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Resolved systems of language equations







X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn)

Xi : subset of Ω
∗.

ϕi : variables, constants, operations on languages.
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Resolved systems of language equations







X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn)

Xi : subset of Ω
∗.

ϕi : variables, constants, operations on languages.

studied by Ginsburg and Rice (∪, ·), semantics of CFG

extended by Okhotin to (∩, ∪ and ·), defines conjunctive grammars

interested in (S1, . . . ,Sn) which are
I least: Si ⊆ S ′

i for every other solution (S ′

1, . . . , S
′

n)
I greatest: Si ⊇ S ′

i for every other solution (S ′

1, . . . , S
′

n)

guaranteed to exist (Tarski’s fixpoint theorem).

Artur Jeż, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 2 / 15



Example

Example

X = XX ∪ {a}X{b} ∪ {ε}
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Example

Example

X = XX ∪ {a}X{b} ∪ {ε}

Least solution: the Dyck language.
Greatest solution: {a, b}∗.

Artur Jeż, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 3 / 15



Language equations—results

Language equations over Ω, with |Ω| > 2.
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Language equations—results

Language equations over Ω, with |Ω| > 2.

Theorem (Okhotin, ICALP 2003)

L ⊆ Ω∗ is given by unique (least, greatest) solution of a system with
{∪,∩,∼, ·} and equations of the form ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn)

if and only if
L is recursive (r.e., co-r.e.)
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Language equations—results

Language equations over Ω, with |Ω| > 2.

Theorem (Okhotin, ICALP 2003)

L ⊆ Ω∗ is given by unique (least, greatest) solution of a system with
{∪,∩,∼, ·} and equations of the form ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn)

if and only if
L is recursive (r.e., co-r.e.)

Theorem (Kunc, STACS 2005)

There exists a finite L such that the greatest solution of

LX = XL

for X ⊆ {a, b}∗ is co-r.e.-hard.
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Simple case and equations over sets of numbers

simple case: Ω = {a}.
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simple case: Ω = {a}.

{∪, ·}: regular

{·, c}: non-regular [Leiss 1994]
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Simple case and equations over sets of numbers

simple case: Ω = {a}.

{∪, ·}: regular

{·, c}: non-regular [Leiss 1994]

{∪, ∩, ·}: ?
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Simple case and equations over sets of numbers

simple case: Ω = {a}.

{∪, ·}: regular

{·, c}: non-regular [Leiss 1994]

{∪, ∩, ·}: ?

only length matters: an ←→ number n
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Simple case and equations over sets of numbers

simple case: N

{∪, ·}: periodic

{·, c}: non-periodic [Leiss 1994]

{∪, ∩, ·}: ?







X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn)

Xi : subset of N0 = {0, 1, 2, . . .}.

ϕi : variables, singleton constants, operations on sets

X + Y = {x + y | x ∈ X , y ∈ Y }
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.
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(a` . . . a0)k : number denoted by a` . . . a0 in base-k notation
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.

(a` . . . a0)k : number denoted by a` . . . a0 in base-k notation

Set of numbers ↔ formal language over Ωk
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.

(a` . . . a0)k : number denoted by a` . . . a0 in base-k notation

Set of numbers ↔ formal language over Ωk

Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}

X2 = (X12+X2 ∩ X1+X1) ∪ {2}

X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2
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∗)4, (30

∗)4, (120
∗)4)
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.

(a` . . . a0)k : number denoted by a` . . . a0 in base-k notation

Set of numbers ↔ formal language over Ωk

Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}

X2 = (X12+X2 ∩ X1+X1) ∪ {2}

X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

((10∗)4, (20
∗)4, (30

∗)4, (120
∗)4)

X2 + X2 = (20∗)4 + (20∗)4 = (10+)4 ∪ (20∗20∗)4

X1 + X3 = (10∗)4 + (30∗)4 =
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Using positional notation

Numbers in base-k notation: strings over Ωk = {0, 1, . . . , k − 1}.

(a` . . . a0)k : number denoted by a` . . . a0 in base-k notation

Set of numbers ↔ formal language over Ωk

Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}
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X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

((10∗)4, (20
∗)4, (30

∗)4, (120
∗)4)

X2 + X2 = (20∗)4 + (20∗)4 = (10+)4 ∪ (20∗20∗)4

X1 + X3 = (10∗)4 + (30∗)4 = (10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4

(X2 + X2) ∩ (X1 + X3) = (10+)4
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Equations over sets of natural numbers—results

Theorem (Jeż, Okhotin, CSR 2007)

Let M be a one-way real-time cellular automaton. Then (L(M))k is the
unique solution of a resolved system of equations over N with {∪,∩,+}:







X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn)
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Equations over sets of natural numbers—results

Theorem (Jeż, Okhotin, CSR 2007)

Let M be a one-way real-time cellular automaton. Then (L(M))k is the
unique solution of a resolved system of equations over N with {∪,∩,+}:







X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn)

Theorem (Jeż, Okhotin, ICALP 2008)

