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Conjunctive grammars

Context-free grammars: Rules of the form
A—a«a

“If w is generated by «, then w is generated by A”.
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Conjunctive grammars

Context-free grammars: Rules of the form
A—a«a

“If w is generated by «, then w is generated by A”.
v Multiple rules for A: disjunction.
Conjunctive grammars (Okhotin, 2000) Rules of the form

A— ar1&... &an

“If w is generated by each «;, then w is generated by A”.
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Definition of conjunctive grammars
@ Quadruple G = (X, N, P,S), where S € N and rules in P are

A— ai1&...&an with Ae N, a; € (ZUN)*
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Definition of conjunctive grammars
@ Quadruple G = (X, N, P,S), where S € N and rules in P are
A— ai1&...&an with Ae N, a; € (ZUN)*
@ Semantics by language equations:

A= U Na

A—ar1&..&ameP i=1

» Lg(A) is the A-component of the least solution.
@ Semantics by term rewriting:

o(A) = p(a1& ... &ap)
(W& ... &w) = p(w)

> Lo(A)={w|A=" w}
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Part 1l

Unary alphabet and equations over sets of numbers
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The case of a unary alphabet

Unary: ¥ = {a}.

Artur Jez ( University of Wroclaw )

Equations over sets of natural numbers.



The case of a unary alphabet

Unary: ¥ = {a}.

e a"

Artur Jez ( University of Wroclaw )

Equations over sets of natural numbers.

number n
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Unary: ¥ = {a}.
@ a"
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The case of a unary alphabet

Unary: X = {a}

e a"
e a".a™m

o Language
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The case of a unary alphabet

Unary: ¥ = {a}.
@ 3" — number n
e 3"-a" — n+m
o Language — set of numbers
e K-L — XBY={x+y|xeX,yeY}
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The case of a unary alphabet

Unary: ¥ = {a}.
@ 3" — number n
e 3"-a" — n+m
o Language — set of numbers
e K-L — XBY={x+y|xeX,yeY}
o Language equations «— Equations over subsets of N

Resolved equations over sets of natural numbers.
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Equations over sets of numbers
X1 =

Xn
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Equations over sets of numbers
X1 =

Xn

@ X;: subset of N={0,1,2,...}.
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Equations over sets of numbers
X1 = p1(Xy,..., Xp)

Xo = @n(Xuseers Xn)

@ X;: subset of N={0,1,2,...}.

@ (; contains variables, singleton constants, operations on sets.
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Equations over sets of numbers
X1 = p1(Xy,..., Xp)

Xo = @n(Xuseers Xn)

@ X;: subset of N={0,1,2,...}.
@ (; contains variables, singleton constants, operations on sets.
@ Operations : U, N, H

Definition
XBY ={x+y:xeX, yeY} J
@ Example:
X =(X@BX)u{2}
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Equations over sets of numbers
X1 = p1(Xy,..., Xp)

Xo = @n(Xuseers Xn)

@ X;: subset of N={0,1,2,...}.
@ (; contains variables, singleton constants, operations on sets.
@ Operations : U, N, H

Definition

XBY ={x+y:xeX, yeY}

@ Example:
X =(XBX)u{2}

e EQ(U,N,H)—sets expressible as least solutions
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Problem

V' Expressive power?
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o Context-free grammars over an alphabet {a}.
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Questions

Problem
v Expressive power?

v' Complexity of the membership problem?

Remark
Operations {U, H}:
o Context-free grammars over an alphabet {a}.

@ Least solutions are ultimately periodic.

@ General membership problem: NP-complete
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Tool: positional notation

@ Using base-k notation.
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Tool: positional notation

Using base-k notation.
Y ={0,1,...,k—1}.
Numbers «— strings in X} \ 0X}.

Sets of numbers «— formal languages over X .
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Tool: positional notation

Using base-k notation.
Y ={0,1,...,k—1}.
Numbers «— strings in X} \ 0X}.

Sets of numbers «— formal languages over X .

