wykorzystaniem raz nagranego bufora komend. Wartosci z tych pomiaréw zazna-
czone sa na rysunku pomaranczowa linia. W tym przypadku czas wykonywania
na CPU byt praktycznie staly. Potwierdza to intuicje i pokazuje jak duzy zysk po-
trafimy uzyskaé¢ wykorzystujac w pelni mozliwosci nowego API.

4.1.2. Demo Gnome Horde

Gnome Horde to demo przygotowane przez firme¢ Pover VR w wersji wykorzy-
stujacej API OpenGL ES (mobilna wersja OpenGL-a) oraz Vulkan. Demo dziata
na platformie Android i zostalo opublikowane w sierpniu 2015 roku w [31], zatem
finalne rezultaty, ktére mozna osiggnaé¢ wykorzystujac nowe API mogg sie réznié.

Gléwnym zalozeniem dema bylo wykonywanie podobnego kodu przy wykorzy-
staniu obu API. Dema nie korzystaja z zadnych rozszerzen ani mechanizmu instan-
cjonowania — kazda komenda rysujaca moglaby renderowaé¢ osobna geometrie z



4.1. PRZEGLAD AUTORSKICH TESTOW 29

osobnymi materiatami czy teksturami i nie powinno to wplynaé na czas wykonywa-

nia po stronie CPU.

Demo sktada si¢ z ogromnej sceny po ktorej porusza si¢ kamera. Widoczna jest
powierzchnia, na ktérej znajduje sie duza iloé¢ kolorowych krasnali. Wnioski ptynace
z tego dema dla wersji wykorzystujacej interfejs Vulkan mozemy przedstawié¢ jako:

e Zapewnienie plynnego odtwarzanie przez caly czas, podczas gdy konkuren-
cyjna wersja korzystajaca ze starszego API ma drastyczne spadki wydajnosci,
szczegblnie przy szybkiej pracy kamery kiedy to wydajno$é¢ spada do kilku
klatek na sekunde.

e Wersja wykorzystujaca API Vulkan wykorzystuje w podobny sposéb wszystkie
4 dostepne watki rozkladajac miedzy nimi rownomiernie prace, podczas gdy
wersja oparta o OpenGL ES zazwyczaj wykorzystuje tylko jeden z dostepnych
rdzeni choé obcigzenie pomiedzy nimi dynamicznie przemieszcza sie pomiedzy

réznymi rdzeniami.

e Wersja z Vulkanem nie wykorzystuje w pelni zadnego rdzenia zatem mozna
stwierdzi¢, ze jest ograniczana przez moc GPU. Wersja OpenGL ES przez
wiekszo$¢ czasu wykorzystuje w pelni ktorys z rdzeni, co pozwala sugerowad,

ze jest ograniczona przez moc CPU.

Rysunek 4.2: Kadr z pracy dema Gnome Horde przedstawiajacego obcigzenie CPU
i wskaznik FPS dla Vulkana (po lewej) i OpenGL ES (po prawej). [31]

28.8%
€ &W QM(

Rysunek 4.3: Obciazenie CPU i wskaznik FPS podczas pracy dema Gnome Horde
z uzyciem Vulkana (po lewej) i OpenGL ES (po prawej). Dolna linia to obciazenie
CPU przez aplikacje, a gérna to obciazenie calego systemu. [31]



30 ROZDZIAL 4. PRZEGLAD ISTNIEJACYCH TESTOW

4.1.3. Demo Satelite navigation

Kolejne demo przygotowane przez Power VR zostalo opisane przez jego twor-
cow w [32]. Tym razem demo przypomina prawdziwa, dostepna dla uzytkownikéw

koncowych, aplikacje bedaca nawigacja samochodowa.

W testach przeprowadzonych przez autoréw dema, implementacja oparta o API
Vulkan zapewnia ciaglta pltynnos$¢ ze znacznie wyzsza iloscig klatek na sekunde bez
zauwazalnych spadkéow wydajnosciowych spowodowanych tadowaniem nowych da-
nych, za$ wersja wykorzystujaca OpenGL ES wykonuje w kazdej klatce znacznie
wiecej pracy na CPU. Jak twierdza autorzy, dzieje sie tak, gdyz implementacja wy-
korzystujaca nowsze API potrafi raz nagraé¢ dany fragment mapy, ktéry sie juz nie
zmienia, a nastepnie tylko wykona¢ nagrane komendy. Druga implementacja zmu-
szona jest do przekazywania wszystkich komend GPU za kazdym razem.

Vulkan

- os

r o8

- o7

—FPs

as L o6
= Total CPU

——CPU O

PS
e
cPU

cPU1
roa cPU 2

=——CPU 3

Rysunek 4.4: Wydajno$é i obciazenie CPU dla API Vulkan. [32]

OpenGL ES

[oe ——FPS
——Total CPU
¥ ——cPUuO
cPU 1
cPU 2

h LJ Los —cPu s

Rysunek 4.5: Wydajnosé i obciazenie CPU dla API OpenGL ES. [32]



4.2. PRZEGLAD TESTOW OPARTYCH NA SILNIKACH GRAFICZNYCH 31

4.1.4. Demo Stardust

Intel na konferencji SIGGRAPH 2015 zaprezentowal swoje demo wykorzystu-
jace API Vulkan oraz OpenGL nazwane Stardust[33], by pokazaé zalety, jakie nowsze
z nich moze zaoferowa¢ wzgledem poprzednikéw. Samo demo prezentuje system ren-

derowania efektéw czasteczkowych.

Wersja OpenGL zapewnia okoto 25 klatek na sekunde oraz zauwazalne wyko-
rzystanie mocy CPU podczas gdy praca wykonywana jest prawie w calosci tylko
na jednym rdzeniu — pozostate wykorzystywane sa w znikomej ilosci. Wykorzysty-
wany rdzen jest zajety w 100 procentach, zatem mozemy zatozyé, ze aplikacja jest
ograniczana przez CPU.

Po przelaczeniu sie na implementacje wykorzystujaca API Vulkan wydajnosé
wzrasta dwukrotnie do okoto 50 stabilnych klatek na sekunde, przy czym obciazenie
CPU spada o okoto 2/3 do niskiego poziomu. Zauwazy¢ réwniez mozna réwnomierne
roztozenie pracy na wszystkie dostepne rdzenie, ktére wykorzystywane sa w okoto
20 procentach. To pozwala sugerowac, ze ta implementacja ograniczona jest przez
moc GPU.

4.1.5. Test ARM

Test przeprowadzony przez firme ARM i opisany w [34] skupia sie na poréwna-
niu wykorzystania procesora CPU oraz zuzywanej energii przez uktad SoC.

Na filmie [35] prezentujacym wyniki testu po lewej stronie ekranu widzimy
uruchomiong implementacje wykorzystujaca mobilng wersje API OpenGL, ktora
wykorzystuje w sporym stopniu pierwszy z dostepnych rdzeni, gdy pozostale sa w
spoczynku. Po prawej widzimy za$ implementacje z Vulkanem, ktéra to wykorzy-
stuje wszystkie cztery rdzenie réwnomiernie w znacznie mniejszym stopniu. Autorzy
testu sugeruja, ze dzieki temu system na ktérym zostata uruchomiona druga imple-
mentacja wykorzystal okoto 15 procent mniej energii poprzez zmniejszenie napiecia
i taktowania rdzeni oraz mozliwo$¢ uruchomienia na stabszych rdzeniach pobieraja-

cych mniejsza ilo$¢ energii. E]

4.2. Przeglad testow opartych na silnikach graficznych

4.2.1. Unity

W trzecim kwartale 2016 roku silnik Unity otrzymal wstepna wersje wsparcia
dla omawianego API. Autorzy silnika w swoim artykule [38] opisuja, ze przejscie na

"W urzadzeniach mobilnych czesto spotykamy uklady w systemie big. LITTLE ktéry sktada sie
z kilku wolnych rdzeni o niskim poborze pradu oraz kilku mocnych, ktére pobieraja wiecej energii.



32 ROZDZIAL 4. PRZEGLAD ISTNIEJACYCH TESTOW

to API zapewnia zysk w wydajnosci na poziomie okolo 35 procent na platformie

Android nawet w trybie jednowatkowym.

Wersja ta jest testowa, zatem na rzetelne wyniki nalezy zapewne poczekaé, az
prace nad implementacja obstugi Vulkana zostana zakonczone. W sieci dostepny
jest jednak test, pokazujacy jednoczesnie prace silnika na obu API. W tescie tym
zauwazy¢ mozemy, ze wydajno$¢ w obu wersjach jest zblizona, jednak na wykresach
wskazujacych obciazenie CPU zauwazy¢ mozemy znacznie mniejsze jego wykorzy-

stanie w wersji wykorzystujacej Vulkana.

4.2.2. Xenko

W materiale [39] zamieszczonym w serwisie YouTube przez twércéow silnika
widzimy poréwnanie predkosci renderowania sceny w obu API. Z filmiku wynika, ze
renderer oparty na Vulkanie jest wydajniejszy — w zaleznosci od aktualnie rysowanej
sceny — o od 50 do 300 procent niz wersja oparta na API OpenGL.

Niestety w teScie widzimy réowniez, ze w danym momencie szybsza implemen-
tacja wykonuje o okolo 10 procent mniej polecen rysujacych, przez co ciezko oce-
ni¢ jednoznacznie rzetelnosé¢ przeprowadzonego testu, ktéry wykonuje inna prace w
roznych trybach. Niemniej w mojej ocenie mozemy wysnué¢ wnioski, ze réznica na

korzysé nowszego API jest zauwazalna, a nawet spora.

4.2.3. Inne

Tworcy silnikéw graficznych Unreal Engine oraz CryENGINE zapowiedzieli
[40) [4T] wsparcie dla API Vulkan, jednak na czas pisania tej pracy nie zostalo ono
jeszcze dodane. Prawdopodobnie po jego wprowadzaniu pojawia sie testy oparte
o te silniki graficzne. Biorgc pod uwage popularno$é¢ tych silnikéw oraz ilo$¢ gier
tworzonych na nich, wydaje sie¢ warte, by przyjrzeé¢ sie wéwczas osiagnietym na nich

wynikom.

4.3. Przeglad testow opartych na grach komputerowych

4.3.1. The Talos Principles

The Talos Principles byla pierwszg gra, ktéra miata zaimplementowany ren-
dering z wykorzystaniem Vulkana. Tworcy zaimplementowali jego obstuge jako na-
ktadke na istniejacy renderer wykorzystujacy OpenGL 2.1 oraz Direct3D w wersji
9. Jak sami twierdza ([42]) — uzyskana wydajnosé jest zadowalajaca, ale nie jest to
rozwigzanie idealne, gdyz nie wykorzystuje w pelni wszystkich mozliwosci nowego
API. Tworcy ciggle pracuja nad ulepszeniami silnika oraz chwalg sie, ze w aktualnej
wersji wydajnosé jest od 50 do 100 procent wigksza.



4.3. PRZEGLAD TESTOW OPARTYCH NA GRACH KOMPUTEROWYCH 33

Niezalezne testy [43] najnowszej wersji — po naprawie bledéw oraz aktualizacji
sterownikow — wskazuja, ze wersja wykorzystujaca Vulkana jest szybsza o okoto 30

procent.

