
Compressed Membership for NFA (DFA)
with Compressed Labels is in NP (P)

Artur Jeż
University of Wrocław

Artur Jeż Compressed membership for NFA 1 / 17

What this talk is about

Fully compressed membership problem for automata

no automata in this talk
SPLs and a technique for them
more general (word equations)

Results

Fully compressed membership problem for NFA (in NP)
Fully compressed membership problem for DFA (in P)
(SLP) fully compressed pattern matching (in O(n2))
word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

What this talk is about

Fully compressed membership problem for automata
no automata in this talk

SPLs and a technique for them
more general (word equations)

Results

Fully compressed membership problem for NFA (in NP)
Fully compressed membership problem for DFA (in P)
(SLP) fully compressed pattern matching (in O(n2))
word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

What this talk is about

Fully compressed membership problem for automata
no automata in this talk
SPLs and a technique for them

more general (word equations)

Results

Fully compressed membership problem for NFA (in NP)
Fully compressed membership problem for DFA (in P)
(SLP) fully compressed pattern matching (in O(n2))
word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

What this talk is about

Fully compressed membership problem for automata
no automata in this talk
SPLs and a technique for them
more general (word equations)

Results

Fully compressed membership problem for NFA (in NP)
Fully compressed membership problem for DFA (in P)
(SLP) fully compressed pattern matching (in O(n2))
word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

What this talk is about

Fully compressed membership problem for automata
no automata in this talk
SPLs and a technique for them
more general (word equations)

Results

Fully compressed membership problem for NFA (in NP)
Fully compressed membership problem for DFA (in P)
(SLP) fully compressed pattern matching (in O(n2))
word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

What this talk is about

Fully compressed membership problem for automata
no automata in this talk
SPLs and a technique for them
more general (word equations)

Results
Fully compressed membership problem for NFA (in NP)

Fully compressed membership problem for DFA (in P)
(SLP) fully compressed pattern matching (in O(n2))
word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

What this talk is about

Fully compressed membership problem for automata
no automata in this talk
SPLs and a technique for them
more general (word equations)

Results
Fully compressed membership problem for NFA (in NP)
Fully compressed membership problem for DFA (in P)

(SLP) fully compressed pattern matching (in O(n2))
word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

What this talk is about

Fully compressed membership problem for automata
no automata in this talk
SPLs and a technique for them
more general (word equations)

Results
Fully compressed membership problem for NFA (in NP)
Fully compressed membership problem for DFA (in P)
(SLP) fully compressed pattern matching (in O(n2))

word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

What this talk is about

Fully compressed membership problem for automata
no automata in this talk
SPLs and a technique for them
more general (word equations)

Results
Fully compressed membership problem for NFA (in NP)
Fully compressed membership problem for DFA (in P)
(SLP) fully compressed pattern matching (in O(n2))
word equations: simple, unified proof for everything that is known

Artur Jeż Compressed membership for NFA 2 / 17

Straight Line Programms SLPs

Definition (Straight Line Programms (SLP))
Context free grammar defining a single word. (Chomsky normal form).

Up to exponential compression.

SLPs as a compression model
application (LZ, logarithmic transformation)
theory (formal languages)
preserves/captures word properties

Applied in many proofs and constructions.

Artur Jeż Compressed membership for NFA 3 / 17

Straight Line Programms SLPs

Definition (Straight Line Programms (SLP))
Context free grammar defining a single word. (Chomsky normal form).

Up to exponential compression.

SLPs as a compression model
application (LZ, logarithmic transformation)
theory (formal languages)
preserves/captures word properties

Applied in many proofs and constructions.

Artur Jeż Compressed membership for NFA 3 / 17

Straight Line Programms SLPs

Definition (Straight Line Programms (SLP))
Context free grammar defining a single word. (Chomsky normal form).

Up to exponential compression.

SLPs as a compression model
application (LZ, logarithmic transformation)
theory (formal languages)
preserves/captures word properties

Applied in many proofs and constructions.