Example
(10 = {47 | n > 0} J
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Example of non-periodic solution (k = 4)

Solution
L = 10",
L, = 20",
L; = 30*,
Lip, = 120*.
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Example of non-periodic solution (k = 4)

Solution Equations
Ly = 10* , B = (BQ H B, N B H B3) U {1} ,
L, = 20", B, = (BHBNB HB)U{2},
L3 = 30%, Bs = (BB BioNB HB)U{3},
Lip, = 120*. ) By = (B3 HBsNB H Bz) .
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What needs to be proved

@ By general knowledge there is a unique e-free solution.
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What needs to be proved

s Ak
e

@ By general knowledge there is a unique e-free solution.
@ Vector of sets (...,10

.) is e-free.
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What needs to be proved

@ By general knowledge there is a unique e-free solution.
@ Vector of sets (...,10%,...) is e-free.

@ We need to show that it is a solution.
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What needs to be proved

@ By general knowledge there is a unique e-free solution.
@ Vector of sets (...,10%,...) is e-free.

@ We need to show that it is a solution.

Example

For example 10*, the rule is
Blz(BQEBBzﬂBlEHB3)U{1}
So we want to prove that

10* = 20* B 20* N 10* B 30* U {1}
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Calculations

Rule:
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Calculations
Rule:

Bl=(BQEE|BgﬂBlE|B3)U{1}
Proof.

20* # 20"

10T U 20*20*
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Calculations

Rule:
Bl=(BQEE|BQﬂBlE|B3)U{1}
Proof.
20*H 20* = 10" U20*20*
10* 30" = 10T U10%30* U30*10*
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Calculations

Rule:
Bl=(BQEE|BQﬂBlE|B3)U{1}
Proof.
20* A 20* = 10" U20*20*
10*@ 30" = 10" U 10%*30* U 30*10*
20*H 20* N 10* @M 30* = 10t
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Calculations

Rule:
Bl=(BQEE|BQﬂBlE|B3)U{1}
Proof.
20* A 20* = 10" U20*20*
10*@ 30" = 10" U 10%*30* U 30*10*
20*H 20* N 10* @M 30* = 10t
20* 20N 10*@30*U {1} = 10*
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Calculations

Rule:
Bl=(BQEE|BzﬂBlE|B3)U{1}
Proof.
20" @ 20* = 101 U20*20*
10*H 30* = 10" U 10*30* U30*10*
20*H20* N 10* @ 30* = 10"
20% E20* N 10* B 30* U {1} = 10*
DJ
Remark
Similar proof for /j0* in base-k notation.
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Any regular language
Theorem (Jez, DLT 2007)

For every k and R C {0, ...,k —1}* if R is regular then R € EQ(N, U, B).

J
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Any regular language

Theorem (Jez, DLT 2007)
For every k and R C {0, ...,k —1}* if R is regular then R € EQ(N, U, &)

V.

Idea
Let ({0,...,k—1},Q, qo, F,d) recognize R.
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Any regular language

Theorem (Jez, DLT 2007)
For every k and R C {0, ...,k —1}* if R is regular then R € EQ(N, U, &)

.J
Idea

Let ({0,...,k—1},Q, qo, F,d) recognize R.
We introduce variable B; j 4 for set

{ijw : 6(qo, w) = q}
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Any regular language

Theorem (Jez, DLT 2007)
For every k and R C {0, ...,k —1}* if R is regular then R € EQ(N, U, &)

.J
Idea

Let ({0,...,k—1},Q, qo, F,d) recognize R.
We introduce variable B; j 4 for set

{ijw : 6(qo, w) = q}
Information the indices carry:
@ leading symbol i
o second leading symbol j

e g—the computation of M on the rest of the word
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Equations for B;j 4

Example

Bijq =

4
ﬂ Bi—l,j+n H Bk—n,x,q’ U...
(x,9'):q€6(q’ ,x) n=1
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Equations for B;j 4

Example

4
Bi,j,q = U m Bi—l,j+n H Bk—n,x,q’ U...
(x,9"):9€d(q’ x) n=1

+ i—1 j+n 00...0

Artur Jez ( University of Wroclaw ) Equations over sets of natural numbers. December 13, 2007 14 /27



Trellis automata

(one-way real-time cellular automata)

Theorem (Jez, Okhotin, CSR 2007)

V trellis automaton M over ¥, with L(M) C X} \ 0%},
set L(M) is in EQ(N, U, B).

o =
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Trellis automata
(one-way real-time cellular automata)
Theorem (Jez, Okhotin, CSR 2007)

V trellis automaton M over ¥, with L(M) C ¥} \ 0%},
set L(M) is in EQ(N, U, H).

Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a
M= (%,Q,l,6,F) where:
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set L(M) is in EQ(N, U, H).

Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a
M= (%,Q,l,6,F) where:

@ 2: input alphabet;

@ @: finite set of states;
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Trellis automata

(one-way real-time cellular automata)
Theorem (Jez, Okhotin, CSR 2007)

V trellis automaton M over ¥, with L(M) C ¥} \ 0%},
set L(M) is in EQ(N, U, B).

Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a
M= (%,Q,1,6,F) where:

@ X: input alphabet;

e Q: finite set of states;

o | : Y — Q sets initial states;

O.I O.1 I O
011‘j az‘) (an
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Trellis automata

(one-way real-time cellular automata)
Theorem (Jez, Okhotin, CSR 2007)

V trellis automaton M over ¥, with L(M) C ¥} \ 0%},
set L(M) is in EQ(N, U, B).

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
M= (%,Q,1,6,F) where:
@ X: input alphabet;

e Q: finite set of states;

o | : X — @ sets initial states;

o O O O

a, a, ds ay
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Trellis automata

(one-way real-time cellular automata)
Theorem (Jez, Okhotin, CSR 2007)

V trellis automaton M over ¥, with L(M) C ¥} \ 0%},
set L(M) is in EQ(N, U, B).

Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a
M= (%,Q,1,6,F) where:
@ X: input alphabet;
e Q: finite set of states;
o | : Y — Q sets initial states;
@ 0:Qx Q — Q, transition function; 0 6 0

a, as ds ay

v
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Trellis automata

(one-way real-time cellular automata)

Theorem (Jez, Okhotin, CSR 2007)

V trellis automaton M over ¥, with L(M) C ¥} \ 0%},
set L(M) is in EQ(N, U, B).

Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a -
M= (%,Q,l,6,F) where:

@ XY input alphabet;

@ @: finite set of states;

e | : Y — Q sets initial states;

@ 0: Qx Q — Q, transition function;

@ F C Q: accepting states. a; a, as aq
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Trellis automata

(one-way real-time cellular automata)
Theorem (Jez, Okhotin, CSR 2007)

V trellis automaton M over ¥, with L(M) C ¥} \ 0%},
set L(M) is in EQ(N, U, B).

Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a -
M= (%,Q,l,6,F) where:
@ XY input alphabet;
@ @: finite set of states;
e | : Y — Q sets initial states;
@ 0: Qx Q — Q, transition function;
o F C Q: accepting states. a; a, as

aq

@ Closed under U, N, ~, not closed under concatenation.
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Main lemma

Lemma

For every trellis automaton M over ¥, with L(M) C ¥} \ 0%},
there exists a system of equations in EQ = (U, N, H)
with least solution

{Aw10* |w+1€ LM)}, ...,
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Main lemma

Lemma

For every trellis automaton M over ¥, with L(M) C ¥} \ 0%},
there exists a system of equations in EQ = (U, N, H)
with least solution

{Aw10* |w+1€ LM)}, ...,

@ 1w10* represents w.
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The construction

@ Set of variables {X; | g € Q}.
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The construction

@ Set of variables {X; | g € Q}.
o Actually, Xy = {1wl0* [w+1 € Lm(q)}
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The construction

@ Set of variables {X; | g € Q}.
o Actually, Xy = {1wl0* [w+1 € Lm(q)}

e aub € Ly(q) q
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The construction

@ Set of variables {X; | g € Q}.
o Actually, Xy = {1wl0* [w+1 € Lm(q)}

e aube Ly(q) & /Oq
X
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The construction

@ Set of variables {X; | g € Q}.
o Actually, Xy = {1wl0* [w+1 € Lm(q)}

e aub € Ly(q) & q
39',9":46(d',4") = q, , ,
q q
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The construction

