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Streszczenie

Vulkan to nowe API graficzne i obliczeniowe stworzone z myślą o najbardziej
wymagających aplikacjach, którego głównym konceptem jest udostępnienie bardzo
niskopoziomowego dostępu do GPU i przesunięcie odpowiedzialność za kluczowe
aspekty obsługi sprzętu ze sterowników na twórców aplikacji. Vulkan z założenia
przynieść ma spory wzrost wydajności dzięki niższemu narzutowi na CPU oraz udo-
stępnieniu wielu możliwości dla optymalizacji. W pracy tej zbadam czy rzeczywiste
wyniki potwierdzą zapewnienia twórców i czy korzystając z tego API możemy uzy-
skać lepszą wydajność w porównaniu z interfejsem OpenGL. Korzystać będę przy
tym z dostępnych testów wydajnościowych porównujących oba API oraz przepro-
wadzę własne testy na autorskiej aplikacji napisanej na potrzeby tej pracy. Ponadto
praca zawiera krótkie omówienie kluczowych elementów API Vulkan.

Vulkan is a new graphics and compute API created for performance-demanding
applications. Its core concept is to expose very low-level access to GPU and shift
responsibility of key aspects of managing hardware from drivers to application’ cre-
ators. Vulkan should, by design, come with a performance gain due to its low over-
head on CPU and exposition of more possibilities for optimizations. In this paper
I will try to test if that is really the case and if we — by using Vulkan API —
can gain performance comparing to OpenGL interface. To do this, I will analyze
existing performance benchmarks comparing both APIs and perform my own tests
using testing application created for this paper. Furthermore, this paper will include
short overview of key Vulkan API elements.
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Rozdział 1.

Wprowadzenie

1.1. Wstęp

Przez ostatnie kilkanaście lat rynek procesorów graficznych dynamicznie się
rozwijał. Nowe modele kart graficznych obsługują coraz to nowszą i bardziej skom-
plikowaną funkcjonalność, która w założeniu oferować ma szersze możliwości oraz
przyśpieszenie renderowania skomplikowanych wizualizacji trójwymiarowych. Pro-
gramiści chcąc tworzyć przenośne aplikacje multimedialne zmuszeni są do korzysta-
nia z odpowiednich interfejsów programistycznych pozwalających na dostęp do tych
urządzeń.

Interfejs programistyczny aplikacji (ang. Application Programming Inter-
face, API) jest to zestaw reguł pozwalających na komunikowanie się różnych mo-
dułów we wspólny i zrozumiały dla siebie ”język”. Interfejs taki specyfikuje się na
poziomie kodu źródłowego napisanego w odpowiednim języku programowania.

Istnieje kilka popularnych i szeroko wykorzystywanych interfejsów programi-
stycznych pozwalających na korzystanie z procesorów graficznych do skomplikowa-
nych celów, takich jak renderowanie zaawansowanej grafiki dwuwymiarowej i trój-
wymiarowej, czy wykonywanie skomplikowanych obliczeń wykorzystując przy tym
równoległą architekturę procesorów graficznych. Najpopularniejszymi z nich są:

� Direct3D

� OpenGL

� Vulkan

� Metal

API te ciągle ewoluują by nadążać za zmianami wprowadzanymi w sprzęcie oraz
by móc zaoferować największą wydajność i elastyczność. Każdy z tych interfejsów ma
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10 ROZDZIAŁ 1. WPROWADZENIE

swoje wady i zalety, zatem warto je znać, by wiedzieć, który z nich będzie najlepszy
do danego zastosowania.

Na przestrzeni ostatnich kilkunastu lat zauważyć możemy trend w architektu-
rze tych interfejsów pokazujący przenoszenie coraz to większej odpowiedzialności ze
sterowników urządzeń na programistów. Dzieje się tak, gdyż to twórcy danej apli-
kacji wiedzą najlepiej jak dane zasoby zostaną użyte i nie muszą oni zgadywać jak
dana aplikacja będzie się zachowywała.

1.2. Cel pracy

Celem pracy jest porównanie nowego API graficznego i obliczeniowego Vulkan z
istniejącym wiele lat i szeroko wykorzystywanym interfejsem OpenGL. Kluczowymi
elementami badanymi w tej pracy będą:

� wpływ API na wydajność aplikacji,

� subiektywna ocena opłacalności wyboru tego API.

Aby osiągnąć te cele, przejrzymy dostępne testy aplikacji wspierających oba in-
terfejsy graficzne i przeanalizujemy je pod względem wydajności. Na potrzeby pracy
stworzone zostały również autorskie testy skupiające się na porównaniu różnic wy-
dajności obu API. Testy te składają się z kilku identycznych scen renderowanych w
obu API i pozwalają zbadać między innymi ich narzut. Dodatkowo, postaram się
opisać kluczowe elementy interfejsu Vulkan, ze szczególnym uwzględnieniem aspek-
tów wydajnościowych.

1.2.1. Analiza wydajności

Najważniejszą zapowiadaną zaletą nowszego API jest możliwość uzyskania znacz-
nie lepszej wydajności względem dostępnych dotychczas interfejsów. Twórcy Vulkana
zapewniają, że samo korzystanie z niego będzie wiązać się z zyskiem wydajnościo-
wym wynikającym z niższego narzutu na CPU przez odchudzenie sterowników. Ko-
lejnym ważnym elementem jego architektury jest fakt, że został on zaprojektowany
z myślą o efektywnym wykorzystywaniu w aplikacjach wielowątkowych. Vulkan udo-
stępnia również bardzo niskopoziomowe mechanizmy do zarządzania zasobami urzą-
dzeń go obsługujących, co przełożyć ma się na lepsze ich wykorzystanie. To wszystko
powinno pozwolić na otrzymanie zauważalnie wyższej wydajności, szczególnie w apli-
kacjach wykonujących dużą ilość obliczeń na głównym procesorze (CPU).

Vulkan niestety nie wprowadza dużych zmian w kwestii pracy wykonywanej
przez procesor graficzny (GPU), co prawdopodobnie przełoży się na małe zyski lub
ich brak w aplikacjach silnie ograniczonych przez moc GPU.
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1.2.2. Analiza opłacalności

Istotnym elementem, od którego zależy tempo rozwoju i przyswojenia nowego
API jest poziom trudności związany z jego nauką, zrozumieniem oraz efektywnym
wykorzystywaniem w praktyce. By API odniosło sukces, powinno być relatywnie
proste, zrozumiałe, a korzystanie z niego nie powinno wymagać znacznie większych
nakładów pracy niż w przypadku korzystania z innych API. Pracując nad aplika-
cjami testującymi wydajność spróbuję subiektywnie ocenić pod tym względem jak
nowy interfejs wypada na tle swojego poprzednika.

1.3. Omówienie rozdziałów

Rozdział 2. OpenGL

W tym rozdziale przypomnę pokrótce historię tego API, omówię na przykładach
jak ewoluowało ono przez te wszystkie lata by stać się tym, czym jest dziś, oraz —
na koniec — opowiem o tym jak wygląda ono i jak stosowane jest dziś.

Rozdział 3. Vulkan

Rozdział ten skupiony będzie na różnych aspektach tytułowego API. Omówię w
nim jego architekturę, kluczowe elementy, które zostały wprowadzone — zwracając
przy tym szczególną uwagę na te elementy, których nie znajdziemy w jego poprzed-
niku. Ponadto postaram się również porównać je ze starszym interfejsem i wskazać
elementy wprowadzone z nastawieniem na wydajność.

Rozdział 4. Przegląd istniejących testów

Znajdą się tutaj omówienia dostępnych w sieci testów porównujących wydajność
oraz wykorzystanie zasobów aplikacji wykorzystujących oba interfejsy. Analizowane
testy przedstawione zostaną tu w trzech kategoriach:

1. Testy oparte na autorskim oprogramowaniu stworzonym w tym celu.

2. Testy oparte na silnikach graficznych.

3. Testy oparte na wydanych dotychczas grach komputerowych.

Rozdział 5. Przeprowadzone testy

W rozdziale tym znajdą się informacje na temat stworzonego przeze mnie na
cele tej pracy projektu, którym posłużę się do przetestowania wydajności uzyskanej
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przy zastosowaniu każdego z omawianych interfejsów. Omówiony będzie pokrótce
sam projekt, a następnie szerzej opisany każdy stworzony test wraz zagadnieniami
specyficznymi dla implementacji w każdym z testowanych API. Następnie podane
zostaną informacje o sposobie przeprowadzenia testów oraz ich wyniki wraz z analizą.

Rozdział 6. Wnioski

Rozdział ten zawierać będzie podsumowanie informacji zawartych w tej pracy
oraz wyników uzyskanych w trakcie jej tworzenia. Postaram się w nim zwięźle przed-
stawić wnioski wypływające z zebranych danych oraz odpowiedzieć na dwa kluczowe
pytania zadane wcześniej w tym rozdziale, czyli:

1. Czy korzystanie z nowszego interfejsu pozwala zapewnić większą wydajność?

2. Jak wyglądają różnice pomiędzy nakładem pracy potrzebnym na stworzenie
aplikacji w tych API?

Dodatek A. Projekt GL vs VK

Rozdział ten opisuje stworzony na potrzeby tej pracy projekt pozwalający na
testowanie obu API graficznych w kilku przygotowanych scenariuszach testowych.
Zawiera on krótki opis kodu źródłowego, użytych bibliotek oraz informacje o budo-
waniu i korzystaniu z projektu.



Rozdział 2.

OpenGL

2.1. Historia

Interfejs OpenGL został stworzony w roku 1992 przez firmę Silicon Graphics,
aktualnie znaną pod nazwą SGI, jako odpowiedź na ówczesne zapotrzebowanie prze-
nośnego i wspólnego API dla szerokiego grona dostępnych kart graficznych. Powstał
on poprzez przekształcenie swojego protoplasty — interfejsu IrisGL — w otwarty
standard oraz odchudzenie go ze zbędnych — z punktu widzenia renderowania gra-
fiki — funkcjonalności. Jego główną zaletą była wówczas możliwość używania go
na szerokiej klasie procesorów graficznych, co z czasem i pojawieniem się innych
interfejsów przestało odgrywać tak wielką rolę. Interfejs ten ciągle ma wiele zalet
w stosunku do jego aktualnej konkurencji, z których najważniejszą wydaje się być
wieloplatformowość i przenośność na różne systemy operacyjne, w przeciwieństwie
do innych swoich rywali, takich jak — wydanego przez firmę Microsoft — Direct3D,
który działa tylko na systemach z rodziny Windows.

Aktualnie API rozwijane jest przez Khronos Group, która powstała w roku
2006 i zrzesza wiele firmy z branży takich jak Advanced Micro Devices, Intel
Corporation czy NVIDIA. Organizacja ta skupia się na tworzeniu i rozwijaniu
otwartych i darmowych standardów i interfejsów programistycznych.

Pierwsze wersje API były relatywnie proste i opierały się na stałym potoku
graficznym oferując podstawowe możliwości i małą elastyczność. Z czasem, by dać
programistom więcej swobody, udostępniono programowalny potok graficzny, który
był swego rodzaju rewolucją w tym jak tworzono aplikacje graficzne. Zapewniał
on również znacznie większą funkcjonalność co pozwoliło na implementację dużo
bardziej skomplikowanych i efektownych algorytmów.

Aby przyśpieszyć rozwój interfejsu, wprowadzony został mechanizm rozsze-
rzeń. Pozwalał on twórcom procesorów graficznych oraz firmom zaangażowanym
w rozwój interfejsu na wprowadzanie własnych, niestandardowych rozszerzeń. Naj-
lepsze i najprzydatniejsze rozszerzenia z czasem, już w stabilnej postaci, zostawały

13



14 ROZDZIAŁ 2. OPENGL

wcielane do podstawowej wersji API. Dzięki temu mechanizmowi programiści mieli
znacznie szybszy dostęp do funkcjonalności pojawiającej się w najnowszych genera-
cjach sprzętu. Minusem tego rozwiązania była fragmentacja dostępnych elementów
API pomiędzy konkretnymi procesorami graficznymi oraz sprzętem różnych firm,
przez co pisanie wydajnych aplikacji sprowadzało się do implementowania podsys-
temów graficznych na kilka sposobów i wybraniu aktualnego w zależności od tego
jakie elementy interfejsu są dostępne na danym sprzęcie.

OpenGL często przedstawiane jest jako wielka maszyna stanów, na którą można
wpływać poprzez wywoływanie odpowiednich funkcji interfejs. Tak skonstruowane
— ze względu na domyślną konfigurację wielu elementów — jest bardzo proste w
użytkowaniu. Architektura taka jednak często była krytykowana i prowadziła do
wielu problemów, których część nie została — i prawdopodobnie nie zostanie już
nigdy — rozwiązana. Przykładem takiego problemu może być brak możliwości uży-
wania API na wielu wątkach i niezależnego jego wykorzystania przez kilka bibliotek
jednocześnie.