S ⊆ N is given by unique (least, greatest) solution of a system with
{∪,+} and equations of the form

ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn)

if and only if S is recursive (r.e., co-r.e.).
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Obvious upper bound for greatest solutions

Artur Jeż, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 8 / 15



Obvious upper bound for greatest solutions

Set equation translates into formulas:

Xi = Xj+Xk ⇐⇒ (∀n)
[
n ∈ Xi ↔ (∃n′, n′′)n = n′+n′′∧n′ ∈ Xj∧n

′′ ∈ Xk

]

system is turned into arithmetical formula Eq(X1, . . . ,Xn)

Artur Jeż, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 8 / 15



Obvious upper bound for greatest solutions

Set equation translates into formulas:

Xi = Xj+Xk ⇐⇒ (∀n)
[
n ∈ Xi ↔ (∃n′, n′′)n = n′+n′′∧n′ ∈ Xj∧n

′′ ∈ Xk

]

system is turned into arithmetical formula Eq(X1, . . . ,Xn)

Solution (S1, . . . ,Sn):

greatest: ϕ(x) = (∃X1) . . . (∃Xn)Eq(X1, . . . ,Xn) ∧ x ∈ X1 (Σ1
1)

least: ϕ′(x) = (∀X1) . . . (∀Xn)Eq(X1, . . . ,Xn)→ x ∈ X1 (Π1
1)

unique: ∆1
1 = Σ1

1 ∩ Π1
1
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Obvious upper bound for greatest solutions

Set equation translates into formulas:

Xi = Xj+Xk ⇐⇒ (∀n)
[
n ∈ Xi ↔ (∃n′, n′′)n = n′+n′′∧n′ ∈ Xj∧n

′′ ∈ Xk

]

system is turned into arithmetical formula Eq(X1, . . . ,Xn)

Solution (S1, . . . ,Sn):

greatest: ϕ(x) = (∃X1) . . . (∃Xn)Eq(X1, . . . ,Xn) ∧ x ∈ X1 (Σ1
1)

least: ϕ′(x) = (∀X1) . . . (∀Xn)Eq(X1, . . . ,Xn)→ x ∈ X1 (Π1
1)

unique: ∆1
1 = Σ1

1 ∩ Π1
1

Theorem (Jeż, Okhotin, STACS 2010)

S ⊆ Z is given by unique solution of a system with {∪,+}
if and only if

S is a ∆1
1-set.
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New results







X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn)

(*)

Theorem

S ⊆ Z is given by the greatest solution of a system (*) with {∪,∩,+}
if and only if

S is a Σ1
1-set.

Theorem

S ⊆ Z is given by the least solution of a system (*) with {∪,∩,+}
if and only if

S is a r.e.-set.
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Least solutions are r.e. sets

Definition (fixpoint iteration)

S0 = (∅, . . . , ∅)

Sn+1 = ϕ(Sn)

Sω =
⋃

i>0 S
i
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Least solutions are r.e. sets

Definition (fixpoint iteration)

S0 = (∅, . . . , ∅)

Sn+1 = ϕ(Sn)

Sω =
⋃

i>0 S
i

Definition (∪-continuous operations)

An operation ϕ is ∪-continuous,
if for every ascending sequence of sets

⋃

i>0

ϕ(An) = ϕ
(⋃

i>0

An

)

Theorem (folklore)

For ∪-continuous and monotone ϕ, the Sω is the least fixpoint of ϕ.
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Least solutions are r.e. sets

Definition (fixpoint iteration)

S0 = (∅, . . . , ∅)

Sn+1 = ϕ(Sn)

Sω =
⋃

i>0 S
i

Definition (∪-continuous operations)

An operation ϕ is ∪-continuous,
if for every ascending sequence of sets

⋃

i>0

ϕ(An) = ϕ
(⋃

i>0

An

)

Theorem (folklore)

For ∪-continuous and monotone ϕ, the Sω is the least fixpoint of ϕ.

∪, ∩, + for sets of integers are ∪-continuous.

Algorithm for membership in the least solution

Construct Si for consecutive i and check the membership for them.
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Constructing r.e. sets

Turing machine (Turing, 1936)
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Constructing r.e. sets

Turing machine (Turing, 1936)

VALC(T ): intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

VALC(T ) = {CT (w)1w | w ∈ L(T )}

CT (w) ∈ {3, 6}∗
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Constructing r.e. sets

Turing machine (Turing, 1936)

VALC(T ): intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

VALC(T ) = {CT (w)1w | w ∈ L(T )}

CT (w) ∈ {3, 6}∗

LinCFLs → resolved equations over sets of numbers
(Jeż, Okhotin, CSR 2007)

deleting CT (w) to obtain {(1w)7 | w ∈ L(T )}:

E (S) = {(1w)7 | ∃x ∈ {3, 6}
∗ : (x1w)7 ∈ S}

(Jeż, Okhotin, STACS 2010)
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Constructing r.e. sets

Turing machine (Turing, 1936)