Artur Jeż Compressed membership for NFA 3 / 17

Straight Line Programms SLPs

Definition (Straight Line Programms (SLP))
Context free grammar defining a single word. (Chomsky normal form).

Up to exponential compression.

SLPs as a compression model
application (LZ, logarithmic transformation)
theory (formal languages)
preserves/captures word properties

Applied in many proofs and constructions.

Artur Jeż Compressed membership for NFA 3 / 17

Usage and work on SLP

Theory
word equations (Plandowski: satisfiability in PSPACE)

LZW/LZ dealing algorithms
O(n log(N/n)) pattern matching for LZ compressed text
O(n) pattern matching for fully LZW compressed text

String algorithms
equality
pattern matching

Independent interest
indexing structure for SLP

Artur Jeż Compressed membership for NFA 4 / 17

Usage and work on SLP

Theory
word equations (Plandowski: satisfiability in PSPACE)

LZW/LZ dealing algorithms
O(n log(N/n)) pattern matching for LZ compressed text
O(n) pattern matching for fully LZW compressed text

String algorithms
equality
pattern matching

Independent interest
indexing structure for SLP

Artur Jeż Compressed membership for NFA 4 / 17

Usage and work on SLP

Theory
word equations (Plandowski: satisfiability in PSPACE)

LZW/LZ dealing algorithms
O(n log(N/n)) pattern matching for LZ compressed text
O(n) pattern matching for fully LZW compressed text

String algorithms
equality
pattern matching

Independent interest
indexing structure for SLP

Artur Jeż Compressed membership for NFA 4 / 17

Usage and work on SLP

Theory
word equations (Plandowski: satisfiability in PSPACE)

LZW/LZ dealing algorithms
O(n log(N/n)) pattern matching for LZ compressed text
O(n) pattern matching for fully LZW compressed text

String algorithms
equality
pattern matching

Independent interest
indexing structure for SLP

Artur Jeż Compressed membership for NFA 4 / 17

Compressed membership

SLPs are used
develop tools/gain understanding
membership problem

Compressed membership [Plandowski & Rytter 1999]
In membership problems, words are given as SLPs.

Known results
RE, CFG, Conjunctive grammars. . .

Open questions
Compressed membership for NFA

Artur Jeż Compressed membership for NFA 5 / 17

Compressed membership

SLPs are used
develop tools/gain understanding
membership problem

Compressed membership [Plandowski & Rytter 1999]
In membership problems, words are given as SLPs.

Known results
RE, CFG, Conjunctive grammars. . .

Open questions
Compressed membership for NFA

Artur Jeż Compressed membership for NFA 5 / 17

Compressed membership

SLPs are used
develop tools/gain understanding
membership problem

Compressed membership [Plandowski & Rytter 1999]
In membership problems, words are given as SLPs.

Known results
RE, CFG, Conjunctive grammars. . .

Open questions
Compressed membership for NFA

Artur Jeż Compressed membership for NFA 5 / 17

Compressed membership

SLPs are used
develop tools/gain understanding
membership problem

Compressed membership [Plandowski & Rytter 1999]
In membership problems, words are given as SLPs.

Known results
RE, CFG, Conjunctive grammars. . .

Open questions
Compressed membership for NFA

Artur Jeż Compressed membership for NFA 5 / 17

Compressed membership for NFA
Input: SLP, NFA N
Output: Yes/No

Simple dynamic algorithm: for Xi calculate {(p, q) | δ(p, val(Xi), q)}
Where is the hardness?

Compress N as well: allow transition by words.

Fully compressed NFA membership
SLP for w
NFA N, compressed transitions

a X

Y
b

A

X

Artur Jeż Compressed membership for NFA 6 / 17

Compressed membership for NFA
Input: SLP, NFA N
Output: Yes/No

Simple dynamic algorithm: for Xi calculate {(p, q) | δ(p, val(Xi), q)}

Where is the hardness?

Compress N as well: allow transition by words.

