

Equations over sets of integers

ARTUR JEŽ

ALEXANDER OKHOTIN

Wrocław, Poland

Turku, Finland

4 March 2010 A. D.

Language equations

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Ω^* .
- φ_i : variables, constants, operations on languages.

Language equations

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Ω^* .
- φ_i : variables, constants, operations on languages.

Unique solutions.

Language equations

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Ω^* .
- φ_i : variables, constants, operations on languages.

Unique solutions.

Example

$$X = \{a\}X\{b\}X \cup \{\epsilon\}$$

Language equations

$$\left\{ \begin{array}{lcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Ω^* .
- φ_i : variables, constants, operations on languages.

Unique solutions.

Example

$$X = \{a\}X\{b\}X \cup \{\epsilon\}$$

Unique solution: the Dyck language.

Language equations-results

- Language equations over Ω , with $|\Omega| \geq 2$.

Language equations-results

- Language equations over Ω , with $|\Omega| \geq 2$.

Theorem (Okhotin, ICALP 2003)

$L \subseteq \Omega^*$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ and equations of the form $\varphi(X_1, \dots, X_n) = \psi(X_1, \dots, X_n)$
if and only if
 L is recursive.

Language equations-results

- Language equations over Ω , with $|\Omega| \geq 2$.

Theorem (Okhotin, ICALP 2003)

$L \subseteq \Omega^*$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ and equations of the form $\varphi(X_1, \dots, X_n) = \psi(X_1, \dots, X_n)$
if and only if
 L is recursive.

Theorem (Kunc STACS 2005)

There exists a finite L such that the greatest solution of

$$LX = XL$$

for $X \subseteq \{a, b\}^*$ is co-recursively enumerable-hard.

Unary languages as sets of numbers

- $\Omega = \{a\}$.

Unary languages as sets of numbers

- $\Omega = \{a\}$.

- a^n

\longleftrightarrow

number n

Unary languages as sets of numbers

- $\Omega = \{a\}$.
- a^n \longleftrightarrow number n
- Language \longleftrightarrow set of numbers

Unary languages as sets of numbers

- $\Omega = \{a\}$.
- $a^n \longleftrightarrow$ number n
- Language \longleftrightarrow set of numbers
- $K \cdot L \longleftrightarrow X + Y = \{x + y \mid x \in X, y \in Y\}$

Unary languages as sets of numbers

- $\Omega = \{a\}$.
- $a^n \longleftrightarrow$ number n
- Language \longleftrightarrow set of numbers
- $K \cdot L \longleftrightarrow X + Y = \{x + y \mid x \in X, y \in Y\}$

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of $\mathbb{N}_0 = \{0, 1, 2, \dots\}$.
- φ_i : variables, singleton constants, operations on sets.

Unary languages as sets of numbers

- $\Omega = \{a\}$.
- $a^n \longleftrightarrow$ number n
- Language \longleftrightarrow set of numbers
- $K \cdot L \longleftrightarrow X + Y = \{x + y \mid x \in X, y \in Y\}$

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of $\mathbb{N}_0 = \{0, 1, 2, \dots\}$.
- φ_i : variables, singleton constants, operations on sets.

Theorem (Jeż, Okhotin ICALP 2008)

$S \subseteq \mathbb{N}$ is given by unique solution of a system with $\{\cup, +\}$ or $\{\cap, +\}$ and equations of the form $\varphi(X_1, \dots, X_n) = \psi(X_1, \dots, X_n)$
if and only if

S is recursive.

Upper bound for continuous operations

Definition (Continuous operations)

A limit of sets $\{A_n\}_{n \geq 1}$:

$$A = \lim_{n \rightarrow \infty} A_n \iff \begin{cases} x \in A & \text{if } x \text{ is in almost all } A_i \text{'s} \\ x \notin A & \text{if } x \text{ is in finitely many } A_i \text{'s} \end{cases}$$

An operation φ is **continuous**, if

$$\lim_{n \rightarrow \infty} \varphi(A_n) = \varphi\left(\lim_{n \rightarrow \infty} A_n\right)$$

Upper bound for continuous operations

Definition (Continuous operations)

A limit of sets $\{A_n\}_{n \geq 1}$:

$$A = \lim_{n \rightarrow \infty} A_n \iff \begin{cases} x \in A & \text{if } x \text{ is in almost all } A_i \text{'s} \\ x \notin A & \text{if } x \text{ is in finitely many } A_i \text{'s} \end{cases}$$

An operation φ is **continuous**, if

$$\lim_{n \rightarrow \infty} \varphi(A_n) = \varphi\left(\lim_{n \rightarrow \infty} A_n\right)$$

Theorem

If $L \subseteq \Omega^*$ is given by unique solution of a system with continuous (computable) operations, then L is recursive.

