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Word Equations

De�nition

Given equation U = V , where U, V ∈ (Σ ∪ X )∗.
Is there a substitution S : X → Σ∗ satisfying the equation?

aX bX Y bbb=X abaabY bY S(X) = aa, S(Y ) = bb
aaabaabbbbb=aaabaabbbbbb

We extend S to a S : (Σ ∪ X )∗ → Σ∗; identity on Σ.
S(U) is a solution word.
Lenght-minimal S: minimises |S(U)|

This is important

I uni�cation

I word combinatorics

I helpful in equations in free group (and other)
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Plandowski & Rytter '98 new approach � using compression
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J. '13 PSPACE

I NP-hard, believed to be in NP

I Exact space complexity?
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Word Equations are in NLinSPACE
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Main idea

I Recompression algorithm [J. 2013]

I Hu�man coding of letters

The proof is more complex

I how letters depend on fragments of original equation

I special coding (so worse than Hu�man)

I technically involved
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Compression operations

Compression operations

Given a word w:

(Σ`,Σr) pair compression replace each ab ∈ Σ`Σr in w with fresh cab
(Σ`,Σr are disjoint)

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (a` is a maximal block when it is in w and
cannot be extended by a).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

I We want to perform it on S(U) and S(V ).

I Occurrence can be partially in the equation and in the variable.
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Preliminaries: explicit word

Checking equality of two explicit words

Require: two words u, v to be tested for equality
1: while |u| > 1 or |v| > 1 do

2: Σ← letters in u, v
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr)
6: perform (Σ`,Σr) pair compression

7: test equality

Phase: one iteration of the main loop.

Shortening

Consider consecutive ab in u, v at the beginning of the phase

a = b compressed as a block

a 6= b considered and compressed, or
one of them was compressed earlier
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Pair Compression on word equation

In a solution word S(U) or S(V ):

I pair is from the equation: OK, we replace it

I it is from the substitution for a variable: OK, solution changes

I partially here and there: just pop the problematic letter out

PairCompression(Σ`,Σr)

1: for X ∈ X do

2: let b: �rst letter of S(X) . Guess
3: if b ∈ Σr then

4: replace each occurrence of X by bX . Pop

5: if S(X) = ε then . Guess
6: remove X from the equation

7: let a: last . . . . symmetrically for the last letter and Σ`

8: perform pair compression on sides of the equation
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Block Compression

BlockCompression

1: for X ∈ X do

2: let S(X) = a`wbr . Guess
3: replace X with a`Xbr

4: if S(X) = ε then . Guess
5: remove X from the equation

6: perform block compression on sides of the equation



The algorithm

Main algorithm

1: while sides of the equation are nontrivial do
2: Σ← letters in the equation
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr) . Important
6: perform (Σ`,Σr) pair compression

A phase is one iteration of the main loop

Encoding

We use Hu�man coding for letters. (Need to recalculate it.)
We use di�erent encoding in the analysis.
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Notes on analysis

We modify the equation, but think that we operate on S(U) = S(V ).
We �x a solution for a phase.

In NLinSPACE we can analyse only �good choices�:
if we exceed the space then we reject.
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Dependency interval

p

De�nition (Dependency interval)

An interval of positions in the input equation is called a dependency
interval (depint).
We associate a depint to each symbol in the equation; D = dep(p).

Assigning depints

I Technical, operational manner.

I We expand the depints by taking unions with neighbouring ones.

I Popped letters have depints of their variables.

I Depints of letters introduced due to compression do not change.
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Depints and encoding

Encoding

I letter at position p→ UV [dep(p)]

I letters with this interval assigned are numbered 1, 2, . . . , k

I we assign to them codes UV [D]#1, UV [D]#2, . . . , UV [D]#k

I formally not encoding: assigns di�erent codes to the same letter

I never assigns the same code to di�erent letters

I worse than Hu�man coding; enough to estimate its bit-size
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Depints size

Depints: positions to indices

Index to positions Pos(i)
Pos(i) are intervals
Pos(i) grows: extending, popping letters
Pos(i) shrinks: compressions
Fresh letters block:
Letter to the left of Pos(i) is new � no extensions
Left letter in S(X) is new � no popping
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How to choose partitions

I Our only choice that a�ects size is the partition.

I Choose the partitions to minimise bit size.

I If Pos(i) = O(1) then everything works.

Random partition to expectation

I Random compresses a pair with probability 1/4.

I Each blocking is with probability 1/4.

I Turn this into expectation: calculate what to minimise:
length, frequency, new letters, number of occurrences, . . .

∑
i≥0

1

2i
= 2

∑
i≥0

i2 log i

2i
= O(1)
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Other technicalities

Some other technicalities
I need to change Hu�man coding

I how to make block compression (no explicit numbers � known)

I what happens with the solution

I ending markers with special treatment

I . . .

Works for Hu�man coding of the input.
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Open questions

Open questions

I Are word equations in NP?

I Can this be generalised to other equations?
(constraints, involution, commutation)