4.3.2. Doom 2016

Doom (2016) to remake popularnej serii gier stworzonej przez id Software.
Firma ta zawsze chwalona byla za dobrag optymalizacje oraz umiejetnoéé¢ do wyci-
Sniecia pelnej mocy z kazdego sprzetu. Gra ta otrzymala wsparcie dla API Vulkan
po premierze w postaci tatki. Istotnym faktem jest rowniez wykorzystanie — jesli
tylko jest to mozliwe — najnowszej wersji API OpenGL. Biorac to pod uwage oraz
do$wiadczenie programistéw z id Software, mozna zatozy¢, ze implementacja na tym

APT jest $wietnie zoptymalizowana.

Warto zauwazy¢, ze gra jako jedna z pierwszych wspiera¢ ma nowa funkcjo-
nalno$é¢ dostepna w Vulkanie — asynchroniczne obliczenia (ang. asynchronous com-
pute), czyli funkcjonalno$é pozwalajaca na réwnolegle i asynchroniczne wykonywanie
zadan obliczeniowych i graficznych jednocze$nie. Funkcjonalno$¢ ta w chwili pisania
tej pracy dostepna jest jedynie na najnowszych kartach graficznych firmy AMD.

Gra ta byta — z racji obstugi obu API graficznych — czesto wykorzystywana
do ich poréwnywania. W pracy tej odniose sie do testéw przeprowadzonych przez
redakcje serwisu PCGamer wykorzystujacej stosunkowo aktualng na czas pisania
tekstu wersje gry oraz sterowniki.

Z dostepnych testéw [36], B7] mozemy wysunaé nastepujace wnioski:

¢ Wydajnosé na kartach ze ,stajni” AMD wzrasta ze zmiana API o okoto 25 do
30 procent wzwyz w wiekszoéci testowanych kart graficznych.

¢ Wydajnosé w testach korzystajacych z kart graficznych firmy Nvidia wzrasta
jedynie na najwydajniejszych konfiguracjach z takimi kartami graficznymi jak
GTX 1080 czy GTX 1070. Pozostate karty nie zanotowalty wiekszych réznic po-
miedzy API. Nalezy zwrocié jednak uwage na zwiekszong stabilnosé predkosci
renderowania — w wigkszosci kart graficznych testy sprawdzajace srednia z 3
procent najwolniejszych klatek wzrosty o okoto 10-20 procent, co przektada sie
na brak chwilowych spadkéw wydajnosci z nowym API. W przypadku karty
GTX 1080 byt to wzrost rzedu 50 procent.

e Testy w wyzszych rozdzielczosciach (1440p, 2160p) pokazuja utrzymujacy sie
wzrost wydajnoéci na kartach firmy AMD, gdzie wyniki u konkurencyjnej firmy
pozostaja bardzo zblizone na obu API.



34 ROZDZIAL 4. PRZEGLAD ISTNIEJACYCH TESTOW

4.4. Podsumowanie

Jak dobrze widzimy na powyzszych testach, nowe API potrafi dostarczyé¢ pro-
gramistom mozliwosci optymalizacji silnikéw i gier. Niestety w wiekszosci — poza
gra Doom 2016 — zyski te uzyskane sa przede wszystkim tam, gdzie wydajnosé
zalezy w sporej mierze od szybkosci naszego procesora gtéwnego. Poza zwiekszong
wydajnoscia, Vulkan potrafi zaoferowa¢ znacznie lepszy rozkltad pracy na dostepne
rdzenie, ktérych w dzisiejszym sprzecie jest coraz wiecej. Skorzystaé z tego moga
rowniez urzadzenia mobilne, na ktorych powinniSmy zauwazy¢ zmniejszony pobor

mocy w takich sytuacjach.

Niestety tylko jeden z omawianych testow skupiony byt na poréwnaniu samych
interfejséw graficznych, przez co wyniki w sporej mierze zostaly zaburzone przez
jakosé implementacji renderingu dla obu API oraz inne podzespoly silnikéw gier,
ktére réwniez wymagaly zasoboéw. Warto bytoby wiec przeprowadzi¢ wigcej testéw
skupiajacych sie na poréwnaniu samych API bez zewnetrznych zaburzen wynikéw.
Ponadto cze$é z implementacji zapewne napisana zostala zgodnie z dotychczasowa
architektura uzywanych silnikéw, przez co prawdopodobnie nie wszystkie elementy
nowego API wykorzystywane sa w stu procentach.

Ciezko stwierdzi¢ na tym etapie, ktore z mechanizméw Vulkana potrafia pozwo-
li¢ na poprawe wydajnosci. Zaobserwowane wczesniej wyniki daja jednak motywacje
do stworzenia wlasnych testéw, ktére skupiaé sie beda na pomiarach narzutu na CPU
korzystajac z obu API. Dzieki temu bedziemy w stanie realnie oszacowaé jakie zyski
i w jakich scenariuszach mozliwe sa do osiagniecia. Warto zatem zbadaé¢ wydajnosé
zaréwno w scenariuszach ograniczonych przez moc CPU jaki i GPU, a takze porow-
na¢ wydajnos¢ korzystajac z nowych mechanizméw wprowadzonych w API Vulkan
jak na przyktad PushConstants.



Rozdziat 5.

Przeprowadzone testy

5.1. Projekt

5.1.1. Opis projektu

Na potrzeby tej pracy stworzylem projekt o nazwie GL_vs_VK, w ktérym za-
implementowatlem — z wykorzystaniem obu interfejséw graficznych — kilka réznych
scen i testow w réznych wariantach. Kazdy z nich zawiera czg$¢ wspoélna, niezalezna
od wykorzystywanego sprzetu tak, by zapewni¢ jednakowe warunki testowe. Czesé
zalezna od uzywanego API pisana jest recznie tak, by zapewni¢ mozliwe maksy-
malna wydajnosé¢ korzystajac z danego podzbioru dostepnej funkcjonalnosci. Wiecej

informacji o projekcie znajduje sie w Dodatku [A} [Projekt GL_vs_VK]

Motywacja do stworzenia tego projektu byta cheé¢ przeprowadzenia testéw sku-
piajacych sie na zmierzeniu narzutu na procesor CPU podczas korzystania z obu
omawianych API. Dostepne bowiem testy skupiaja sie w wiekszo$ci na wydajnosci
calej aplikacji, na ktoéra sktada sie wiele modutéw, co nie pozwala jasno przedstawié¢
réznic w wydajnosci obu API. Chcemy réwniez méc przeanalizowaé wydajnosé in-
terfejséw zarowno w tescie syntetycznym, ktory powinien pokazaé pelne réznice w
wydajnosci API, oraz w testach modelujacych praktyczne zastosowanie interfejséw
przy implementacji popularnych algorytméw graficznych. Dzieki temu bedziemy w
stanie odpowiedzie¢ na pytanie — ile maksymalnie mozemy zyskaé¢ na wydajnosci,
oraz w jakich warunkach uzyskamy najwiekszy zysk.

5.2. Testy

Projekt zawiera cztery testy, z ktorych kazdy ma za zadanie zasymulowaé inny
scenariusz uzycia API graficznego w aplikacji multimedialnej lub grze. Pierwsze trzy
testy skupiaja sie na wydajnosci renderowania klatek. Czwarty test mierzy czas
potrzebny na inicjalizacje calego potoku graficznego.

35



36 ROZDZIAL 5. PRZEPROWADZONE TESTY

5.2.1. Elementy wspodlne

Pierwsze trzy testy skupiaja sie na mierzeniu wydajnosci renderowania kla-
tek. W celu uzyskania maksymalnej wydajnosci, inicjalizacja wszystkich mozliwych
obiektow zostala przeniesiona do fazy tadowania, przez co faza renderujaca wyko-
nuje minimalna ilo§¢ operacji na kazda klatke. Z tego wzgledu wszystkie elementy
takie jak bufory wierzchotkéw, programy cieniujace czy obiekty potokéw tadowane

sg przed rozpoczeciem wykonywania pomiaréw.

Faza renderowania polega na zaktualizowaniu stanu testéw — na przyktad po-
zycji obiektow — co odbywa sie na CPU, aktualizacji buforéw i uniformoéw, po czym
wykonywane sa polecenia rysujace. Na koniec aplikacja prosi o prezentacje aktual-
nej klatki. Czas kazdej iteracji tej fazy jest mierzony i przekazywany do modutu
mierzacego wydajnosé.

Etap zwalniania zasobéw wykonywany jest po zakonczeniu pomiaréw, zatem

nie wplywa na wyniki testow.

Wersje wielowatkowe réznia sie od wersji jednowatkowych tym, ze aktualizacja
stanu wykonywana jest na wszystkich dostepnych watkach, zamiast tylko na jednym.
Ponadto w wersji wykorzystujacej API Vulkan, budowanie buforéw komend wyko-
nywane jest wielowatkowo. Ze wzgledu na ograniczona logike, nie wszystkie testy w
wersji z API OpenGL posiadaja wersje wielowatkowe.

Nalezy dodaé, ze implementacje wykorzystujace interfejs Vulkan tworzg zawsze
przynajmniej trzy bufory klatek, jesli tylko jest taka mozliwosé. Kazdy obraz posiada
wlasny zestaw buforéw komend tak, aby renderowanie danej klatki byto niezalezne
od renderowania pozostatych.

By zmaksymalizowaé ilos¢ renderowanych klatek, wszystkie wersje wykorzystuja
rowniez tryb prezentacji z wylaczona synchronizacja pionowa.

5.2.2. Test 1 — scena statyczna z duza ilo$cig obiektow

Test polega na wyswietleniu ustalonej ilosci obiektéw na ekranie. Kazdy z obiek-
tow w przypadku tego testu jest kula — wspdétdzielac przy tym bufor wierzchotkéw
— o ustalonej szczegdtowosci, jednak obiekty réznia sie od siebie pozycja oraz kolo-

rem.

Test ten pozwala na wybranie ilosci obiektéw rysowanych na ekranie oraz tego,
jak dokladne beda rysowane kule, a konkretniej z ilu wierzchotkow beda sie one skta-
daé¢. Dodatkowo test posiada zmienna pozwalajaca decydowad ile razy, na klatke,
stan kazdej kuli ma zosta¢ zaktualizowany. Dzigki temu mozemy wymusié¢ rézne
obciazenie procesora CPU symulujac przy tym wykonywanie skomplikowanych obli-
czen zwigzanych z — na przyklad — poruszaniem sie czy kolizja obiektéw. Zmienne
te dostepne sa w pliku BaseBallsSceneTest.cpp pod jego nagléwkiem.



5.2. TESTY 37

By test symulowat renderowanie réznych obiektéw, nie sg wykorzystywane tech-
niki polegajace na grupowaniu wspdélnej geometrii lub innych optymalizacjach. Nie
jest réwniez wykorzystywane instancjonowanie. Dzigki temu najwiekszy narzut w

tym tescie — w zaleznosci od ustawien — daja nastepujace jego elementy:

¢ ilo$¢ polecen rysujacych,

o ilos¢ wierzchotkéw na kazdy obiekt.

W przypadku uzycia instancjonowania, narzut wynikajacy z iloéci polecen rysuja-
cych bylby znacznie mniejszy, gdyz wystarczyloby tylko jedno polecenie rysujace,
jesli wszystkie obiekty sa takie same. W przypadku réznych obiektéw nie jestedmy

w stanie uzy¢ tego mechanizmu.