Equations with non-continuous operations: example

Example (RE sets by non-continuous operations)

- projection: special kind of a homomorphism

Equations with non-continuous operations: example

Example (RE sets by non-continuous operations)

- projection: special kind of a homomorphism
- $\pi_{\Omega'}(x) = \begin{cases} x, & \text{if } x \in \Omega' \\ \epsilon, & \text{if } x \notin \Omega' \end{cases}$, for $\Omega' \subseteq \Omega$
- $\pi_{\Omega'}$ is non-continuous

Equations with non-continuous operations: example

Example (RE sets by non-continuous operations)

- projection: special kind of a homomorphism
- $\pi_{\Omega'}(x) = \begin{cases} x, & \text{if } x \in \Omega' \\ \epsilon, & \text{if } x \notin \Omega' \end{cases}$, for $\Omega' \subseteq \Omega$
- $\pi_{\Omega'}$ is non-continuous
- $VALC(M)$ —language of computations of TM.

$$\{C_M(w)\#w \mid w \in L(M)\}$$

- $w \in \Omega'^*$, $C_M(w), \# \in (\Omega \setminus \Omega')^*$
- intersection of CFL's.

Equations with non-continuous operations: example

Example (RE sets by non-continuous operations)

- projection: special kind of a homomorphism
- $\pi_{\Omega'}(x) = \begin{cases} x, & \text{if } x \in \Omega' \\ \epsilon, & \text{if } x \notin \Omega' \end{cases}$, for $\Omega' \subseteq \Omega$
- $\pi_{\Omega'}$ is non-continuous
- $VALC(M)$ —language of computations of TM.

$$\{C_M(w)\#w \mid w \in L(M)\}$$

- $w \in \Omega'^*$, $C_M(w), \# \in (\Omega \setminus \Omega')^*$
- intersection of CFL's.
- deleting $C_M(w)$ out of $VALC(M)$:

$$\pi_{\Omega'}(VALC(M)) = L(M)$$

Obvious upper bound

Set equation translates into formulas:

$$X_i = X_j + X_k \iff (\forall n) [n \in X_i \leftrightarrow (\exists n', n'') n = n' + n'' \wedge n' \in X_j \wedge n'' \in X_k]$$

A system is turned into arithmetical formula $Eq(X_1, \dots, X_n)$

Obvious upper bound

Set equation translates into formulas:

$$X_i = X_j + X_k \iff (\forall n) [n \in X_i \leftrightarrow (\exists n', n'') n = n' + n'' \wedge n' \in X_j \wedge n'' \in X_k]$$

A system is turned into arithmetical formula $Eq(X_1, \dots, X_n)$

Operations expressible in first-order arithmetics.

Obvious upper bound

Set equation translates into formulas:

$$X_i = X_j + X_k \iff (\forall n)[n \in X_i \leftrightarrow (\exists n', n'') n = n' + n'' \wedge n' \in X_j \wedge n'' \in X_k]$$

A system is turned into arithmetical formula $Eq(X_1, \dots, X_n)$

Operations expressible in first-order arithmetics.

Unique solution (S_1, \dots, S_n) :

$$\varphi(x) = (\exists X_1) \dots (\exists X_n) Eq(X_1, \dots, X_n) \wedge x \in X_1 \quad (\Sigma_1^1)$$

$$\varphi'(x) = (\forall X_1) \dots (\forall X_n) Eq(X_1, \dots, X_n) \rightarrow x \in X_1 \quad (\Pi_1^1)$$

Obvious upper bound

Set equation translates into formulas:

$$X_i = X_j + X_k \iff (\forall n)[n \in X_i \leftrightarrow (\exists n', n'') n = n' + n'' \wedge n' \in X_j \wedge n'' \in X_k]$$

A system is turned into arithmetical formula $Eq(X_1, \dots, X_n)$

Operations expressible in first-order arithmetics.

