

Word equations in nondeterministic linear space

Artur Jeż Institute of Computer Science International Colloquium on Automata, Languages and Programming Warszawa, 13.07.2017

Given equation U = V, where $U, V \in (\Sigma \cup \mathcal{X})^*$.

Is there a substitution $S: \mathcal{X} \to \Sigma^*$ satisfying the equation?

Given equation U = V, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S: \mathcal{X} \to \Sigma^*$ satisfying the equation?

$$aXbXYbbb = XabaabYbY$$
 $S(X) = aa, S(Y) = bb$

Given equation U = V, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S: \mathcal{X} \to \Sigma^*$ satisfying the equation?

$$a X b X Y bbb = X abaab Y b Y$$
 $S(X) = aa, S(Y) = bb$
 $aaabaabbbbb = aaabaabbbbb$

Given equation U=V, where $U,V\in(\Sigma\cup\mathcal{X})^*$. Is there a substitution $S: \mathcal{X} \to \Sigma^*$ satisfying the equation?

$$a X b X Y bbb = X abaab Y b Y$$
 $S(X) = aa, S(Y) = bb$
 $aaabaabbbbb = aaabaabbbbb$

We extend S to a $S: (\Sigma \cup \mathcal{X})^* \to \Sigma^*$; identity on Σ . S(U) is a solution word. Lenght-minimal S: minimises |S(U)|

Given equation U=V, where $U,V\in(\Sigma\cup\mathcal{X})^*$. Is there a substitution $S: \mathcal{X} \to \Sigma^*$ satisfying the equation?

$$a X b X Y bbb = X abaab Y b Y$$
 $S(X) = aa, S(Y) = bb$
 $aaabaabbbbb = aaabaabbbbb$

We extend S to a $S: (\Sigma \cup \mathcal{X})^* \to \Sigma^*$; identity on Σ . S(U) is a solution word. Lenght-minimal S: minimises |S(U)|

This is important

- unification
- word combinatorics
- helpful in equations in free group (and other)

Makanin '77 4NEXPTIME

Makanin '77 4NEXPTIME

[...]

Makanin '77 4NEXPTIME

[...]

Gutierrez '98 EXPSPACE

Makanin '77 4NEXPTIME

[...]

Gutierrez '98 EXPSPACE

Plandowski & Rytter '98 new approach — using compression

Makanin '77 4NEXPTIME

[...]

Gutierrez '98 EXPSPACE

Plandowski & Rytter '98 new approach — using compression

Plandowski '99 PSPACE

Makanin '77 4NEXPTIME

[...]

Gutierrez '98 EXPSPACE

Plandowski & Rytter '98 new approach — using compression

Plandowski '99 PSPACE

J. '13 PSPACE

Makanin '77 4NEXPTIME

[...]

Gutierrez '98 EXPSPACE

Plandowski & Rytter '98 new approach — using compression

Plandowski '99 PSPACE

J. '13 PSPACE

► NP-hard, believed to be in NP

Makanin '77 4NEXPTIME

[...]

Gutierrez '98 EXPSPACE

Plandowski & Rytter '98 new approach — using compression

Plandowski '99 PSPACE

J. '13 PSPACE

- ► NP-hard, believed to be in NP
- ► Exact space complexity?


```
Makanin '77 4NEXPTIME [...]

Gutierrez '98 EXPSPACE exponential 
Plandowski & Rytter '98 new approach — using compression 
Plandowski '99 PSPACE \mathcal{O}(n^5)

J. '13 PSPACE \mathcal{O}(n \log n)
```

- ► NP-hard, believed to be in NP
- Exact space complexity?


```
Makanin '77 4NEXPTIME [...]

Gutierrez '98 EXPSPACE exponential 
Plandowski & Rytter '98 new approach — using compression 
Plandowski '99 PSPACE \mathcal{O}(n^5)

J. '13 PSPACE \mathcal{O}(n\log n)
```

- ► NP-hard, believed to be in NP
- Exact space complexity?

