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Language equations






ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Xi : subset of Ω∗.

ϕi : variables, constants, operations on languages.
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Artur Jeż, Alexander Okhotin Equations over sets of integers STACS 2010 (Nancy) 2 / 14



Language equations






ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Xi : subset of Ω∗.

ϕi : variables, constants, operations on languages.

Unique solutions.

Example

X = {a}X{b}X ∪ {ε}
Unique solution: the Dyck language.

Artur Jeż, Alexander Okhotin Equations over sets of integers STACS 2010 (Nancy) 2 / 14



Language equations-results

Language equations over Ω, with |Ω| > 2.
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Language equations-results

Language equations over Ω, with |Ω| > 2.

Theorem (Okhotin, ICALP 2003)

L ⊆ Ω∗ is given by unique solution of a system with {∪,∩,∼, ·} and
equations of the form ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn)

if and only if
L is recursive.
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Language equations over Ω, with |Ω| > 2.

Theorem (Okhotin, ICALP 2003)

L ⊆ Ω∗ is given by unique solution of a system with {∪,∩,∼, ·} and
equations of the form ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn)

if and only if
L is recursive.

Theorem (Kunc STACS 2005)

There exists a finite L such that the greatest solution of

LX = XL

for X ⊆ {a, b}∗ is co-recursively enumerable-hard.
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Unary languages as sets of numbers
Ω = {a}.
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Language ←→ set of numbers
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ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Xi : subset of N0 = {0, 1, 2, . . .}.
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Unary languages as sets of numbers
Ω = {a}.

an ←→ number n

Language ←→ set of numbers
K · L ←→ X + Y = {x + y | x ∈ X , y ∈ Y }






ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Xi : subset of N0 = {0, 1, 2, . . .}.

ϕi : variables, singleton constants, operations on sets.

Theorem (Jeż, Okhotin ICALP 2008)

S ⊆ N is given by unique solution of a system with {∪,+} or {∩,+} and
equations of the form ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn)

if and only if
S is recursive.
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Upper bound for continuous operations

Definition (Continuous operations)

A limit of sets {An}n>1:

A = lim
n→∞

An ⇐⇒

{
x ∈ A if x is in almost all Ai ’s

x /∈ A if x is in finitely many Ai ’s

An operation ϕ is continuous, if

lim
n→∞

ϕ(An) = ϕ( lim
n→∞

An)
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Upper bound for continuous operations

Definition (Continuous operations)

A limit of sets {An}n>1:

A = lim
n→∞

An ⇐⇒

{
x ∈ A if x is in almost all Ai ’s

x /∈ A if x is in finitely many Ai ’s

An operation ϕ is continuous, if

lim
n→∞

ϕ(An) = ϕ( lim
n→∞

An)

Theorem

If L ⊆ Ω∗ is given by unique solution of a system with continuous
(computable) operations, then L is recursive.
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Equations with non-continuous operations: example

Example (RE sets by non-continuous operations)

projection: special kind of a homomorphism
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Example (RE sets by non-continuous operations)

projection: special kind of a homomorphism

πΩ′(x) =

{
x , if x ∈ Ω′

ε, if x /∈ Ω′
, for Ω′ ⊆ Ω

πΩ′ is non-continuous
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Equations with non-continuous operations: example

Example (RE sets by non-continuous operations)

projection: special kind of a homomorphism

πΩ′(x) =

{
x , if x ∈ Ω′

ε, if x /∈ Ω′
, for Ω′ ⊆ Ω

πΩ′ is non-continuous

VALC (M)—language of computations of TM.

{CM(w)#w | w ∈ L(M)}

w ∈ Ω′∗, CM(w),# ∈ (Ω \ Ω′)∗

intersection of CFL’s.
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Equations with non-continuous operations: example

Example (RE sets by non-continuous operations)

projection: special kind of a homomorphism

πΩ′(x) =

{
x , if x ∈ Ω′

ε, if x /∈ Ω′
, for Ω′ ⊆ Ω

πΩ′ is non-continuous

VALC (M)—language of computations of TM.

{CM(w)#w | w ∈ L(M)}

w ∈ Ω′∗, CM(w),# ∈ (Ω \ Ω′)∗

intersection of CFL’s.

deleting CM(w) out of VALC (M):

πΩ′(VALC (M)) = L(M)
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Obvious upper bound

Set equation translates into formulas:

Xi = Xj +Xk ⇐⇒ (∀n)
[
n ∈ Xi ↔ (∃n′, n′′)n = n′+n′′∧n′ ∈ Xj∧n′′ ∈ Xk

]

A system is turned into arithmetical formula Eq(X1, . . . ,Xn)
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n ∈ Xi ↔ (∃n′, n′′)n = n′+n′′∧n′ ∈ Xj∧n′′ ∈ Xk

]

A system is turned into arithmetical formula Eq(X1, . . . ,Xn)

Operations expressible in first-order arithmetics.