Unique solution (S_1, \dots, S_n) :

$$\varphi(x) = (\exists X_1) \dots (\exists X_n) Eq(X_1, \dots, X_n) \wedge x \in X_1 \quad (\Sigma_1^1)$$

$$\varphi'(x) = (\forall X_1) \dots (\forall X_n) Eq(X_1, \dots, X_n) \rightarrow x \in X_1 \quad (\Pi_1^1)$$

Obvious upper bound

Set equation translates into formulas:

$$X_i = X_j + X_k \iff (\forall n)[n \in X_i \leftrightarrow (\exists n', n'') n = n' + n'' \wedge n' \in X_j \wedge n'' \in X_k]$$

A system is turned into arithmetical formula $Eq(X_1, \dots, X_n)$

Operations expressible in first-order arithmetics.

Unique solution (S_1, \dots, S_n) :

$$\varphi(x) = (\exists X_1) \dots (\exists X_n) Eq(X_1, \dots, X_n) \wedge x \in X_1 \quad (\Sigma_1^1)$$

$$\varphi'(x) = (\forall X_1) \dots (\forall X_n) Eq(X_1, \dots, X_n) \rightarrow x \in X_1 \quad (\Pi_1^1)$$

$$\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1 \quad (\text{Hyper-arithmetical sets})$$

Result

Theorem

$S \subseteq \mathbb{Z}$ is given by unique solution of a system with $\{\cup, +\}$ or $\{\cap, +\}$ and equations of the form $\varphi(X_1, \dots, X_n) = \psi(X_1, \dots, X_n)$
if and only if

S is hyper-arithmetic

Result

Theorem

$S \subseteq \mathbb{Z}$ is given by unique solution of a system with $\{\cup, +\}$ or $\{\cap, +\}$ and equations of the form $\varphi(X_1, \dots, X_n) = \psi(X_1, \dots, X_n)$
if and only if

S is hyper-arithmetic

Similar result for \mathbb{N} with subtraction:

$$A \dot{-} B = \{a - b \mid a \in A, b \in B, a \geq b\}$$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k - 1\}$.

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k - 1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k - 1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\} \quad ((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

- $X_2 + X_2 = (20^*)_4 + (20^*)_4 =$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\} \quad ((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

- $X_2 + X_2 = (20^*)_4 + (20^*)_4 = (10^+)_4 \cup$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\} \quad ((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

- $X_2 + X_2 = (20^*)_4 + (20^*)_4 = (10^+)_4 \cup (20^*20^*)_4$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

- $X_2 + X_2 = (20^*)_4 + (20^*)_4 = (10^+)_4 \cup (20^*20^*)_4$
- $X_1 + X_3 = (10^*)_4 + (30^*)_4 =$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

- $X_2 + X_2 = (20^*)_4 + (20^*)_4 = (10^+)_4 \cup (20^*20^*)_4$
- $X_1 + X_3 = (10^*)_4 + (30^*)_4 = (10^+)_4 \cup$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

$$X_2 + X_2 = (20^*)_4 + (20^*)_4 = (10^+)_4 \cup (20^*20^*)_4$$

$$X_1 + X_3 = (10^*)_4 + (30^*)_4 = (10^+)_4 \cup (10^*30^*)_4 \cup (30^*10^*)_4$$

Using positional notation

- Numbers in base- k notation: strings over $\Omega_k = \{0, 1, \dots, k-1\}$.
- $(a_1 \dots a_\ell)_k$: number denoted by $a_1 \dots a_\ell$ in base- k notation
- Set of numbers \leftrightarrow formal language over Ω_k

Example (Jeż, DLT 2007)

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

- $X_2 + X_2 = (20^*)_4 + (20^*)_4 = (10^+)_4 \cup (20^*20^*)_4$
- $X_1 + X_3 = (10^*)_4 + (30^*)_4 = (10^+)_4 \cup (10^*30^*)_4 \cup (30^*10^*)_4$
- $(X_2 + X_2) \cap (X_1 + X_3) = (10^+)_4$

Arithmetical Hierarchy

$AH = \bigcup_k \Sigma_k^0$, where

$S \in \Sigma_k^0 \iff S = \{w \mid \exists x_1 \forall x_2 \dots Q_k x_k \ R(w, x_1, \dots, x_k)\}$, recursive R