Bazowy modul testu odpowiada za wygenerowanie danych takich jak pozycja,
predkosé poruszania oraz kolor dla wszystkich obiektéw, oraz ich aktualizacje. Za-
wiera rowniez metode, ktéra aktualizuje tylko podzbiér obiektéw w danym przedziale
indekséw, ktora wykorzystywana jest w wersji wielowatkowej tego testu.

Kazdy rysowany obiekt posiada przypisane do siebie dwie zmienne przekazy-
wane do GPU:

e pozycja obiektu na ekranie,

e kolor obiektu.

W wersji korzystajacej ze starszego interfejsu elementy te przekazywane sg w postaci
uniforméw. Nowsze API udostepnia mechanizm PushConstants, ktéry pozwala na
szybka aktualizacje matych uniforméw i to on zostal wykorzystany jako mechanizm

aktualizacji uniforméw w wersji korzystajacej z Vulkana.

Jest to jedyny test posiadajacy wersje wielowatkowa zaréwno w przypadku API
OpenGL jak i Vulkana. Powodem tego jest wykonywanie potencjalnie sporej ilo$ci
obliczen zwiazanych z aktualizacja stanu na CPU, co moze przetozy¢ sie na zwiek-
szona wydajnosé gdy korzystamy z wielu watkéw. Zbiér wszystkich obiektow dzie-
lony jest woéwczas na prawie rowne zbiory i kazdy zbior aktualizowany jest przez
osobny watek. Dzieki takiej architekturze, nie sa konieczne zadne mechanizmy syn-
chronizujace podczas wykonywania aktualizacji stanu obiektéw.

5.2.3. Test 2 — scena dynamiczna z terenem wykorzystujacym LoD
Test ten polega na zaladowaniu mapy wysokosciowej terenu (ang. heightmap)

z pliku obrazu o rozmiarze 1024x1024. Odpowiada to mapie ztozonej z 1023 pdl w

obu wymiarach. Po zaladowaniu mapy tworzone dla niej sa:

e Bufor wierzchotkéw zawierajacy 4 wartosci (z, y, z, w) dla kazdego wierzchotka.



38 ROZDZIAL 5. PRZEPROWADZONE TESTY

e Bufor indekséw wierzchotkdéw, z ktorego pobierane bedg indeksy odpowiednich

wierzcholtkow danego pola.

e Drzewo czworkowe, zawierajace dla kazdego pola na mapie ilos¢ indekséw oraz
ich pozycje (ang. offset) w pamieci bufora indekséw, potrzebnych do jego na-

rysowania.

Implementacje tego mechanizmu znalezé mozna w klasie TerrainLoD. Klasa
ta w trakcie rysowania wykorzystywana jest do wywolywania polecen rysujacych
w danym API z wykorzystaniem zapisanych w drzewie czwérkowym wspomnianych
wyzej wartoéci. Wykorzystuje ona rekursywny algorytm level-of-detail do poruszania
sie po stworzonym wczeséniej drzewie czwérkowym, ktory mozemy przedstawié¢ w

uproszczeniu jako nastepujace kroki:

Listing 5..1: Uproszczony rekursywny algorytm LoD zaaplikowany do drzewa czwor-
kowego.
ExecuteRecursivelLoD (node, position, drawCallback) :=

if (node.isLeaf()) then
drawCallback (node.indexCount, node.index0Offset);

return;
d = distance(node.centerPosition(), position);
s = node.maxSideSize ();

if (d / s >= CONST_LOD_FACTOR) then
drawCallback (node.indexCount, node.index0Offset);

return;

for (subNode in node.childs()) do

ExecuteRecursiveLoD (subNode, position, drawCallback);

Teren kolorowany jest wewnatrz shadera fragmentéw na podstawie wysokosci
kazdego wierzchotka tak, by przypominal mape topograficzna. Dodatkowo teren ry-
sowany jest w formie siatki niewypelnionych tréjkatéw (tryb wireframe), by tatwiej
byto zaobserwowaé dzialanie algorytmu LoD. Kamera ustawiona jest w stalym miej-
scu nad jednym z rogéw mapy, za$ symulowane jest poruszanie sie¢ pozycji gracza po

okregu wokot srodka mapy tak, by widoczne byly zmiany rysowanych tréjkatéow.

Aktualizacja stanu sprowadza sie do aktualizacji pozycji gracza oraz aktuali-
zacji zaleznych macierzy przeksztalcen, zatem nie obcigza ona w znaczacy sposob
procesora glownego. Z tego wzgledu test nie posiada wersji wielowatkowej dla API
OpenGL. Generowanie calego drzewa czworkowego odbywa si¢ w fazie tadowania,
zatem nie wplywa na wyniki pomiaréw.

Test w trakcie renderowania ustawia jeden uniform bedacy jedng macierzg prze-
ksztalcen Model- View- Projection zawierajaca wszystkie niezbedne przeksztatcenia
do wyrenderowania tréjwymiarowej sceny w danej klatce. Rysowanie odbywa si¢
poprzez przechodzenie tym samym algorytmem LoD przez drzewo czwérkowe i dla
kazdego rysowanego pola mapy wolana jest funkcja rysujaca.



5.2. TESTY 39

Rysunek 5.1: Klatka z drugiego testu. Przedstawia siatke terenu narysowana przy
uzyciu algorytmu LoD.

Kazdy wierzchotek drzewa czwérkowego w praktyce opisuje dwa trojkaty o od-
powiednich rozmiarach i pozycji. Jesli dany wierzchotek uznany jest za odpowiednio
doktadny, wykonywana jest funkcja rysujaca dany fragment. Jedli jest on zbyt duzy,
algorytm rekursywnie wykonuje sie dla wszystkich jego dzieci.

Wersja wielowatkowa zaimplementowana dla interfejsu Vulkan rézni sie od po-
zostatych tym, ze budowanie bufora komend podzielone jest na doktadnie cztery
watki. Powodem tego jest specyficzna architektura drzewa czwoérkowego. Poczat-
kowy podzial korzenia drzewa wykonywany jest na gtéwnym watku po czym kazde
poddrzewo jest obstugiwane przez osobny watek. W zaleznosci od pozycji gracza
moze prowadzi¢ to do sytuacji, w ktérych podzial ten jest nieréwnomierny, co moze

przektadac sie na niestabilng ilos¢ klatek.

Ciekawym wyzwaniem mogtoby by¢ stworzenie algorytmu, ktory efektywnie i
rownomiernie rozdziela prace na wszystkie dostepne watki, jednak Nie zostato to
zaimplementowane w obecnej wersji testu. Warto zauwazyé¢, ze przy obecnej im-
plementacji najwieksze roznice zauwazylibysmy tylko wtedy, gdy pozycja gracza
ustawiona jest na ktéry$ z rogéw mapy. W wykonywanych testach pozycje te sa
ustawianie znacznie blizej $rodka mapy, zatem wszystkie watki powinny wykony-
wacé sporg cze$¢ pracy. Ponadto testy przeprowadzone sa na komputerze, ktorego
procesor obstuguje jednoczesnie maksymalnie cztery watki.



40 ROZDZIAL 5. PRZEPROWADZONE TESTY

5.2.4. Test 3 — scena statyczna z mapowaniem cieni
Test trzeci polega na wyrenderowaniu statycznej sceny skladaja sie z:
1. Podlogi przypominajacej szachownice. Kazde pole sktada sie z sze$cianu ryso-
wanego naprzemiennie w ciemniejszym lub jasniejszym kolorze.
2. Szedcianéow rysowanych w nad podiogg w réwnych odstepach naprzemiennie
wyzej 1 nizej.
3. Zlozonej pod wzgledem geometrii kuli o znacznie wigkszych wymiarach niz

pozostale obiekty, znajdujacej sie samym Ssrodku sceny nad podioggq.

Wszystkie elementy rysowanej sceny renderowane sg wraz z realistycznym i
dynamicznym odwzorowaniem cieni. Programista, chcac uzyskaé¢ taki efekt ma do

dyspozycji kilka technik, z ktérych najpopularniejszymi sa:

e mapowanie cieni,

e cienie objetosciowe.
Kazda z tych technika ma wiele wariantéw rézniacych sie aspektami takimi jak:

e jakos¢ generowanych cieni,
e zlozono$é¢ implementacii,
e narzut na wydajnosé,

e wsparcie dla efektow takich jak migkkie cienie.

W pracy tej zaimplementowano pierwsza ze wspomnianych technik — mapowanie
cieni (ang. shadow mapping)[46]. Technika ta wyrdznia sie¢ mozliwoscia uzyskania
miekkich cieni, gdzie cze$¢ fragmentow jest w polcieniu, oraz brakiem wrazliwoéci
— w kontekscie rysowanych cieni — na stopien zlozonosci geometrii. Jedna z jej
powazniejszych wad jest natomiast mozliwo$¢ uzyskania drobnych artefaktow przy

wyznaczaniu fragmentéw znajdujacych sie w cieniu.

Technika ta sprowadza sie do wyrenderowania tej samej sceny dwukrotnie:

1. Scena renderowana jest z perspektywy Swiatta rzucajacego cien, a renderowane
sa tylko obiekty rzucajace cieni. Ponadto wykorzystywany jest tylko bufor gte-
bokoéci, co sprawia, ze etap ten jest wykonywany szybciej, niz gdyby rysowac

pelna klatke.

2. Scena rysowana jest z perspektywy kamery, a kazdy widoczny fragment testo-
wany jest z uzyciem wcze$niej wygenerowanego bufora glebokosci pod katem

jego widocznosci ze zrdédla swiatla.



5.2. TESTY 41

Koncowym elementem testu jest poruszajaca sie dookota kuli kamera, dzieki

ktérej mozemy obejrzeé calg sceng i zaobserwowacé jak rzucane sa cienie na obiektach.

Rysunek 5.2: Klatka z trzeciego testu. Na scenie widoczne sa cienie rzucane przez
obiekty.

Wspomniany bufor glebokosci to najczeéciej dwuwymiarowa tekstura, ktorej
wielkosé wplywa na jakosé otrzymanych cieni. W przypadku tego testu zastosowano
teksture o rozmiarze 4096 x 4096 o precyzji 32 bitéw. By poprawié¢ jakosé otrzyma-
nych cieni, wyeliminowaé¢ drobne artefakty na granicy fragmentéw zaciemnionych i
oswietlonych oraz uzyskac¢ efekt rozmytych cieniu, zaimplementowatem w shaderze
fragmentéw algorytm rozmycia cieni Percentage Closer Filtering[4T, [48], ktéry po-
lega na zebraniu wielu prébek z okolicy danego fragmentu i usrednieniu otrzymanych

wynikéw.

Ze wzgledu na brak skomplikowanych aktualizacji stanu po stronie CPU, ten
test réwniez nie posiada wersji wielowatkowej z uzyciem API OpenGL. W przy-
padku implementacji korzystajacej z API Vulkan konieczne bylo zastosowanie ba-
riery pamieci obrazu dla tekstury glebokosci, gdyz w drugim etapie renderowania
korzystamy z wynikow wygenerowanych w pierwszym etapie. Ponadto ze wzgledu
na rézny rozmiar bufora ramki, do ktérego rysujemy w obu etapach, konieczne byto
stworzenie dwoch obiektéw potoku — po jednym na kazdy z etapow. Z tego wzgledu

nie mogtem réwniez wykorzysta¢ mechanizmu Multipass wprowadzonego w nowszym
APL.