Fully compressed NFA membership
SLP for w
NFA N, compressed transitions

a X

Y
b

A

X

Artur Jeż Compressed membership for NFA 6 / 17

Compressed membership for NFA
Input: SLP, NFA N
Output: Yes/No

Simple dynamic algorithm: for Xi calculate {(p, q) | δ(p, val(Xi), q)}
Where is the hardness?

Compress N as well: allow transition by words.

Fully compressed NFA membership
SLP for w
NFA N, compressed transitions

a X

Y
b

A

X

Artur Jeż Compressed membership for NFA 6 / 17

Compressed membership for NFA
Input: SLP, NFA N
Output: Yes/No

Simple dynamic algorithm: for Xi calculate {(p, q) | δ(p, val(Xi), q)}
Where is the hardness?

Compress N as well: allow transition by words.

Fully compressed NFA membership
SLP for w
NFA N, compressed transitions

a X

Y
b

A

X

Artur Jeż Compressed membership for NFA 6 / 17

Compressed membership for NFA
Input: SLP, NFA N
Output: Yes/No

Simple dynamic algorithm: for Xi calculate {(p, q) | δ(p, val(Xi), q)}
Where is the hardness?

Compress N as well: allow transition by words.

Fully compressed NFA membership
SLP for w
NFA N, compressed transitions

a X

Y
b

A

X

Artur Jeż Compressed membership for NFA 6 / 17

Compressed membership for NFA
Input: SLP, NFA N
Output: Yes/No

Simple dynamic algorithm: for Xi calculate {(p, q) | δ(p, val(Xi), q)}
Where is the hardness?

Compress N as well: allow transition by words.

Fully compressed NFA membership
SLP for w
NFA N, compressed transitions

a X

Y
b

A

X

Artur Jeż Compressed membership for NFA 6 / 17

Compressed membership for NFA: complexity

Complexity
NP-hardness (subsum), already for

I acyclic NFA
I unary alphabet

in PSPACE: enough to store positions inside decompressed words

Conjecture
In NP.

Partial results
Plandowski & Rytter (unary in NP)
Lohrey & Mathissen (highly periodic in NP, highly aperiodic in P)

Artur Jeż Compressed membership for NFA 7 / 17

Compressed membership for NFA: complexity

Complexity
NP-hardness (subsum), already for

I acyclic NFA
I unary alphabet

in PSPACE: enough to store positions inside decompressed words

Conjecture
In NP.

Partial results
Plandowski & Rytter (unary in NP)
Lohrey & Mathissen (highly periodic in NP, highly aperiodic in P)

Artur Jeż Compressed membership for NFA 7 / 17

New results

Theorem
Fully compressed membership for NFA is in NP.

Theorem
Fully compressed membership for DFA is in P.

Artur Jeż Compressed membership for NFA 8 / 17

Idea: Recompression
Difficulty: the words are long. Shorten them.

a

c a

b

Deeper understanding
New production: d → ab. Building new SLP (recompression).
SLP problems: hard, as SLP are different.
Building canonical SLP for the instance.

What to do with an?

Replace each maximal an by a single symbol.

a c a a

Problems
Easy for text, what about grammar?

Artur Jeż Compressed membership for NFA 9 / 17

Idea: Recompression
Difficulty: the words are long. Shorten them.

a b c a a b

Deeper understanding
New production: d → ab. Building new SLP (recompression).
SLP problems: hard, as SLP are different.
Building canonical SLP for the instance.

What to do with an?

Replace each maximal an by a single symbol.

a c a a

Problems
Easy for text, what about grammar?

Artur Jeż Compressed membership for NFA 9 / 17

Idea: Recompression
Difficulty: the words are long. Shorten them.

a

d c a d

b

Deeper understanding
New production: d → ab. Building new SLP (recompression).
SLP problems: hard, as SLP are different.
Building canonical SLP for the instance.

What to do with an?

Replace each maximal an by a single symbol.

a c a a

Problems
Easy for text, what about grammar?