Arithmetical Hierarchy

$AH = \bigcup_k \Sigma_k^0$, where

$S \in \Sigma_k^0 \iff S = \{w \mid \exists x_1 \forall x_2 \dots Q_k x_k R(w, x_1, \dots, x_k)\}$, recursive R

$S \in \Pi_k^0 \iff S = \{w \mid \forall x_1 \exists x_2 \dots Q_k x_k R(w, x_1, \dots, x_k)\}$, recursive R

Arithmetical Hierarchy

$AH = \bigcup_k \Sigma_k^0$, where

$S \in \Sigma_k^0 \iff S = \{w \mid \exists x_1 \forall x_2 \dots Q_k x_k R(w, x_1, \dots, x_k)\}, \text{ recursive } R$

$S \in \Pi_k^0 \iff S = \{w \mid \forall x_1 \exists x_2 \dots Q_k x_k R(w, x_1, \dots, x_k)\}, \text{ recursive } R$

An encoding

$S = \{ (w)_7 \mid \exists x_1 \in \{3, 6\}^* \forall x_2 \in \{3, 6\}^* \dots Q_k x_k \in \{3, 6\}^* (1x_11x_21 \dots x_k1w)_7 \in R\}$

Arithmetical Hierarchy

$AH = \bigcup_k \Sigma_k^0$, where

$S \in \Sigma_k^0 \iff S = \{w \mid \exists x_1 \forall x_2 \dots Q_k x_k R(w, x_1, \dots, x_k)\}, \text{ recursive } R$

$S \in \Pi_k^0 \iff S = \{w \mid \forall x_1 \exists x_2 \dots Q_k x_k R(w, x_1, \dots, x_k)\}, \text{ recursive } R$

An encoding

$S = \{ (w)_7 \mid \exists x_1 \in \{3, 6\}^* \forall x_2 \in \{3, 6\}^* \dots Q_k x_k \in \{3, 6\}^* (1x_1 1x_2 1 \dots x_k 1w)_7 \in R\}$

Construction outline

- Recursive sets [Jeż, Okhotin ICALP 2008]—given by unique solutions over \mathbb{N} with $\{\cap, +\}$ or $\{\cup, +\}$
- Enough to define quantifier operations

$$E(X) = \{(1w)_7 \mid \exists x : (1x1w)_7 \in X\}$$

$$A(X) = \{(1w)_7 \mid \forall x : (1x1w)_7 \in X\}$$

Existential quantifier

Theorem

For $S \subseteq (\{3, 6\}^+ 1\Omega_7^*)_7$

$$[S \div (\{3, 6\}^+ 0^*)_7] \cap (1\Omega_7^*)_7 = \{(1y)_7 \mid \exists x \in \{3, 6\}^+ (x1y)_7 \in S\}$$

Existential quantifier

Theorem

For $S \subseteq (\{3, 6\}^+ 1\Omega_7^*)_7$

$$[S \div (\{3, 6\}^+ 0^*)_7] \cap (1\Omega_7^*)_7 = \{(1y)_7 \mid \exists x \in \{3, 6\}^+ (x1y)_7 \in S\}$$

- Goal:

$$\begin{array}{cccccccccc} x_1 & x_2 & \dots & x_\ell & 1 & y_1 & y_2 & \dots & y_{\ell'} \\ - & x_1 & x_2 & \dots & x_\ell & 0 & 0 & 0 & \dots & 0 \\ \hline & & & & & 1 & y_1 & y_2 & \dots & y_{\ell'} \end{array}$$

Existential quantifier

Theorem

For $S \subseteq (\{3, 6\}^+ 1\Omega_7^*)_7$

$$[S \div (\{3, 6\}^+ 0^*)_7] \cap (1\Omega_7^*)_7 = \{(1y)_7 \mid \exists x \in \{3, 6\}^+ (x1y)_7 \in S\}$$

- Goal:

$$\begin{array}{cccccccccc} x_1 & x_2 & \dots & x_\ell & 1 & y_1 & y_2 & \dots & y_{\ell'} \\ - & x_1 & x_2 & \dots & x_\ell & 0 & 0 & 0 & \dots & 0 \\ \hline & & & & & 1 & y_1 & y_2 & \dots & y_{\ell'} \end{array}$$

- Reality:

$$\left((x1y)_7 \div (x'0 \underbrace{0 \dots 0}_?)_7 \right) \cap (1\Omega_7^*)_7$$