42 ROZDZIAL 5. PRZEPROWADZONE TESTY

5.2.5. Test 4 — czas inicjalizacji dema

Motywacja do stworzenia tego testu byla cheé zbadania jak duzo czasu zajmuje
stworzenie i inicjalizacja obiektow potrzebnych do pelnoprawnego korzystania z API.

Cho¢ w teorii zadanie jest proste, w praktyce okazuje si¢ znacznie trudniejsze.
Dzieje sie tak ze wzgledu na to, ze spora cze$¢ pracy wykonywana jest asynchro-
nicznie, zatem do konica nie jesteSmy w stanie stwierdzi¢, czy dany obiekt jest juz
w pelni zainicjalizowany, czy sterownik odlozyl sobie wykonanie tego zadania na
p6zniej. Ponadto réwniez inne elementy — takie jak komunikacja z silnikiem pre-
zentujagcym bufory ramek na ekranie, czy brak skupienia sie nad tym elementem
optymalizacji sterownikéw przez ich twércow, ze wzgledu na niski priorytet zadania

— moga zaburzac otrzymane wyniki.

Patrzac na wszystkie wspomniane wyzej powody, nalezy zaznaczy¢, ze wyniki
otrzymane w tym teécie moga nie by¢ miarodajne, ani nie pokrywaé sie z praw-
dziwymi wynikami na réznym sprzecie. Pamieta¢ rowniez trzeba, ze inicjalizacja
wiekszosci obiektow zazwyczaj dzieje sie tylko raz, na poczatku dziatania aplikacji.
7 tego powodu ewentualne zyski czy straty, o ile male, nie powinny wplywaé na
nasze postrzeganie danego interfejsu.

By zminimalizowaé zaburzenia w otrzymanych wynikach test — poza inicjali-
zacjy obiektéw — rysuje réwniez pierwsza klatke oraz wysyta zadanie aktualizacji
bufora ramki lub prezentacji aktualnej klatki. Klatka ta sktada sie z jednego, kolo-
rowego trojkata. Po tym wszystkim wykonywana jest metoda synchronizujaca prace
wykonywang na procesorze graficznym z praca wykonywang na CPU, by upewnié
sie, ze wszystkie wystane zadania zostaly juz wykonane. Warto réwniez nadmienié,
ze czas wymagany na utworzenie okna wraz ze wszystkimi ustawieniami (kontekstem
OpenGLa lub mozliwoéciami prezentacji ramek Vulkana) réwniez zostal wlaczony
do pomiaréw, ze wzgledu na mozliwo$¢ inicjalizacji pewnych obiektéw API podczas

tego zadania.

5.3. Metodologia testowania

Testy zostaly przeprowadzone na laptopie Lenovo Y580 o nastepujacych pod-

zespotach:

e CPU: Intel i5 3210M
e GPU: Nvidia GTX 660M (sterowniki w wersji 382.33)

e RAM: 6GB DDR3

Testy zostaly przeprowadzone na systemie operacyjnym Windows 7 SP1 64-bit.
Aplikacja testowa uruchomiona byta w trybie pomiaréw — z przelacznikiem -benchmark.



5.4. POMIARY CZASOW 43
5.4. Pomiary czasow

Aplikacja w trybie testujacym mierzy $rednia dlugo$é klatki jako czas pomie-
dzy poczatkiem renderowania pierwszej klatki i zakonczeniem renderowania ostat-
niej klatki podzielony przez ilos¢ wygenerowanych klatek. Taki sposéb pomiaréw
pozwala na zmierzenie pelnego czasu klatki, zaréwno po stronie CPU jak i GPU,
oraz zniwelowanie réznych czynnikéw zewnetrznych zaburzajacych wyniki, jak na
przyktad specyficzne optymalizacje odkladajace wykonywanie danego zadania na
osobny watek.

Poczatkowo wartosci te byly porownywane réowniez z wynikami generowanymi
przez wbudowanag w Vulkana warstwe VK_LAYER LUNARG monitor, jednak z kilku
wzgledoéw wykorzystana zostata wlasna implementacja:

o Wyniki uzyskane we wtasnej implementacji pokrywaja si¢ z wynikami wyge-

nerowanymi przez WaI‘StWQ.

¢ Brak odpowiadajacej wersji dla API OpenGL, zatem osobna implementacja

réwniez musiataby by¢ stworzona.

e Brak tatwego dostepu do wygenerowanych przez warstwe wynikoéw. Zapisy-
wane sg one automatycznie w belce tytutowej uruchomionej aplikacji. Brak
mozliwoéci tatwego wykorzystania tych danych przez automatyczne skryptyﬂ

Korzysta ona z funkcji glfwGetTime () dostepnej w bibliotece GLFW, ktéra zwraca
mozliwie doktadna na danej platformie warto$é¢ aktualnego czasu. Pozwala to uzy-
skaé stabilne i doktadne wyniki niezaleznie od wykorzystywanej platformy testowej

i kompilatora.

Poza wartoscia Srednia, podawane sa réwniez minimalne i maksymalne czasy
generowania klatki na CPU, mierzone jako czas pomiedzy kolejnymi podmianami
bufora klatki, w przypadku API OpenGL, oraz pomiedzy kolejnymi zapytaniami
prezentacji aktualnej klatki, w przypadku Vulkana. Wartosci uzyskane w ten sposéb
nie sa do konca miarodajne, gdyz implementacja danego API jest w stanie odlozyé
prace wykonywana z dang czynnoscig na pézniej lub na inny watek. Z tego wzgledu
otrzymane tak wyniki nie zostaly podane w pracy.

Wszystkie podawane dalej wyniki sg usrednionymi czasami klatek sposréd wszyst-
kich pomiaréw w zadanym przedziale czasowym wynoszacym 15 sekund. Ponadto
wyniki z pierwszej sekundy pomiaréw sa pomijane, by zniwelowaé¢ mozliwe wahania

spowodowane inicjalizacja czy wykonywaniem pewnych operacji po raz pierwszy.

'Mechanizm ten zostal uzyty przez redakcje serwisu Phoronix, ktéry wykorzystuje projekt
GL_vs_VK jako jeden z testow dostepnych w ich narzedziach testujacych [50].



44 ROZDZIAL 5. PRZEPROWADZONE TESTY

5.5. Wyniki

5.5.1. Wyniki testu 1

Test ten zawieral trzy wartosci konfiguracji pozwalajace na ustawienie:

o Ilosci rysowanych obiektow,

o Jako$ci rysowanych obiektow,

¢ Iloéci pracy wykonywanej na CPU dla kazdego obiektu w kazdej klatce.
Dzieki temu mozliwe byto zasymulowanie réznego réznych proporcji obciazenia CPU
oraz GPU w testach. Z tego wzgledu wykonalem kilka pomiaréow, by przetestowaé

kazdy wariant. Jako$¢ A x B odpowiada wygenerowaniu sfery sktadajacej sie¢ z 2AB
tréjkatéw i rozumiana jest przez podziat siatki na A czeéci w pionie i B w poziomie.

Czas renderowania klatki dla jakosci 3x3 oraz 10 aktualizacji

100

% 4
80 /
70 /
// == OpenGL

&0 ‘.//' == OpenGL MT
50 /./// Vulkan
40 i\ U kN T
. /I'/
20 VZV/( M/
10 3

50 100 150 200 250 300

llosé rysowanych obiektow [w tysigcach)

Czas klatki {w milsekundach)

Rysunek 5.3: Wyniki pomiarow testu 1 dla jakosci 3x3 oraz 10 aktualizacji.

Przedstawione na rysunku wyniki odnosza sie do testow przeprowadzonych
na konfiguracji wykorzystujacej nizsza jakosé obiektéw oraz mniejszg ilo$¢ pracy wy-
konywang na CPU dla kazdego obiektu. Na wynikach tych zaobserwowaé¢ mozemy
znaczng przewage wydajnosciowa API Vulkan, ktéra powigksza sie¢ wraz z wykorzy-
staniem wielu watkow. Wersja oparta o OpenGL jest okoto dwukrotnie wolniejsza od
zwyklej wersji korzystajacej z Vulkana oraz okolo trzykrotnie wolniejsza od imple-
mentacji wielowatkowej. Co ciekawe, wielowatkowa wersja korzystajaca z OpenGL
jest nieznacznie wolniejsza, od wersji jednowatkowej. Sugeruje to, ze w tej konfigura-
cji test ten jest ograniczony przez CPU i maty zysk zaoszczedzony na wielowatkowej
aktualizacji obiektéw nie daje zyskéw przy narzucie na wykorzystanie wielu watkéw.

Na kolejnym rysunku (5.4) widzimy wyniki dla konfiguracji, ktéra symulowaé
ma duze obcigzenie na procesorze graficznym oraz stosunkowo male obcigzenie na



5.5. WYNIKI 45

procesorze gtéwnym. Na tym wykresie widzimy, ze wydajnosé wersji korzystajacej
z nowszego API jest minimalnie mniejsza, niz tej, opartej na sprawdzonym i przez
wiele lat optymalizowanym API. Réznice wynosza okoto 10 procent. Co ciekawe —
w obu przypadkach wersje wielowatkowe posiadaja prawie identyczna wydajnosé,
co pozwala sugerowaé, ze w tej konfiguracji, test ograniczony jest w catodci przez
moc GPU. Wyniki prawdopodobnie wynikaja z minimalnie lepszej optymalizacji

sterownikéw.

Czas renderowania klatki dla jakosci 9x9 oraz 10 aktualizacji

150

130

110 —4—OpenGL
// =fll=OpenGL MT
30 /

Vulkan
70 //
) /
30 % T T T T T 1
50 75 100 125 150 175 200

llosé rysowanych obiektdw [w tysigcach)

i ulkan MT

Czas klatki {w milsekundach)

Rysunek 5.4: Wyniki pomiaréw testu 1 dla jakosci 9x9 oraz 10 aktualizacji. Zauwazy¢

mozemy jednakows wydajnosé dla wersji jednowatkowych i wielowatkowych.

Kolejne dwa testy przeprowadzone byly w konfiguracji o znacznie zwiekszonej
ilosci pracy wykonywanej na CPU. Na pierwszym z wykreséw (rys. widzimy
pomiary dla konfiguracji o niskiej jakosci obiektow, zatem test powinien byé¢ zdo-
minowany przez prace wykonywang na CPU. Przyjmujac jako bazowa implementa-
cje oparta o API Vulkan, z pomiaréw wynika, ze wersja oparta o starsze API jest
wolniejsza o okoto 15 procent. Zgodnie z przewidywaniami widzimy tu, ze wersje
wielowatkowe sg zauwazalnie szybsze, niz wersje ograniczone do jednego watku i
obie sa szybsze od bazowej wersji. Potrzebuja one tylko 75 oraz 40 procent czasu,
kolejno dla wersji OpenGL i Vulkan, by wyrenderowaé te sama klatke. Widzimy
tu, ze niezaleznie od uzytego API, jesli aplikacja wykonuje duze obliczenia to warto
je zrownolegli¢ jesli tylko sie da. Ponadto widzimy, ze wielowatkowa implementacja
oparta o Vulkan oferuje znacznie wieksze przyspieszenie, niz podobna wersja dla API
OpenGL, co wynika zapewne z faktu wielowatkowego korzystania z API.

Na ostatnim wykresie (rys. widzimy wyniki dla konfiguracji, ktora symuluje
duzo pracy wykonywanej na CPU oraz ztozong prace wykonywang GPU, wykony-
wana ze stosunkowo matej ilosci uzytych polecen. Przedstawia to zatem sytuacje, w
ktorej Vulkan powinien zyska¢ najmniej sposréd dotad wykonanych testow.