2.2. Stały potok

Stały potok (ang. fixed-function pipeline) to proces renderowania grafiki do-
stępny w API OpenGL od pierwszych jego wersji. Polegał on na udostępnieniu pro-
gramistom ustalonego procesu renderowania, na który mogli oddziaływać tylko w
minimalny sposób poprzez ustawienie odpowiednich zmiennych. Po wywołaniu me-
tody rysującej, procesor graficzny, posiadając wszystkie dane, przeprowadzał usta-
lone obliczenia zgodne z ustawieniami stałego potoku. Stały potok był chwalony za
swoją prostotę i z tego względu często wykorzystywany w najprostszych aplikacjach
graficznych. Wraz z wersją 3.0, twórcy API wprowadzili mechanizm deprecjono-
wania przestarzałej funkcjonalności, w tym również stałego potoku. Wersja 3.1 usu-
nęła z głównego kontekstu wszystkie oznaczone tak elementy interfejsu, wymuszając
przy tym na programistach przepisanie oprogramowania z wykorzystaniem bardziej
elastycznego mechanizmu programowalnego potoku. Obsługa stałego potoku została
jednak zachowana we wstecznie-kompatybilnym kontekście, przez co w większości
implementacji jest dostępna w nim do dziś.

2.3. Programowalny potok

Z czasem metoda stałego potoku okazała się niewystarczająca do renderowania
coraz to bardziej realistycznej grafiki i programistom udostępniono — początkowo w
formie rozszerzeń, które oficjalnie zostały częścią API w wersji 2.0 — mechanizm pro-
gramowalnych shaderów (ang. programmable pipeline). Są one małymi programami
pisanymi w języku GLSL, który przypomina język C. Dzięki nim programista może
wpływać na części potoku, przez które przechodziły wygenerowane wierzchołki oraz
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fragmenty, co pozwoliło na stworzenie i implementację całkiem nowych i zdecydo-
wanie bardziej skomplikowanych i efektownych algorytmów, których wykonywanie
wcześniej nie było praktyczne. Idea programowalnych potoków zyskała na popular-
ności i dziś są one dostępne w jakiejś postaci w praktycznie wszystkich najpopu-
larniejszych interfejsach. Z biegiem czasu programiści uzyskali kontrolę nad większą
ilością etapów potoku. Na dzień dzisiejszy programista może użyć następujących
rodzajów shaderów:

� shader wierzchołków,

� shader fragmentów (lub pikseli),

� shader geometrii,

� shader teselacji.

Listing 2..1: Przykładowy kod shadera wierzchołków w języku GLSL.

#version 330 core

layout(location = 0) in vec4 input_position;

uniform mat4 MVP;

void main()

{

gl_Position = MVP * input_position;

}

2.4. OpenGL dziś

API OpenGL znacznie ewoluowało od jego pierwszej wersji. W aktualnej wersji
— na czas pisania jest to wersja 4.5 — programista ma do dyspozycji znacznie więcej
niskopoziomowych mechanizmów, tak, by móc jak najlepiej wykorzystywać aktualne
procesory graficzne i uzyskać na nich jak najlepszą wydajność. Funkcjonalność ta
pojawiała się w formie rozszerzeń, z których spora ilość znalazła się już w standardzie
wersji 4.5, i ciągle jest powiększana.

Dostępne są również rozszerzenia do API, które starają się udostępnić funkcjo-
nalność podobną do tej znanej z Vulkana 1) i DirectX 12, czy nawet wyłączyć pewne
elementy walidacji, by uzyskać efekt podobny do warstwowej architektury nowszego
API 2 .

Warto również wspomnieć, że wśród programistów wykształciły się pewne tech-
niki programowania — znane między innymi jako AZDO (ang. Approaching Zero

1Przykładem może być rozszerzenie NV command list.
2Umożliwić to ma dopiero rozwijane rozszerzenie KHR no error.
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Drier Overhead) — które mają na celu w znacznym stopniu zminimalizowanie lub
nawet całkowite wyeliminowanie wad architektury tego interfejsu.



Rozdział 3.

Vulkan

3.1. Wprowadzenie

Vulkan to nowy interfejs graficzny i obliczeniowy stworzony przez Khronos
Group jako następca interfejsu OpenGL. Udostępniony został publicznie w lutym
2016 roku na wielu platformach wspierając przy tym takie systemy operacyjne jak
Windows 7 i nowsze, Linux, Android oraz Tizen.

Głównymi motywacjami do stworzenia nowego API był brak istniejącego in-
terfejsu dobrze modelującego architekturę aktualnie dostępnych procesorów graficz-
nych, oraz stworzenie nowoczesnego i czystego API, które w łatwy sposób pozwala-
łoby na niskopoziomową komunikację z szeroką gamą urządzeń na różnych platfor-
mach. Bazuje on w dużej mierze na przekazanym przez AMD, własnościowym API
nazwanym Mantle, jednak różni się on pewnymi elementami od swojego protopla-
sty.

Vulkan celuje w najbardziej zasobożerne i wymagające aplikacje multimedialne
oraz gry. Przerzuca on sporą część odpowiedzialności dotychczas ciążącej na sterow-
nikach na programistów, przez co uważany jest za dużo bardziej niskopoziomowe API
niż OpenGL. Ma to na celu udostępnienie programiście możliwości do wykorzystanie
dostępnych zasobów w najlepszy możliwy sposób zgodnie z zamierzonym sposobem
ich użycia. Ważnym elementem jest również idea bardzo niskiego narzutu interfejsu,
która wynika z odchudzenia sterowników. Sterowniki obsługujące to API bowiem
mogą być znacznie lżejsze, gdyż nie muszą sprawdzać poprawności wszystkich zapy-
tań oraz — wynikającą ze względu na pseudo-obiektową architekturę — aktualnego
globalnego stanu, a jedynie odnoszą się do konkretnych obiektów. Ponadto dotych-
czas to sterowniki odpowiadały za takie operacje jak alokacja pamięci czy automa-
tyczne czyszczenie zasobów, co — nie znając sposobu w jaki działa aplikacja — było
ciężkim i wymagającym zasobów zadaniem. Vulkan wymaga od programisty sporej
wiedzy na temat tego, co zostanie wykonane jeszcze przed wykonaniem czegokol-
wiek, dzięki czemu sterowniki mogą lepiej zaplanować pracę, którą będą wykonywać

17
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oraz wykonać ją w pełni optymalnie.

Vulkan zaprojektowany jest w sposób warstwowy, dzięki czemu programista
może włączyć dodatkowe warstwy walidujące sposób wykorzystania interfejsu. Po-
zwala to zaoszczędzić nakład pracy normalnie przeznaczony na sprawdzanie popraw-
ności aplikacji w gotowym i sprawdzonym produkcie oraz włączenie ich tylko w trak-
cie rozwijania aplikacji, co przekłada się na znacznie niższy narzut. Dotychczasowo
wyłączenie walidacji w istniejących API nie było możliwe.

3.2. Ogólny zarys API

Interfejs ten został zaprojektowany w nowoczesny i przemyślany sposób. Jego
architektura przypomina dobrze znany programistom interfejs obiektowy, czego przy-
kładem może być konieczność podania uchwytu do obiektu na którym będziemy
wykonywać daną czynność jako pierwszy argument funkcji. Dzięki dobremu nazew-
nictwu elementów interfejsu, poruszanie się po nim jest stosunkowo proste. API to
nie korzysta z ogromnej maszyny stanów oraz listy globalnie aktywowanych obiek-
tów, a prawie każda operacja wykonywana jest z perspektywy wskazanego obiektu
i wymaga podania uchwytów do wszystkich obiektów, do których się właśnie odno-
simy.

Vulkan wprowadza wiele nowych obiektów modelujących w niskopoziomowy
sposób elementy dostępnego sprzętu czy potoku renderującego. Część z tych elemen-
tów wprowadzona jest, by dać programiście większą elastyczność w tym co zamierza
zrobić, a część wprowadzona została głównie by umożliwić lepsze wykorzystanie
sprzętu w typowych zastosowaniach i pozwolić na lepszą optymalizację aplikacji. In-
terfejs jest przy tym spójny i zachowuje swoje konwencje w nazewnictwie, przez co
poruszanie się po funkcjach, stałych czy wartościach wyliczeń jest proste i intuicyjne.
Dodatkowo API to korzysta z dobrodziejstw nowszych standardów języków progra-
mowania oraz zalecanych wzorców projektowych, czego przykładem może być fakt
rozdzielenia wszystkich wartości wyliczeniowych w osobne typy. O ile w języku C nie
daje to kompletnego bezpieczeństwa typów, o tyle jest to zdecydowany krok naprzód
względem swojego poprzednika — gdzie wszystkie wartości enumeracji należały do
jednego, wspólnego typu — oraz pozwala to na stworzenie bibliotek opakowujących
ten interfejs i uzyskujących pełne bezpieczeństwo typów.1

Podobnie jak OpenGL, Vulkan również wspiera mechanizm rozszerzeń, które
mogą być zdefiniowane na różnych poziomach:

� poziom instancji — funkcjonalność dostępna dla całej aplikacji,

� poziom urządzenia — funkcjonalność dostępna na wybranym urządzeniu.
1Przykładem takiej biblioteki może być oficjalny wrapper API w języku C++ o nazwieVulkan-

Hpp. Wykorzystuje on obiektową architekturę interfejsu by ułatwić korzystanie z niego implemen-
tując znane wzorce projektowe.
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3.2.1. Instancja

Każda aplikacja korzystająca z tego interfejsu musi stworzyć jej własną instancję
Vulkana, która będzie skupiała w sobie cały swój stan oraz wiązała ze sobą wszystkie
stworzone na potrzeby aplikacji obiekty. W stosunku do architektury OpenGL, wy-
daje się to być znacznie lepszym rozwiązaniem niż ogromna i ciężka w zrozumieniu
maszyna stanów, w której łatwo się zgubić.

Tworząc instancję, programista musi sprecyzować z których rozszerzeń będzie
korzystał oraz które warstwy powinny zostać włączone. Ponadto programista prze-
kazuje informacje na temat uruchamianej aplikacji oraz silnika, z którego korzysta.
Pozwala to w łatwy sposób na zidentyfikowanie przez sterownik graficzny urucha-
mianej aplikacji i wykorzystanie ewentualnych optymalizacji zaimplementowanych
dla konkretnego silnika graficznego.

Mając własną instancję Vulkana, programista może sprawdzić jakie urządzenia
fizyczne są dostępne i zacząć na nich pracę.

3.2.2. Urządzenia

Vulkan udostępnia programiście dwa typy obiektów związanych z urządzeniami,
które mogą wykonywać polecania Vulkana:

� Urządzenia fizycznie,

� Urządzenia logiczne.

Urządzenia fizyczne modelują procesory graficzne i obliczeniowe, które obsłu-
gują sprzętowo lub programowo ten interfejs. Pozwala to programiście między in-
nymi na wybór odpowiedniego urządzenia na systemach posiadających kilka takich
urządzeń (na przykład zintegrowaną z procesorem kartę graficzną oraz dedykowaną
kartę graficzną), co nie było możliwe w przypadku jego poprzednika. Z urządzeniami
fizycznymi wiążą się odpowiednie struktury opisujące dostępną funkcjonalność oraz
obowiązujące dla niego nim limity i wielkości dostępnych zasobów.

Urządzenia logiczne to abstrakcyjne uchwyty wykorzystywane w większości
funkcji API. Odpowiadają one logicznemu urządzeniu, które wykorzystywać będzie
aplikacja. Dzięki nim programista — po wybraniu danego urządzenia fizycznego —
nie musi przejmować się jego szczegółami. W przyszłości możliwe będzie również
stworzenie urządzenia logicznego, które grupuję zestaw urządzeń fizycznych, które
będą rozdzielały między sobą pracę i dzieliły wspólnie zasoby. 2

2Funkcjonalność taka wymagać będzie dostępnych kilku rozszerzeń, m.in. VK KHX device group,
które aktualnie są w trakcie rozwoju.
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3.2.3. Warstwy

Jak wspomniano wcześniej, Vulkan zaprojektowany jest w sposób warstwowy.
Sprowadza się to do dynamicznego wywoływania funkcji z API w zależności od
włączonych warstw. Jeśli wszystkie warstwy są wyłączone, po wywołaniu funkcji z
API sterowanie przechodzi bezpośrednio do sterownika. Jeśli jednak któreś warstwy
są włączone, to sterowanie najpierw przechodzi przez wszystkie aktywne warstwy
by w końcu trafić do sterownika. Dzięki temu możliwe jest uzyskanie efektów takich
jak:

� Sprawdzanie czy API używane jest poprawnie,

� Mierzenie wydajności,

� Zapisywanie użytych poleceń,

� Wspomaganie debugowania aplikacji,

� I wiele innych...

Aktualnie dostępnych jest kilka warstw sprawdzających poprawność używa-
nia API oraz wspomagających debugowanie aplikacji. Dodatkowo programiści mogą
tworzyć własne warstwy i rozszerzać istniejące o własną funkcjonalność. Wszystko
to daje programiście ogromną elastyczność oraz pozwala na zaoszczędzenie zasobów,
gdy aplikacja zostanie już w pełni przetestowana.

3.2.4. Kolejki

Kolejki to elementy API reprezentujące abstrakcyjne kolejki zadań do których
programista może wysyłać swoje polecenia by zostały wykonane na urządzeniu.
Każda kolejka może wspierać wybrany podzbiór następujących operacji:

� Operacje graficzne,

� Operacje obliczeniowe,

� Operacje transferowe,

� Operacje zarządzania zasobami rzadkimi (ang. sparse).

Kolejki pogrupowane są w rodziny kolejek, w których każda kolejka wspiera
taki sam zestaw funkcjonalności. W praktyce rodziny kolejek odpowiadają zazwy-
czaj dostępnemu fizycznie sprzętowi, zatem programista mając do dyspozycji kilka
kolejek, może wykonywać różne operacje jednocześnie. Częstą praktyką jest udo-
stępnianie kolejki obsługującej wszystkie dostępne operacje oraz osobnej kolejki ob-
sługujących tylko transfer danych, przez co programista może w optymalny sposób
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przesyłać dane pomiędzy pamięcią RAM oraz VRAM jednocześnie wykonując inne
obliczenia.

