# DFA hyper-minimisation

Paweł Gawrychowski <sup>1</sup> Artur Jeż <sup>1</sup>

Institute of Computer Science, University of Wrocław

November 24, 2009

### DFA minimisation

#### Definition

DFA:  $\langle Q, \Sigma, \delta, q_0, F \rangle$ , where  $\delta : Q \times \Sigma \mapsto Q$ . DFA is minimal, if it has the minimal number of states among automata recognising L(M).

### DFA minimisation

### Definition

DFA:  $\langle Q, \Sigma, \delta, q_0, F \rangle$ , where  $\delta : Q \times \Sigma \mapsto Q$ . DFA is minimal, if it has the minimal number of states among automata recognising L(M).

- unique with this property
- calculated using  $\equiv_L$ :

$$w \equiv w'$$
 if and only if  $\forall w'' \ ww'' \in L \iff w'w'' \in L$ 

- equivalence classes correspond to
  - states of the minimal automaton
  - partition of states of M

### DFA minimisation

### Definition

DFA:  $\langle Q, \Sigma, \delta, q_0, F \rangle$ , where  $\delta : Q \times \Sigma \mapsto Q$ . DFA is minimal, if it has the minimal number of states among automata recognising L(M).

- unique with this property
- calculated using  $\equiv_L$ :

$$w \equiv w'$$
 if and only if  $\forall w'' \ ww'' \in L \iff w'w'' \in L$ 

- equivalence classes correspond to
  - states of the minimal automaton
  - partition of states of M
- Hopcroft's algorithm:  $\mathcal{O}(n \log n)$ ; refines the partition of states

# *f*-equivalence and hyper-minimisation

# Definition (*f*-equivalent)

 $L{\sim}L'\iff$  they differ on finite amount of words.

Extend the definition to automata.

3 / 13

# *f*-equivalence and hyper-minimisation

## Definition (f-equivalent)

 $L \sim L' \iff$  they differ on finite amount of words.

Extend the definition to automata.

Definition (A. Badr, V. Geffert, I. Shipman)

M is hyper-minimal, if it has the minimal number of states among the f-equivalent automata.(Not unique)

# *f*-equivalence and hyper-minimisation

# Definition (f-equivalent)

 $L{\sim}L'\iff$  they differ on finite amount of words.

Extend the definition to automata.

## Definition (A. Badr, V. Geffert, I. Shipman)

M is hyper-minimal, if it has the minimal number of states among the f-equivalent automata. (Not unique)

#### Remark

For fixed L we extend  $\sim$  to words:  $w \sim w' \iff w^{-1}L \sim w'^{-1}L$ For fixed automata M we extend  $\sim$  to states:  $q \sim q' \iff L(q) \sim L(q')$  (where L(q) is the language recognised starting from q).

#### Idea

We want a relation on words, such that equivalence classes are states of a hyper-minimal automaton,  $\sim$  is a natural candidate.

#### Idea

We want a relation on words, such that equivalence classes are states of a hyper-minimal automaton,  $\sim$  is a natural candidate.

- Classes of  $\sim$  are groups of classes of  $\equiv$ .
- We cannot greedily merge those groups:  $w : \delta(q_0, w) = q_1$ :  $wL(q_1)$  changes to  $wL(q_3) \neq wL(q_1)$ . Infinitely many such w problem!



• No problem occurs if there are only finitely many such w.

#### Idea

We want a relation on words, such that equivalence classes are states of a hyper-minimal automaton,  $\sim$  is a natural candidate.

- $\bullet$  Classes of  $\sim$  are groups of classes of  $\equiv$  .
- We cannot greedily merge those groups:  $w : \delta(q_0, w) = q_1$ :  $wL(q_1)$  changes to  $wL(q_3) \neq wL(q_1)$ . Infinitely many such w problem!



No problem occurs if there are only finitely many such w.

#### Definition

State q is in preamble if  $\{w : \delta(q_0, w) = q\}$  is finite. In kernel otherwise.



5 / 13

## Definition (state merging)



### Heuristic

Greedily merge q to p whenever

- $\bullet$   $q \equiv p$  or
- ullet  $q{\sim}p$  and q is in the preamble

## Definition (state merging)



#### Heuristic

Greedily merge q to p whenever

- $q \equiv p$  or
- q~p and q is in the preamble and there is no path from p to q

## Definition (state merging)



#### Heuristic

Greedily merge q to p whenever

- $q \equiv p$  or
- $q \sim p$  and q is in the preamble and there is no path from p to q

# Theorem (A. Badr, V. Geffert, I. Shipman)

The heuristic is proper, i.e. it results in hyper-minimal automaton f-equivalent to the input one.