Zgodnie z przewidywaniami, na wykresie zauwazy¢ mozemy, ze bazowe wersje



46 ROZDZIAL 5. PRZEPROWADZONE TESTY

Czas renderowania klatki dla jakosci 3x3 oraz 50 aktualizacji

210

180 //
/ / —+=OpenGL
== OpenGL MT
/ / Vulkan
‘///I’ = Vulkan MT

<¢I7 /e'//
30 :,M

4]

-
un
o

[
1]
[=]

[T=]
=]

@
o

Czas klatki {w milsekundach)

T T T T T T T T T 1
50 70 50 110 130 150 170 190 210 230 250

llosc ry ych obiektéw (w tysi

Rysunek 5.5: Wyniki pomiaréw testu 1 dla jakosci 3x3 oraz 50 aktualizacji. Zauwazy¢

mozemy jednakowa wydajnosé dla wersji jednowatkowych i wielowatkowych.

Czas renderowania klatki dla jakosci 9x9 oraz 50 aktualizacji
180

- /
/A i OpenGL
120
== OpenGL MT
Vulkan
S0
% —vilkan
60

T T T 1
50 75 100 125 150 175 200

Czas klatki {w milsekundach)

Rysunek 5.6: Wyniki pomiaréw testu 1 dla jakosci 9x9 oraz 50 aktualizacji.

oparte na obu API zapewniaja poréwnywalng wydajno$é, podobnie jak na wykresie
z mala réznicg na korzy$¢ OpenGL. Co ciekawe, nawet w wersji wielowatkowej
starsze API wygrywa. Pokazuje to nam, ze w przypadku duzego obcigzenia procesora
graficznego oraz stosunkowo — wzgledem pozostatej pracy — malej ilosci wykony-
wanych polecenn rysowania na CPU, nowe API nie pozwala w duzym stopniu na
zwiekszenie wydajnosci aplikacji. Zastanawiajace jest to, ze réznice pomiedzy API
rosng w przypadku wersji wielowatkowych. Intuicja bowiem podpowiada, ze réznica
wynikajaca z naktadu pracy na GPU powinna byé¢ podobna w przypadku obu wersji.



5.5. WYNIKI 47

Podsumowanie

Jak widzimy na otrzymanych wykresach, Vulkan potrafi znaczaco przyspieszy¢
renderowanie scen ztozonych z duzej ilosci obiektow oraz Swietnie spisuje si¢ w apli-
kacjach wielowatkowych. Zauwazy¢ mozemy réwniez minimalnie gorsza wydajnosé
w przypadku scen zlozonych ze skomplikowanych obiektéw. Moze to swiadczyé o
stabszej optymalizacji dostepnych sterownikéw lub o braku pewnych optymalizacji
w zaimplementowanym tescie.

5.5.2. Wyniki testu 2

Na rysunku przedstawiony jest wykres z wynikami dla testu drugiego. Test
ten posiada tylko jedna konfiguracje.

Czas renderowania klatki w tescie #2

[
S

=
ra

=
Q
|

=)
|

Czas klatki (w milsekundach)

B OpenGL BEVulkan B Vulkan MT

Rysunek 5.7: Wyniki pomiaréw testu 2 w zaleznosci od uzytego API.

Jak wynika z powyzszego wykresu, Vulkan w przypadku renderowania siatki
terenu korzystajac z mapy wysokoéciowej i algorytmu Level-of-Detail pozwala na
znaczace przyspieszenie aplikacji. Wersja bazowa oparta na nowszym APIT jest pra-
wie dwukrotnie szybsza od wersji opartej o starszy interfejs. Wersja wielowatkowa
oferuje male — okoto 15 procentowe — przyspieszenie wzgledem wersji jednowat-
kowej. Wynika to zapewne ze skomplikowania algorytmu LoD, co przeklada si¢ na
nieoptymalny podzial pracy na wszystkich watkach. Niemniej jest to zauwazalny
zysk, ktéry w przypadku korzystania z wiekszych map wysokosciowych zapewne
bytby jeszcze wigkszy.



48 ROZDZIAL 5. PRZEPROWADZONE TESTY

5.5.3. Wyniki testu 3
Wyniki trzeciego z dostepnych testéw przedstawione sa rysunku [5.8] Z wykresu
odczytaé mozemy, ze wersja oparta o nowszy interfejs jest wolniejsza o okoto 30

procent od wersji korzystajacej z OpenGL.

Czas renderowania klatki w tescie #3

Czas klatki {w milsekundach)
.
1

W OpenGL MVulkan B Vulkan MT

Rysunek 5.8: Wyniki pomiaréw testu 3 w zaleznosci od uzytego APIL.

Zgodnie 7z intuicja, wersja wielowatkowa nie zyskuje, a wrecz minimalnie traci
w tym tescie, co spowodowane jest zapewne bardzo niskim wykorzystaniem CPU
w tym tedcie. Tak duza roznica jest zastanawiajaca, gdyz implementacja oparta o
Vulkana byta kilkakrotnie sprawdzana i nie zostaly znalezione zadne potencjalne
optymalizacje. Dodatkowo zauwazy¢ mozna, ze ten sam test na systemie Linux po-
kazuje poréwnywalng wydajnosé w przypadku API Vulkan, jednak wersja OpenGL
jest tam drastycznie wolniejsza co pozwala zwyciezy¢ nowszemu API nawet w tym
tedcie. Nie jest znane jak duzy wplyw na takie wyniki maja sterowniki, jednak moz-
liwe jest, ze sterownik OpenGL wykonuje za plecami programisty bardziej agresywne
optymalizacje. Warto réwniez zauwazy¢, ze algorytm mapowania cieni jest bardzo
powszechnie stosowany, co by¢ moze zostalo w jakis sposéb dodatkowo rozpoznawane

i zoptymalizowane.

5.5.4. Wyniki testu 4

Na rysunku [5.9] przedstawiony jest wykres z wynikami czwartego testu. Test
ten posiada tylko jedna konfiguracje i nie jest dostepny w trybie wielowgtkowym,
jednak ze wzgledu na pomiar czasowy elementéw powigzanych z systemem operacyj-
nym i uzywanym systemem okien na danej platformie, testy zostaly przeprowadzone
réwniez na systemie Ubuntu 16.04 x64.

Jak widzimy na powyzszym rysunku, czas potrzebny na inicjalizacje API, okna,



5.5. WYNIKI 49

Czas inicjalizacji i wyrenderowania pierwszej klatki w tescie #4

1200

1000

Czas (w milsekundach)
8

200

Windows 7 Ubuntu 16.04

B OpenGL B Vulkan

Rysunek 5.9: Wyniki pomiaréw testu 4 w zaleznosci od uzytego API.

wszystkich uzywanych obiektéw oraz wyrenderowanie pierwszej klatki zalezy w spo-
rej mierze od uzywanej platformy. Na systemie operacyjnym Windows 7, obie wersje
potrzebowaly okoto 1 sekundy na zatadowanie i wygenerowanie pierwszej klatki, a
roznice sa marginalne. Na wynikach z systemu Ubuntu widzimy, ze obie wersje po-
trzebuja znacznie mniej czasu do wykonania testu, a takze zauwazy¢ mozemy, ze
wersja oparta o API OpenGL jest okolo 27 procent szybsza w tym zadaniu.

Wiyniki te cigzko zinterpretowaé z wielu powodéw:

¢ O ile wersje oparte o ten sam system operacyjny i system okienkowy powinny
by¢ miarodajne, o tyle poréwnywanie réznych platform nie ma wigkszego sensu,
gdyz rozne systemy okienkowe mogag generowaé¢ bardzo rézniacy sie narzut.
Taka sytuacje widzimy na powyzszym wykresie.

¢ Nie wiadomo do konca co robi sterownik OpenGL. Ciezko powiedzieé, czy bufor
wierzchotkow, podobnie jak w przypadku API Vulkan przenoszony jest do
pamieci lokalnej urzadzenia, by w nastepnych klatach korzystanie z niego byto
jak najszybsze. Nie wiemy réwniez jaka praca zostala wykonana z utworzeniem
buforéw ramek, gdzie wersja korzystajaca z Vulkana tworzy przynajmniej trzy
zestawy buforéw ramek z wlasnymi buforami komend.

e Nie wiadomo, czy sterownik OpenGL nie posiada w pamieci cache bazowej
wersji domy$lnie skonfigurowanego potoku graficznego, co znaczgco przyspie-

szatoby resetowanie oraz ladowanie nowych ustawien.

e Duzy wplyw na uzyskane tu wyniki moze mie¢ uzyty sterownik graficzny. Moz-
liwe, ze jest to element ktoéry dopiero zostanie zoptymalizowany w przysziosci,
gdyz programisci chcieli skupié¢ sie na uzyskaniu maksymalnej wydajnosci pod-
czas pracy, a nie na etapie inicjalizacji.



50 ROZDZIAL 5. PRZEPROWADZONE TESTY

e O ile wersja korzystajaca z API Vulkan napisana jest tak, by w nastepnych
klatkach wykona¢ jak najmniej pracy, a wykonana praca byla jak najszyb-
sza, o tyle sterownik starszego interfejsu moze zoptymalizowaé prace tej klatki

kosztem pozostatych klatek i wykonaé¢ mniej pracy tutaj.

Jedynym, bezsprzecznym argumentem, ktory powinnismy wyciaggnaé z powyz-
szych wynikow jest to, ze inicjalizacja niektérych obiektéw, takich jak potoki gra-
ficzne czy programy cieniujace, sa operacjami drogimi ze wzgledu na czas i wykony-
wanie ich powinno by¢ — jedli to tylko mozliwe — przeniesione do fazy tadowania

aplikacji.

5.6. Wyniki redakcji serwisu Phoronix

Projekt GL_vs_VK tworzony na potrzeby tej pracy zostal zauwazony przez re-
dakcje serwisu Phoronix. Michael Larabel, zalozyciel serwisu, pokusit sie o prze-

testowanie projektu na dostepnym sprzecie i kilku sterownikach graficznych:

e Nvidia GeForce GTX 780 Ti (sterownik Nvidia 381.22),
e Nvidia GeForce GTX 1050 (sterownik Nvidia 381.22),
e Nvidia GeForce GTX 1060 (sterownik Nvidia 381.22),
e Nvidia GeForce GTX 1080 (sterownik Nvidia 381.22),

e AMD Radeon R9 Fury (sterowniki AMDGPU-PRO 17.10 oraz RADV Mesa
17.2-dev),

e AMD Radeon RX 580 (sterowniki AMDGPU-PRO 17.10 oraz RADV Mesa
17.2-dev),

e Intel HD Graphics 630 (sterownik Mesa 17.2-dev).

Doktadniejsze informacje, wraz z pelnymi wynikami mozna znalezé na stronie testéw
[50].