Existential quantifier

Theorem

For $S \subseteq (\{3, 6\}^+ 1\Omega_7^*)_7$

$$[S \div (\{3, 6\}^+ 0^*)_7] \cap (1\Omega_7^*)_7 = \{(1y)_7 \mid \exists x \in \{3, 6\}^+ (x1y)_7 \in S\}$$

- Goal:

$$\begin{array}{cccccccccc} x_1 & x_2 & \dots & x_\ell & 1 & y_1 & y_2 & \dots & y_{\ell'} \\ - & x_1 & x_2 & \dots & x_\ell & 0 & 0 & 0 & \dots & 0 \\ \hline & & & & & 1 & y_1 & y_2 & \dots & y_{\ell'} \end{array}$$

- Reality:

$$\left((x1y)_7 \div (x'0\underbrace{0\dots 0}_?)_7 \right) \cap (1\Omega_7^*)_7$$

- filtered out:

- ▶ $x \neq x'$
- ▶ number of 0's is wrong

Hyper-arithmetical sets

Definition (Effective σ union and intersection)

f_1, f_2, \dots — enumeration of all partial recursive functions

τ_1, τ_2 — recursive functions (some assumptions),

$B_{\tau_1(k)} = \mathbb{N} \setminus \{k\}$, $C_{\tau_1(k)} = \{k\}$. If f_k is a total function, then

$$B_{\tau_2(k)} = \bigcup_{n \in \mathbb{N}} C_{f_k(n)}, \quad C_{\tau_2(k)} = \bigcap_{n \in \mathbb{N}} B_{f_k(n)},$$

Hyper-arithmetical sets

Definition (Effective σ union and intersection)

f_1, f_2, \dots — enumeration of all partial recursive functions

τ_1, τ_2 — recursive functions (some assumptions),

$B_{\tau_1(k)} = \mathbb{N} \setminus \{k\}$, $C_{\tau_1(k)} = \{k\}$. If f_k is a total function, then

$$B_{\tau_2(k)} = \bigcup_{n \in \mathbb{N}} C_{f_k(n)}, \quad C_{\tau_2(k)} = \bigcap_{n \in \mathbb{N}} B_{f_k(n)},$$

Definition (Effective σ -ring)

- 1 contains $\{B_{\tau_1(k)}, C_{\tau_1(k)}\}_{k \in \mathbb{N}}$
- 2 closed under eff. σ -union and eff. σ -intersection.

HA: smallest eff. σ -ring.

Hyper-arithmetical sets

Definition (Effective σ union and intersection)

f_1, f_2, \dots — enumeration of all partial recursive functions

τ_1, τ_2 — recursive functions (some assumptions),

$B_{\tau_1(k)} = \mathbb{N} \setminus \{k\}$, $C_{\tau_1(k)} = \{k\}$. If f_k is a total function, then

$$B_{\tau_2(k)} = \bigcup_{n \in \mathbb{N}} C_{f_k(n)}, \quad C_{\tau_2(k)} = \bigcap_{n \in \mathbb{N}} B_{f_k(n)},$$

Definition (Effective σ -ring)

- ① contains $\{B_{\tau_1(k)}, C_{\tau_1(k)}\}_{k \in \mathbb{N}}$
- ② closed under eff. σ -union and eff. σ -intersection.

HA: smallest eff. σ -ring.

Theorem (Moschovakis)

$$\Sigma_1^1 \cap \Pi_1^1 = HA.$$

Hyper-arithmetical sets

Definition (Effective σ union and intersection)

f_1, f_2, \dots — enumeration of all partial recursive functions

τ_1, τ_2 — recursive functions (some assumptions),

$B_{\tau_1(k)} = \mathbb{N} \setminus \{k\}$, $C_{\tau_1(k)} = \{k\}$. If f_k is a total function, then

$$B_{\tau_2(k)} = \bigcup_{n \in \mathbb{N}} C_{f_k(n)}, \quad C_{\tau_2(k)} = \bigcap_{n \in \mathbb{N}} B_{f_k(n)},$$

Definition (Effective σ -ring)

- ① contains $\{B_{\tau_1(k)}, C_{\tau_1(k)}\}_{k \in \mathbb{N}}$
- ② closed under eff. σ -union and eff. σ -intersection.