### Data structures

# Definition (Operational definition of $\sim$ )

- $D^M(q, q')$  if q = q' or,
- $D^M(q, q')$  if for all  $a \in \Sigma$   $D^M(\delta_M(q, a), \delta_M(q', a))$ .

#### Lemma

If the automaton M is minimised the D coincides with  $\sim$ .

### Data structures

# Definition (Operational definition of $\sim$ )

- $D^M(q,q')$  if q=q' or,
- $D^M(q, q')$  if for all  $a \in \Sigma$   $D^M(\delta_M(q, a), \delta_M(q', a))$ .

#### Lemma

If the automaton M is minimised the D coincides with  $\sim$ .

We need a dictionary structure supporting

- query, if there are q, q' such that  $(\delta(q,0), \delta(q,1)) = (\delta(q',0), \delta(q',1))$
- ullet when q is merged to q', fast update of  $\delta$

### Data structures

# Definition (Operational definition of $\sim$ )

- $D^M(q,q')$  if q=q' or,
- $D^M(q, q')$  if for all  $a \in \Sigma$   $D^M(\delta_M(q, a), \delta_M(q', a))$ .

#### Lemma

If the automaton M is minimised the D coincides with  $\sim$ .

## We need a dictionary structure supporting

- query, if there are q, q' such that  $(\delta(q,0), \delta(q,1)) = (\delta(q',0), \delta(q',1))$
- ullet when q is merged to q', fast update of  $\delta$
- Deterministic tree: the path from root to the leave is  $(\delta(q,0),\delta(q,1))$
- Randomised hashing



# Algorithm

### Calculating relation *D* over states

- ullet identify q, q' with the same successors
- delete the one with less predecessors
- update the predecessors

Using *D* greedily merge states.

# Algorithm

### Calculating relation D over states

- ullet identify q, q' with the same successors
- delete the one with less predecessors
- update the predecessors

Using D greedily merge states.

Running time:  $O(n \log n)$  times insertion time

- insertion time:
  - deterministic:  $\mathcal{O}(\log n)$
  - randomised  $\mathcal{O}(1)$

## Remarks and Questions

- $\bullet$   $|\Sigma|$  has linear impact on the running time
- for partial  $\delta$ , running time  $\mathcal{O}(|\delta|\log^2 n)$  can be obtained

## Remarks and Questions

- $\bullet$   $|\Sigma|$  has linear impact on the running time
- for partial  $\delta$ , running time  $\mathcal{O}(|\delta|\log^2 n)$  can be obtained
- Done independantly by Markus Holzer and Andreas Maletti, CIAA 2009.

# Remarks and Questions

- ullet | $\Sigma$ | has linear impact on the running time
- for partial  $\delta$ , running time  $\mathcal{O}(|\delta|\log^2 n)$  can be obtained
- Done independantly by Markus Holzer and Andreas Maletti, CIAA 2009.
- Deterministic running time  $O(n \log n)$ ?
- Checking the *f*-equivalence of two automata is faster?

## Refinment

## Definition (distance between languages)

$$d(L,L') = \begin{cases} \max\{|u| : u \in L(w)\Delta L(w')\} + 1 & \text{if } L \neq L' \\ 0 & \text{if } L = L' \end{cases}.$$

# Definition (k-f-equivalence)

$$L \sim_k L' \iff d(L, L') \leq k$$

#### **Definition**

M is k-minimal if it has the least number of states among the  $\sim_k$  automata.

## Refinment

## Definition (distance between languages)

$$d(L,L') = \begin{cases} \max\{|u| : u \in L(w)\Delta L(w')\} + 1 & \text{if } L \neq L' \\ 0 & \text{if } L = L' \end{cases}.$$

# Definition (k-f-equivalence)

$$L \sim_k L' \iff d(L, L') \leq k$$

#### **Definition**

M is k-minimal if it has the least number of states among the  $\sim_k$  automata.

#### Remark

Algorithm is similar, but some theoretical work is to be done.