Otrzymane wyniki sa bardzo kompleksowe i oferuja mozliwosé¢ poréwnania wy-
dajnosci na wielu kartach graficznych i réznych sterownikach. W wiekszosci testéw
Vulkan oferuje zysk wydajnosciowy rzedu 50 do 200 procent, w zaleznosci od testu
i uzytych sterownikéw. Warto jednak zauwazy¢, ze testy zostaly napisane w taki
sposéb, aby przedstawi¢ pelny zakres mozliwych wynikéw, czego przykltadem moga
by¢ recznie dobrane wartoéci konfiguracyjne pierwszego z dostepnych testéw. Dzieki
temu mozliwe bylo uzyskanie na moim sprzecie réznych wariantéow, takich jak ogra-
niczenie wydajnosci przez moc procesora lub karty graficznej. Testy przeprowadzone
przez redakcje serwisu wykonane zostaly na mocnym procesorze graficznym, przez



5.6. WYNIKI REDAKCJI SERWISU PHORONIX o1

co wiekszo$é testéw prawdopodobnie byla ograniczona moca CPU, co przekiada
sie na — w pewnym stopniu — faworyzowanie Vulkana i jego zalet. Warto jednak
pamietaé, ze zaobserwowane réznice sa jak najbardziej realne i mozliwe zyski wy-
dajnoséciowe badane w tej pracy zaobserwowa¢ mozna na réznym sprzecie i réznych

sterownikach.






Rozdziat 6.

Whnioski

Zgodnie z zapowiedzia, w rozdziale tym postaram sie odpowiedzie¢ na dwa

zadane wczeéniej pytania:

e Czy korzystanie z nowszego interfejsu pozwala zapewnic¢ wieksza wydajnos¢?

e Jak wygladaja réznice pomiedzy naktadem pracy potrzebnym na stworzenie
aplikacji w tych API?

W sformutowaniu odpowiedzi na te pytania, poshuze sie wiedza uzyskana pod-
czas pisania tej pracy oraz wynikami — zaréwno dostepnymi w sieci jak i uzyskanymi

w projekcie stworzonym na potrzeby tej pracy.

6.1. Wydajnosé

Zgodnie z przypuszczeniami wysnutymi na poczatku pracy oraz zapewnieniami
twércow nowego API, Vulkan, w pewnych sytuacjach, pozwala na uzyskanie zauwa-
zalnego wzrostu wydajnosci aplikacji. Wniosek taki jest calkowicie bezsprzeczny i
potwierdzony moze byé wieloma testami dostepnymi w sieci oraz potwierdzaja go
réowniez aplikacje stworzone na cele tej pracy. Zyski ptynace z korzystania tego API
sa tym wicksze, im wickszy jest stosunek pracy wykonywanej na potrzeby przetwa-
rzania zapytan API. Zyskamy zatem najwiecej w przypadku kiedy rysujemy malo

skomplikowang geometrie lub musimy czesto zmieniaé stan.

Zyski, jakie mozemy osiagna¢ mozemy podzieli¢ na dwie kategorie:

e Zwiekszenie ilosci renderowanych klatek na sekunde,

e 7Zmniejszenie obcigzenia CPU wykonujac ta samg prace.

Dzieki temu zyska¢ moga zaréwno aplikacje, ktore wykonujg bardzo duze ilosci
polecen rysowania czy zmiany stanu oraz te aplikacje, ktére wykonuja réwniez —

93



54 ROZDZIAL 6. WNIOSKI

pomiedzy zapytaniami do API graficznego — duzo pracy na CPU. Mniejsze obciaze-
nie CPU pozwala bowiem wykonaé¢ wiecej pracy w tym czasie, co powinno przetozy¢
sie na wieksza wydajnosé. Czesé zyskéw mozemy przypisac¢ rowniez wprowadzonym
w nowszym API mechanizmom takim jak PushConstants, ktore pozwalajg na ak-
tualizacje malych fragmentéw pamieci na GPU bez potrzeby uruchamiania catego
mechanizmu transferu danych i synchronizacji dostepu do niej.

7 przeprowadzonych i dostepnych testéw wynika jednak, ze zyski sa male lub
praktycznie niewidoczne, gdy aplikacja w catoéci ograniczona jest przez GPU. Nie
pomoze ono zatem aplikacjom, ktorych lwia cze$é pracy wykonywana jest na proce-

sorze graficznym.

Ciekawie prezentuje sie wyniki czasu inicjalizacji dema. Znacznie gorsze rezul-
taty dla nowszego API mogg wynikaé z konieczno$ci recznej inicjalizacji calego po-
toku i wszystkich wykorzystywanych elementéw interfejsu przez programiste, gdzie
w starszym API OpenGL, wiele obiektéw byta uzywana w domyslnej postaci, co za-
pewne pozwala na pewne optymalizacje. Wplyw na wyniki moze mie¢ réwniez cheé
bardziej agresywnych optymalizacji po stronie Vulkana, ktory posiadajac znacznie
szersza wiedze na temat zamiaréw programisty, moze probowaé lepiej zoptymalizo-
waé posiadane zasoby podczas ich tworzenia, by przyspieszy¢ pdzniejsza prace. Teze
tg wspiera fakt, ze w API dostepnych jest kilka flag pozwalajacych na wylaczenie
optymalizacji pewnych obiektéw w przypadku jednokrotnego ich uzycia.

6.2. Naktady pracy

Vulkan jest zdecydowanie bardziej niskopoziomowym interfejsem niz OpenGL.
Przektada sie to na zauwazalnie wiekszy potrzebny naktad pracy, by stworzy¢ po-
dobne aplikacje z jego wykorzystaniem. Najciezszymi elementami do opanowania
wydaja sie reczna alokacja i zarzadzanie pamiecig oraz konieczno$¢ poprawnej syn-
chronizacji wykonywanej pracy. Zadania te nie sa proste, a btedne ich wykonanie
przetozy¢ moze sie na niepoprawne zachowanie aplikacji na niektoérych urzadzeniach
czy gorszg wydajnosé.

Kolejna istotng kwestiag w analizie nakladu pracy jest to, ze choé¢ API jest bar-
dzo rozwlekie 1 wymaga przedstawienia do$é¢ dokltadnego opisu jego wykorzystania,
zadanie to jest stosunkowo proste, ze wzgledu na przemyslane zaprojektowanie in-
terfejsu. Piszac aplikacje korzystajace z niego, majac podstawowa wiedze na temat
najwazniejszych obiektéw w API tatwo zrozumieé czym sa wymagane parametry i
co opisuja dane struktury.

Zauwazy¢ ponadto musimy, ze dostepne warstwy walidacji w duzym stopniu
utatwiaja korzystanie z tego API oraz znacznie przysSpieszaja prace z tym API. W
przypadku interfejsu OpenGL czesto wystepowaly sytuacje, w ktérych na ekranie nie
widzieliSmy wynikow zleconych operacji, jednak nie dostawaliémy zadnych bledéw



6.3. PODSUMOWANIE 95

lub wskazéwek, gdzie mogliémy popelnié¢ btad. W tym temacie wspomniane warstwy
spisuja sie znacznie lepiej — i cho¢ ciagle sa rozwijane — ich pokrycie interfejsu jest
znaczne i wykrywa wiekszo$¢ najczestszych problemow. Fakt, ze sa one udostepnione
jako oprogramowanie open-source, ktore moze rozwija¢ kazdy, pozwala wierzy¢, ze
warstwy te beda rozszerzaly sie o coraz to nowe mozliwosci usprawniajace prace z
tym API.

Istotnym elementem z punktu widzenia programisty jest réwniez dostepnosé na-
rzedzi i mozliwos¢ utworzenia nowych. Na przyktadzie Vulkana widzimy, ze tworcy
API sporo nauczyli si¢ od czasu wydania OpenGL i maja znacznie lepsze podejscie w
tym temacie. Przykladem moze by¢ udostepnienie wszystkich kluczowych elementéw
API — w tym samej specyfikacji API, dostepnych narzedzi, referencyjnych kompi-
latoréw czy wspomnianych warstw walidacji — na zasadzie otwartej licencji, przez
co programisci korzystajacy z tych rzeczy maja wiekszy wplyw na ksztaltowanie sig
ekosystemu wokdét omawianego interfejsu.

6.3. Podsumowanie

Vulkan to stosunkowo mtode API. Stworzone zostato w konkretnych celach i
cele te realizuje znacznie lepiej, niz jego poprzednik. Do celéw tych nigdy nie nale-
zalo zastapienie jego poprzednika i patrzac na stopien jego skomplikowania szybko
to prawdopodobnie nie nastapi. Pozwala jednak na uzyskanie znacznie wyzszej wy-
dajnosci, zatem aplikacje czy silniki graficzne, ktore zmuszone sa do jak najlepszego
optymalizowania swojego kodu prawdopodobnie zyskaja zauwazalny wzrost wydaj-

noéci po przejsciu na nowsze API.

Cho¢ API jest znacznie trudniejsze, korzystanie z niego — poza kilkoma aspek-
tami jak synchronizacja — wcale nie wydaje si¢ takie trudne. Wszystko to dzigki
dobremu zaprojektowaniu interfejsu, ktory jest czytelny i tatwy w zrozumieniu. Sy-
tuacja ta prawdopodobnie poprawi sie wraz z powiekszeniem bibliotek i projektow
utatwiajacych korzystanie z tego API.

Cieszy réwniez fakt zdrowego podejécia do utrzymywania API przez tworcow,
wydania narzedzi oraz wspierania réznych systeméw operacyjnych. Pozwala to wie-
rzy¢, ze API bedzie sie¢ stabilnie rozwijato, a zbiér dostepnych narzedzi bedzie sig
stale powiekszal, z ktérych kazde bedzie ciagle udoskonalane i rozszerzane o nowe
mozliwosci.

W mojej opinii Vulkan to przysztoéé¢ aplikacji nastawionych na maksymalna
wydajnosé, a z czasem réwniez i pozostatych aplikacji multimedialnych. Wraz z na-
dejsciem bibliotek utatwiajacych wykorzystywanie tego API oraz poprawa dostep-
nych sterownikéw, znikng ostatnie argumenty przeciwko wyborze tego interfejsu.
Potwierdza to rowniez stopien zaangazowania w prace nad API oraz rozwdj swojego

oprogramowania firm z branzy.






Dodatek A

Projekt GL_vs VK

A.1. Kod zrédlowy

Projekt udostepniony jest na warunkach licencji MIT w publicznym repozyto-
rium hostowanym w serwisie GitHub. Repozytorium to znajduje si¢ pod adresem
https://github.com/RippeR37/GL_vs_VK.

Kod napisany jest w jezyku C++ i do jego kompilacji wymaga kompilatora zgod-
nego ze standardem C++11. Do kodu zrédlowego dotaczony jest plik projektu dla
srodowiska Microsoft Visual Studio 2013 oraz skrypt budujacy dla programu
CMake. Projekt wspiera systemy z rodzin Microsoft Windows oraz Linux przy
czym testowany byl na nastepujacych systemach operacyjnych:

e Microsoft Windows 7,
e Ubuntu 16.04,

e Ubuntu 17.04.
Kod do swojego dziatania wykorzystuje nastepujace biblioteki:

e GLEW — zaladowanie API OpenGL,
e GLFW — stworzenie okna oraz obstugi wejscia/wyjscia,

e GLM — obliczenia matematyczne zwiazane z macierzami i wektorami.

Projekt — jako submodutly systemu kontroli wersji GIT — zawiera w sobie
powyzsze biblioteki oraz dodatkowo udostepnia konkretna wersje nagléwkéw API
Vulkan, oraz odniesienie do odpowiedniej wersji biblioteki Vulkan-Hpp tak, by by¢
niezaleznym od wersji zainstalowanej przez uzytkownika.

o7


https://github.com/RippeR37/GL_vs_VK

o8 DODATEK A. PROJEKT GL_VS_VK

Dodatkowo kod do kompilacji i dziatania wymaga zainstalowanych sterownikéw
OpenGL oraz Vulkan. W przypadku checi zmiany i rekompilacji shaderéow wyma-
gane jest zainstalowanie aplikacji glslangValidator dostepnej miedzy innymi w

oprogramowaniu Vulkan SDK.