Warto dodać, że w przypadku obsługi przez sprzęt funkcjonalności asynchro-
nicznych obliczeń (ang. async compute), implementacja jest w stanie wykonywać
jednocześnie operacje obliczeniowe oraz operacje renderujące. Taka funkcjonalność
wspierana jest aktualnie tylko przez najnowsze karty graficzne firmy AMD.[14, 15] 3

3.2.5. Bufory komend

Wszystkie operacje wykonywanie na procesorze graficznym muszą zostać wy-
słane do kolejki danego urządzenia. Wysyłane zadania są pogrupowane wewnątrz
buforów komend, a proces dodawania komend do bufora nazywa się „nagrywaniem
bufora komend”. Bufor taki to abstrakcyjna struktura opakowująca specyficzne dla
danej implementacji struktury przechowujące dodane komendy. Dzięki nie progra-
mista może dodać kolejne komendy do wykonania na urządzeniu bez znajomości
szczegółów implementacyjnych sterowników.

Nagrywanie komend do bufora odbywa się w trzech krokach:

1. Zasygnalizowanie rozpoczęcia nagrywania. Jeśli bufor był już nagrany, należy
go wcześniej zresetować by mógł być znów używany. Ponadto jeśli bufor był
wysłany do urządzenia, należy upewnić się przed jego modyfikacją, że urzą-
dzenie zakończyło wykonywanie operacji odwołujących się do tego bufora.

2. Wykonanie po stronie aplikacji funkcji dodających dane komendy do bufora.
Każda komenda przyjmuje jako pierwszy argument uchwyt bufora, a wszyst-
kie parametry użyte w komendach są kopiowane do bufora. Z tego względu
zasoby stworzone na jej potrzeby mogą zostać zwolnione zaraz po wywoła-
niu danej funkcji. stworzone na jej potrzeby. Wykonywanie tych funkcji musi
być synchronizowane przez aplikację — to znaczy dwa różne wątki nie mogą
jednocześnie wykonywać operacji na tym samym buforze komend.

3. Zasygnalizowanie zakończenia nagrywania. Wszystkie ewentualne sprawdzenia
błędów są odroczone do tego miejsca i użytkownik dowie się o ewentualnych
problemach dopiero na tym etapie.

Tak nagrany bufor może zostać wysłany do kolejki, gdzie wszystkie zapisane w
nim komendy zostaną asynchronicznie wykonane. Po jego wykonaniu, programista
może go zniszczyć, zwalniając tym samym jego zasoby, zresetować, by móc ponownie
go wypełnić innymi komendami, lub wysłać jeszcze raz te same komendy. Dzięki
temu programista może wielokrotnie wykonywać polecenia nagrane tylko jeden raz.

3Funkcjonalność ta jest wspierana przez karty graficzne oparte o architekturę Graphics Core
Next [13] użytą w wybranych modelach z serii Radeon HD 7000 i nowszych.



22 ROZDZIAŁ 3. VULKAN

Każdy bufor komend musi zostać stworzony z obiektu VkCommandPool repre-
zentującego abstrakcyjną pulę zasobów. Powodem tego jest chęć zminimalizowania
ilość alokacji pamięci i przyśpieszenie tworzenia tych obiektów. Bardzo ważnym ele-
mentem tej architektury jest również fakt, iż dostęp do bufora komend oraz obiektu
reprezentującego pulę zasobów, z których został utworzony, musi być synchroni-
zowany przez programistę. Pozwala to programiście w środowisku wielowątkowym
utworzyć osobne dla każdego wątku pule zasobów, z których będą tworzone bufory
komend używane na danym wątku. Korzystając z interfejsu Vulkana w taki sposób,
programista może wykonywać pracę na wielu wątkach bez korzystania z żadnych
zewnętrznych mechanizmów synchronizacji zasobów.

Warto zauważyć, że nagrywanie buforów komend jest jedną z najbardziej wyma-
gających operacji, zatem programista powinien upewnić się, że robi to w najbardziej
optymalny sposób.

3.2.6. Potoki i deskryptory

We wcześniejszych interfejsach obiekty opisujące aktualnie wykonywany potok
graficzny — lub obliczeniowy — były ustawiane częściowo poprzez ustawianie pew-
nych jego elementów. Wiązało się to z tym, że implementacja danego API nigdy nie
wiedziała do końca co nastąpi za chwile i nie zawsze potrafiła w pełni zoptymalizo-
wać pracę. Vulkan wprowadza tu zmianę i udostępnia obiekt będący reprezentacją
całego potoku, który z góry precyzuje wszystkie jego etapy oraz jawnie informuje
o wszystkich wykorzystywanych w nim danych i sposobie ich przepływu pomiędzy
kolejnymi etapami. Mając do dyspozycji pełną wiedzy na temat sposobu użycia in-
terfejsu przez aplikację, sterownik może lepiej zoptymalizować pracę wykonywaną w
takim potoku.

Zmienił się również sposób aktualizacji uniformów, które w starszych interfej-
sach jak OpenGL były ustawiane pojedynczo. W Vulkanie zgrupowane są one w
zbiory deskryptorów co pozwala ustawić wszystkie jednocześnie. Pozwala to również
w łatwy sposób pogrupować wykorzystywane uniformy według częstotliwości ich
zmian i w jednej operacji zaktualizować tylko te, które zmieniły się od ostatniego
polecenia rysowania.

By przyśpieszyć tworzenie deskryptorów, alokowane są one — tak jak bufory
komend — z obiektów reprezentujących pewne pule zasobów.

3.2.7. Pamięć

Programista korzystający z Vulkana ma bezpośredni dostęp do wszystkich zaso-
bów pamięci widocznych z punktu widzenia implementacji interfejsu. Różne rodzaje
zasobów pamięci pogrupowane są w sterty, z których każda różni się rozmiarem oraz
pewnymi cechami. Przykładowo jedna sterta może reprezentować pamięć VRAM, a
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inna pamięć RAM. Niektóre pamięci mogą być widoczne bezpośrednio przez aplika-
cję, a inne mogą być widoczne tylko dla urządzenia.

Każda sterta posiada kilkanaście typów pamięci, jaka może być z zaalokowana.
Typy te zazwyczaj odpowiadają konkretnym zasobom, do jakich można je użyć. Dla
przykładu obiekty obrazów mogą wymagać innego typu pamięci niż obiekty bufo-
rów. Typy również mogą różnić się tym, czy są spójne, czy może wymagają jawnych
czyszczeń pamięci cache, o ile jej używają. Zasoby obrazów posiadają również stan
nazywany układem (ang. layout). Ustawienie odpowiedniego układu dla konkret-
nej operacji jest wymagane, a korzystanie z zasobu będącego w złym stanie może
prowadzić do ciężkich w zdiagnozowaniu błędów.

Programista odpowiada za poprawne alokowanie, używanie oraz zwalnianie pa-
mięci i obiektów. Odpowiada również za wybór odpowiedniego typu z odpowiedniej
sterty, co może mieć drastyczny wpływ na wydajność aplikacji. Dlatego więc kwe-
stia odpowiedniego zarządzania pamięcią w Vulkanie jest bardzo istotna. Na koniec
należy wspomnieć, że aplikacja ma pewne limity na to jak z pamięci korzysta. Przy-
kładowo istnieje odgórny limit maksymalnej ilości alokacji pamięci. Z tego powodu
faworyzuje się wykonywanie małej ilości dużych alokacji pamięci wewnątrz API oraz
sub-alokowanie zasobów w ramach pozyskanych wcześniej pul zasobów.

3.2.8. Synchronizacja

Odpowiedzialność za synchronizacja w API Vulkan jest — podobnie jak za-
rządzanie pamięcią — w całości przerzucona na aplikację. Programista nie może
zakładać, że kolejność wykonywania komend będzie taka sama, jak kolejność ich
nagrywania i zgodna z kolejnością dodawania do kolejki buforów komend. Chcąc
upewnić się, że kolejne komendy „widzą” efekty poprzednich, od których zależą,
programista musi wskazać takie miejsca i jawnie w nich zsynchronizować dostęp do
tych zasobów. Ponadto programista musi upewnić się, że Vulkan zakończył swoje
obliczenia wykorzystujące dane obiekty, aby móc je zwolnić lub skorzystać z nich na
nowo.

W tym celu API udostępnia programistom kilka typów prymitywów synchroni-
zujących pozwalających na synchronizację pracy i dostępu do zasobów.

Obiekty grodzące

Obiekty grodzące (VkFence) wykorzystywane są do synchronizacji pomiędzy
procesorem graficznym i procesorem ogólnym. Dzięki nim możemy poprosić o za-
trzymanie pracy CPU do czasu, aż dana operacja zakończy się wykonywać na GPU.
Ze względu na swój wysoki narzut, obiekty te powinny być stosowane tylko w sytu-
acjach, w których chcemy się upewnić, że możemy kontynuować pracę spodziewając
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się, że operacje zostały już zakończone, lub wtedy, gdy czekać musimy niezależnie
od tego faktu.

Przykładem wykorzystania tych obiektów może być chęć zwolnienia utworzo-
nych wcześniej obiektów. Ze względu na manualne zarządzanie pamięcią to progra-
mista jest odpowiedzialny za zniszczenie utworzonych obiektów, ale może zrobić to,
dopiero gdy wszystkie operacje wysłane do wykonania na GPU zostały zakończone.
Zamiast czekać na zakończenie wszystkich operacji na GPU możemy poczekać tylko
na te, które go wykorzystywały.

Semafory

Semafory (VkSemaphore) pozwalają na synchronizację pracy wykonywanej
przez GPU zarówno wewnątrz pojedynczej kolejki jak i pomiędzy różnymi kolejkami.
Precyzują one kiedy dany zasób zostanie udostępniony i na zakończenie jakich ope-
racje dalsze wykonywanie powinno zaczekać. Programista ma tylko kilka dostępnych
miejsc, w których może zlecić czekanie na dany semafor lub zlecić jego sygnalizację.

Przykładem wykorzystania semaforów może być zwykła prezentacja wyrende-
rowanego obrazu. Prezentacja powinna odbyć się dopiero po zakończeniu rendero-
wania, zatem powinniśmy polecić zasygnalizowanie danego semafora w momencie
zakończenia renderowania oraz wymusić czekanie na jego zasygnalizowanie zanim
zaprezentujemy nową klatkę.

Zdarzenia

Zdarzenia (VkEvent) to obiekty przypominające obiekty grodzące, jednak w
przeciwieństwie do nich:

� mogą one być używane tylko w obrębie jednej kolejki,

� mogą one być ustawiane i resetowane zarówno po stronie CPU jak i GPU,

� czekanie na sygnalizację może odbywać się tylko po stronie GPU.

Bariery pamięci

Bariery pamięci (VkMemoryBarrier) to kolejne obiekty pozwalające na syn-
chronizację pracy wykonywanej na GPU. Dostępnych jest kilka rodzajów tych urzą-
dzeń, które różnią się rodzajem zasobów jakie chronią:

� bariery pamięci,

� bariery pamięci buforów,
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� bariery pamięci obrazów.

Wykorzystywane są do precyzyjnego oznaczania zależności pomiędzy opera-
cjami generującymi konkretne dane oraz operacjami, które dane te wykorzystują.
Dzięki temu implementacja API dokładnie wie kiedy i na jakie dane musi zaczekać.
Ponadto bariery pamięci obrazów mogą być wykorzystane do zmiany ich układów,
których poprawne i dokładne ustawienie dla danej operacji, pozwala na szybszy
dostęp do zasobów.

Ich poprawne użycie jest nieoczywiste, a chęć zachowania maksymalnej wydaj-
ności wymaga starannego przemyślenia gdzie powinny się one znaleźć oraz użycia
minimalnej ilości potrzebnych barier z podanymi odpowiednimi etapami potoków
tak, by praca GPU nie była wstrzymana dłużej niż jest to konieczne.

W porównaniu do pozostałych obiektów, pozwalają na bardzo dokładną syn-
chronizację — z dokładnością do konkretnych etapów potoku — dzięki czemu są
idealnym sposobem na synchronizację pomiędzy kolejnymi po sobie operacjami.

Przykładem sytuacji, w której wymagane są bariery pamięci jest renderowanie z
algorytmem deferred shading [44, 45] — kolejne jego etapy zależą od poprzednich, a
więc wymagają zakończenia nad nimi prac. Gdyby nie zastosowano żadnych mecha-
nizmów synchronizujących, implementacja API mogłaby wykonać je jednocześnie
lub w niepożądanej kolejności, co mogło by skutkować wyrenderowaniem „śmieci”.

3.3. Podsumowanie

Jak widzimy, API Vulkan różni się znacząco od swojego poprzednika. W jego
architekturze widzimy wzorowanie się na aktualnych trendach i uznanych wzorcach
projektowania interfejsów, dzięki czemu API wydaje się przyjemne i łatwe w użyciu.
Zauważyć od razu można też to, jak bardzo „opisowy” on jest — na każdym kroku
wymaga od jego użytkownika sprecyzowania wszystkich zamiarów „do przodu”. Na-
wet jeśli pewna funkcjonalność nie będzie używana, musimy o tym zawczasu poin-
formować implementację.

