Artur Jez (UWr)

DFA hyper-minimisation

Pawet Gawrychowski ! Artur Jez !

Institute of Computer Science, University of Wroctaw

November 24, 2009

DFA hyper-minimisation November 24, 2009

1/13

DFA minimisation

Definition

DFA: (Q, X, 9, qo, F), where § : Q@ x ¥ — Q. DFA is minimal, if it has the
minimal number of states among automata recognising L(M).

Artur Jez (UWr)

DFA hyper-minimisation

November 24, 2009 2/13

DFA minimisation

Definition

DFA: (Q, X, 9, qo, F), where § : Q@ x ¥ — Q. DFA is minimal, if it has the
minimal number of states among automata recognising L(M).

@ unique with this property

@ calculated using =;:

w=w ifand only if YW’ wnw” € L <= w'w" €L

@ equivalence classes correspond to

» states of the minimal automaton
> partition of states of M

Artur Jez (UWr)

DFA hyper-minimisation

November 24, 2009 2/13

DFA minimisation

Definition
DFA: (Q, X, 9, qo, F), where § : Q@ x ¥ — Q. DFA is minimal, if it has the
minimal number of states among automata recognising L(M).

@ unique with this property

@ calculated using =;:

w=w ifand only if YW’ wnw” € L <= w'w" €L

@ equivalence classes correspond to

» states of the minimal automaton
> partition of states of M

@ Hopcroft's algorithm: O(nlog n); refines the partition of states

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 2/13

f-equivalence and hyper-minimisation

Definition (f-equivalent)

L~l" <= they differ on finite amount of words.

Extend the definition to automata.

Artur Jez (UWr)

o F
DFA hyper-minimisation

o>

f-equivalence and hyper-minimisation

Definition (f-equivalent)

L~l" <= they differ on finite amount of words.

Extend the definition to automata.

Definition (A. Badr, V. Geffert, I. Shipman)

M is hyper-minimal, if it has the minimal number of states among the
f-equivalent automata.(Not unique)

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 3/13

f-equivalence and hyper-minimisation

Definition (f-equivalent)
L~l" <= they differ on finite amount of words.

Extend the definition to automata.

Definition (A. Badr, V. Geffert, I. Shipman)

M is hyper-minimal, if it has the minimal number of states among the
f-equivalent automata.(Not unique)

Remark

For fixed L we extend ~ to words: w~w' <= wlL~w/"1L
For fixed automata M we extend ~ to states: g~q' <= L(q)~L(q)
(where L(q) is the language recognised starting from q).

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009

3/13

Approach

Idea

We want a relation on words, such that equivalence classes are states of a
hyper-minimal automaton, ~ is a natural candidate.

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 4 /13

Approach

Idea
We want a relation on words, such that equivalence classes are states of a
hyper-minimal automaton, ~ is a natural candidate.

@ Classes of ~ are groups of classes of =.
@ We cannot greedily merge those groups: w : §(qo, w) = q1: wlL(q1)
changes to wl(q3) # wL(q1). Infinitely many such w — problem!

L(qy) L(g2)

@ No problem occurs if there are only finitely many such w.

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 4 /13

Approach

Idea

We want a relation on words, such that equivalence classes are states of a
hyper-minimal automaton, ~ is a natural candidate.

@ Classes of ~ are groups of classes of =.
@ We cannot greedily merge those groups: w : §(qo, w) = q1: wlL(q1)
changes to wl(q3) # wL(q1). Infinitely many such w — problem!

L(qy) L(g2)

@ No problem occurs if there are only finitely many such w.

Definition
State g is in preamble if {w : 5(qo, w) = q} is finite. In kernel otherwise. J

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 4 /13

Heuristic

Definition (state merging)

Artur Jez (UWr)

DFA hyper-minimisation

Heuristic

Definition (state merging) Heurist:
euristic

Greedily merge q to p whenever
@ g=por

@ g~p and q is in the preamble

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 5/13

Heuristic

Definition (state merging) Heurist:
euristic

Greedily merge q to p whenever
@ g=por
@ g~p and q is in the preamble
and there is no path from p to q

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 5/13

Heuristic

Definition (state merging) Heuristi
euristic

Greedily merge q to p whenever
@ g=por
@ g~p and q is in the preamble

and there is no path from p to q

.

Theorem (A. Badr, V. Geffert, |. Shipman)

The heuristic is proper, i.e. it results in hyper-minimal automaton
f-equivalent to the input one.

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009

5/13

Data structures

Definition (Operational definition of ~)
o DM(q,q') if g=¢ or,
o DM(q,q') if for all a € = DM(dpm(q,a), dm(q’, a)).

Lemma

If the automaton M is minimised the D coincides with ~.

Artur Jez (UWr)

DFA hyper-minimisation

November 24, 2009

6/13

Data structures
Definition (Operational definition of ~)
o DM(q,q') if g=¢ or,
o DM(q,q') if for all a € = DM(dpm(q,a), dm(q’, a)).

Lemma

If the automaton M is minimised the D coincides with ~.

We need a dictionary structure supporting

@ query, if there are g, ¢’ such that
(5(qv 0)7 6(q? 1)) = (5(q/? O)? 5(q/v 1))
@ when q is merged to ¢/, fast update of §

Artur Jez (UWr) DFA hyper-minimisation

November 24, 2009

6/13

Data structures

Definition (Operational definition of ~)
o DM(q,q') if g=¢ or,
o DM(q,q') if for all a € = DM(dpm(q,a), dm(q’, a)).

Lemma
If the automaton M is minimised the D coincides with ~.

