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Resolved systems of language equations
Xl = ‘-Pl(Xl’---’Xn)

Xn = on(X1,..., Xn)

@ X;: subset of Q*.

@ (p;: variables, constants, operations on languages.
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Resolved systems of language equations
X1 = ‘-Pl(Xl’---’Xn)

Xn = on(X1,..., Xn)

@ X;: subset of Q*.

@ (p;: variables, constants, operations on languages.

@ studied by Ginsburg and Rice (U, -), semantics of CFG

@ extended by Okhotin to (N, U and -), defines conjunctive grammars
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Resolved systems of language equations
X1 = ng(Xl,...,Xn)

Xn = on(X1,..., Xn)

@ X;: subset of Q*.
@ (;: variables, constants, operations on languages.
@ studied by Ginsburg and Rice (U, -), semantics of CFG
@ extended by Okhotin to (N, U and -), defines conjunctive grammars
@ interested in (S1,...,S,) which are
> least: S; C S/ for every other solution (S, .., S})
> greatest: S; DO S/ for every other solution (S;,...,S})

guaranteed to exist (Tarski's fixpoint theorem).
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Example

Example

X = XX U {a}X{b} U {e}
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Example

Example

X = XX U {a}X{b} U {e}

Least solution: the Dyck language
Greatest solution: {a, b}*.

=] (=) = E £ Dar
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Language equations—results

@ Language equations over Q, with Q| > 2.
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Language equations—results

@ Language equations over Q, with Q| > 2.

Theorem (Okhotin, ICALP 2003)

L C Q* is given by unique (least, greatest) solution of a system with

{U,N,~, -} and equations of the form ¢(X1,...,Xn) = ¥(X1,...,Xp)
if and only if

L is recursive (r.e., co-r.e.)
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Language equations—results

@ Language equations over Q, with Q| > 2.

Theorem (Okhotin, ICALP 2003)

L C Q* is given by unique (least, greatest) solution of a system with

{U,N,~, -} and equations of the form ¢(X1,...,Xn) = ¥(X1,...,Xp)
if and only if

L is recursive (r.e., co-r.e.)

Theorem (Kunc, STACS 2005)

There exists a finite L such that the greatest solution of
LX = XL

for X C {a, b}* is co-r.e.-hard.
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Simple case and equations over sets of numbers
@ simple case: Q = {a}.
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Simple case and equations over sets of numbers
@ simple case: Q = {a}.

o {U, -}: regular
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Simple case and equations over sets of numbers

@ simple case: Q = {a}.
o {U, -}: regular
@ {-, °}: non-regular [Leiss 1994]
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Simple case and equations over sets of numbers
@ simple case: Q = {a}.
o {U, -}: regular
@ {-, °}: non-regular [Leiss 1994]
o {U N, -} 7?
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Simple case and equations over sets of numbers

simple case: Q = {a}.

{-, €}: non-regular [Leiss 1994]

o {U, -}: regular
o {U N, -} 7?

only length matters: a” <— number n
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Simple case and equations over sets of numbers

@ simple case: N

o {U, -}: periodic

o {-, °}: non-periodic [Leiss 1994]
o {U N, -} 7

X1 = (pl(Xl, e ,Xn)

Xn = on(X1,..., Xn)

@ X;: subset of No ={0,1,2,...}.
® (;: variables, singleton constants, operations on sets

X+Y={x+y|lxeX,yecVY}
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.

® (ag...a0)k: number denoted by ay. .. ag in base-k notation
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
® (ag...a0)k: number denoted by ay. .. ag in base-k notation

@ Set of numbers <> formal language over
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1 +X3
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1 +X3

((10%)4, (207)4, (30%)4, (120%)4)
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1 +X3

((10%)4, (207)4, (30%)4, (120%)4)

o Xo + X5 = (20*)4 + (20*)4 =
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1 +X3

((10%)4, (207)4, (30%)4, (120%)4)

@ Xy + Xo = (20%)4 + (20*)4 = (10T)4 U
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1 +X3

((10%)4, (207)4, (30%)4, (120%)4)

@ Xo + Xo = (20%)4 + (20%)4 = (101)4 U (20%20%)4
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1 +X3

((10%)4, (207)4, (30%)4, (120%)4)