Interfejs rozwiązuje również wiele problemów znanych z jego poprzedników w
sensowny sposób, co jest zdecydowaną zaletą. Ponadto znacznie lepiej modeluje ak-
tualny sprzęt i udostępnia elementy pozwalające na lepsze wykorzystanie dostępnego
sprzętu.

Znacznie wyższy poziom trudności poprawnego użycia, wynikający między in-
nymi ze względu na ręczne zarządzanie pamięcią oraz synchronizację, może nie przy-
paść wszystkim do gustu i z tego powodu API prawdopodobnie nie będzie tak często
używane — szczególnie w przypadku prostych i niewymagających wysokiej wydaj-
ności aplikacji.





Rozdział 4.

Przegląd istniejących testów

Od wydania Vulkana minął już ponad rok. Przez ten czas powstało wiele aplika-
cji z niego korzystających, a także wiele osób postanowiło zbadać jak na tle innych
interfejsów wypada on w praktyce pod względem wydajności. Stworzone zostały
liczne aplikacje testowe, silniki graficzne i gry obsługujące jednocześnie kilka inter-
fejsów graficznych. W pracy tej skupię się na omówieniu wyników porównujących
wydajność Vulkana z jego poprzednikiem — API OpenGL.

Warto jednak pamiętać, że część z tych testów została przeprowadzona na wcze-
snych wersjach sterowników, które nie są jeszcze tak zoptymalizowane jak sterow-
niki dostępne od ponad dwóch dekad dla interfejsu OpenGL. Ponadto część aplikacji
wprowadziła obsługę nowego API jako wrapper na już zaimplementowane systemy
renderujące korzystające ze starszych, już wykorzystywanych interfejsów, co może
generować dodatkowy narzut negatywnie wpływający na wydajność i sprawiać, że
aplikacja nie korzysta z wszystkich zalet Vulkana.

4.1. Przegląd autorskich testów

4.1.1. Test Khronos DevU w Seulu

W roku 2016, na warsztatach Khronos DevU zorganizowanych w Seulu przed-
stawiony został prosty test stworzony przez Corta Strattona — osobę pracującą
nad niskopoziomowym kodem renderującym w konsolach PS3 oraz PS4. Test opisany
w [30] składa się z jednej statycznej sceny — pokoju wypełnionego obracającymi się
obiektami. Każdy obiekt składa się z około 800 wierzchołków, co przekłada się na
około 1400 trójkątów. Każdy obiekt posiada unikalne zasoby takie jak tekstury i
bufory danych. Wszystko to rysowane jest dwukrotnie aby zasymulować osobne ren-
derowanie dla każdego oka. Ilość rysowanych obiektów zmienia się w przedziale od
5 do 500 obiektów, a czasy mierzone są jako średnia z 60 wyrenderowanych klatek.

27
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Rysunek 4.1: Wyniki testu przedstawionego na warsztatach Khronos DevU w Seulu.
[30]

Na wynikach możemy zaobserwować dwie rzeczy:

� Czas jaki GPU potrzebuje do wykonywana operacji jest bardzo zbliżony w obu
API. Różnice są minimalne na niekorzyść Vulkana, co może sugerować gorszą
optymalizację wówczas dostępnych sterowników.

� Wraz ze wzrostem ilości renderowanych obiektów, czas potrzebny na wyko-
nanie operacji po stronie CPU rośnie w obu przypadkach liniowo, jednak dla
API OpenGL rośnie on znacznie szybciej. Średni stosunek czasu wykonywa-
nia klatki po stronie CPU dla API OpenGL i Vulkan odczytany z powyższego
wykresu wynosi 2.8 i wartość ta odpowiada wielkości narzutu starszego API
względem swojego następnika.

Po wynikach pomiarów dla całych klatek zaprezentowano również wyniki po-
miarów rysowania tylko jednego „oka”, jednak różnica względna między wynikami
w poszczególnych API jest bardzo zbliżona do wcześniej uzyskanych wyników. Na
koniec zaprezentowany został również wykres przedstawiający czasy z wielokrotnym
wykorzystaniem raz nagranego bufora komend. Wartości z tych pomiarów zazna-
czone są na rysunku 4.1 pomarańczową linią. W tym przypadku czas wykonywania
na CPU był praktycznie stały. Potwierdza to intuicję i pokazuje jak duży zysk po-
trafimy uzyskać wykorzystując w pełni możliwości nowego API.

4.1.2. Demo Gnome Horde

Gnome Horde to demo przygotowane przez firmę PoverVR w wersji wykorzy-
stującej API OpenGL ES (mobilna wersja OpenGL-a) oraz Vulkan. Demo działa
na platformie Android i zostało opublikowane w sierpniu 2015 roku w [31], zatem
finalne rezultaty, które można osiągnąć wykorzystując nowe API mogą się różnić.

Głównym założeniem dema było wykonywanie podobnego kodu przy wykorzy-
staniu obu API. Dema nie korzystają z żadnych rozszerzeń ani mechanizmu instan-
cjonowania — każda komenda rysująca mogłaby renderować osobną geometrię z
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osobnymi materiałami czy teksturami i nie powinno to wpłynąć na czas wykonywa-
nia po stronie CPU.

Demo składa się z ogromnej sceny po której porusza się kamera. Widoczna jest
powierzchnia, na której znajduje się duża ilość kolorowych krasnali. Wnioski płynące
z tego dema dla wersji wykorzystującej interfejs Vulkan możemy przedstawić jako:

� Zapewnienie płynnego odtwarzanie przez cały czas, podczas gdy konkuren-
cyjna wersja korzystająca ze starszego API ma drastyczne spadki wydajności,
szczególnie przy szybkiej pracy kamery kiedy to wydajność spada do kilku
klatek na sekundę.

� Wersja wykorzystująca API Vulkan wykorzystuje w podobny sposób wszystkie
4 dostępne wątki rozkładając między nimi równomiernie pracę, podczas gdy
wersja oparta o OpenGL ES zazwyczaj wykorzystuje tylko jeden z dostępnych
rdzeni choć obciążenie pomiędzy nimi dynamicznie przemieszcza się pomiędzy
różnymi rdzeniami.

� Wersja z Vulkanem nie wykorzystuje w pełni żadnego rdzenia zatem można
stwierdzić, że jest ograniczana przez moc GPU. Wersja OpenGL ES przez
większość czasu wykorzystuje w pełni któryś z rdzeni, co pozwala sugerować,
że jest ograniczona przez moc CPU.

Rysunek 4.2: Kadr z pracy dema Gnome Horde przedstawiającego obciążenie CPU
i wskaźnik FPS dla Vulkana (po lewej) i OpenGL ES (po prawej). [31]

Rysunek 4.3: Obciążenie CPU i wskaźnik FPS podczas pracy dema Gnome Horde
z użyciem Vulkana (po lewej) i OpenGL ES (po prawej). Dolna linia to obciążenie
CPU przez aplikację, a górna to obciążenie całego systemu. [31]
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4.1.3. Demo Satelite navigation

Kolejne demo przygotowane przez PowerVR zostało opisane przez jego twór-
ców w [32]. Tym razem demo przypomina prawdziwą, dostępną dla użytkowników
końcowych, aplikację będącą nawigacją samochodową.

W testach przeprowadzonych przez autorów dema, implementacja oparta o API
Vulkan zapewnia ciągłą płynność ze znacznie wyższą ilością klatek na sekundę bez
zauważalnych spadków wydajnościowych spowodowanych ładowaniem nowych da-
nych, zaś wersja wykorzystująca OpenGL ES wykonuje w każdej klatce znacznie
więcej pracy na CPU. Jak twierdzą autorzy, dzieje się tak, gdyż implementacja wy-
korzystująca nowsze API potrafi raz nagrać dany fragment mapy, który się już nie
zmienia, a następnie tylko wykonać nagrane komendy. Druga implementacja zmu-
szona jest do przekazywania wszystkich komend GPU za każdym razem.

Rysunek 4.4: Wydajność i obciążenie CPU dla API Vulkan. [32]

Rysunek 4.5: Wydajność i obciążenie CPU dla API OpenGL ES. [32]
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4.1.4. Demo Stardust

Intel na konferencji SIGGRAPH 2015 zaprezentował swoje demo wykorzystu-
jące API Vulkan oraz OpenGL nazwane Stardust[33], by pokazać zalety, jakie nowsze
z nich może zaoferować względem poprzedników. Samo demo prezentuje system ren-
derowania efektów cząsteczkowych.

Wersja OpenGL zapewnia około 25 klatek na sekundę oraz zauważalne wyko-
rzystanie mocy CPU podczas gdy praca wykonywana jest prawie w całości tylko
na jednym rdzeniu — pozostałe wykorzystywane są w znikomej ilości. Wykorzysty-
wany rdzeń jest zajęty w 100 procentach, zatem możemy założyć, że aplikacja jest
ograniczana przez CPU.

Po przełączeniu się na implementację wykorzystującą API Vulkan wydajność
wzrasta dwukrotnie do około 50 stabilnych klatek na sekundę, przy czym obciążenie
CPU spada o około 2/3 do niskiego poziomu. Zauważyć również można równomierne
rozłożenie pracy na wszystkie dostępne rdzenie, które wykorzystywane są w około
20 procentach. To pozwala sugerować, że ta implementacja ograniczona jest przez
moc GPU.

4.1.5. Test ARM

Test przeprowadzony przez firmę ARM i opisany w [34] skupia się na porówna-
niu wykorzystania procesora CPU oraz zużywanej energii przez układ SoC.

Na filmie [35] prezentującym wyniki testu po lewej stronie ekranu widzimy
uruchomioną implementację wykorzystującą mobilną wersję API OpenGL, która
wykorzystuje w sporym stopniu pierwszy z dostępnych rdzeni, gdy pozostałe są w
spoczynku. Po prawej widzimy zaś implementację z Vulkanem, która to wykorzy-
stuje wszystkie cztery rdzenie równomiernie w znacznie mniejszym stopniu. Autorzy
testu sugerują, że dzięki temu system na którym została uruchomiona druga imple-
mentacja wykorzystał około 15 procent mniej energii poprzez zmniejszenie napięcia
i taktowania rdzeni oraz możliwość uruchomienia na słabszych rdzeniach pobierają-
cych mniejszą ilość energii. 1

4.2. Przegląd testów opartych na silnikach graficznych

4.2.1. Unity

W trzecim kwartale 2016 roku silnik Unity otrzymał wstępną wersję wsparcia
dla omawianego API. Autorzy silnika w swoim artykule [38] opisują, że przejście na

1W urządzeniach mobilnych często spotykamy układy w systemie big.LITTLE który składa się
z kilku wolnych rdzeni o niskim poborze prądu oraz kilku mocnych, które pobierają więcej energii.
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to API zapewnia zysk w wydajności na poziomie około 35 procent na platformie
Android nawet w trybie jednowątkowym.

Wersja ta jest testowa, zatem na rzetelne wyniki należy zapewne poczekać, aż
prace nad implementacją obsługi Vulkana zostaną zakończone. W sieci dostępny
jest jednak test, pokazujący jednocześnie pracę silnika na obu API. W teście tym
zauważyć możemy, że wydajność w obu wersjach jest zbliżona, jednak na wykresach
wskazujących obciążenie CPU zauważyć możemy znacznie mniejsze jego wykorzy-
stanie w wersji wykorzystującej Vulkana.

4.2.2. Xenko

W materiale [39] zamieszczonym w serwisie YouTube przez twórców silnika
widzimy porównanie prędkości renderowania sceny w obu API. Z filmiku wynika, że
renderer oparty na Vulkanie jest wydajniejszy — w zależności od aktualnie rysowanej
sceny — o od 50 do 300 procent niż wersja oparta na API OpenGL.

Niestety w teście widzimy również, że w danym momencie szybsza implemen-
tacja wykonuje o około 10 procent mniej poleceń rysujących, przez co ciężko oce-
nić jednoznacznie rzetelność przeprowadzonego testu, który wykonuje inną pracę w
różnych trybach. Niemniej w mojej ocenie możemy wysnuć wnioski, że różnica na
korzyść nowszego API jest zauważalna, a nawet spora.

4.2.3. Inne

Twórcy silników graficznych Unreal Engine oraz CryENGINE zapowiedzieli
[40, 41] wsparcie dla API Vulkan, jednak na czas pisania tej pracy nie zostało ono
jeszcze dodane. Prawdopodobnie po jego wprowadzaniu pojawią się testy oparte
o te silniki graficzne. Biorąc pod uwagę popularność tych silników oraz ilość gier
tworzonych na nich, wydaje się warte, by przyjrzeć się wówczas osiągniętym na nich
wynikom.

4.3. Przegląd testów opartych na grach komputerowych

4.3.1. The Talos Principles

The Talos Principles była pierwszą grą, która miała zaimplementowany ren-
dering z wykorzystaniem Vulkana. Twórcy zaimplementowali jego obsługę jako na-
kładkę na istniejący renderer wykorzystujący OpenGL 2.1 oraz Direct3D w wersji
9. Jak sami twierdzą ([42]) — uzyskana wydajność jest zadowalająca, ale nie jest to
rozwiązanie idealne, gdyż nie wykorzystuje w pełni wszystkich możliwości nowego
API. Twórcy ciągle pracują nad ulepszeniami silnika oraz chwalą się, że w aktualnej
wersji wydajność jest od 50 do 100 procent większa.
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Niezależne testy [43] najnowszej wersji — po naprawie błędów oraz aktualizacji
sterowników — wskazują, że wersja wykorzystująca Vulkana jest szybsza o około 30
procent.