VALC(T ): intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

VALC(T ) = {CT (w)1w | w ∈ L(T )}

CT (w) ∈ {3, 6}∗

LinCFLs → resolved equations over sets of numbers
(Jeż, Okhotin, CSR 2007)

deleting CT (w) to obtain {(1w)7 | w ∈ L(T )}:

E (S) = {(1w)7 | ∃x ∈ {3, 6}
∗ : (x1w)7 ∈ S}

(Jeż, Okhotin, STACS 2010)

deleting leading 1
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Existential quantifier

Theorem (Jeż, Okhotin, STACS 2010)

For S ⊆ ({3, 6}+
1Ω∗

7)7

[
S − ({3, 6}+

0
∗)7

]
∩ (1Ω∗

7)7 = {(1y)7 | ∃x ∈ {3, 6}
+(x1y)7 ∈ S}
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Existential quantifier

Theorem (Jeż, Okhotin, STACS 2010)

For S ⊆ ({3, 6}+
1Ω∗

7)7

[
S − ({3, 6}+

0
∗)7

]
∩ (1Ω∗

7)7 = {(1y)7 | ∃x ∈ {3, 6}
+(x1y)7 ∈ S}

Goal:
x1 x2 . . . x` 1 w1 w2 . . . w`′

− x1 x2 . . . x` 0 0 0 . . . 0

1 w1 w2 . . . w`′
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[
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0
∗)7

]
∩ (1Ω∗

7)7 = {(1y)7 | ∃x ∈ {3, 6}
+(x1y)7 ∈ S}

Goal:
x1 x2 . . . x` 1 w1 w2 . . . w`′

− x1 x2 . . . x` 0 0 0 . . . 0

1 w1 w2 . . . w`′

Reality:
(
(x1y)7 − (x ′0

?
︷ ︸︸ ︷

0 . . . 0)7

)
∩ (1Ω∗

7)7
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Existential quantifier

Theorem (Jeż, Okhotin, STACS 2010)

For S ⊆ ({3, 6}+
1Ω∗

7)7

[
S − ({3, 6}+

0
∗)7

]
∩ (1Ω∗

7)7 = {(1y)7 | ∃x ∈ {3, 6}
+(x1y)7 ∈ S}

Goal:
x1 x2 . . . x` 1 w1 w2 . . . w`′

− x1 x2 . . . x` 0 0 0 . . . 0

1 w1 w2 . . . w`′

Reality:
(
(x1y)7 − (x ′0

?
︷ ︸︸ ︷

0 . . . 0)7

)
∩ (1Ω∗

7)7

example of a bad case

x1 x2 . . . 6 x` 1 w1 w2 . . . w`′

− x1 x2 . . . 3 x` 0 0 0 . . . 0

3 0 1 w1 w2 . . . w`′
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Σ1
1-hard problem for trees

Basic Σ1
1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?

1 2 3

1 2 2 3

1 2 3
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Artur Jeż, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 13 / 15



Σ1
1-hard problem for trees

Basic Σ1
1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?

sequences of numbers

closed under taking prefixes

infinite path: infinite sequence,

1 2 3

1 2 2 3

1 2 3

.

.

.

. . .

. . . . . .

. . .
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Σ1
1-hard problem for trees

Basic Σ1
1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?

sequences of numbers

closed under taking prefixes

infinite path: infinite sequence,
s.t. all finite prefixes are in the tree

Encoding a tree as a set of integers

Sequence (n1, . . . , nk) becomes
(1xk1xk−11 . . . 1x11)7,
where xi ∈ {3, 6}

+ represents ni in binary.

1 2 3

1 2 2 3

1 2 3

.

.

.

. . .

. . . . . .

. . .
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Basic idea

Idea

operator which
I preserves infinite paths
I modifies finite paths

.

.

.
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Basic idea

Idea

operator which
I preserves infinite paths
I modifies finite paths

cut leaves

each finite path disappears

infinite paths survive

.

.

.
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Formalisation

How to cut leaves?

ϕ(S) = {(1w)7 | ∃x ∈ {3, 6}
∗ (1x1w)7 ∈ S}

The same expression as applied previously to VALC.
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By the Tarski’s Fixpoint Theorem the greatest solution exists

there is a constructive proof T 0 = (Z, . . . ,Z)

Tα = ϕ(Tα−1), α: succesor ordinal

Tα = ⊔

γ<α
T γ , α: limit ordinal
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Formalisation

How to cut leaves?

ϕ(S) = {(1w)7 | ∃x ∈ {3, 6}
∗ (1x1w)7 ∈ S}

The same expression as applied previously to VALC.

X = Tree ∩ ϕ(X )

By the Tarski’s Fixpoint Theorem the greatest solution exists

there is a constructive proof

allows induction

generalised height

T 0 = (Z, . . . ,Z)

Tα = ϕ(Tα−1), α: succesor ordinal

Tα = ⊔

γ<α
T γ , α: limit ordinal

Correctness of the construction

The greatest solution is non-empty iff the tree has an infinite path.

Can be improved to represent all Σ1
1-sets.
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