@ Xo + Xo = (20%)4 + (20%)4 = (101)4 U (20%20%)4
o X1+ X3= (10*)4 + (30*)4 =
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1 +X3

((10%)4, (207)4, (30%)4, (120%)4)

@ Xo + Xo = (20%)4 + (20%)4 = (101)4 U (20%20%)4
@ X1+ X3 =(10*)4+ (30*)s = (10T)4 U
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1 +X3

((10%)4, (207)4, (30%)4, (120%)4)

@ Xo + Xo = (20%)4 + (20%)4 = (101)4 U (20%20%)4
@ Xi + X3 =(10*)4 + (30%)4 = (10")4 U (10*30*)4 U (30%10*)4
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Using positional notation

@ Numbers in base-k notation: strings over Q, = {0,1,..., k — 1}.
@ (ag...ap)k: number denoted by ay...ag in base-k notation

@ Set of numbers <> formal language over

Example (Jez, DLT 2007)

X1=(Xo+XoN X1+ X3) U {1}

Xo = (Xi2+Xo N X1+ X1) U {2}

X3 = (X2+X12 N X1+ X2) U {3}
X12 = X3+X3 N X1+ X5

((10%)4, (207)4, (30%)4, (120%)4)

@ Xo + Xo = (20%)4 + (20%)4 = (101)4 U (20%20%)4
@ Xi + X3 =(10*)4 + (30%)4 = (10")4 U (10*30*)4 U (30%10*)4
o (Xo+Xo)N(Xy+ X3) = (107),
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Equations over sets of natural numbers—results

Theorem (Jez, Okhotin, CSR 2007)

Let M be a one-way real-time cellular automaton. Then (L(M))y is the
unique solution of a resolved system of equations over N with {U, N, +}:

X1 = (pl(Xl, coo ,Xn)

Xn = en(X1,..., Xn)
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Equations over sets of natural numbers—results

Theorem (Jez, Okhotin, CSR 2007)

Let M be a one-way real-time cellular automaton. Then (L(M))y is the
unique solution of a resolved system of equations over N with {U, N, +}:

X1 = (pl(Xl, coo ,Xn)

Xn = en(X1,..., Xn)

Theorem (Jez, Okhotin, ICALP 2008)

S C N is given by unique (least, greatest) solution of a system with
{U,+} and equations of the form

QD(Xla"' 7Xn) = w(Xl’ 7Xn)

if and only if S is recursive (r.e., co-r.e.).
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Obvious upper bound for greatest solutions
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Obvious upper bound for greatest solutions

Set equation translates into formulas:
Xi = Xj+Xe < (Vn)[n€ X; < (3n',n")n=n"+n"An" € X;An" € X]

system is turned into arithmetical formula Eq(Xi, ..., X,)
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Obvious upper bound for greatest solutions

Set equation translates into formulas:
Xi = Xj+ Xk < (Vn)[n€ X; < (3n',n")n=n'+n"An" € X;an" € Xi]

system is turned into arithmetical formula Eq(Xi, ..., X,)

Solution (S1,...,5p):

@ greatest: ¢(x) = (3X1)...(3Xn)Eq(X1,..., Xp) Ax € Xy (1)

o least: ¢/(x) = (VX1)...(VXn)Eq(X1,..., Xn) = x € Xy (N})
o unique: Al =3xlnni
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Obvious upper bound for greatest solutions

Set equation translates into formulas:

Xi = Xj+ Xk < (Vn)[n€ X; < (3n',n")n=n'+n"An" € X;an" € Xi]

system is turned into arithmetical formula Eq(Xi, ..., X,)

Solution (S1,...,5p):

@ greatest: ¢(x) = (3X1)...(3Xn)Eq(X1,..., Xp) Ax € Xy (1)

o least: ¢/(x) = (VX1)...(VXn)Eq(X1,..., Xn) = x € Xy (N})
o unique: A} =xinni

Theorem (Jez, Okhotin, STACS 2010)

S C Z is given by unique solution of a system with {U,+}
if and only if
S is a Al-set.

v
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New results

X1 = ‘-Pl(Xl’---’Xn)
: (*)
Xn = @n(le st 7XI7)

Theorem

S C Z is given by the greatest solution of a system (*) with {U,N, +}
if and only if
S isa ¥1-set.