4.3.2. Doom 2016

Doom (2016) to remake popularnej serii gier stworzonej przez id Software.
Firma ta zawsze chwalona była za dobrą optymalizację oraz umiejętność do wyci-
śnięcia pełnej mocy z każdego sprzętu. Gra ta otrzymała wsparcie dla API Vulkan
po premierze w postaci łatki. Istotnym faktem jest również wykorzystanie — jeśli
tylko jest to możliwe — najnowszej wersji API OpenGL. Biorąc to pod uwagę oraz
doświadczenie programistów z id Software, można założyć, że implementacja na tym
API jest świetnie zoptymalizowana.

Warto zauważyć, że gra jako jedna z pierwszych wspierać ma nową funkcjo-
nalność dostępną w Vulkanie — asynchroniczne obliczenia (ang. asynchronous com-
pute), czyli funkcjonalność pozwalająca na równoległe i asynchroniczne wykonywanie
zadań obliczeniowych i graficznych jednocześnie. Funkcjonalność ta w chwili pisania
tej pracy dostępna jest jedynie na najnowszych kartach graficznych firmy AMD.

Gra ta była — z racji obsługi obu API graficznych — często wykorzystywana
do ich porównywania. W pracy tej odniosę się do testów przeprowadzonych przez
redakcję serwisu PCGamer wykorzystującej stosunkowo aktualną na czas pisania
tekstu wersję gry oraz sterowniki.

Z dostępnych testów [36, 37] możemy wysunąć następujące wnioski:

� Wydajność na kartach ze „stajni” AMD wzrasta ze zmianą API o około 25 do
30 procent wzwyż w większości testowanych kart graficznych.

� Wydajność w testach korzystających z kart graficznych firmy Nvidia wzrasta
jedynie na najwydajniejszych konfiguracjach z takimi kartami graficznymi jak
GTX 1080 czy GTX 1070. Pozostałe karty nie zanotowały większych różnic po-
między API. Należy zwrócić jednak uwagę na zwiększoną stabilność prędkości
renderowania — w większości kart graficznych testy sprawdzające średnią z 3
procent najwolniejszych klatek wzrosły o około 10-20 procent, co przekłada się
na brak chwilowych spadków wydajności z nowym API. W przypadku karty
GTX 1080 był to wzrost rzędu 50 procent.

� Testy w wyższych rozdzielczościach (1440p, 2160p) pokazują utrzymujący się
wzrost wydajności na kartach firmy AMD, gdzie wyniki u konkurencyjnej firmy
pozostają bardzo zbliżone na obu API.
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4.4. Podsumowanie

Jak dobrze widzimy na powyższych testach, nowe API potrafi dostarczyć pro-
gramistom możliwości optymalizacji silników i gier. Niestety w większości — poza
grą Doom 2016 — zyski te uzyskane są przede wszystkim tam, gdzie wydajność
zależy w sporej mierze od szybkości naszego procesora głównego. Poza zwiększoną
wydajnością, Vulkan potrafi zaoferować znacznie lepszy rozkład pracy na dostępne
rdzenie, których w dzisiejszym sprzęcie jest coraz więcej. Skorzystać z tego mogą
również urządzenia mobilne, na których powinniśmy zauważyć zmniejszony pobór
mocy w takich sytuacjach.

Niestety tylko jeden z omawianych testów skupiony był na porównaniu samych
interfejsów graficznych, przez co wyniki w sporej mierze zostały zaburzone przez
jakość implementacji renderingu dla obu API oraz inne podzespoły silników gier,
które również wymagały zasobów. Warto byłoby więc przeprowadzić więcej testów
skupiających się na porównaniu samych API bez zewnętrznych zaburzeń wyników.
Ponadto część z implementacji zapewne napisana została zgodnie z dotychczasową
architekturą używanych silników, przez co prawdopodobnie nie wszystkie elementy
nowego API wykorzystywane są w stu procentach.

Ciężko stwierdzić na tym etapie, które z mechanizmów Vulkana potrafią pozwo-
lić na poprawę wydajności. Zaobserwowane wcześniej wyniki dają jednak motywację
do stworzenia własnych testów, które skupiać się będą na pomiarach narzutu na CPU
korzystając z obu API. Dzięki temu będziemy w stanie realnie oszacować jakie zyski
i w jakich scenariuszach możliwe są do osiągnięcia. Warto zatem zbadać wydajność
zarówno w scenariuszach ograniczonych przez moc CPU jaki i GPU, a także porów-
nać wydajność korzystając z nowych mechanizmów wprowadzonych w API Vulkan
jak na przykład PushConstants.



Rozdział 5.

Przeprowadzone testy

5.1. Projekt

5.1.1. Opis projektu

Na potrzeby tej pracy stworzyłem projekt o nazwie GL vs VK, w którym za-
implementowałem — z wykorzystaniem obu interfejsów graficznych — kilka różnych
scen i testów w różnych wariantach. Każdy z nich zawiera część wspólną, niezależną
od wykorzystywanego sprzętu tak, by zapewnić jednakowe warunki testowe. Część
zależna od używanego API pisana jest ręcznie tak, by zapewnić możliwe maksy-
malną wydajność korzystając z danego podzbioru dostępnej funkcjonalności. Więcej
informacji o projekcie znajduje się w Dodatku A: Projekt GL vs VK.

Motywacją do stworzenia tego projektu była chęć przeprowadzenia testów sku-
piających się na zmierzeniu narzutu na procesor CPU podczas korzystania z obu
omawianych API. Dostępne bowiem testy skupiają się w większości na wydajności
całej aplikacji, na którą składa się wiele modułów, co nie pozwala jasno przedstawić
różnic w wydajności obu API. Chcemy również móc przeanalizować wydajność in-
terfejsów zarówno w teście syntetycznym, który powinien pokazać pełne różnice w
wydajności API, oraz w testach modelujących praktyczne zastosowanie interfejsów
przy implementacji popularnych algorytmów graficznych. Dzięki temu będziemy w
stanie odpowiedzieć na pytanie — ile maksymalnie możemy zyskać na wydajności,
oraz w jakich warunkach uzyskamy największy zysk.

5.2. Testy

Projekt zawiera cztery testy, z których każdy ma za zadanie zasymulować inny
scenariusz użycia API graficznego w aplikacji multimedialnej lub grze. Pierwsze trzy
testy skupiają się na wydajności renderowania klatek. Czwarty test mierzy czas
potrzebny na inicjalizację całego potoku graficznego.

35
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5.2.1. Elementy wspólne

Pierwsze trzy testy skupiają się na mierzeniu wydajności renderowania kla-
tek. W celu uzyskania maksymalnej wydajności, inicjalizacja wszystkich możliwych
obiektów została przeniesiona do fazy ładowania, przez co faza renderująca wyko-
nuje minimalną ilość operacji na każdą klatkę. Z tego względu wszystkie elementy
takie jak bufory wierzchołków, programy cieniujące czy obiekty potoków ładowane
są przed rozpoczęciem wykonywania pomiarów.

Faza renderowania polega na zaktualizowaniu stanu testów — na przykład po-
zycji obiektów — co odbywa się na CPU, aktualizacji buforów i uniformów, po czym
wykonywane są polecenia rysujące. Na koniec aplikacja prosi o prezentację aktual-
nej klatki. Czas każdej iteracji tej fazy jest mierzony i przekazywany do modułu
mierzącego wydajność.

Etap zwalniania zasobów wykonywany jest po zakończeniu pomiarów, zatem
nie wpływa na wyniki testów.

Wersje wielowątkowe różnią się od wersji jednowątkowych tym, że aktualizacja
stanu wykonywana jest na wszystkich dostępnych wątkach, zamiast tylko na jednym.
Ponadto w wersji wykorzystującej API Vulkan, budowanie buforów komend wyko-
nywane jest wielowątkowo. Ze względu na ograniczoną logikę, nie wszystkie testy w
wersji z API OpenGL posiadają wersje wielowątkowe.

Należy dodać, że implementacje wykorzystujące interfejs Vulkan tworzą zawsze
przynajmniej trzy bufory klatek, jeśli tylko jest taka możliwość. Każdy obraz posiada
własny zestaw buforów komend tak, aby renderowanie danej klatki było niezależne
od renderowania pozostałych.

By zmaksymalizować ilość renderowanych klatek, wszystkie wersje wykorzystują
również tryb prezentacji z wyłączoną synchronizacją pionową.

5.2.2. Test 1 — scena statyczna z dużą ilością obiektów

Test polega na wyświetleniu ustalonej ilości obiektów na ekranie. Każdy z obiek-
tów w przypadku tego testu jest kulą — współdzieląc przy tym bufor wierzchołków
— o ustalonej szczegółowości, jednak obiekty różnią się od siebie pozycją oraz kolo-
rem.

Test ten pozwala na wybranie ilości obiektów rysowanych na ekranie oraz tego,
jak dokładne będą rysowane kule, a konkretniej z ilu wierzchołków będą się one skła-
dać. Dodatkowo test posiada zmienną pozwalającą decydować ile razy, na klatkę,
stan każdej kuli ma zostać zaktualizowany. Dzięki temu możemy wymusić różne
obciążenie procesora CPU symulując przy tym wykonywanie skomplikowanych obli-
czeń związanych z — na przykład — poruszaniem się czy kolizją obiektów. Zmienne
te dostępne są w pliku BaseBallsSceneTest.cpp pod jego nagłówkiem.
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By test symulował renderowanie różnych obiektów, nie są wykorzystywane tech-
niki polegające na grupowaniu wspólnej geometrii lub innych optymalizacjach. Nie
jest również wykorzystywane instancjonowanie. Dzięki temu największy narzut w
tym teście — w zależności od ustawień — dają następujące jego elementy:

� ilość poleceń rysujących,

� ilość wierzchołków na każdy obiekt.

W przypadku użycia instancjonowania, narzut wynikający z ilości poleceń rysują-
cych byłby znacznie mniejszy, gdyż wystarczyłoby tylko jedno polecenie rysujące,
jeśli wszystkie obiekty są takie same. W przypadku różnych obiektów nie jesteśmy
w stanie użyć tego mechanizmu.

Bazowy moduł testu odpowiada za wygenerowanie danych takich jak pozycja,
prędkość poruszania oraz kolor dla wszystkich obiektów, oraz ich aktualizację. Za-
wiera również metodę, która aktualizuje tylko podzbiór obiektów w danym przedziale
indeksów, która wykorzystywana jest w wersji wielowątkowej tego testu.

Każdy rysowany obiekt posiada przypisane do siebie dwie zmienne przekazy-
wane do GPU:

� pozycja obiektu na ekranie,

� kolor obiektu.

W wersji korzystającej ze starszego interfejsu elementy te przekazywane są w postaci
uniformów. Nowsze API udostępnia mechanizm PushConstants, który pozwala na
szybką aktualizację małych uniformów i to on został wykorzystany jako mechanizm
aktualizacji uniformów w wersji korzystającej z Vulkana.

Jest to jedyny test posiadający wersję wielowątkową zarówno w przypadku API
OpenGL jak i Vulkana. Powodem tego jest wykonywanie potencjalnie sporej ilości
obliczeń związanych z aktualizacją stanu na CPU, co może przełożyć się na zwięk-
szoną wydajność gdy korzystamy z wielu wątków. Zbiór wszystkich obiektów dzie-
lony jest wówczas na prawie równe zbiory i każdy zbiór aktualizowany jest przez
osobny wątek. Dzięki takiej architekturze, nie są konieczne żadne mechanizmy syn-
chronizujące podczas wykonywania aktualizacji stanu obiektów.

5.2.3. Test 2 — scena dynamiczna z terenem wykorzystującym LoD

Test ten polega na załadowaniu mapy wysokościowej terenu (ang. heightmap)
z pliku obrazu o rozmiarze 1024x1024. Odpowiada to mapie złożonej z 1023 pól w
obu wymiarach. Po załadowaniu mapy tworzone dla niej są:

� Bufor wierzchołków zawierający 4 wartości (x, y, z, w) dla każdego wierzchołka.
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� Bufor indeksów wierzchołków, z którego pobierane będą indeksy odpowiednich
wierzchołków danego pola.

� Drzewo czwórkowe, zawierające dla każdego pola na mapie ilość indeksów oraz
ich pozycję (ang. offset) w pamięci bufora indeksów, potrzebnych do jego na-
rysowania.

Implementację tego mechanizmu znaleźć można w klasie TerrainLoD. Klasa
ta w trakcie rysowania wykorzystywana jest do wywoływania poleceń rysujących
w danym API z wykorzystaniem zapisanych w drzewie czwórkowym wspomnianych
wyżej wartości. Wykorzystuje ona rekursywny algorytm level-of-detail do poruszania
się po stworzonym wcześniej drzewie czwórkowym, który możemy przedstawić w
uproszczeniu jako następujące kroki:

Listing 5..1: Uproszczony rekursywny algorytm LoD zaaplikowany do drzewa czwór-
kowego.

ExecuteRecursiveLoD(node , position , drawCallback) :=

if (node.isLeaf ()) then

drawCallback(node.indexCount , node.indexOffset );

return;

d = distance(node.centerPosition (), position );

s = node.maxSideSize ();

if (d / s >= CONST_LOD_FACTOR) then

drawCallback(node.indexCount , node.indexOffset );

return;

for (subNode in node.childs ()) do

ExecuteRecursiveLoD(subNode , position , drawCallback );

Teren kolorowany jest wewnątrz shadera fragmentów na podstawie wysokości
każdego wierzchołka tak, by przypominał mapę topograficzną. Dodatkowo teren ry-
sowany jest w formie siatki niewypełnionych trójkątów (tryb wireframe), by łatwiej
było zaobserwować działanie algorytmu LoD. Kamera ustawiona jest w stałym miej-
scu nad jednym z rogów mapy, zaś symulowane jest poruszanie się pozycji gracza po
okręgu wokół środka mapy tak, by widoczne były zmiany rysowanych trójkątów.