This talk

Word Equations are in NLinSPACE

Main idea

- ▶ Recompression algorithm [J. 2013]
- ► Huffman coding of letters

- ► Recompression algorithm [J. 2013]
- ► Huffman coding of letters

The proof is more complex

- ▶ how letters depend on fragments of original equation
- special coding (so worse than Huffman)
- technically involved

Compression operations

Given a word w:

 (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} (Σ_ℓ, Σ_r are disjoint)

Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} $(\Sigma_\ell, \Sigma_r$ are disjoint)
- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ . $(a^\ell$ is a maximal block when it is in w and cannot be extended by a).

Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} $(\Sigma_\ell, \Sigma_r$ are disjoint)
- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ . $(a^\ell$ is a maximal block when it is in w and cannot be extended by a).

 $\{b,c\}$ block compression

Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} $(\Sigma_\ell, \Sigma_r$ are disjoint)
- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ . $(a^\ell$ is a maximal block when it is in w and cannot be extended by a).

 $\{b,c\}$ block compression

aaabbcccbbcccbbb

Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} $(\Sigma_\ell, \Sigma_r$ are disjoint)
- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ . $(a^\ell$ is a maximal block when it is in w and cannot be extended by a).

 $\{b,c\}$ block compression

aaabbcccbbcccbbb $aaab_2 c_3 b_2 c_3 b_3$

Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} $(\Sigma_\ell, \Sigma_r$ are disjoint)
- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ . $(a^\ell$ is a maximal block when it is in w and cannot be extended by a).

 $\{b,c\}$ block compression

 $\{a,c\},\{b\}$ pair compression

aaabbcccbbcccbbb $aaab_2 c_3 b_2 c_3 b_3$

Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} $(\Sigma_\ell, \Sigma_r$ are disjoint)
- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ . $(a^\ell$ is a maximal block when it is in w and cannot be extended by a).

 $\{b,c\}$ block compression $\{a,c\},\{b\}$ pair compression $aaabbcccbbcccbbb \\ aaab_2 c_3 b_2 c_3 b_3$

Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} $(\Sigma_\ell, \Sigma_r$ are disjoint)
- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ . $(a^\ell$ is a maximal block when it is in w and cannot be extended by a).

 $\{b,c\}$ block compression

aaabbcccbbcccbbb $aaab_2 c_3 b_2 c_3 b_3$ $\{a,c\},\{b\}$ pair compression

aaabbcccbbcccbbb aa d bcc e bcc e bb

Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} $(\Sigma_\ell, \Sigma_r \text{ are disjoint})$
- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ . $(a^\ell$ is a maximal block when it is in w and cannot be extended by a).

 $\{b,c\}$ block compression $\{a,c\},\{b\}$ pair compression $aaabbcccbbcccbbb \\ aaab_2 c_3 b_2 c_3 b_3 \\ aabbcccbbcccbbb \\ aa d bcc e bcc e bb$

- ▶ We want to perform it on S(U) and S(V).
- ▶ Occurrence can be partially in the equation and in the variable.

Checking equality of two explicit words

Require: two words u, v to be tested for equality

1: while |u| > 1 or |v| > 1 do

 $\Sigma \leftarrow \mathsf{letters} \; \mathsf{in} \; u, v$ 2:

perform Σ -block compression 3:

while some pair in Σ^2 was not considered do 4:

guess partition of Σ to $(\Sigma_{\ell}, \Sigma_r)$ 5:

perform $(\Sigma_{\ell}, \Sigma_r)$ pair compression 6:

7: test equality

Preliminaries: explicit word

Require: two words u, v to be tested for equality

- 1: **while** |u| > 1 or |v| > 1 **do**
- 2: $\Sigma \leftarrow \text{letters in } u, v$
- 3: perform Σ -block compression
- 4: **while** some pair in Σ^2 was not considered **do**
- 5: guess partition of Σ to (Σ_ℓ, Σ_r)
- 6: perform (Σ_ℓ, Σ_r) pair compression
- 7: test equality

Phase: one iteration of the main loop.