We need a dictionary structure supporting

@ query, if there are g, ¢’ such that
(5(qv 0)7 5(q? 1)) = (5(q/? O)? 5(q/v 1))
@ when ¢ is merged to ¢, fast update of §

@ Deterministic — tree: the path from root to
the leave is ((q,0),d(q,1))

@ Randomised — hashing

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 6 /13

Algorithm

Calculating relation D over states
o identify g, g’ with the same successors
@ delete the one with less predecessors

@ update the predecessors

Using D greedily merge states.

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009

7/13

Algorithm

Calculating relation D over states
@ identify g, ¢’ with the same successors
@ delete the one with less predecessors
@ update the predecessors

Using D greedily merge states.
Running time: O(nlog n) times insertion time

@ insertion time:

» deterministic: O(log n)
» randomised O(1)

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009

7/13

Remarks and Questions

@ |X| has linear impact on the running time

o for partial 8, running time O(||log? n) can be obtained

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 8/13

Remarks and Questions

@ |X| has linear impact on the running time

o for partial 8, running time O(||log? n) can be obtained

@ Done independantly by Markus Holzer and Andreas Maletti, CIAA
2009.

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 8/13

Remarks and Questions

@ |X| has linear impact on the running time

o for partial 8, running time O(||log? n) can be obtained

@ Done independantly by Markus Holzer and Andreas Maletti, CIAA
20009.

@ Deterministic running time O(nlog n)?

@ Checking the f-equivalence of two automata is faster?

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 8/13

Refinment

Definition (distance between languages)

d(L, L) = {:)nax{\u\ cu e L(w)AL(wW)}+1 fLAL

if L=1L" .

Definition (k-f-equivalence)
Lol <= d(L L) < k

Definition
M is k-minimal if it has the least number of states among the ~
automata.

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009

9/13

Refinment

Definition (distance between languages)

{max{\u\ cue L(w)AL(W)}+1 ifL#AL
0

d(L, L") =
(L.L) ifL=1L.

Definition (k-f-equivalence)
Lol <= d(L L) < k

Definition
M is k-minimal if it has the least number of states among the ~
automata.

Remark
Algorithm is similar, but some theoretical work is to be done.

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009

9/13

Approach

Idea
@ Suppose there are wiy, wy with respective g1, qa and L(wy), L(ws).
o We merge state g1 to q»
o Intuitively, wiL(w;) changes to wyL(w»)
o If L(wy) # L(w2) we want
k =z d(wil(w); wil(wz)) = [wa| + d(L(w1), L(w2))

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 10 / 13

Approach

Idea
@ Suppose there are wiy, wy with respective g1, qa and L(wy), L(ws).
o We merge state g1 to q»
o Intuitively, wiL(w;) changes to wyL(w»)

o If L(wy) # L(w2) we want
k =z d(wil(w); wil(wz)) = [wa| + d(L(w1), L(w2))

Definition
wi~wy <= L(wy) = L(wa) or min(Jwy |, |wa|) + d(L(w1), L(wy)) < k

Remark

This is not an equivalence relation: it is not transitive.

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 10 / 13

Approach

Idea
@ Suppose there are wiy, wy with respective g1, qa and L(wy), L(ws).
o We merge state g1 to q»
o Intuitively, wiL(w;) changes to wyL(w»)

o If L(wy) # L(w2) we want
k> d(wil(wy); wil(wz)) = [wa| + d(L(w1), L(w2))

Definition
wi~wy <= L(wy) = L(wa) or min(Jwy |, |wa|) + d(L(w1), L(wy)) < k

v

Remark

This is not an equivalence relation: it is not transitive.

Lemma

If {w;}_, satisfy wistxw; then every automaton k-f-equivalent to M has

at least { states.
Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 10 / 13

Adjusting the relation

Definition (Expanding for states)

For g define its representative word word(w): the longest word w such
that d(qo, w) = q. (take any word of length k + 1 if this is badly defined).
g~kq <= word(q)~word(q’)

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 11 /13

Adjusting the relation

Definition (Expanding for states)

For g define its representative word word(w): the longest word w such

that d(qo, w) = q. (take any word of length k + 1 if this is badly defined).
g~kq <= word(q)~word(q’)

Improving ~ to an equivalence relation = satisfying:

o waw' implies w~w’

@ equivalence class of a2x has a representative Rep
o waw' implies Rep(w)x Rep(w’)

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 11 /13

Adjusting the relation

Definition (Expanding for states)

For g define its representative word word(w): the longest word w such
that 6(qo, w) = q. (take any word of length k + 1 if this is badly defined).
g~kq <= word(q)~word(q’)

Improving ~ to an equivalence relation /2, satisfying:
o waw' implies w~w’
@ equivalence class of a2x has a representative Rep
o ww' implies Rep(w)¢x Rep(w’)

Lemma J

/2 can be calculated out of ~y in a greedy fashion (using word)

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 11 /13

k-minimal Automata

Definition (k-minimal automata N)
o Qu={(w) : w = Rep(w)}
@ on((w), a) = Rep(wa)

Artur Jez (UWr)

DFA hyper-minimisation

DA

k-minimal Automata

Definition (k-minimal automata N)
o Qu = {(w) : w = Rep(w)}
@ on({w),a) = Rep(wa)

Lemma
N~y M

Proof.
o for Rep(q) s.t. |Rep(q)| > k transition structure does not change.

o for other states by backward induction we show that
d(Lm(q), Ln(Rep(q))) < k

It is k-minimal by previous lemma.

Remark

Algorithm — refinement of the previous one

v

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009

12 /13

Questions

@ Deterministic running time O(nlog n)?

@ Checking the k-f-equivalence of two automata is faster?

Artur Jez (UWr) DFA hyper-minimisation November 24, 2009 13 /13