@ Set of variables {X; | g € Q}.
o Actually, Xy = {1wl0* [w+1 € Lm(q)}

e aube Ly(q) & q

39',9":0(q',q") = q,
au E LM(q/), q!C/ qn

Artur Jez ( University of Wroclaw ) Equations over sets of natural numbers. December 13, 2007 17 / 27



The construction

@ Set of variables {X; | g € Q}.
o Actually, Xy = {1wl0* [w+1 € Lm(q)}

e aube Ly(q) &

39',9":0(q',q") = q,
au € LM(q/), qv qu
ub € Ly(q").
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The construction

@ Set of variables {X; | g € Q}.
o Actually, Xy = {1wl0* [w+1 € Lm(q)}

e aube Ly(q) &

q
39',q" : 6(q'.q") = q, Q
au E LM(q/), q!C/ %qu
ub € Ly(q").
o Let 1aul0* C Xq/, 1ubl10* C Xq//. \\\

q',9":6(q',9")=q
a,bey

Xq= U Po(Xg )N Aa(Xq) \C{ R
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The construction

@ Set of variables {X; | g € Q}.
o Actually, Xy = {1wl0* [w+1 € Lm(q)}

e aube Ly(q) &

q
39',q" : 6(q'.q") = q, Q
au E LM(q/), q!C/ %qu
ub € Ly(q").
o Let 1aul0* C Xy, 1ubl0* C Xy "\

Xq= U Pb(Xq )N Aa(Xqr) "\
qﬁq”:5[§q’)’:q”):q \d(
e a — b

A.(1w10%) = 1aw10k
pp(1w10¥) = 1wh10* !
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Part Il

Complexity of equations with {U, N, B}
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Computational complexity: basic notions
@ Fix X C Np.
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Computational complexity: basic notions
@ Fix X C Np.

@ Determine algorithmically whether x € X.
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Computational complexity: basic notions

Fix X C Np.
Determine algorithmically whether x € X.
n = log x: length of notation of x

Time complexity: in t(n) elementary steps.

Space complexity: using s(n) elementary memory cells.

P polynomial time.

NP nondeterministic polynomial time (may guess).
PSPACE polynomial space.
EXPTIME exponential time.

P C NP C PSPACE C EXPTIME

@ C-complete set X: every problem in C can be reduced to X.
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Complexity of solutions

@ Trellis automata recognize P-complete languages.
P-complete sets of numbers.
NP-complete sets: relatively easy.

PSPACE-complete sets: requires some efforts.

Upper bound:
Theorem (Okhotin, 2001)

Every conjunctive language can be recognized in time O(n3).

Corollary
Every set of numbers in EQ(U,N, ) is in EXPTIME.

Theorem (Jez, Okhotin, STACS 2008)
EQ(U,N,B) contains an EXPTIME-complete set.
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Alternating Turing machines

Tape alphabet T, set of states @ = Qe U Qa U {qacc }-
Transition function § : Q x [ — 2@xIx{—l,—}
If ¢ = gacc, accepts from here.

If g € Qg, accepts from here if accepts from some next conf.

If g € Qa, accepts from here if accepts from every next conf.

Theorem (A. Chandra, D. Kozen, L. Stockmeyer 1981)

APSPACE = EXPTIME
APTIME = PSPACE
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|dea of encoding

Problem

How to encode a configuration?

Idea

Arithmetization of a configuration

o Define final accepting configurations

o Calculate previous accepting configurations

@ Alternation is not a problem

@ Problem: numbers increase with every step, encodings not

e Solution: restricting the model and adding a counter |
Artur Jez ( University of Wroclaw ) Equations over sets of natural numbers. December 13, 2007 22 / 27
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Restrictions of the model

o Circular tape.
@ Moving to the right at every step.
@ Next configuration: (q,d) € 6(q,a)

Calj iy ai,‘_l a ai]‘+1 ain)
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Restrictions of the model

o Circular tape.
@ Moving to the right at every step.