Aktualizacja stanu sprowadza się do aktualizacji pozycji gracza oraz aktuali-
zacji zależnych macierzy przekształceń, zatem nie obciąża ona w znaczący sposób
procesora głównego. Z tego względu test nie posiada wersji wielowątkowej dla API
OpenGL. Generowanie całego drzewa czwórkowego odbywa się w fazie ładowania,
zatem nie wpływa na wyniki pomiarów.

Test w trakcie renderowania ustawia jeden uniform będący jedną macierzą prze-
kształceń Model -View -Projection zawierającą wszystkie niezbędne przekształcenia
do wyrenderowania trójwymiarowej sceny w danej klatce. Rysowanie odbywa się
poprzez przechodzenie tym samym algorytmem LoD przez drzewo czwórkowe i dla
każdego rysowanego pola mapy wołana jest funkcja rysująca.
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Rysunek 5.1: Klatka z drugiego testu. Przedstawia siatkę terenu narysowaną przy
użyciu algorytmu LoD.

Każdy wierzchołek drzewa czwórkowego w praktyce opisuje dwa trójkąty o od-
powiednich rozmiarach i pozycji. Jeśli dany wierzchołek uznany jest za odpowiednio
dokładny, wykonywana jest funkcja rysująca dany fragment. Jeśli jest on zbyt duży,
algorytm rekursywnie wykonuje się dla wszystkich jego dzieci.

Wersja wielowątkowa zaimplementowana dla interfejsu Vulkan różni się od po-
zostałych tym, że budowanie bufora komend podzielone jest na dokładnie cztery
wątki. Powodem tego jest specyficzna architektura drzewa czwórkowego. Począt-
kowy podział korzenia drzewa wykonywany jest na głównym wątku po czym każde
poddrzewo jest obsługiwane przez osobny wątek. W zależności od pozycji gracza
może prowadzić to do sytuacji, w których podział ten jest nierównomierny, co może
przekładać się na niestabilną ilość klatek.

Ciekawym wyzwaniem mogłoby być stworzenie algorytmu, który efektywnie i
równomiernie rozdziela pracę na wszystkie dostępne wątki, jednak Nie zostało to
zaimplementowane w obecnej wersji testu. Warto zauważyć, że przy obecnej im-
plementacji największe różnice zauważylibyśmy tylko wtedy, gdy pozycja gracza
ustawiona jest na któryś z rogów mapy. W wykonywanych testach pozycje te są
ustawianie znacznie bliżej środka mapy, zatem wszystkie wątki powinny wykony-
wać sporą część pracy. Ponadto testy przeprowadzone są na komputerze, którego
procesor obsługuje jednocześnie maksymalnie cztery wątki.
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5.2.4. Test 3 — scena statyczna z mapowaniem cieni

Test trzeci polega na wyrenderowaniu statycznej sceny składają się z:

1. Podłogi przypominającej szachownicę. Każde pole składa się z sześcianu ryso-
wanego naprzemiennie w ciemniejszym lub jaśniejszym kolorze.

2. Sześcianów rysowanych w nad podłogą w równych odstępach naprzemiennie
wyżej i niżej.

3. Złożonej pod względem geometrii kuli o znacznie większych wymiarach niż
pozostałe obiekty, znajdującej się samym środku sceny nad podłogą.

Wszystkie elementy rysowanej sceny renderowane są wraz z realistycznym i
dynamicznym odwzorowaniem cieni. Programista, chcąc uzyskać taki efekt ma do
dyspozycji kilka technik, z których najpopularniejszymi są:

� mapowanie cieni,

� cienie objętościowe.

Każda z tych technika ma wiele wariantów różniących się aspektami takimi jak:

� jakość generowanych cieni,

� złożoność implementacji,

� narzut na wydajność,

� wsparcie dla efektów takich jak miękkie cienie.

W pracy tej zaimplementowano pierwszą ze wspomnianych technik — mapowanie
cieni (ang. shadow mapping)[46]. Technika ta wyróżnia się możliwością uzyskania
miękkich cieni, gdzie część fragmentów jest w półcieniu, oraz brakiem wrażliwości
— w kontekście rysowanych cieni — na stopień złożoności geometrii. Jedną z jej
poważniejszych wad jest natomiast możliwość uzyskania drobnych artefaktów przy
wyznaczaniu fragmentów znajdujących się w cieniu.

Technika ta sprowadza się do wyrenderowania tej samej sceny dwukrotnie:

1. Scena renderowana jest z perspektywy światła rzucającego cień, a renderowane
są tylko obiekty rzucające cień. Ponadto wykorzystywany jest tylko bufor głę-
bokości, co sprawia, że etap ten jest wykonywany szybciej, niż gdyby rysować
pełną klatkę.

2. Scena rysowana jest z perspektywy kamery, a każdy widoczny fragment testo-
wany jest z użyciem wcześniej wygenerowanego bufora głębokości pod kątem
jego widoczności ze źródła światła.
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Końcowym elementem testu jest poruszająca się dookoła kuli kamera, dzięki
której możemy obejrzeć całą scenę i zaobserwować jak rzucane są cienie na obiektach.

Rysunek 5.2: Klatka z trzeciego testu. Na scenie widoczne są cienie rzucane przez
obiekty.

Wspomniany bufor głębokości to najczęściej dwuwymiarowa tekstura, której
wielkość wpływa na jakość otrzymanych cieni. W przypadku tego testu zastosowano
teksturę o rozmiarze 4096× 4096 o precyzji 32 bitów. By poprawić jakość otrzyma-
nych cieni, wyeliminować drobne artefakty na granicy fragmentów zaciemnionych i
oświetlonych oraz uzyskać efekt rozmytych cieniu, zaimplementowałem w shaderze
fragmentów algorytm rozmycia cieni Percentage Closer Filtering [47, 48], który po-
lega na zebraniu wielu próbek z okolicy danego fragmentu i uśrednieniu otrzymanych
wyników.

Ze względu na brak skomplikowanych aktualizacji stanu po stronie CPU, ten
test również nie posiada wersji wielowątkowej z użyciem API OpenGL. W przy-
padku implementacji korzystającej z API Vulkan konieczne było zastosowanie ba-
riery pamięci obrazu dla tekstury głębokości, gdyż w drugim etapie renderowania
korzystamy z wyników wygenerowanych w pierwszym etapie. Ponadto ze względu
na różny rozmiar bufora ramki, do którego rysujemy w obu etapach, konieczne było
stworzenie dwóch obiektów potoku — po jednym na każdy z etapów. Z tego względu
nie mogłem również wykorzystać mechanizmu Multipass wprowadzonego w nowszym
API.
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5.2.5. Test 4 — czas inicjalizacji dema

Motywacją do stworzenia tego testu była chęć zbadania jak dużo czasu zajmuje
stworzenie i inicjalizacja obiektów potrzebnych do pełnoprawnego korzystania z API.

Choć w teorii zadanie jest proste, w praktyce okazuje się znacznie trudniejsze.
Dzieje się tak ze względu na to, że spora część pracy wykonywana jest asynchro-
nicznie, zatem do końca nie jesteśmy w stanie stwierdzić, czy dany obiekt jest już
w pełni zainicjalizowany, czy sterownik odłożył sobie wykonanie tego zadania na
później. Ponadto również inne elementy — takie jak komunikacja z silnikiem pre-
zentującym bufory ramek na ekranie, czy brak skupienia się nad tym elementem
optymalizacji sterowników przez ich twórców, ze względu na niski priorytet zadania
— mogą zaburzać otrzymane wyniki.

Patrząc na wszystkie wspomniane wyżej powody, należy zaznaczyć, że wyniki
otrzymane w tym teście mogą nie być miarodajne, ani nie pokrywać się z praw-
dziwymi wynikami na różnym sprzęcie. Pamiętać również trzeba, że inicjalizacja
większości obiektów zazwyczaj dzieje się tylko raz, na początku działania aplikacji.
Z tego powodu ewentualne zyski czy straty, o ile małe, nie powinny wpływać na
nasze postrzeganie danego interfejsu.

By zminimalizować zaburzenia w otrzymanych wynikach test — poza inicjali-
zacją obiektów — rysuje również pierwszą klatkę oraz wysyła żądanie aktualizacji
bufora ramki lub prezentacji aktualnej klatki. Klatka ta składa się z jednego, kolo-
rowego trójkąta. Po tym wszystkim wykonywana jest metoda synchronizująca pracę
wykonywaną na procesorze graficznym z pracą wykonywaną na CPU, by upewnić
się, że wszystkie wysłane zadania zostały już wykonane. Warto również nadmienić,
że czas wymagany na utworzenie okna wraz ze wszystkimi ustawieniami (kontekstem
OpenGLa lub możliwościami prezentacji ramek Vulkana) również został włączony
do pomiarów, ze względu na możliwość inicjalizacji pewnych obiektów API podczas
tego zadania.

5.3. Metodologia testowania

Testy zostały przeprowadzone na laptopie Lenovo Y580 o następujących pod-
zespołach:

� CPU: Intel i5 3210M

� GPU: Nvidia GTX 660M (sterowniki w wersji 382.33)

� RAM: 6GB DDR3

Testy zostały przeprowadzone na systemie operacyjnym Windows 7 SP1 64-bit.
Aplikacja testowa uruchomiona była w trybie pomiarów — z przełącznikiem -benchmark.
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5.4. Pomiary czasów

Aplikacja w trybie testującym mierzy średnią długość klatki jako czas pomię-
dzy początkiem renderowania pierwszej klatki i zakończeniem renderowania ostat-
niej klatki podzielony przez ilość wygenerowanych klatek. Taki sposób pomiarów
pozwala na zmierzenie pełnego czasu klatki, zarówno po stronie CPU jak i GPU,
oraz zniwelowanie różnych czynników zewnętrznych zaburzających wyniki, jak na
przykład specyficzne optymalizacje odkładające wykonywanie danego zadania na
osobny wątek.

Początkowo wartości te były porównywane również z wynikami generowanymi
przez wbudowaną w Vulkana warstwę VK LAYER LUNARG monitor, jednak z kilku
względów wykorzystana została własna implementacja:

� Wyniki uzyskane we własnej implementacji pokrywają się z wynikami wyge-
nerowanymi przez warstwę.

� Brak odpowiadającej wersji dla API OpenGL, zatem osobna implementacja
również musiałaby być stworzona.

� Brak łatwego dostępu do wygenerowanych przez warstwę wyników. Zapisy-
wane są one automatycznie w belce tytułowej uruchomionej aplikacji. Brak
możliwości łatwego wykorzystania tych danych przez automatyczne skrypty.1.

Korzysta ona z funkcji glfwGetTime() dostępnej w bibliotece GLFW, która zwraca
możliwie dokładną na danej platformie wartość aktualnego czasu. Pozwala to uzy-
skać stabilne i dokładne wyniki niezależnie od wykorzystywanej platformy testowej
i kompilatora.

Poza wartością średnią, podawane są również minimalne i maksymalne czasy
generowania klatki na CPU, mierzone jako czas pomiędzy kolejnymi podmianami
bufora klatki, w przypadku API OpenGL, oraz pomiędzy kolejnymi zapytaniami
prezentacji aktualnej klatki, w przypadku Vulkana. Wartości uzyskane w ten sposób
nie są do końca miarodajne, gdyż implementacja danego API jest w stanie odłożyć
pracę wykonywaną z daną czynnością na później lub na inny wątek. Z tego względu
otrzymane tak wyniki nie zostały podane w pracy.

Wszystkie podawane dalej wyniki są uśrednionymi czasami klatek spośród wszyst-
kich pomiarów w zadanym przedziale czasowym wynoszącym 15 sekund. Ponadto
wyniki z pierwszej sekundy pomiarów są pomijane, by zniwelować możliwe wahania
spowodowane inicjalizacją czy wykonywaniem pewnych operacji po raz pierwszy.

1Mechanizm ten został użyty przez redakcję serwisu Phoronix, który wykorzystuje projekt
GL vs VK jako jeden z testów dostępnych w ich narzędziach testujących [50].



44 ROZDZIAŁ 5. PRZEPROWADZONE TESTY

5.5. Wyniki

5.5.1. Wyniki testu 1

Test ten zawierał trzy wartości konfiguracji pozwalające na ustawienie:

� Ilości rysowanych obiektów,

� Jakości rysowanych obiektów,

� Ilości pracy wykonywanej na CPU dla każdego obiektu w każdej klatce.

Dzięki temu możliwe było zasymulowanie różnego różnych proporcji obciążenia CPU
oraz GPU w testach. Z tego względu wykonałem kilka pomiarów, by przetestować
każdy wariant. Jakość A×B odpowiada wygenerowaniu sfery składającej się z 2AB

trójkątów i rozumiana jest przez podział siatki na A części w pionie i B w poziomie.

Rysunek 5.3: Wyniki pomiarów testu 1 dla jakości 3x3 oraz 10 aktualizacji.