Artur Jeż Compressed membership for NFA 9 / 17

Idea: Recompression
Difficulty: the words are long. Shorten them.

a

d c a d

b

Deeper understanding
New production: d → ab. Building new SLP (recompression).
SLP problems: hard, as SLP are different.
Building canonical SLP for the instance.

What to do with an?

Replace each maximal an by a single symbol.

a c a a

Problems
Easy for text, what about grammar?

Artur Jeż Compressed membership for NFA 9 / 17

Idea: Recompression
Difficulty: the words are long. Shorten them.

a

d c a d

b

Deeper understanding
New production: d → ab. Building new SLP (recompression).
SLP problems: hard, as SLP are different.
Building canonical SLP for the instance.

What to do with an?

Replace each maximal an by a single symbol.

a a c a a a

Problems
Easy for text, what about grammar?

Artur Jeż Compressed membership for NFA 9 / 17

Idea: Recompression
Difficulty: the words are long. Shorten them.

a

d c a d

b

Deeper understanding
New production: d → ab. Building new SLP (recompression).
SLP problems: hard, as SLP are different.
Building canonical SLP for the instance.

What to do with an? Replace each maximal an by a single symbol.

a

a2 c a3

a a

Problems
Easy for text, what about grammar?

Artur Jeż Compressed membership for NFA 9 / 17

Idea: Recompression
Difficulty: the words are long. Shorten them.

a

d c a d

b

Deeper understanding
New production: d → ab. Building new SLP (recompression).
SLP problems: hard, as SLP are different.
Building canonical SLP for the instance.

What to do with an? Replace each maximal an by a single symbol.

a

a2 c a3

a a

Problems
Easy for text, what about grammar?

Artur Jeż Compressed membership for NFA 9 / 17

Local recompression

Re-compression
decompressed text: easy; size: large,
compressed text: hard; size: small.

Local decompression
Decompress locally the SLP:

X → uYvZ

u, v : blocks of letters, linear size
Y , Z : nonterminals
recompression inside u, v

Artur Jeż Compressed membership for NFA 10 / 17

Local recompression

Re-compression
decompressed text: easy; size: large,
compressed text: hard; size: small.

Local decompression
Decompress locally the SLP:

X → uYvZ

u, v : blocks of letters, linear size
Y , Z : nonterminals
recompression inside u, v

Artur Jeż Compressed membership for NFA 10 / 17

Outline
Outline of the algorithm

while | val(Xn) > n| do
LΣ ← list of letters, LP ← list of pairs
for ab ∈ LP do

compress pair ab
for a ∈ LΣ do

compress a maximal blocks
Decompress the word and solve the problem naively.

Theorem
There are O(log | val(Xn)|) iterations.

Proof.
Consider two consecutive letters ab. One of them is compressed. So word
shortens by a constant factor.

Artur Jeż Compressed membership for NFA 11 / 17

Outline
Outline of the algorithm

while | val(Xn) > n| do
LΣ ← list of letters, LP ← list of pairs
for ab ∈ LP do

compress pair ab
for a ∈ LΣ do

compress a maximal blocks
Decompress the word and solve the problem naively.

Theorem
There are O(log | val(Xn)|) iterations.

Proof.
Consider two consecutive letters ab. One of them is compressed. So word
shortens by a constant factor.

Artur Jeż Compressed membership for NFA 11 / 17

What is hard, what is easy

What is hard to compress, what easy?

Hard
a pair ab is crossing if Xi → uaXjvXk , where val(Xj) = b . . .
a letter a has crossing appearances if aa is a crossing pair

Easy
a pair ab is non-crossing otherwise
a letter a has no crossing appearances otherwise

Artur Jeż Compressed membership for NFA 12 / 17

What is hard, what is easy

What is hard to compress, what easy?

Hard
a pair ab is crossing if Xi → uaXjvXk , where val(Xj) = b . . .
a letter a has crossing appearances if aa is a crossing pair

Easy
a pair ab is non-crossing otherwise
a letter a has no crossing appearances otherwise

Artur Jeż Compressed membership for NFA 12 / 17

What is hard, what is easy

What is hard to compress, what easy?