Unique solution (S1, . . . ,Sn):

ϕ(x) = (∃X1) . . . (∃Xn)Eq(X1, . . . ,Xn) ∧ x ∈ X1 (Σ1
1)

ϕ′(x) = (∀X1) . . . (∀Xn)Eq(X1, . . . ,Xn)→ x ∈ X1 (Π1
1)
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Obvious upper bound

Set equation translates into formulas:

Xi = Xj +Xk ⇐⇒ (∀n)
[
n ∈ Xi ↔ (∃n′, n′′)n = n′+n′′∧n′ ∈ Xj∧n′′ ∈ Xk

]

A system is turned into arithmetical formula Eq(X1, . . . ,Xn)

Operations expressible in first-order arithmetics.

Unique solution (S1, . . . ,Sn):

ϕ(x) = (∃X1) . . . (∃Xn)Eq(X1, . . . ,Xn) ∧ x ∈ X1 (Σ1
1)

ϕ′(x) = (∀X1) . . . (∀Xn)Eq(X1, . . . ,Xn)→ x ∈ X1 (Π1
1)

∆1
1 = Σ1

1 ∩ Π1
1 (Hyper-arithmetic sets)
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Result

Theorem

S ⊆ Z is given by unique solution of a system with {∪,+} or {∩,+} and
equations of the form ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn)

if and only if
S is hyper-arithmetic
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Result

Theorem

S ⊆ Z is given by unique solution of a system with {∪,+} or {∩,+} and
equations of the form ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn)

if and only if
S is hyper-arithmetic

Similar result for N with subtraction:

A−· B = {a − b | a ∈ A, b ∈ B , a > b}
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.
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(a1 . . . a`)k : number denoted by a1 . . . a` in base-k notation

Set of numbers ↔ formal language over Ωk

Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}

X2 = (X12+X2 ∩ X1+X1) ∪ {2}

X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2
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∗)4, (120
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.

(a1 . . . a`)k : number denoted by a1 . . . a` in base-k notation

Set of numbers ↔ formal language over Ωk

Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}

X2 = (X12+X2 ∩ X1+X1) ∪ {2}

X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

((10∗)4, (20
∗)4, (30

∗)4, (120
∗)4)

X2 + X2 = (20∗)4 + (20∗)4 = (10+)4 ∪ (20∗20∗)4

X1 + X3 = (10∗)4 + (30∗)4 =
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.

(a1 . . . a`)k : number denoted by a1 . . . a` in base-k notation

Set of numbers ↔ formal language over Ωk

Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}

X2 = (X12+X2 ∩ X1+X1) ∪ {2}

X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

((10∗)4, (20
∗)4, (30

∗)4, (120
∗)4)

X2 + X2 = (20∗)4 + (20∗)4 = (10+)4 ∪ (20∗20∗)4

X1 + X3 = (10∗)4 + (30∗)4 = (10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.

(a1 . . . a`)k : number denoted by a1 . . . a` in base-k notation

Set of numbers ↔ formal language over Ωk

Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}

X2 = (X12+X2 ∩ X1+X1) ∪ {2}

X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

((10∗)4, (20
∗)4, (30

∗)4, (120
∗)4)

X2 + X2 = (20∗)4 + (20∗)4 = (10+)4 ∪ (20∗20∗)4

X1 + X3 = (10∗)4 + (30∗)4 = (10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4

(X2 + X2) ∩ (X1 + X3) = (10+)4
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Arithmetical Hierarchy

AH =
⋃

k Σ0
k , where

S ∈ Σ0
k ⇐⇒ S = {w | ∃x1∀x2 . . .Qkxk R(w , x1, . . . , xk)}, recursive R
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Arithmetical Hierarchy

AH =
⋃

k Σ0
k , where

S ∈ Σ0
k ⇐⇒ S = {w | ∃x1∀x2 . . .Qkxk R(w , x1, . . . , xk)}, recursive R

S ∈ Π0
k ⇐⇒ S = {w | ∀x1∃x2 . . .Qkxk R(w , x1, . . . , xk)}, recursive R

An encoding

S = { (w)7 | ∃x1 ∈ {3, 6}
∗ ∀x2 ∈ {3, 6}

∗ . . .Qkxk ∈ {3, 6}
∗

(1x11x21 . . . xk1w)7 ∈ R}

Artur Jeż, Alexander Okhotin Equations over sets of integers STACS 2010 (Nancy) 10 / 14