Theorem

S C Z is given by the least solution of a system (*) with {U,N, +}
if and only if
S is a r.e.-set.
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Least solutions are r.e. sets

Definition (fixpoint iteration)
0 SO=(0,...,0)

o SML=p(S")
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Least solutions are r.e. sets

Definition (fixpoint iteration) | Definition (U-continuous operations)

0 SO—(0,....0) An operation ¢ is U-continuous,

if for every ascending sequence of sets
o S =p(S")

0 5 =S U e(An) = 90< U A")

i=0 i=0

For U-continuous and monotone p, the S is the least fixpoint of .

Theorem (folklore) J
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Least solutions are r.e. sets

Definition (fixpoint iteration) | Definition (U-continuous operations)

0 SO—(0,....0) An operation ¢ is U-continuous,

if for every ascending sequence of sets
o S =p(S")

0 5 =S U e(An) = <P< U A")

i=0 i=0

For U-continuous and monotone p, the S is the least fixpoint of .

Theorem (folklore) J

@ U, N, + for sets of integers are U-continuous.

Algorithm for membership in the least solution J

Construct S; for consecutive i and check the membership for them.
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Constructing r.e. sets

@ Turing machine

(Turing, 1936)
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Constructing r.e. sets

@ Turing machine (Turing, 1936)

@ VALC(T): intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

VALC(T) = {Cr(w)iw |w € L(T)}
CT(W) € {376}*
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Constructing r.e. sets

@ Turing machine (Turing, 1936)

@ VALC(T): intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

VALC(T) = {Cr(w)iw |w € L(T)}
CT(W) € {376}*

o LinCFLs — resolved equations over sets of numbers
(Jez, Okhotin, CSR 2007)
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Constructing r.e. sets

@ Turing machine (Turing, 1936)

@ VALC(T): intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

VALC(T) = {Cr(w)iw |w € L(T)}
CT(W) € {376}*

@ LinCFLs — resolved equations over sets of numbers
(Jez, Okhotin, CSR 2007)

o deleting C7(w) to obtain {(1w)7 | w € L(T)}:
E(S)={(1w)7|3x € {3,6}" : (x1w)7 € S}

(Jez, Okhotin, STACS 2010)
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Constructing r.e. sets

@ Turing machine (Turing, 1936)

@ VALC(T): intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

VALC(T) = {Cr(w)iw |w € L(T)}
CT(W) € {376}*

@ LinCFLs — resolved equations over sets of numbers
(Jez, Okhotin, CSR 2007)

o deleting C7(w) to obtain {(1w)7 | w € L(T)}:
E(S)={(1w)7|3x € {3,6}" : (x1w)7 € S}

(Jez, Okhotin, STACS 2010)
@ deleting leading 1
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Existential quantifier

Theorem (Jez, Okhotin, STACS 2010)
For S C ({3,6}71Q%)7

[S - ({3,6}70")7] N (1Q7)7 = {(1y)7 | Ix € {3,6} " (x1y)7 € S}

=] (=) = E acr
Artur Jez, Alexander Okhotin Equations over sets of integers



Existential quantifier

Theorem (Jez, Okhotin, STACS 2010)
For S C ({3,6}71Q3%)7

[S - ({3,6}70")7] N (1Q7)7 = {(1y)7 | Ix € {3,6} " (x1y)7 € S}

o Goal:
X1 X0 ... X 1 wi wo ... wpy
— X1 X2 ... Xy 0 0 0 0
1 wip Wwo ... Wy
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Existential quantifier

Theorem (Jez, Okhotin, STACS 2010)
For S C ({3,6}71Q3%)7

[S - ({3,6}70")7] N (1Q7)7 = {(1y)7 | Ix € {3,6} " (x1y)7 € S}

o Goal:
X1 X ... X 1 w1 wo wyr
— X1 X2 ... Xy 0 0 0 0
1 wip Wp Wy

?