Hard
a pair ab is crossing if Xi → uaXjvXk , where val(Xj) = b . . .
a letter a has crossing appearances if aa is a crossing pair

Easy
a pair ab is non-crossing otherwise
a letter a has no crossing appearances otherwise

Artur Jeż Compressed membership for NFA 12 / 17

A little detailed outline

Detailed outline
while | val(Xn) > n| do

while possible do
for non-crossing pair ab in val(Xn) do

compress ab
for a: without crossing blocks do

compress appearances of a

L← list of letters with crossing blocks
P ← list of crossing pairs
for each ab in P do

compress ab
for a ∈ L do

compress appearances of a
Decompress Xn and solve the problem naively.

Artur Jeż Compressed membership for NFA 13 / 17

A little detailed outline

Detailed outline
while | val(Xn) > n| do

while possible do
for non-crossing pair ab in val(Xn) do

compress ab
for a: without crossing blocks do

compress appearances of a
L← list of letters with crossing blocks
P ← list of crossing pairs
for each ab in P do

compress ab
for a ∈ L do

compress appearances of a
Decompress Xn and solve the problem naively.

Artur Jeż Compressed membership for NFA 13 / 17

Non-crossing pair compression
Non-crossing pair compression

for each production Xi → uXjvXk do
replace each ab in u, v by c

Appearance compression for a without crossing blocks
compute the lengths `1, . . . , `k of a’s maximal blocks
for each a`m do

for each production Xi → uXjvXk do
replace maximal a`m in in u, v by a`m

Lemma
It works.

Proof.
The pair is non-crossing: it always appears inside production.

Artur Jeż Compressed membership for NFA 14 / 17

Non-crossing pair compression
Non-crossing pair compression

for each production Xi → uXjvXk do
replace each ab in u, v by c

Appearance compression for a without crossing blocks
compute the lengths `1, . . . , `k of a’s maximal blocks
for each a`m do

for each production Xi → uXjvXk do
replace maximal a`m in in u, v by a`m

Lemma
It works.

Proof.
The pair is non-crossing: it always appears inside production.

Artur Jeż Compressed membership for NFA 14 / 17

Non-crossing pair compression
Non-crossing pair compression

for each production Xi → uXjvXk do
replace each ab in u, v by c

Appearance compression for a without crossing blocks
compute the lengths `1, . . . , `k of a’s maximal blocks
for each a`m do

for each production Xi → uXjvXk do
replace maximal a`m in in u, v by a`m

Lemma
It works.

Proof.
The pair is non-crossing: it always appears inside production.

Artur Jeż Compressed membership for NFA 14 / 17

Convert hard to easy
Convert crossing pairs to noncrossing and letters with crossing blocks to
letters without crossing blocks (Sequentially).

aXi and Xi begins with b
Xjb and Xj ends with a
‘pop’ first letter of Xi

replace: val(Xi) = bu 7→ val(Xi) = u
grammar: remove leading b from rule for Xi , replace Xi by bXi

‘pop’ last letter of Xi

Lemma
After popping letters, ab is noncrossing.

Proof.
Easy, some simple cases.

Artur Jeż Compressed membership for NFA 15 / 17

Convert hard to easy
Convert crossing pairs to noncrossing and letters with crossing blocks to
letters without crossing blocks (Sequentially).

aXi and Xi begins with b
Xjb and Xj ends with a

‘pop’ first letter of Xi

replace: val(Xi) = bu 7→ val(Xi) = u
grammar: remove leading b from rule for Xi , replace Xi by bXi

‘pop’ last letter of Xi

Lemma
After popping letters, ab is noncrossing.

Proof.
Easy, some simple cases.

Artur Jeż Compressed membership for NFA 15 / 17

Convert hard to easy
Convert crossing pairs to noncrossing and letters with crossing blocks to
letters without crossing blocks (Sequentially).

aXi and Xi begins with b
Xjb and Xj ends with a
‘pop’ first letter of Xi

replace: val(Xi) = bu 7→ val(Xi) = u
grammar: remove leading b from rule for Xi , replace Xi by bXi

‘pop’ last letter of Xi

Lemma
After popping letters, ab is noncrossing.