Kod podzielony jest na trzy moduty:

e base — modul odpowiedzialny za bazowa obstuge podstawowych i czesto
wykorzystywanych obiektéw. Wewnatrz tego modutu znajduja sie dwa sub-
moduly — gl oraz vkx ktore skupiaja si¢ na udostepnieniu wysokopoziomo-
wego dostepu do podstawowych elementow API OpenGL oraz Vulkan, miedzy

innymi pozwalajac na stworzenie okna obstugujacego dane API.

e framework — modul odpowiedzialny za funkcjonalnos¢ frameworku urucha-

miajacego testy i mierzacego ich wydajnosé.

e tests — modul zawierajacy wszystkie zaimplementowane testy w osobnych
katalogach. W kazdym katalogu testu znajduja sie pod-katalogi dla kazdego
z testowanych API zawierajace implementacje danego testu wykorzystujaca
dane API.

A.2. Kompilacja

Projekt jest w calosci niezalezny i kompiluje wiekszo$é potrzebnych bibliotek
wraz ze soba. Dzieki temu nie jest wymagana zadna ingerencja w system uzyt-
kownika. Dodatkowo, jesli skrypt CMake wykryje obecno$é w systemie biblioteki
GLEW, to zamiast budowaé ja od podstaw — uzyje dostepnej wersji. Doktadniejsze
informacje na temat budowy znajdujg sie w pliku README . md.

A.2.1. Kompilacja na platformie Windows

Dla systeméw z rodziny Windows wspierany jest system budowy wykorzystu-
jacy srodowisko Microsoft Visual Studio w wersjach 2013 lub nowszych. Proces bu-

dowy sprowadza si¢ tutaj do:

1. Inicjalizacji submodutéw Gita,

2. Wypakowaniu zawartosci pliku glew-win-src.zip z folderu
GL_vs_VK/third party/glew-win/ do folderu go zawierajacego,

3. Uruchomieniu pliku projektu znajdujacego sie w katalogu
GL_vs_VK/project/msvc/,

4. Zbudowaniu projektu przy uzyciu $rodowiska Visual Studio.



A.3. URUCHOMIENIE 99

Budowa projektu z uzyciem innego kompilatora oraz skryptu CMake powinna
by¢ mozliwa, jednak w tym wypadku nalezy wtasnorecznie skompilowaé¢ wszystkie
zaleznodci oraz recznie podaé¢ do nich $ciezki. W tym wypadku polecam skorzystaé
z oprogramowania CMake GUI, ktore powinno utatwié¢ ten proces.

A.2.2. Kompilacja na platformie Linux

Na systemach operacyjnych z rodziny Linux kompilacja odbywa si¢ z wykorzy-
staniem dotaczonego skryptu budujacego wykorzystujacego oprogramowanie CMake.
Budowanie na tej platformie polega na:

1. Inicjalizacji submoduléw Gita,
2. Wygenerowaniu projektu programem CMake,
3. Zbudowanie wygenerowanego projektu przy uzyciu odpowiedniej komendy.

Przyktadowymi poleceniami budujacymi projekt moga by¢:
cd GL_vs_ VK

git submodule update —init
mkdir build && cd build
cmake .. && make

A.3. Uruchomienie

Po zbudowaniu projektu, w katalogu bin znajdzie si¢ plik wykonywalny o na-
zwie GL_vs_VK. Aby uruchomié ktérys z testéw, nalezy uruchomié ten program z

odpowiednimi argumentami.

Dostepne argumenty:

e -t [N] — precyzuje ktory test ma zosta¢ uruchomiony,
e -api [API] — wybiera ktére API ma zostaé uzyte (dostepne: gl i vk),
e -m — opcjonalny przetacznik wlaczajacy wersje wielowatkowa (gdy dostepna)

e -benchmark — wlacza tryb pomiaru, ktéry sprawia, ze dany test wlaczony
bedzie tylko przez okreslony czas i po jego zakonczeniu wyswietlone zostana
na standardowym wyjsciu statystyki z jego dziatania.

e —-time [T] — zmienia domyslny czas wykonywania testu na podang wartosé.
Argument ten jest ignorowany, jesli nie podano przetacznika -benchmark.



60 DODATEK A. PROJEKT GL_VS_VK

Przyktadowe, chcac uruchomié trzeci test w wersji wielowatkowej wykorzystu-
jacej API Vulkan w trybie przeprowadzenia pomiaréw z domyslnym czasem testéw,

nalezy wykonaé polecenie:

./GL_vs_VK -t 3 -api vk -m -benchmark



Bibliografia

Wikipedia, Application programming interface, https://en.wikipedia.org/
wiki/Application_programming_interface.

Wikipedia, Vulkan, https://en.wikipedia.org/wiki/Vulkan_(API).
Wikipedia, OpenGL, https://en.wikipedia.org/wiki/OpenGL.
Wikipedia, Mantle, https://en.wikipedia.org/wiki/Mantle_(API)

Khronos Group, History of OpenGL,https://www.khronos.org/opengl/wiki/
History_of_OpenGL.

Khronos Group, OpenGL 4.5 core profile specification, https://www.khronos.
org/registry/OpenGL/specs/gl/glspecd5. core.pdf/

Wikipedia, Fized-function, https://en.wikipedia.org/wiki/

Fixed-function.

Khronos Group, Fized Function Pipeline, https://wuw.khronos.org/opengl/
wiki/Fixed_Function_Pipelinel

Khronos Group, Rendering Pipeline QOverview, https://wuw.khronos.org/

opengl/wiki/Rendering Pipeline_QOverview.

[10] Wikipedia, OpenGL Shading Language, https://en.wikipedia.org/wiki/

OpenGL_Shading_Language.

[11] Khronos Group, OpenGL Shading Language, https://www.khronos.org/

opengl/wiki/OpenGL_Shading_Language.

[12] Cass Everitt, OpenGL Efficiency: AZDO, Konferencja GDC, San Franci-

sco, 2014, https://www.khronos.org/assets/uploads/developers/library/
2014-gdc/Khronos-0penGL-Efficiency-GDC-Mar14.pdf.

[13] Wikipedia,  Graphics Core Next, https://en.wikipedia.org/wiki/

Graphics_Core_Next.

[14] Joel Hruska, Asynchronous compute, AMD, Nvidia, and DX12:

What we  know so  far?, https://www.extremetech.com/extreme/

213519-asynchronous-shading-amd-nvidia-and-dx12.

61


https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Vulkan_(API)
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Mantle_(API)
https://www.khronos.org/opengl/wiki/History_of_OpenGL
https://www.khronos.org/opengl/wiki/History_of_OpenGL
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://en.wikipedia.org/wiki/Fixed-function
https://en.wikipedia.org/wiki/Fixed-function
https://www.khronos.org/opengl/wiki/Fixed_Function_Pipeline
https://www.khronos.org/opengl/wiki/Fixed_Function_Pipeline
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://en.wikipedia.org/wiki/OpenGL_Shading_Language
https://en.wikipedia.org/wiki/OpenGL_Shading_Language
https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language
https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language
https://www.khronos.org/assets/uploads/developers/library/2014-gdc/Khronos-OpenGL-Efficiency-GDC-Mar14.pdf
https://www.khronos.org/assets/uploads/developers/library/2014-gdc/Khronos-OpenGL-Efficiency-GDC-Mar14.pdf
https://en.wikipedia.org/wiki/Graphics_Core_Next
https://en.wikipedia.org/wiki/Graphics_Core_Next
https://www.extremetech.com/extreme/213519-asynchronous-shading-amd-nvidia-and-dx12
https://www.extremetech.com/extreme/213519-asynchronous-shading-amd-nvidia-and-dx12

62 BIBLIOGRAFIA

[15] Khalid Moammer, AMD Improves DirectX 12 Performance By Up
To 46% With Asynchronous Compute Engines, http://wccftech.com/

amd-improves-dx12-performance-45-gpu-asynchronous-compute-engines/

[16] Sellers Graham, Kessenich John M., Kessenich John, Vulkan Programming Gu-
ide: The Official Guide to Learning Vulkan, Addison Wesley, 2016.

[17] Khronos Group, Vulkan 1.0 — A Specification, https://www.khronos.org/
registry/vulkan/specs/1.0/html/vkspec.html.

[18] NVIDIA,  Vulkan  Training Day, https://developer.nvidia.com/
nvidia-vulkan-developer-day.

[19] Christoph Kubisch, Transitioning from OpenGL to Vulkan, https://
developer.nvidia.com/transitioning-opengl-vulkan.

[20] Christoph Kubisch, Engaging the Voyage to Vulkan, https://developer.

nvidia.com/engaging-voyage-vulkan.

[21] Christoph Kubisch, OpenGL like Vulkan, https://developer.nvidia.com/

opengl-vulkan.

[22] Chris Hebert, Vulkan Memory Management, https://developer.nvidia.

com/vulkan-memory-management.

[23] Matthaeus Chajdas, Vulkan barriers explained, http://gpuopen.com/

vulkan-barriers-explained/.

[24] Graham Sellers, Vulkan Renderpasses, http://gpuopen. com/

vulkan-renderpasses/.

[25] Alexander  Overvoorde,  Vulkan  Tutorial, Maj 2017, https://

vulkan-tutorial.com/Overview.

[26] Dominik Witczak, Daniel Rakos, Derrick Owens, The most common
Vulkan mistakes, Prezentacja na Uniwersytecie Yodzkim, 2016, http:
//321pi102815q82yhj72224m8j .wpengine.netdna-cdn.com/wp-content/
uploads/2016/05/Most-common-mistakes-in-Vulkan-apps.pdf|

[27] Soowan  Park, Vulkan ~ Game  Development  in  Mobile,  Kon-
ferencja GDC, 2017, https://www.khronos.org/assets/
uploads/developers/library/2017-gdc/GDC_Vulkan-on-Mobile_
Vulkan-Game-Development-in-Mobile-Samsung_Mar17.pdfl|