@ Next configuration:

Cﬂil Ay lli]-_l a a,-j+l ﬂin)

Remark J

Still APSPACE = EXPTIME.
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Arithmetization of alternating Turing machines

o Tape alphabet I' = {ag, ..., ar|-1}.
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Tape alphabet ' = {ao, ..., ar|-1}.
Let k =8+ |Q| + max(|Q| +7,IT), let ¥ ={0,...,k—1}.
(V:QUI = X,
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@ Tape alphabet I' = {ao, ..., ar|-1}.
o Let k =8+ |Q|+ max(|Q|+7,|), let X ={0,...,k—1}.
o (V:QUI =L
> (q;}z?—i—iforq,-e Q.
» (aj) =7+ |Q|+j fora; €T,
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Arithmetization of alternating Turing machines

Tape alphabet ' = {ao, ..., ar|-1}.
Let k =8+ |Q|+ max(|Q| +7,|), let ¥ ={0,..., k—1}.
o (:QUI—X.
> (qi) =T+ 1ifor g € Q.
» (aj) =7+ |Q|+j fora; €T,
Instantaneous description:
» Tape containing a; ... a;,
> In state g over a;.
» At most r rotations over the tape, with r = Zf:o 2¢;, ¢ € {0,1}.

@ As a number in base-k notation:

1cp1...c1c0550(a,) ... 0(a;_,)(q)(a;)0(ai,,) - .- 0(a;,)0 € *
—_——
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Arithmetization of alternating Turing machines

Tape alphabet ' = {ao, ..., ar|-1}.
Let k =8+ |Q|+ max(|Q| +7,|), let ¥ ={0,..., k—1}.
o (:QUI—X.
> (qi) =T+ 1ifor g € Q.
» (aj) =7+ |Q|+j fora; €T,
Instantaneous description:
» Tape containing a; ... a;,
> In state g over a;.
» At most r rotations over the tape, with r = Zf:o 2¢;, ¢ € {0,1}.

@ As a number in base-k notation:

1cp1...c1c0550(a,) ... 0(a;_,)(q)(a;)0(ai,,) - .- 0(a;,)0 € *
—_——

counter tape

@ Decreases at every step of computation.
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Constructing equations: lower level

@ Movey o g a(X): transition of the ATM.

@ Movey y g a(X) contains all IDs
1cp-1...€160550(a;) ... 0(a;_,)(q)(a)0(ai.,) - .- 0(a;,)O,
for which
1cg1...c10p550(ay) ... 0(a;_,)0(a’)(q')(ai,,) ... 0(a;,)0 € X
e Equation:

Moveg a 47,/ (X) = (X N Counter 55 Tape )

B((g)(2)0 B (2')(q'})(00)"
N Counter 55 Tape,,
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Constructing equations: upper level

X = Final UStep(X) U (Y N Counter 55 Tape )
Y = Jump(X) U Carry(Y)

@ Final: the set of accepting configurations.
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X = Final UStep(X) U (Y N Counter 55 Tape )
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@ Final: the set of accepting configurations.
@ Counter 55 Tape: the set of valid IDs.
e Step(X) ={n|3Ime X : mk n}: to the next square.
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X = Final UStep(X) U (Y N Counter 55 Tape )
Y = Jump(X) U Carry(Y)

Final: the set of accepting configurations.

Counter 55 Tape: the set of valid IDs.

Step(X) = {n|3Im € X : mk n}: to the next square.
Jump(X) = {n|3Im e X : mt'n}: to the first symbol.
Carry(X): processing the carry in the counter.

Step(X) = ( U U Moveq/,alyq@(X))U

q€QE,acl (q',a’)eé(q,a)
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Constructing equations: upper level

X = Final UStep(X) U (Y N Counter 55 Tape )
Y = Jump(X) U Carry(Y)

Final: the set of accepting configurations.

Counter 55 Tape: the set of valid IDs.

Step(X) = {n|3Im € X : mk n}: to the next square.
Jump(X) = {n|3Im e X : mt'n}: to the first symbol.
Carry(X): processing the carry in the counter.

Step(X) = ( U U Moveq/,alyq@(X))U

q€QE,acl (q',a’)eé(q,a)

U( U ﬂ Moveq/,axyq’a(X)>

qeQp,acl (q’,a’)€é(q,a)
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Conclusion

A basic mathematical object.
Using methods of theoretical computer science.

High expressive power and hard recognition

Any number-theoretic methods?

Problem
Construct a set not representable by equations with {U, N, B}. J
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