Arithmetical Hierarchy

AH =
⋃

k Σ0
k , where

S ∈ Σ0
k ⇐⇒ S = {w | ∃x1∀x2 . . .Qkxk R(w , x1, . . . , xk)}, recursive R

S ∈ Π0
k ⇐⇒ S = {w | ∀x1∃x2 . . .Qkxk R(w , x1, . . . , xk)}, recursive R

An encoding

S = { (w)7 | ∃x1 ∈ {3, 6}
∗ ∀x2 ∈ {3, 6}

∗ . . .Qkxk ∈ {3, 6}
∗

(1x11x21 . . . xk1w)7 ∈ R}

Construction outline

Recursive sets [Jeż, Okhotin ICALP 2008]—given by unique solutions
over N with {∩,+} or {∪,+}

Enough to define quantifier operations

E (X ) = {(1w)7 | ∃x : (1x1w)7 ∈ X}

A(X ) = {(1w)7 | ∀x : (1x1w)7 ∈ X}
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Existential quantifier

Theorem

For S ⊆ ({3, 6}+
1Ω∗

7)7

[
S −· ({3, 6}+

0
∗)7

]
∩ (1Ω∗

7)7 = {(1y)7 | ∃x ∈ {3, 6}
+(x1y)7 ∈ S}
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Existential quantifier

Theorem

For S ⊆ ({3, 6}+
1Ω∗

7)7

[
S −· ({3, 6}+

0
∗)7

]
∩ (1Ω∗

7)7 = {(1y)7 | ∃x ∈ {3, 6}
+(x1y)7 ∈ S}

Goal:
x1 x2 . . . x` 1 y1 y2 . . . y`′

− x1 x2 . . . x` 0 0 0 . . . 0

1 y1 y2 . . . y`′
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Existential quantifier

Theorem

For S ⊆ ({3, 6}+
1Ω∗

7)7

[
S −· ({3, 6}+

0
∗)7

]
∩ (1Ω∗

7)7 = {(1y)7 | ∃x ∈ {3, 6}
+(x1y)7 ∈ S}

Goal:
x1 x2 . . . x` 1 y1 y2 . . . y`′

− x1 x2 . . . x` 0 0 0 . . . 0

1 y1 y2 . . . y`′

Reality: (
(x1y)7−

· (x ′
00 . . . 0︸ ︷︷ ︸

?

)7

)
∩ (1Ω∗

7)7

filtered out:
I x 6= x ′

I number of 0’es is wrong
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Hyper-arithmetical sets

Definition (Effective σ union and intersection)

f1, f2, . . . — enumeration of all partial recursive functions
τ1, τ2 — recursive functions (some assumptions),
Bτ1(k) = N \ {k}, Cτ1(k) = {k}. If fk is a total function, then

Bτ2(k) =
⋃

n∈N

Cfk(n), Cτ2(k) =
⋂

n∈N

Bfk(n),
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Hyper-arithmetical sets

Definition (Effective σ union and intersection)

f1, f2, . . . — enumeration of all partial recursive functions
τ1, τ2 — recursive functions (some assumptions),
Bτ1(k) = N \ {k}, Cτ1(k) = {k}. If fk is a total function, then

Bτ2(k) =
⋃

n∈N

Cfk(n), Cτ2(k) =
⋂

n∈N

Bfk(n),

Definition (Effective σ-ring)

1 contains {Bτ1(k),Cτ1(k)}k∈N

2 closed under eff. σ-union and eff. σ-intersection.

HA: smallest eff. σ-ring.
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⋂
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Bfk(n),

Definition (Effective σ-ring)

1 contains {Bτ1(k),Cτ1(k)}k∈N

2 closed under eff. σ-union and eff. σ-intersection.

HA: smallest eff. σ-ring.

Theorem (Moschovakis)

Σ1
1 ∩ Π1

1 = HA.
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Hyper-arithmetical sets

Definition (Effective σ union and intersection)

f1, f2, . . . — enumeration of all partial recursive functions
τ1, τ2 — recursive functions (some assumptions),
Bτ1(k) = N \ {k}, Cτ1(k) = {k}. If fk is a total function, then

Bτ2(k) =
⋃

n∈N

Cfk(n), Cτ2(k) =
⋂

n∈N

Bfk(n),

Definition (Effective σ-ring)

1 contains {Bτ1(k),Cτ1(k)}k∈N

2 closed under eff. σ-union and eff. σ-intersection.