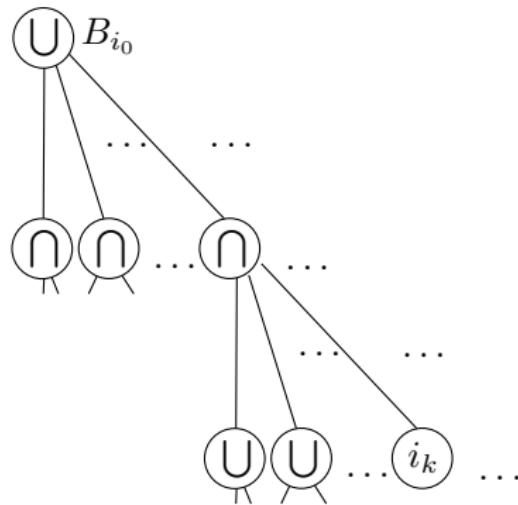
HA: smallest eff. σ -ring.

Theorem (Moschovakis)

$\Sigma_1^1 \cap \Pi_1^1 = HA$. cf: Analytic sets \cap Co-analytic sets = Borel sets. (Suslin)

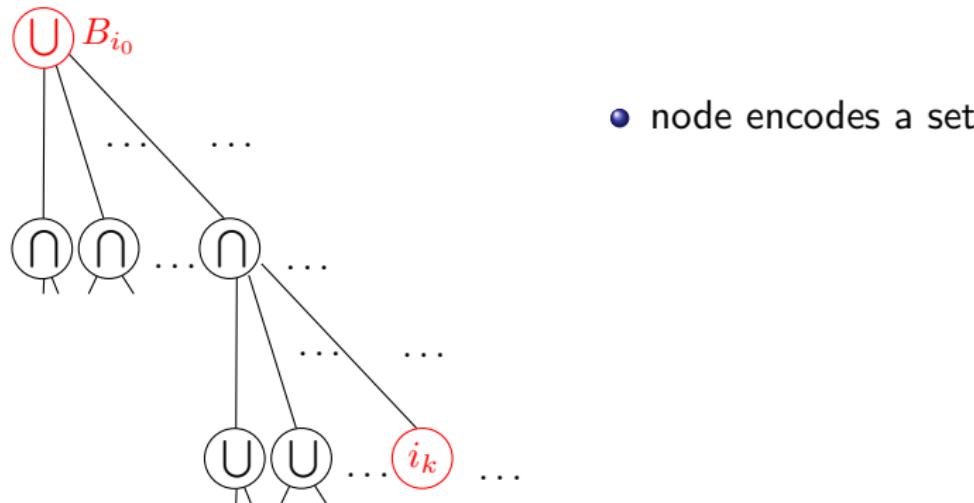
HA as trees

Imagine the dependencies on the tree.



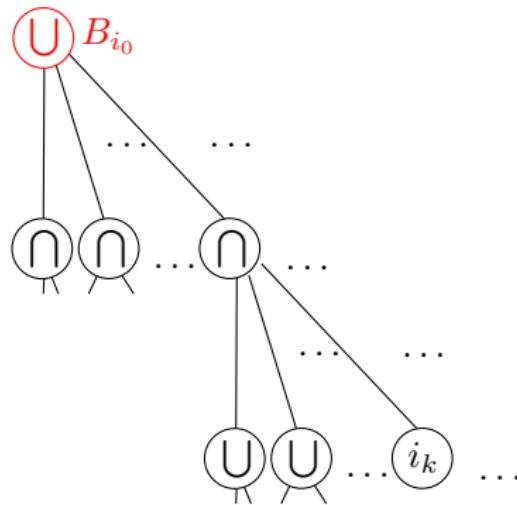
HA as trees

Imagine the dependencies on the tree.



HA as trees

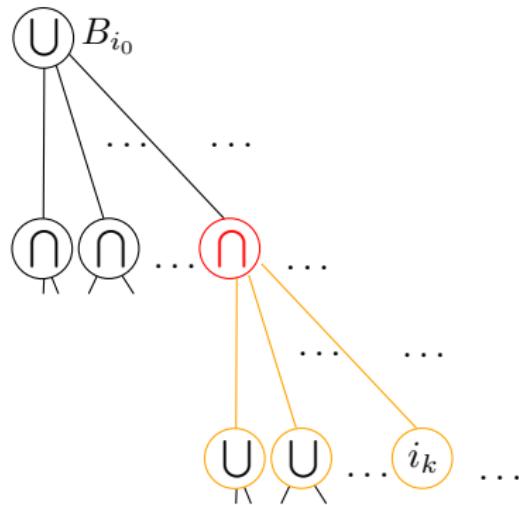
Imagine the dependencies on the tree.