Proof.
Easy, some simple cases.

Artur Jeż Compressed membership for NFA 15 / 17

Convert hard to easy
Convert crossing pairs to noncrossing and letters with crossing blocks to
letters without crossing blocks (Sequentially).

aXi and Xi begins with b
Xjb and Xj ends with a
‘pop’ first letter of Xi

replace: val(Xi) = bu 7→ val(Xi) = u
grammar: remove leading b from rule for Xi , replace Xi by bXi

‘pop’ last letter of Xi

Lemma
After popping letters, ab is noncrossing.

Proof.
Easy, some simple cases.

Artur Jeż Compressed membership for NFA 15 / 17

Convert hard to easy
Convert crossing pairs to noncrossing and letters with crossing blocks to
letters without crossing blocks (Sequentially).

aXi and Xi begins with b
Xjb and Xj ends with a
‘pop’ first letter of Xi

replace: val(Xi) = bu 7→ val(Xi) = u
grammar: remove leading b from rule for Xi , replace Xi by bXi

‘pop’ last letter of Xi

Lemma
After popping letters, ab is noncrossing.

Proof.
Easy, some simple cases.

Artur Jeż Compressed membership for NFA 15 / 17

Removing crossing blocks of a
aa is a crossing pair: pop a
can be insufficient
cut a-prefix or a-suffix
Represent val(Xi) as a`i wari , turn it into w .

Changing a letter a with crossing blocks to one without
for i = 1 . . n do

let Xi → uXjvXk
calculate the a-prefix a`i and a-suffix ari , remove them
replace Xi in rules bodies by a`i Xiari

Lemma
After the algorithm a has no crossing block.

Represent a` succinctly, using O(log `) bits.

Artur Jeż Compressed membership for NFA 16 / 17

Removing crossing blocks of a
aa is a crossing pair: pop a
can be insufficient
cut a-prefix or a-suffix
Represent val(Xi) as a`i wari , turn it into w .

Changing a letter a with crossing blocks to one without
for i = 1 . . n do

let Xi → uXjvXk
calculate the a-prefix a`i and a-suffix ari , remove them
replace Xi in rules bodies by a`i Xiari

Lemma
After the algorithm a has no crossing block.

Represent a` succinctly, using O(log `) bits.

Artur Jeż Compressed membership for NFA 16 / 17

Removing crossing blocks of a
aa is a crossing pair: pop a
can be insufficient
cut a-prefix or a-suffix
Represent val(Xi) as a`i wari , turn it into w .

Changing a letter a with crossing blocks to one without
for i = 1 . . n do

let Xi → uXjvXk
calculate the a-prefix a`i and a-suffix ari , remove them
replace Xi in rules bodies by a`i Xiari

Lemma
After the algorithm a has no crossing block.

Represent a` succinctly, using O(log `) bits.

Artur Jeż Compressed membership for NFA 16 / 17

Removing crossing blocks of a
aa is a crossing pair: pop a
can be insufficient
cut a-prefix or a-suffix
Represent val(Xi) as a`i wari , turn it into w .

Changing a letter a with crossing blocks to one without
for i = 1 . . n do

let Xi → uXjvXk
calculate the a-prefix a`i and a-suffix ari , remove them
replace Xi in rules bodies by a`i Xiari

Lemma
After the algorithm a has no crossing block.

Represent a` succinctly, using O(log `) bits.

Artur Jeż Compressed membership for NFA 16 / 17

Sizes and running time
Running time
All algorithms run in time poly(n, |G |, |Σ|).

Size of G
XjXk

In each iteration

O(n) new letters
shrinking by a constant factor

New letters (|Σ|)
noncrossing pairs, noncrossing blocks compression (shrinks |G |)
letters with crossing blocks and crossing pairs:
there are O(n) such letters and O(n2) pairs in val(Xn)

Artur Jeż Compressed membership for NFA 17 / 17

Sizes and running time
Running time
All algorithms run in time poly(n, |G |, |Σ|).