Przedstawione na rysunku 5.3 wyniki odnoszą się do testów przeprowadzonych
na konfiguracji wykorzystującej niższą jakość obiektów oraz mniejszą ilość pracy wy-
konywaną na CPU dla każdego obiektu. Na wynikach tych zaobserwować możemy
znaczną przewagę wydajnościową API Vulkan, która powiększą się wraz z wykorzy-
staniem wielu wątków. Wersja oparta o OpenGL jest około dwukrotnie wolniejsza od
zwykłej wersji korzystającej z Vulkana oraz około trzykrotnie wolniejsza od imple-
mentacji wielowątkowej. Co ciekawe, wielowątkowa wersja korzystająca z OpenGL
jest nieznacznie wolniejsza, od wersji jednowątkowej. Sugeruje to, że w tej konfigura-
cji test ten jest ograniczony przez CPU i mały zysk zaoszczędzony na wielowątkowej
aktualizacji obiektów nie daje zysków przy narzucie na wykorzystanie wielu wątków.

Na kolejnym rysunku (5.4) widzimy wyniki dla konfiguracji, która symulować
ma duże obciążenie na procesorze graficznym oraz stosunkowo małe obciążenie na
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procesorze głównym. Na tym wykresie widzimy, że wydajność wersji korzystającej
z nowszego API jest minimalnie mniejsza, niż tej, opartej na sprawdzonym i przez
wiele lat optymalizowanym API. Różnice wynoszą około 10 procent. Co ciekawe —
w obu przypadkach wersje wielowątkowe posiadają prawie identyczną wydajność,
co pozwala sugerować, że w tej konfiguracji, test ograniczony jest w całości przez
moc GPU. Wyniki prawdopodobnie wynikają z minimalnie lepszej optymalizacji
sterowników.

Rysunek 5.4: Wyniki pomiarów testu 1 dla jakości 9x9 oraz 10 aktualizacji. Zauważyć
możemy jednakową wydajność dla wersji jednowątkowych i wielowątkowych.

Kolejne dwa testy przeprowadzone były w konfiguracji o znacznie zwiększonej
ilości pracy wykonywanej na CPU. Na pierwszym z wykresów (rys. 5.5) widzimy
pomiary dla konfiguracji o niskiej jakości obiektów, zatem test powinien być zdo-
minowany przez pracę wykonywaną na CPU. Przyjmując jako bazową implementa-
cję opartą o API Vulkan, z pomiarów wynika, że wersja oparta o starsze API jest
wolniejsza o około 15 procent. Zgodnie z przewidywaniami widzimy tu, że wersje
wielowątkowe są zauważalnie szybsze, niż wersje ograniczone do jednego wątku i
obie są szybsze od bazowej wersji. Potrzebują one tylko 75 oraz 40 procent czasu,
kolejno dla wersji OpenGL i Vulkan, by wyrenderować tę samą klatkę. Widzimy
tu, że niezależnie od użytego API, jeśli aplikacja wykonuje duże obliczenia to warto
je zrównoleglić jeśli tylko się da. Ponadto widzimy, że wielowątkowa implementacja
oparta o Vulkan oferuje znacznie większe przyśpieszenie, niż podobna wersja dla API
OpenGL, co wynika zapewne z faktu wielowątkowego korzystania z API.

Na ostatnim wykresie (rys. 5.6) widzimy wyniki dla konfiguracji, która symuluje
dużo pracy wykonywanej na CPU oraz złożoną pracę wykonywaną GPU, wykony-
waną ze stosunkowo małej ilości użytych poleceń. Przedstawia to zatem sytuację, w
której Vulkan powinien zyskać najmniej spośród dotąd wykonanych testów.

Zgodnie z przewidywaniami, na wykresie zauważyć możemy, że bazowe wersje
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Rysunek 5.5: Wyniki pomiarów testu 1 dla jakości 3x3 oraz 50 aktualizacji. Zauważyć
możemy jednakową wydajność dla wersji jednowątkowych i wielowątkowych.

Rysunek 5.6: Wyniki pomiarów testu 1 dla jakości 9x9 oraz 50 aktualizacji.

oparte na obu API zapewniają porównywalną wydajność, podobnie jak na wykresie
5.4, z małą różnicą na korzyść OpenGL. Co ciekawe, nawet w wersji wielowątkowej
starsze API wygrywa. Pokazuje to nam, że w przypadku dużego obciążenia procesora
graficznego oraz stosunkowo — względem pozostałej pracy — małej ilości wykony-
wanych poleceń rysowania na CPU, nowe API nie pozwala w dużym stopniu na
zwiększenie wydajności aplikacji. Zastanawiające jest to, że różnice pomiędzy API
rosną w przypadku wersji wielowątkowych. Intuicja bowiem podpowiada, że różnica
wynikająca z nakładu pracy na GPU powinna być podobna w przypadku obu wersji.
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Podsumowanie

Jak widzimy na otrzymanych wykresach, Vulkan potrafi znacząco przyśpieszyć
renderowanie scen złożonych z dużej ilości obiektów oraz świetnie spisuje się w apli-
kacjach wielowątkowych. Zauważyć możemy również minimalnie gorszą wydajność
w przypadku scen złożonych ze skomplikowanych obiektów. Może to świadczyć o
słabszej optymalizacji dostępnych sterowników lub o braku pewnych optymalizacji
w zaimplementowanym teście.

5.5.2. Wyniki testu 2

Na rysunku 5.7 przedstawiony jest wykres z wynikami dla testu drugiego. Test
ten posiada tylko jedną konfigurację.

Rysunek 5.7: Wyniki pomiarów testu 2 w zależności od użytego API.

Jak wynika z powyższego wykresu, Vulkan w przypadku renderowania siatki
terenu korzystając z mapy wysokościowej i algorytmu Level-of-Detail pozwala na
znaczące przyśpieszenie aplikacji. Wersja bazowa oparta na nowszym API jest pra-
wie dwukrotnie szybsza od wersji opartej o starszy interfejs. Wersja wielowątkowa
oferuje małe — około 15 procentowe — przyśpieszenie względem wersji jednowąt-
kowej. Wynika to zapewne ze skomplikowania algorytmu LoD, co przekłada się na
nieoptymalny podział pracy na wszystkich wątkach. Niemniej jest to zauważalny
zysk, który w przypadku korzystania z większych map wysokościowych zapewne
byłby jeszcze większy.
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5.5.3. Wyniki testu 3

Wyniki trzeciego z dostępnych testów przedstawione są rysunku 5.8. Z wykresu
odczytać możemy, że wersja oparta o nowszy interfejs jest wolniejsza o około 30
procent od wersji korzystającej z OpenGL.

Rysunek 5.8: Wyniki pomiarów testu 3 w zależności od użytego API.

Zgodnie z intuicją, wersja wielowątkowa nie zyskuje, a wręcz minimalnie traci
w tym teście, co spowodowane jest zapewne bardzo niskim wykorzystaniem CPU
w tym teście. Tak duża różnica jest zastanawiająca, gdyż implementacja oparta o
Vulkana była kilkakrotnie sprawdzana i nie zostały znalezione żadne potencjalne
optymalizacje. Dodatkowo zauważyć można, że ten sam test na systemie Linux po-
kazuje porównywalną wydajność w przypadku API Vulkan, jednak wersja OpenGL
jest tam drastycznie wolniejsza co pozwala zwyciężyć nowszemu API nawet w tym
teście. Nie jest znane jak duży wpływ na takie wyniki mają sterowniki, jednak moż-
liwe jest, że sterownik OpenGL wykonuje za plecami programisty bardziej agresywne
optymalizacje. Warto również zauważyć, że algorytm mapowania cieni jest bardzo
powszechnie stosowany, co być może zostało w jakiś sposób dodatkowo rozpoznawane
i zoptymalizowane.

5.5.4. Wyniki testu 4

Na rysunku 5.9 przedstawiony jest wykres z wynikami czwartego testu. Test
ten posiada tylko jedną konfigurację i nie jest dostępny w trybie wielowątkowym,
jednak ze względu na pomiar czasowy elementów powiązanych z systemem operacyj-
nym i używanym systemem okien na danej platformie, testy zostały przeprowadzone
również na systemie Ubuntu 16.04 x64.

Jak widzimy na powyższym rysunku, czas potrzebny na inicjalizację API, okna,
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Rysunek 5.9: Wyniki pomiarów testu 4 w zależności od użytego API.

wszystkich używanych obiektów oraz wyrenderowanie pierwszej klatki zależy w spo-
rej mierze od używanej platformy. Na systemie operacyjnym Windows 7, obie wersje
potrzebowały około 1 sekundy na załadowanie i wygenerowanie pierwszej klatki, a
różnice są marginalne. Na wynikach z systemu Ubuntu widzimy, że obie wersje po-
trzebują znacznie mniej czasu do wykonania testu, a także zauważyć możemy, ze
wersja oparta o API OpenGL jest około 27 procent szybsza w tym zadaniu.

Wyniki te ciężko zinterpretować z wielu powodów:

� O ile wersje oparte o ten sam system operacyjny i system okienkowy powinny
być miarodajne, o tyle porównywanie różnych platform nie ma większego sensu,
gdyż różne systemy okienkowe mogą generować bardzo różniący się narzut.
Taką sytuację widzimy na powyższym wykresie.

� Nie wiadomo do końca co robi sterownik OpenGL. Ciężko powiedzieć, czy bufor
wierzchołków, podobnie jak w przypadku API Vulkan przenoszony jest do
pamięci lokalnej urządzenia, by w następnych klatach korzystanie z niego było
jak najszybsze. Nie wiemy również jaka praca została wykonana z utworzeniem
buforów ramek, gdzie wersja korzystająca z Vulkana tworzy przynajmniej trzy
zestawy buforów ramek z własnymi buforami komend.

� Nie wiadomo, czy sterownik OpenGL nie posiada w pamięci cache bazowej
wersji domyślnie skonfigurowanego potoku graficznego, co znacząco przyśpie-
szałoby resetowanie oraz ładowanie nowych ustawień.

� Duży wpływ na uzyskane tu wyniki może mieć użyty sterownik graficzny. Moż-
liwe, że jest to element który dopiero zostanie zoptymalizowany w przyszłości,
gdyż programiści chcieli skupić się na uzyskaniu maksymalnej wydajności pod-
czas pracy, a nie na etapie inicjalizacji.
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� O ile wersja korzystająca z API Vulkan napisana jest tak, by w następnych
klatkach wykonać jak najmniej pracy, a wykonana praca była jak najszyb-
sza, o tyle sterownik starszego interfejsu może zoptymalizować pracę tej klatki
kosztem pozostałych klatek i wykonać mniej pracy tutaj.

Jedynym, bezsprzecznym argumentem, który powinniśmy wyciągnąć z powyż-
szych wyników jest to, że inicjalizacja niektórych obiektów, takich jak potoki gra-
ficzne czy programy cieniujące, są operacjami drogimi ze względu na czas i wykony-
wanie ich powinno być — jeśli to tylko możliwe — przeniesione do fazy ładowania
aplikacji.

5.6. Wyniki redakcji serwisu Phoronix

Projekt GL vs VK tworzony na potrzeby tej pracy został zauważony przez re-
dakcje serwisu Phoronix. Michael Larabel, założyciel serwisu, pokusił się o prze-
testowanie projektu na dostępnym sprzęcie i kilku sterownikach graficznych:

� Nvidia GeForce GTX 780 Ti (sterownik Nvidia 381.22),

� Nvidia GeForce GTX 1050 (sterownik Nvidia 381.22),

� Nvidia GeForce GTX 1060 (sterownik Nvidia 381.22),

� Nvidia GeForce GTX 1080 (sterownik Nvidia 381.22),

� AMD Radeon R9 Fury (sterowniki AMDGPU-PRO 17.10 oraz RADV Mesa
17.2-dev),

� AMD Radeon RX 580 (sterowniki AMDGPU-PRO 17.10 oraz RADV Mesa
17.2-dev),

� Intel HD Graphics 630 (sterownik Mesa 17.2-dev).

Dokładniejsze informacje, wraz z pełnymi wynikami można znaleźć na stronie testów
[50].

Otrzymane wyniki są bardzo kompleksowe i oferują możliwość porównania wy-
dajności na wielu kartach graficznych i różnych sterownikach. W większości testów
Vulkan oferuje zysk wydajnościowy rzędu 50 do 200 procent, w zależności od testu
i użytych sterowników. Warto jednak zauważyć, że testy zostały napisane w taki
sposób, aby przedstawić pełny zakres możliwych wyników, czego przykładem mogą
być ręcznie dobrane wartości konfiguracyjne pierwszego z dostępnych testów. Dzięki
temu możliwe było uzyskanie na moim sprzęcie różnych wariantów, takich jak ogra-
niczenie wydajności przez moc procesora lub karty graficznej. Testy przeprowadzone
przez redakcję serwisu wykonane zostały na mocnym procesorze graficznym, przez
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co większość testów prawdopodobnie była ograniczona mocą CPU, co przekłada
się na — w pewnym stopniu — faworyzowanie Vulkana i jego zalet. Warto jednak
pamiętać, że zaobserwowane różnice są jak najbardziej realne i możliwe zyski wy-
dajnościowe badane w tej pracy zaobserwować można na różnym sprzęcie i różnych
sterownikach.





Rozdział 6.

Wnioski

Zgodnie z zapowiedzią, w rozdziale tym postaram się odpowiedzieć na dwa
zadane wcześniej pytania:

� Czy korzystanie z nowszego interfejsu pozwala zapewnić większą wydajność?

� Jak wyglądają różnice pomiędzy nakładem pracy potrzebnym na stworzenie
aplikacji w tych API?