HA: smallest eff. σ-ring.

Theorem (Moschovakis)

Σ1
1 ∩ Π1

1 = HA. cf: Analytic sets ∩ Co-analytic sets = Borel sets. (Suslin)
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HA as trees
Imagine the dependencies on the tree.
⋃

⋂ ⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋃ ⋃
ik
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HA as trees
Imagine the dependencies on the tree.

⋂ ⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋃ ⋃

⋃

ik

node encodes a set
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⋂ ⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋃ ⋃
ik

node encodes a set

root: target set

Artur Jeż, Alexander Okhotin Equations over sets of integers STACS 2010 (Nancy) 13 / 14



HA as trees
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⋂ ⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋃ ⋃
ik

node encodes a set

root: target set

internal node: effective intersection
(union) of children
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HA as trees
Imagine the dependencies on the tree.
⋃

⋂ ⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋃ ⋃
ik

node encodes a set

root: target set

internal node: effective intersection
(union) of children

leaf: singleton/co-singleton
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HA as trees
Imagine the dependencies on the tree.
⋃

⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋃ ⋃
ik

⋂

node encodes a set

root: target set

internal node: effective intersection
(union) of children

leaf: singleton/co-singleton

smallest effective-σ-ring: all paths
are finite (may be arbitrarily long)
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HA as trees

Imagine the dependencies on the tree.
⋃

⋂ ⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋃ ⋃
ik

node encodes a set

root: target set

internal node: effective intersection
(union) of children

leaf: singleton/co-singleton

smallest effective-σ-ring: all paths
are finite (may be arbitrarily long)

Encoding

the whole tree in one variable
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HA as trees

Imagine the dependencies on the tree.
⋃

⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .
⋃ ⋃

ik

⋂
j1

j2

node encodes a set

root: target set

internal node: effective intersection
(union) of children

leaf: singleton/co-singleton

smallest effective-σ-ring: all paths
are finite (may be arbitrarily long)

Encoding

the whole tree in one variable

fixed node: sets with its address j1, j2, . . ., jp
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HA as trees

Imagine the dependencies on the tree.
⋃

⋂ ⋂

Bi0

. . . . . .

. . . . . .

. . . . . .

. . . . . .
⋃ ⋃

ik

⋂
j1

j2

node encodes a set

root: target set

internal node: effective intersection
(union) of children

leaf: singleton/co-singleton

smallest effective-σ-ring: all paths
are finite (may be arbitrarily long)

Encoding

the whole tree in one variable

fixed node: sets with its address j1, j2, . . ., jp

solution {(1j11j2 . . . 1j`1n)7 | n ∈ Bi` , j1, j2, . . . , j` : adress of Bi`}
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Equations over Z with addition only
Fewer allowed operations?
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Equations over Z with addition only
Fewer allowed operations?

equations over N of the form

Xi1 + . . .+ Xik + C = Xj1 + . . .+ Xj` + C ′

C , C ′: ult. periodic constants

Result[Jeż, Okhotin, STACS 2009]

Encoding of every recursive set S : n ∈ S ⇐⇒ 16n + 13 ∈ Ŝ
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equations over N of the form

Xi1 + . . .+ Xik + C = Xj1 + . . .+ Xj` + C ′

C , C ′: ult. periodic constants

Result[Jeż, Okhotin, STACS 2009]

Encoding of every recursive set S : n ∈ S ⇐⇒ 16n + 13 ∈ Ŝ

equations over Z of the form

Xi1 + . . .+ Xik + C = Xj1 + . . .+ Xj` + C ′

C , C ′: ult. periodic constants

Result[NEW]

Encoding of every HA set S : n ∈ S ⇐⇒ 16n + 13 ∈ Ŝ
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Equations over Z with addition only
Fewer allowed operations?

equations over N of the form

Xi1 + . . .+ Xik + C = Xj1 + . . .+ Xj` + C ′

C , C ′: ult. periodic constants

Result[Jeż, Okhotin, STACS 2009]

Encoding of every recursive set S : n ∈ S ⇐⇒ 16n + 13 ∈ Ŝ

equations over Z of the form

Xi1 + . . .+ Xik + C = Xj1 + . . .+ Xj` + C ′

C , C ′: ult. periodic constants

Result[NEW]

Encoding of every HA set S : n ∈ S ⇐⇒ 16n + 13 ∈ Ŝ

I Using similar technique to equations over N.
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