Size of G
abbbcceaXjaddfeaaf Xk

In each iteration

O(n) new letters
shrinking by a constant factor

New letters (|Σ|)
noncrossing pairs, noncrossing blocks compression (shrinks |G |)
letters with crossing blocks and crossing pairs:
there are O(n) such letters and O(n2) pairs in val(Xn)

Artur Jeż Compressed membership for NFA 17 / 17

Sizes and running time
Running time
All algorithms run in time poly(n, |G |, |Σ|).

Size of G
abbbcceabhaXjabaddfeaaf cdaXk

In each iteration
O(n) new letters

shrinking by a constant factor

New letters (|Σ|)
noncrossing pairs, noncrossing blocks compression (shrinks |G |)
letters with crossing blocks and crossing pairs:
there are O(n) such letters and O(n2) pairs in val(Xn)

Artur Jeż Compressed membership for NFA 17 / 17

Sizes and running time
Running time
All algorithms run in time poly(n, |G |, |Σ|).

Size of G
abbbcceabhaXjabaddfeaaf cdaXk

In each iteration
O(n) new letters
shrinking by a constant factor

New letters (|Σ|)
noncrossing pairs, noncrossing blocks compression (shrinks |G |)
letters with crossing blocks and crossing pairs:
there are O(n) such letters and O(n2) pairs in val(Xn)

Artur Jeż Compressed membership for NFA 17 / 17

Sizes and running time
Running time
All algorithms run in time poly(n, |G |, |Σ|).

Size of G
uvbhaXjabxyzcdaXk

In each iteration
O(n) new letters
shrinking by a constant factor

New letters (|Σ|)
noncrossing pairs, noncrossing blocks compression (shrinks |G |)
letters with crossing blocks and crossing pairs:
there are O(n) such letters and O(n2) pairs in val(Xn)

Artur Jeż Compressed membership for NFA 17 / 17

Sizes and running time
Running time
All algorithms run in time poly(n, |G |, |Σ|).

Size of G
uvbhaXjabxyzcdaXk

In each iteration
O(n) new letters
shrinking by a constant factor

New letters (|Σ|)
noncrossing pairs, noncrossing blocks compression (shrinks |G |)
letters with crossing blocks and crossing pairs:
there are O(n) such letters and O(n2) pairs in val(Xn)

Artur Jeż Compressed membership for NFA 17 / 17

Modifications

compressed membership: how to modify automaton?
I for NFA: nondeterminism
I for DFA: deterministically

compressed pattern matching
I better analysis
I careful implementation
I details (ends of the pattern)

word equations: some further understanding

Questions
Any further results?
How efficient for DFA?
Are word equations in NP?

Artur Jeż Compressed membership for NFA 18 / 17

Modifications

compressed membership: how to modify automaton?
I for NFA: nondeterminism
I for DFA: deterministically

compressed pattern matching
I better analysis
I careful implementation
I details (ends of the pattern)

word equations: some further understanding

Questions
Any further results?
How efficient for DFA?
Are word equations in NP?

Artur Jeż Compressed membership for NFA 18 / 17

Modifications

compressed membership: how to modify automaton?
I for NFA: nondeterminism
I for DFA: deterministically

compressed pattern matching
I better analysis
I careful implementation
I details (ends of the pattern)

word equations: some further understanding

Questions
Any further results?
How efficient for DFA?
Are word equations in NP?

Artur Jeż Compressed membership for NFA 18 / 17

Modifications

compressed membership: how to modify automaton?
I for NFA: nondeterminism
I for DFA: deterministically

compressed pattern matching
I better analysis
I careful implementation
I details (ends of the pattern)

word equations: some further understanding

Questions
Any further results?
How efficient for DFA?
Are word equations in NP?

Artur Jeż Compressed membership for NFA 18 / 17