- node encodes a set
- root: target set

HA as trees

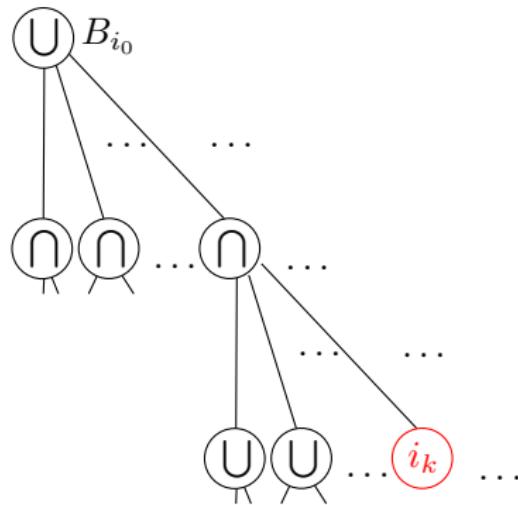
Imagine the dependencies on the tree.



- node encodes a set
- root: target set
- internal node: effective intersection (union) of children

HA as trees

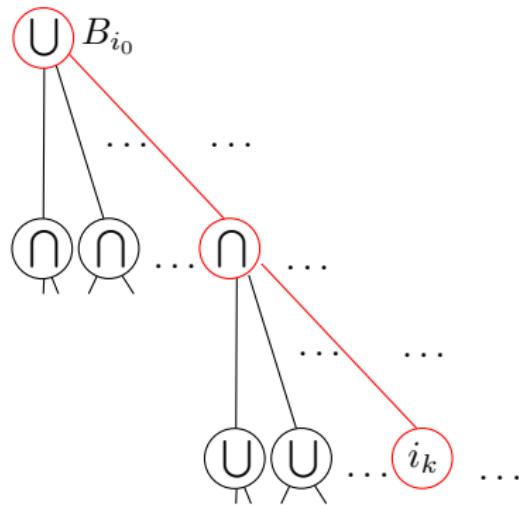
Imagine the dependencies on the tree.



- node encodes a set
- root: target set
- internal node: effective intersection (union) of children
- leaf: singleton/co-singleton

HA as trees

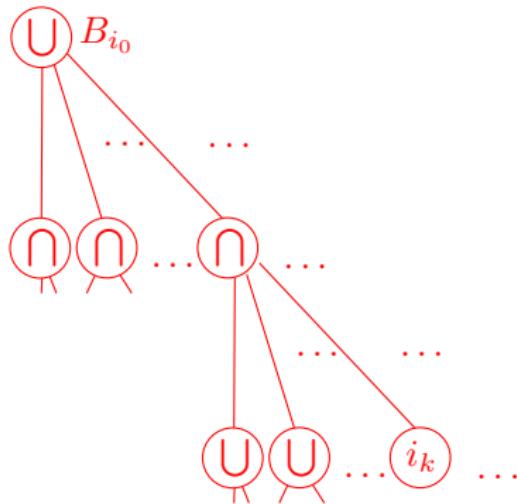
Imagine the dependencies on the tree.



- node encodes a set
- root: target set
- internal node: effective intersection (union) of children
- leaf: singleton/co-singleton
- smallest effective- σ -ring: all paths are finite (may be arbitrarily long)

HA as trees

Imagine the dependencies on the tree.



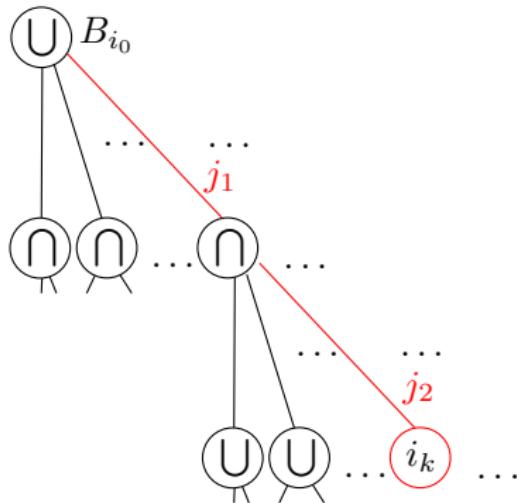
- node encodes a set
- root: target set
- internal node: effective intersection (union) of children
- leaf: singleton/co-singleton
- smallest effective- σ -ring: all paths are finite (may be arbitrarily long)

Encoding

- the whole tree in one variable

HA as trees

Imagine the dependencies on the tree.