[28] Timothy Lottes, Graham Sellers, Dr. Matthius G. Chajdas, Vulkan fast pa-
ths, Konferencja GDC, 2016, http://321pi02815982yhj72224m8j .wpengine.
netdna-cdn.com/wp-content/uploads/2016/03/VulkanFastPaths.pdf|


http://wccftech.com/amd-improves-dx12-performance-45-gpu-asynchronous-compute-engines/
http://wccftech.com/amd-improves-dx12-performance-45-gpu-asynchronous-compute-engines/
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html
https://developer.nvidia.com/nvidia-vulkan-developer-day
https://developer.nvidia.com/nvidia-vulkan-developer-day
https://developer.nvidia.com/transitioning-opengl-vulkan
https://developer.nvidia.com/transitioning-opengl-vulkan
https://developer.nvidia.com/engaging-voyage-vulkan
https://developer.nvidia.com/engaging-voyage-vulkan
https://developer.nvidia.com/opengl-vulkan
https://developer.nvidia.com/opengl-vulkan
https://developer.nvidia.com/vulkan-memory-management
https://developer.nvidia.com/vulkan-memory-management
http://gpuopen.com/vulkan-barriers-explained/
http://gpuopen.com/vulkan-barriers-explained/
http://gpuopen.com/vulkan-renderpasses/
http://gpuopen.com/vulkan-renderpasses/
https://vulkan-tutorial.com/Overview
https://vulkan-tutorial.com/Overview
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2016/05/Most-common-mistakes-in-Vulkan-apps.pdf
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2016/05/Most-common-mistakes-in-Vulkan-apps.pdf
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2016/05/Most-common-mistakes-in-Vulkan-apps.pdf
https://www.khronos.org/assets/uploads/developers/library/2017-gdc/GDC_Vulkan-on-Mobile_Vulkan-Game-Development-in-Mobile-Samsung_Mar17.pdf
https://www.khronos.org/assets/uploads/developers/library/2017-gdc/GDC_Vulkan-on-Mobile_Vulkan-Game-Development-in-Mobile-Samsung_Mar17.pdf
https://www.khronos.org/assets/uploads/developers/library/2017-gdc/GDC_Vulkan-on-Mobile_Vulkan-Game-Development-in-Mobile-Samsung_Mar17.pdf
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2016/03/VulkanFastPaths.pdf
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2016/03/VulkanFastPaths.pdf

BIBLIOGRAFIA 63

[29] Dan Ginsburg, Valve, Porting Source2 to Vulkan, Konferencja SIGGRAPH,
2015, http://nextgenapis.realtimerendering.com/presentations/6_

Ginsburg_Source2.pdfl|

[30] Cort Stratton, OpenGL/Vulkan ~ Performance  Test, Konferen-
cja  Khronos DevU Seoul, Seul 2016, http://www.khronos.org/
assets/uploads/developers/library/2016-vulkan-devu-seoul/
7-Vulkan-GL-Performance-Comparison.pdf.

[31] Ashley Smith, Gnomes per second in Vulkan and OpenGL ES, https://www.
imgtec.com/blog/gnomes-per-second-in-vulkan-and-opengl-es/.

[32] Robin Britton, Vulkan vs OpenGL ES for a 3D satellite navigation app on Po-
werVR, https://www.imgtec.com/blog/vulkan-3d-satnav-app-powervr/.

[33] Mark  Tyson, Khronos Vulkan ~API runs demo mnearly twice
as fast as OpenGL, http://hexus.net/tech/news/software/

85985-khronos-vulkan-api-runs-demo-nearly-twice-fast-opengl/.

[34] ARM, Vulkan vs OpenGL ES on ARM mobile, https://developer.arm.com/

graphics/vulkan/vulkan-demos/vulkan-vs-opengl-es-on-arm-mobile.

[35] ARM, First comparison of Vulkan API vs OpenGL ES API on ARM, https:
//www . youtube. com/watch?v=rvCDIFaTKCA.

[36] Jarred Walton, Doom benchmarks return: Vulkan vs. OpenGL, http://wuw.

pcgamer . com/doom-benchmarks-return-vulkan-vs-opengl/2/.

[37] John Williamson, Doom OpenGL VS Vulkan Gra-
phics Performance Analysis, https://www.eteknix.com/

doom-opengl-vs-vulkan-graphics-performance-analysis/.

[38] Mikko Strandborg, Introducing the Vulkan renderer preview, https://blogs.
unity3d.com/2016/09/29/introducing-the-vulkan-renderer-preview/.

[39] Xenko, Xenko 1.8 - Mutithreading: OpenGL vs Vulkan, https://www.youtube.
com/watch?v=sJ2p982cZFcl

[40] Dana Cowley, Epic Games Unveils ProtoStar at Samsung Ga-
laxy Unpacked, https://www.unrealengine.com/en-US/blog/

epic-games-unveils-protostar-at-samsung-galaxy-unpacked.
[41] Crytec, CryENGINE roadmap, https://www.cryengine.com/roadmap.

[42] Dean  Sekuli¢, Getting Serious with  Vulkan, Konferencja Khro-
nos UK Vulkanised, 2017, https://www.khronos.org/assets/
uploads/developers/library/2017-khronos-uk-vulkanised/
005-Vulkanised-Dean-Sekulic-Getting-Serious-with-Vulkan_May17.pdf.


http://nextgenapis.realtimerendering.com/presentations/6_Ginsburg_Source2.pdf
http://nextgenapis.realtimerendering.com/presentations/6_Ginsburg_Source2.pdf
http://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devu-seoul/7-Vulkan-GL-Performance-Comparison.pdf
http://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devu-seoul/7-Vulkan-GL-Performance-Comparison.pdf
http://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devu-seoul/7-Vulkan-GL-Performance-Comparison.pdf
https://www.imgtec.com/blog/gnomes-per-second-in-vulkan-and-opengl-es/
https://www.imgtec.com/blog/gnomes-per-second-in-vulkan-and-opengl-es/
https://www.imgtec.com/blog/vulkan-3d-satnav-app-powervr/
http://hexus.net/tech/news/software/85985-khronos-vulkan-api-runs-demo-nearly-twice-fast-opengl/
http://hexus.net/tech/news/software/85985-khronos-vulkan-api-runs-demo-nearly-twice-fast-opengl/
https://developer.arm.com/graphics/vulkan/vulkan-demos/vulkan-vs-opengl-es-on-arm-mobile
https://developer.arm.com/graphics/vulkan/vulkan-demos/vulkan-vs-opengl-es-on-arm-mobile
https://www.youtube.com/watch?v=rvCD9FaTKCA
https://www.youtube.com/watch?v=rvCD9FaTKCA
http://www.pcgamer.com/doom-benchmarks-return-vulkan-vs-opengl/2/
http://www.pcgamer.com/doom-benchmarks-return-vulkan-vs-opengl/2/
https://www.eteknix.com/doom-opengl-vs-vulkan-graphics-performance-analysis/
https://www.eteknix.com/doom-opengl-vs-vulkan-graphics-performance-analysis/
https://blogs.unity3d.com/2016/09/29/introducing-the-vulkan-renderer-preview/
https://blogs.unity3d.com/2016/09/29/introducing-the-vulkan-renderer-preview/
https://www.youtube.com/watch?v=sJ2p982cZFc
https://www.youtube.com/watch?v=sJ2p982cZFc
https://www.unrealengine.com/en-US/blog/epic-games-unveils-protostar-at-samsung-galaxy-unpacked
https://www.unrealengine.com/en-US/blog/epic-games-unveils-protostar-at-samsung-galaxy-unpacked
https://www.cryengine.com/roadmap
https://www.khronos.org/assets/uploads/developers/library/2017-khronos-uk-vulkanised/005-Vulkanised-Dean-Sekulic-Getting-Serious-with-Vulkan_May17.pdf
https://www.khronos.org/assets/uploads/developers/library/2017-khronos-uk-vulkanised/005-Vulkanised-Dean-Sekulic-Getting-Serious-with-Vulkan_May17.pdf
https://www.khronos.org/assets/uploads/developers/library/2017-khronos-uk-vulkanised/005-Vulkanised-Dean-Sekulic-Getting-Serious-with-Vulkan_May17.pdf

64 BIBLIOGRAFIA

[43] Liam Dawe, Testing The Talos Principle OpenGL vs Vulkan again, now that Va-
lve have fixed the Steam Overlay, https://www.gamingonlinux.com/articles/

testing-the-talos-principle.7049.

[44] Michael F. Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, Neil Hunt,
The Triangle Processor and Normal Vector Shader: a VLSI System for High
Performance Graphics, ACM SIGGRAPH Computer Graphics, v.22 n.4, p.21-
30, Aug. 1988.

[45] Shawn Hargreaves, Mark Harris, Deferred Shading, Prezentacja NVI-
DIA Developer Conference: 6800 Leagues Under the Sea, Londyn, 2004,
http://http.download.nvidia.com/developer/presentations/2004/6800_
Leagues/6800_Leagues_Deferred_Shading.pdf.

[46] Lance Williams, Casting curved shadows on curved surfaces, ACM SIGGRAPH
Computer Graphics 12,3 (sierpien 1978), 270-274.

[47] William T. Reeves, David H. Salesin, Robert L. Cook, Rendering Antialia-
sed Shadows with Depth Maps, Konferencja SIGGRAPH, 1987, http://dl.acm.
org/citation.cfm?id=37435.

[48] Louis Bavoil, Advanced Soft Shadow Mapping Techniques, Konferencja
GDC, 2008, http://developer.download.nvidia.com/presentations/2008/
GDC/GDC08_SoftShadowMapping. pdfl

[49] Khronos Group, Khronos Videos and Presentations, https://www.khronos.
org/developers/library/.

[50] Michael Larabel, GL vs_.VK: A Micro-Benchmark Looking At The Overhead
Of OpenGL vs. Vulkan APIs, czerwiec 2017, http://www.phoronix.com/scan.
php?page=article&item=gl-vs-vk.

[51] Damian Dyndo, GL_vs_VK: Comparison of OpenGL and Vulkan API in terms
of performance, Repozytorium kodu, https://github.com/RippeR37/GL_vs_
VK.


https://www.gamingonlinux.com/articles/testing-the-talos-principle.7049
https://www.gamingonlinux.com/articles/testing-the-talos-principle.7049
http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://dl.acm.org/citation.cfm?id=37435
http://dl.acm.org/citation.cfm?id=37435
http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_SoftShadowMapping.pdf
http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_SoftShadowMapping.pdf
https://www.khronos.org/developers/library/
https://www.khronos.org/developers/library/
http://www.phoronix.com/scan.php?page=article&item=gl-vs-vk
http://www.phoronix.com/scan.php?page=article&item=gl-vs-vk
https://github.com/RippeR37/GL_vs_VK
https://github.com/RippeR37/GL_vs_VK

	Wprowadzenie
	Wstęp
	Cel pracy
	Analiza wydajności
	Analiza opłacalności

	Omówienie rozdziałów

	OpenGL
	Historia
	Stały potok
	Programowalny potok
	OpenGL dziś

	Vulkan
	Wprowadzenie
	Ogólny zarys API
	Instancja
	Urządzenia
	Warstwy
	Kolejki
	Bufory komend
	Potoki i deskryptory
	Pamięć
	Synchronizacja

	Podsumowanie

	Przegląd istniejących testów
	Przegląd autorskich testów
	Test Khronos DevU w Seulu
	Demo Gnome Horde
	Demo Satelite navigation
	Demo Stardust
	Test ARM

	Przegląd testów opartych na silnikach graficznych
	Unity
	Xenko
	Inne

	Przegląd testów opartych na grach komputerowych
	The Talos Principles
	Doom 2016

	Podsumowanie

	Przeprowadzone testy
	Projekt
	Opis projektu

	Testy
	Elementy wspólne
	Test 1 — scena statyczna z dużą ilością obiektów
	Test 2 — scena dynamiczna z terenem wykorzystującym LoD
	Test 3 — scena statyczna z mapowaniem cieni
	Test 4 — czas inicjalizacji dema

	Metodologia testowania
	Pomiary czasów
	Wyniki
	Wyniki testu 1
	Wyniki testu 2
	Wyniki testu 3
	Wyniki testu 4

	Wyniki redakcji serwisu Phoronix

	Wnioski
	Wydajność
	Nakłady pracy
	Podsumowanie

	Projekt GL_vs_VK
	Kod źródłowy
	Kompilacja
	Kompilacja na platformie Windows
	Kompilacja na platformie Linux

	Uruchomienie

	Bibliografia