→ロト→部ト→車ト→車 のQ(

#### Idea

- Suppose there are  $w_1, w_2$  with respective  $q_1, q_2$  and  $L(w_1), L(w_2)$ .
- We merge state  $q_1$  to  $q_2$
- Intuitively,  $w_1L(w_1)$  changes to  $w_1L(w_2)$
- If  $L(w_1) \neq L(w_2)$  we want  $k \geq d(w_1L(w_1); w_1L(w_2)) = |w_1| + d(L(w_1), L(w_2))$

### Idea

- Suppose there are  $w_1, w_2$  with respective  $q_1, q_2$  and  $L(w_1), L(w_2)$ .
- We merge state  $q_1$  to  $q_2$
- Intuitively,  $w_1L(w_1)$  changes to  $w_1L(w_2)$
- If  $L(w_1) \neq L(w_2)$  we want  $k \geq d(w_1L(w_1); w_1L(w_2)) = |w_1| + d(L(w_1), L(w_2))$

### Definition

$$w_1 \sim_k w_2 \iff L(w_1) = L(w_2) \text{ or } \min(|w_1|, |w_2|) + d(L(w_1), L(w_2)) \le k$$

### Remark

This is not an equivalence relation: it is not transitive.

#### Idea

- Suppose there are  $w_1, w_2$  with respective  $q_1, q_2$  and  $L(w_1), L(w_2)$ .
- We merge state  $q_1$  to  $q_2$
- Intuitively,  $w_1L(w_1)$  changes to  $w_1L(w_2)$
- If  $L(w_1) \neq L(w_2)$  we want  $k \geq d(w_1L(w_1); w_1L(w_2)) = |w_1| + d(L(w_1), L(w_2))$

### Definition

$$w_1 \sim_k w_2 \iff L(w_1) = L(w_2) \text{ or } \min(|w_1|, |w_2|) + d(L(w_1), L(w_2)) \le k$$

#### Remark

This is not an equivalence relation: it is not transitive.

#### Lemma

If  $\{w_i\}_{i=1}^{\ell}$  satisfy  $w_i \not\sim_k w_j$  then every automaton k-f-equivalent to M has at least  $\ell$  states.

# Adjusting the relation

## Definition (Expanding for states)

For q define its representative word word(w): the longest word w such that  $\delta(q_0, w) = q$ . (take any word of length k+1 if this is badly defined).  $q \sim_k q' \iff \operatorname{word}(q) \sim_k \operatorname{word}(q')$ 

# Adjusting the relation

## Definition (Expanding for states)

For q define its representative word word(w): the longest word w such that  $\delta(q_0, w) = q$ . (take any word of length k+1 if this is badly defined).  $q \sim_k q' \iff \operatorname{word}(q) \sim_k \operatorname{word}(q')$ 

Improving  $\sim_k$  to an equivalence relation  $\approx_k$  satisfying:

- $w \approx_k w'$  implies  $w \sim_k w'$
- ullet equivalence class of  $pprox_k$  has a representative Rep
- $w \not\approx_k w'$  implies  $Rep(w) \not\sim_k Rep(w')$

# Adjusting the relation

## Definition (Expanding for states)

For q define its representative word word(w): the longest word w such that  $\delta(q_0, w) = q$ . (take any word of length k+1 if this is badly defined).  $q \sim_k q' \iff \operatorname{word}(q) \sim_k \operatorname{word}(q')$ 

Improving  $\sim_k$  to an equivalence relation  $\approx_k$  satisfying:

- $w \approx_k w'$  implies  $w \sim_k w'$
- ullet equivalence class of  $pprox_k$  has a representative Rep
- $w \not\approx_k w'$  implies  $Rep(w) \not\sim_k Rep(w')$

#### Lemma

 $pprox_k$  can be calculated out of  $\sim_k$  in a greedy fashion (using word)

### k-minimal Automata

## Definition (*k*-minimal automata *N*)

- $Q_N = \{\langle w \rangle : w = \mathsf{Rep}(w)\}$
- $\delta_N(\langle w \rangle, a) = \text{Rep}(wa)$

## k-minimal Automata

# Definition (k-minimal automata N)

- $Q_N = \{\langle w \rangle : w = \mathsf{Rep}(w)\}$
- $\delta_N(\langle w \rangle, a) = \text{Rep}(wa)$

### Lemma

 $N\sim_k M$ 

### Proof.

- for Rep(q) s.t. |Rep(q)| > k transition structure does not change.
- for other states by backward induction we show that  $d(L_M(q), L_N(\operatorname{Rep}(q))) \leq k$



It is k-minimal by previous lemma.

#### Remark

Algorithm — refinement of the previous one

## Questions

- Deterministic running time  $O(n \log n)$ ?
- Checking the k-f-equivalence of two automata is faster?