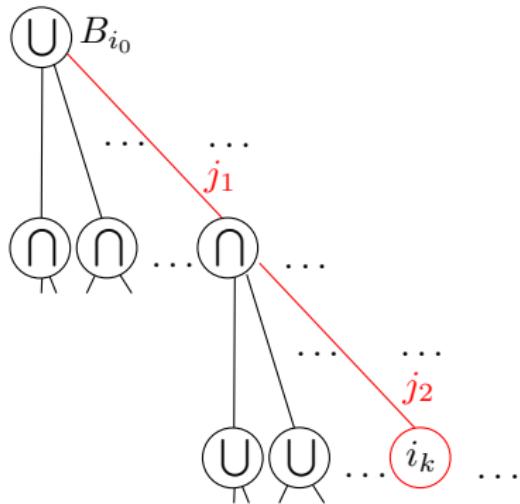
- node encodes a set
- root: target set
- internal node: effective intersection (union) of children
- leaf: singleton/co-singleton
- smallest effective- σ -ring: all paths are finite (may be arbitrarily long)

Encoding

- the whole tree in one variable
- fixed node: sets with its **address** j_1, j_2, \dots, j_p

HA as trees

Imagine the dependencies on the tree.



- node encodes a set
- root: target set
- internal node: effective intersection (union) of children
- leaf: singleton/co-singleton
- smallest effective- σ -ring: all paths are finite (may be arbitrarily long)

Encoding

- the whole tree in one variable
- fixed node: sets with its **address** j_1, j_2, \dots, j_p
- solution $\{(1j_1j_2\dots 1j_\ell 1n)_7 \mid n \in B_{i_\ell}, j_1, j_2, \dots, j_\ell : \text{address of } B_{i_\ell}\}$

Equations over \mathbb{Z} with addition only

Fewer allowed operations?

Equations over \mathbb{Z} with addition only

Fewer allowed operations?

- equations over \mathbb{N} of the form

$$X_{i_1} + \dots + X_{i_k} + C = X_{j_1} + \dots + X_{j_\ell} + C'$$

C, C' : ult. periodic constants

Result[Jeż, Okhotin, STACS 2009]

Encoding of every recursive set S : $n \in S \iff 16n + 13 \in \widehat{S}$

Equations over \mathbb{Z} with addition only

Fewer allowed operations?

- equations over \mathbb{N} of the form

$$X_{i_1} + \dots + X_{i_k} + C = X_{j_1} + \dots + X_{j_\ell} + C'$$

C, C' : ult. periodic constants

Result[Jeż, Okhotin, STACS 2009]

Encoding of every recursive set S : $n \in S \iff 16n + 13 \in \widehat{S}$

- equations over \mathbb{Z} of the form

$$X_{i_1} + \dots + X_{i_k} + C = X_{j_1} + \dots + X_{j_\ell} + C'$$

C, C' : ult. periodic constants

Result[NEW]

Encoding of every HA set S : $n \in S \iff 16n + 13 \in \widehat{S}$

Equations over \mathbb{Z} with addition only

Fewer allowed operations?

- equations over \mathbb{N} of the form

$$X_{i_1} + \dots + X_{i_k} + C = X_{j_1} + \dots + X_{j_\ell} + C'$$

C, C' : ult. periodic constants

Result[Jeż, Okhotin, STACS 2009]

Encoding of every recursive set S : $n \in S \iff 16n + 13 \in \widehat{S}$

- equations over \mathbb{Z} of the form

$$X_{i_1} + \dots + X_{i_k} + C = X_{j_1} + \dots + X_{j_\ell} + C'$$

C, C' : ult. periodic constants

Result[NEW]

Encoding of every HA set S : $n \in S \iff 16n + 13 \in \widehat{S}$

- ▶ Using similar technique to equations over \mathbb{N} .