@ Reality: ((x1y)7 — (x'00...0)7) N (1Q3)7
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Existential quantifier

Theorem (Jez, Okhotin, STACS 2010)
For S C ({3,6}71Q3%)7

[S— ({3,6}70")7] N (1Q7)7 = {(1y)7 | Ix € {3,6} T (x1y)7 € S}

o Goal:
X1 X ... X 1 w1 wo wyr
— X1 X2 ... Xy 0 0 0 0
1 wip Wp Wy
7
@ Reality: ((x1y)7 — (x'00. ) )N (19Q3)7
o example of a bad case
X1 X2 ... 6 Xy 1 w1 Wp Wy
- xx X ... 3 x 0 O 0 0
3 0 1 wip WwWp Wyr
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3 {-hard problem for trees

Basic ¥1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?
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3 {-hard problem for trees

Basic ¥1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?

@ sequences of numbers
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3 {-hard problem for trees

Basic ¥1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?

@ sequences of numbers

@ closed under taking prefixes
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3 {-hard problem for trees

Basic ¥1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?

@ sequences of numbers
@ closed under taking prefixes

@ infinite path: infinite sequence,
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3 {-hard problem for trees
Basic ¥1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?

@ sequences of numbers
@ closed under taking prefixes

@ infinite path: infinite sequence,
s.t. all finite prefixes are in the tree
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3 {-hard problem for trees

Basic ¥1-hard problem

Does a tree of a countable degree (given by a TM recognizing its prefixes)
has an infinite path?

@ sequences of numbers
@ closed under taking prefixes

@ infinite path: infinite sequence,
s.t. all finite prefixes are in the tree

Encoding a tree as a set of integers
Sequence (n, ..., ngk) becomes
(Ixgixk—11...1x11)7,

where x; € {3,6}" represents n; in binary.
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Basic idea

Idea
@ operator which

preserves infinite paths
modifies finite paths
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Basic idea

Idea

@ operator which

preserves infinite paths
modifies finite paths

@ cut leaves

@ each finite path disappears

@ infinite paths survive
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Formalisation
How to cut leaves?

o(S) ={(1w)7 | 3Ix € {3,6}* (1x1w)7 € S}
The same expression as applied previously to VALC.

[} = =

Dac
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Formalisation

How to cut leaves?

o(S) ={(1w)7 | 3Ix € {3,6}* (1x1w)7 € S}
The same expression as applied previously to VALC.

X = Tree N (X)

By the Tarski's Fixpoint Theorem the greatest solution exists
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Formalisation

How to cut leaves?

o(S) ={(1w)7 | 3Ix € {3,6}* (1x1w)7 € S}
The same expression as applied previously to VALC.

X = Tree N (X)

By the Tarski's Fixpoint Theorem the greatest solution exists

. . 0 _
@ there is a constructive proof ° 7" = (Z’ T =Z)

o T%= (T 1), a: succesor ordinal

o T®= [] T7, a: limit ordinal
<o
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Formalisation

How to cut leaves?

o(S) ={(1w)7 | 3Ix € {3,6}* (1x1w)7 € S}
The same expression as applied previously to VALC.

X = Tree N (X)

By the Tarski's Fixpoint Theorem the greatest solution exists

. . 0 _
@ there is a constructive proof ° 7" = (Z’ T =Z)
o allows induction o T%= (T 1), a: succesor ordinal
o T®= [] T7, a: limit ordinal
<o
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Formalisation

How to cut leaves?

o(S) ={(1w)7 | 3Ix € {3,6}* (1x1w)7 € S}
The same expression as applied previously to VALC.

X = Tree N (X)

By the Tarski's Fixpoint Theorem the greatest solution exists

. . 0 _
@ there is a constructive proof o T°=(Z,...,7)
@ allows induction o T =(T*1), a: succesor ordinal
@ generalised height o T*= [] T7, a: limit ordinal
<«
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Formalisation

How to cut leaves?

o(S) ={(1w)7 | 3Ix € {3,6}* (1x1w)7 € S}
The same expression as applied previously to VALC.

X = Tree N (X)

By the Tarski's Fixpoint Theorem the greatest solution exists

. . 0 _
@ there is a constructive proof @ " =(Z,...,2)
@ allows induction o T =(T*1), a: succesor ordinal
@ generalised height o T*= [] T7, a: limit ordinal
<«

Correctness of the construction

The greatest solution is non-empty iff the tree has an infinite path.

Can be improved to represent all X%—sets.
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