W sformułowaniu odpowiedzi na te pytania, posłużę się wiedzą uzyskaną pod-
czas pisania tej pracy oraz wynikami — zarówno dostępnymi w sieci jak i uzyskanymi
w projekcie stworzonym na potrzeby tej pracy.

6.1. Wydajność

Zgodnie z przypuszczeniami wysnutymi na początku pracy oraz zapewnieniami
twórców nowego API, Vulkan, w pewnych sytuacjach, pozwala na uzyskanie zauwa-
żalnego wzrostu wydajności aplikacji. Wniosek taki jest całkowicie bezsprzeczny i
potwierdzony może być wieloma testami dostępnymi w sieci oraz potwierdzają go
również aplikacje stworzone na cele tej pracy. Zyski płynące z korzystania tego API
są tym większe, im większy jest stosunek pracy wykonywanej na potrzeby przetwa-
rzania zapytań API. Zyskamy zatem najwięcej w przypadku kiedy rysujemy mało
skomplikowaną geometrię lub musimy często zmieniać stan.

Zyski, jakie możemy osiągnąć możemy podzielić na dwie kategorie:

� Zwiększenie ilości renderowanych klatek na sekundę,

� Zmniejszenie obciążenia CPU wykonując tą samą pracę.

Dzięki temu zyskać mogą zarówno aplikacje, które wykonują bardzo duże ilości
poleceń rysowania czy zmiany stanu oraz te aplikacje, które wykonują również —

53
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pomiędzy zapytaniami do API graficznego — dużo pracy na CPU. Mniejsze obciąże-
nie CPU pozwala bowiem wykonać więcej pracy w tym czasie, co powinno przełożyć
się na większą wydajność. Część zysków możemy przypisać również wprowadzonym
w nowszym API mechanizmom takim jak PushConstants, które pozwalają na ak-
tualizację małych fragmentów pamięci na GPU bez potrzeby uruchamiania całego
mechanizmu transferu danych i synchronizacji dostępu do niej.

Z przeprowadzonych i dostępnych testów wynika jednak, że zyski są małe lub
praktycznie niewidoczne, gdy aplikacja w całości ograniczona jest przez GPU. Nie
pomoże ono zatem aplikacjom, których lwia część pracy wykonywana jest na proce-
sorze graficznym.

Ciekawie prezentuje się wyniki czasu inicjalizacji dema. Znacznie gorsze rezul-
taty dla nowszego API mogą wynikać z konieczności ręcznej inicjalizacji całego po-
toku i wszystkich wykorzystywanych elementów interfejsu przez programistę, gdzie
w starszym API OpenGL, wiele obiektów była używana w domyślnej postaci, co za-
pewne pozwala na pewne optymalizacje. Wpływ na wyniki może mieć również chęć
bardziej agresywnych optymalizacji po stronie Vulkana, który posiadając znacznie
szerszą wiedzę na temat zamiarów programisty, może próbować lepiej zoptymalizo-
wać posiadane zasoby podczas ich tworzenia, by przyśpieszyć późniejszą pracę. Tezę
tą wspiera fakt, ze w API dostępnych jest kilka flag pozwalających na wyłączenie
optymalizacji pewnych obiektów w przypadku jednokrotnego ich użycia.

6.2. Nakłady pracy

Vulkan jest zdecydowanie bardziej niskopoziomowym interfejsem niż OpenGL.
Przekłada się to na zauważalnie większy potrzebny nakład pracy, by stworzyć po-
dobne aplikacje z jego wykorzystaniem. Najcięższymi elementami do opanowania
wydają się ręczna alokacja i zarządzanie pamięcią oraz konieczność poprawnej syn-
chronizacji wykonywanej pracy. Zadania te nie są proste, a błędne ich wykonanie
przełożyć może się na niepoprawne zachowanie aplikacji na niektórych urządzeniach
czy gorszą wydajność.

Kolejną istotną kwestią w analizie nakładu pracy jest to, że choć API jest bar-
dzo rozwlekłe i wymaga przedstawienia dość dokładnego opisu jego wykorzystania,
zadanie to jest stosunkowo proste, ze względu na przemyślane zaprojektowanie in-
terfejsu. Pisząc aplikacje korzystające z niego, mając podstawową wiedzę na temat
najważniejszych obiektów w API łatwo zrozumieć czym są wymagane parametry i
co opisują dane struktury.

Zauważyć ponadto musimy, że dostępne warstwy walidacji w dużym stopniu
ułatwiają korzystanie z tego API oraz znacznie przyśpieszają pracę z tym API. W
przypadku interfejsu OpenGL często występowały sytuacje, w których na ekranie nie
widzieliśmy wyników zleconych operacji, jednak nie dostawaliśmy żadnych błędów
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lub wskazówek, gdzie mogliśmy popełnić błąd. W tym temacie wspomniane warstwy
spisują się znacznie lepiej — i choć ciągle są rozwijane — ich pokrycie interfejsu jest
znaczne i wykrywa większość najczęstszych problemów. Fakt, że są one udostępnione
jako oprogramowanie open-source, które może rozwijać każdy, pozwala wierzyć, że
warstwy te będą rozszerzały się o coraz to nowe możliwości usprawniające pracę z
tym API.

Istotnym elementem z punktu widzenia programisty jest również dostępność na-
rzędzi i możliwość utworzenia nowych. Na przykładzie Vulkana widzimy, że twórcy
API sporo nauczyli się od czasu wydania OpenGL i mają znacznie lepsze podejście w
tym temacie. Przykładem może być udostępnienie wszystkich kluczowych elementów
API — w tym samej specyfikacji API, dostępnych narzędzi, referencyjnych kompi-
latorów czy wspomnianych warstw walidacji — na zasadzie otwartej licencji, przez
co programiści korzystający z tych rzeczy mają większy wpływ na kształtowanie się
ekosystemu wokół omawianego interfejsu.

6.3. Podsumowanie

Vulkan to stosunkowo młode API. Stworzone zostało w konkretnych celach i
cele te realizuje znacznie lepiej, niż jego poprzednik. Do celów tych nigdy nie nale-
żało zastąpienie jego poprzednika i patrząc na stopień jego skomplikowania szybko
to prawdopodobnie nie nastąpi. Pozwala jednak na uzyskanie znacznie wyższej wy-
dajności, zatem aplikacje czy silniki graficzne, które zmuszone są do jak najlepszego
optymalizowania swojego kodu prawdopodobnie zyskają zauważalny wzrost wydaj-
ności po przejściu na nowsze API.

Choć API jest znacznie trudniejsze, korzystanie z niego — poza kilkoma aspek-
tami jak synchronizacja — wcale nie wydaje się takie trudne. Wszystko to dzięki
dobremu zaprojektowaniu interfejsu, który jest czytelny i łatwy w zrozumieniu. Sy-
tuacja ta prawdopodobnie poprawi się wraz z powiększeniem bibliotek i projektów
ułatwiających korzystanie z tego API.

Cieszy również fakt zdrowego podejścia do utrzymywania API przez twórców,
wydania narzędzi oraz wspierania różnych systemów operacyjnych. Pozwala to wie-
rzyć, że API będzie się stabilnie rozwijało, a zbiór dostępnych narzędzi będzie się
stale powiększał, z których każde będzie ciągle udoskonalane i rozszerzane o nowe
możliwości.

W mojej opinii Vulkan to przyszłość aplikacji nastawionych na maksymalną
wydajność, a z czasem również i pozostałych aplikacji multimedialnych. Wraz z na-
dejściem bibliotek ułatwiających wykorzystywanie tego API oraz poprawą dostęp-
nych sterowników, znikną ostatnie argumenty przeciwko wyborze tego interfejsu.
Potwierdza to również stopień zaangażowania w prace nad API oraz rozwój swojego
oprogramowania firm z branży.





Dodatek A

Projekt GL vs VK

A.1. Kod źródłowy

Projekt udostępniony jest na warunkach licencji MIT w publicznym repozyto-
rium hostowanym w serwisie GitHub. Repozytorium to znajduje się pod adresem
https://github.com/RippeR37/GL_vs_VK.

Kod napisany jest w języku C++ i do jego kompilacji wymaga kompilatora zgod-
nego ze standardem C++11. Do kodu źródłowego dołączony jest plik projektu dla
środowiska Microsoft Visual Studio 2013 oraz skrypt budujący dla programu
CMake. Projekt wspiera systemy z rodzin Microsoft Windows oraz Linux przy
czym testowany był na następujących systemach operacyjnych:

� Microsoft Windows 7,

� Ubuntu 16.04,

� Ubuntu 17.04.

Kod do swojego działania wykorzystuje następujące biblioteki:

� GLEW — załadowanie API OpenGL,

� GLFW — stworzenie okna oraz obsługi wejścia/wyjścia,

� GLM — obliczenia matematyczne związane z macierzami i wektorami.

Projekt — jako submoduły systemu kontroli wersji GIT — zawiera w sobie
powyższe biblioteki oraz dodatkowo udostępnia konkretną wersję nagłówków API
Vulkan, oraz odniesienie do odpowiedniej wersji biblioteki Vulkan-Hpp tak, by być
niezależnym od wersji zainstalowanej przez użytkownika.
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Dodatkowo kod do kompilacji i działania wymaga zainstalowanych sterowników
OpenGL oraz Vulkan. W przypadku chęci zmiany i rekompilacji shaderów wyma-
gane jest zainstalowanie aplikacji glslangValidator dostępnej między innymi w
oprogramowaniu Vulkan SDK.

Kod podzielony jest na trzy moduły:

� base — moduł odpowiedzialny za bazową obsługę podstawowych i często
wykorzystywanych obiektów. Wewnątrz tego modułu znajdują się dwa sub-
moduły — gl oraz vkx które skupiają się na udostępnieniu wysokopoziomo-
wego dostępu do podstawowych elementów API OpenGL oraz Vulkan, między
innymi pozwalając na stworzenie okna obsługującego dane API.

� framework — moduł odpowiedzialny za funkcjonalność frameworku urucha-
miającego testy i mierzącego ich wydajność.

� tests — moduł zawierający wszystkie zaimplementowane testy w osobnych
katalogach. W każdym katalogu testu znajdują się pod-katalogi dla każdego
z testowanych API zawierające implementację danego testu wykorzystującą
dane API.

A.2. Kompilacja

Projekt jest w całości niezależny i kompiluje większość potrzebnych bibliotek
wraz ze sobą. Dzięki temu nie jest wymagana żadna ingerencja w system użyt-
kownika. Dodatkowo, jeśli skrypt CMake wykryje obecność w systemie biblioteki
GLEW, to zamiast budować ją od podstaw — użyje dostępnej wersji. Dokładniejsze
informacje na temat budowy znajdują się w pliku README.md.

A.2.1. Kompilacja na platformie Windows

Dla systemów z rodziny Windows wspierany jest system budowy wykorzystu-
jący środowisko Microsoft Visual Studio w wersjach 2013 lub nowszych. Proces bu-
dowy sprowadza się tutaj do:

1. Inicjalizacji submodułów Gita,

2. Wypakowaniu zawartości pliku glew-win-src.zip z folderu
GL vs VK/third party/glew-win/ do folderu go zawierającego,

3. Uruchomieniu pliku projektu znajdującego się w katalogu
GL vs VK/project/msvc/,

4. Zbudowaniu projektu przy użyciu środowiska Visual Studio.
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Budowa projektu z użyciem innego kompilatora oraz skryptu CMake powinna
być możliwa, jednak w tym wypadku należy własnoręcznie skompilować wszystkie
zależności oraz ręcznie podać do nich ścieżki. W tym wypadku polecam skorzystać
z oprogramowania CMake GUI, które powinno ułatwić ten proces.

A.2.2. Kompilacja na platformie Linux

Na systemach operacyjnych z rodziny Linux kompilacja odbywa się z wykorzy-
staniem dołączonego skryptu budującego wykorzystującego oprogramowanie CMake.
Budowanie na tej platformie polega na:

1. Inicjalizacji submodułów Gita,

2. Wygenerowaniu projektu programem CMake,

3. Zbudowanie wygenerowanego projektu przy użyciu odpowiedniej komendy.

Przykładowymi poleceniami budującymi projekt mogą być:

cd GL vs VK
g i t submodule update −− i n i t
mkdir bu i ld && cd bu i ld
cmake . . && make

A.3. Uruchomienie

Po zbudowaniu projektu, w katalogu bin znajdzie się plik wykonywalny o na-
zwie GL vs VK. Aby uruchomić któryś z testów, należy uruchomić ten program z
odpowiednimi argumentami.

Dostępne argumenty:

� -t [N] — precyzuje który test ma zostać uruchomiony,

� -api [API] — wybiera które API ma zostać użyte (dostępne: gl i vk),

� -m — opcjonalny przełącznik włączający wersję wielowątkową (gdy dostępna)

� -benchmark — włącza tryb pomiaru, który sprawia, że dany test włączony
będzie tylko przez określony czas i po jego zakończeniu wyświetlone zostaną
na standardowym wyjściu statystyki z jego działania.

� -time [T] — zmienia domyślny czas wykonywania testu na podaną wartość.
Argument ten jest ignorowany, jeśli nie podano przełącznika -benchmark.
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Przykładowe, chcąc uruchomić trzeci test w wersji wielowątkowej wykorzystu-
jącej API Vulkan w trybie przeprowadzenia pomiarów z domyślnym czasem testów,
należy wykonać polecenie:

./ GL_vs_VK -t 3 -api vk -m -benchmark
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