Checking equality of two explicit words

Require: two words u, v to be tested for equality

- 1: while |u| > 1 or |v| > 1 do
- 2: $\Sigma \leftarrow \text{letters in } u, v$
- 3: perform Σ -block compression
- 4: **while** some pair in Σ^2 was not considered **do**
- 5: guess partition of Σ to $(\Sigma_{\ell}, \Sigma_r)$
- 6: perform (Σ_ℓ, Σ_r) pair compression
- 7: test equality

Phase: one iteration of the main loop.

Shortening

Consider consecutive ab in u,v at the beginning of the phase

- a = b compressed as a block
- $a \neq b$ considered and compressed, or one of them was compressed earlier

lacktriangle pair is from the equation: OK, we replace it

- ▶ pair is from the equation: OK, we replace it
- ▶ it is from the substitution for a variable: OK, solution changes

- ▶ pair is from the equation: OK, we replace it
- ▶ it is from the substitution for a variable: OK, solution changes
- partially here and there: just pop the problematic letter out

- pair is from the equation: OK, we replace it
- ▶ it is from the substitution for a variable: OK, solution changes
- partially here and there: just pop the problematic letter out

PairCompression $(\Sigma_{\ell}, \Sigma_r)$ 1: for $X \in \mathcal{X}$ do let b: first letter of S(X)2:

⊳ Guess

3: if $b \in \Sigma_r$ then

replace each occurrence of X by bX4: 5:

if $S(X) = \epsilon$ then ⊳ Guess

remove X from the equation 6:

let a: last . . . \triangleright symmetrically for the last letter and Σ_{ℓ} 7:

perform pair compression on sides of the equation

⊳ Pop

BlockCompression

1: for $X \in \mathcal{X}$ do

 $let S(X) = a^{\ell} w b^r$ □ Guess 2:

3: replace X with $a^{\ell}Xb^{r}$

4: if $S(X) = \epsilon$ then ⊳ Guess

remove X from the equation 5:

6: perform block compression on sides of the equation

- 1: while sides of the equation are nontrivial do
- 2: $\Sigma \leftarrow$ letters in the equation
- perform Σ -block compression 3:
- while some pair in Σ^2 was not considered do 4:
- guess partition of Σ to $(\Sigma_{\ell}, \Sigma_r)$ 5:

▶ Important

perform $(\Sigma_{\ell}, \Sigma_r)$ pair compression 6:

Main algorithm

```
1: while sides of the equation are nontrivial do
```

```
2:
         \Sigma \leftarrow letters in the equation
```

```
perform \Sigma-block compression
3:
```

```
while some pair in \Sigma^2 was not considered do
4:
```

```
guess partition of \Sigma to (\Sigma_{\ell}, \Sigma_r)
5:
```

▶ Important

perform $(\Sigma_{\ell}, \Sigma_r)$ pair compression 6:

A phase is one iteration of the main loop

Main algorithm

- 1: while sides of the equation are nontrivial do
- 2: $\Sigma \leftarrow$ letters in the equation
- perform Σ -block compression 3:
- while some pair in Σ^2 was not considered do 4:
- guess partition of Σ to $(\Sigma_{\ell}, \Sigma_r)$ 5:

▷ Important

perform $(\Sigma_{\ell}, \Sigma_r)$ pair compression 6:

A phase is one iteration of the main loop

Encoding

We use Huffman coding for letters. (Need to recalculate it.)

We use different encoding in the analysis.

We modify the equation, but think that we operate on S(U)=S(V). We fix a solution for a phase.

We modify the equation, but think that we operate on S(U)=S(V). We fix a solution for a phase.

In NLinSPACE we can analyse only "good choices": if we exceed the space then we reject.

Dependency interval

Definition (Dependency interval)

An interval of positions in the input equation is called a dependency interval (depint).

We associate a depint to each symbol in the equation; D = dep(p).

Dependency interval

Definition (Dependency interval)

An interval of positions in the input equation is called a dependency interval (depint).

We associate a depint to each symbol in the equation; D = dep(p).

Assigning depints

- Technical, operational manner.
- ▶ We expand the depints by taking unions with neighbouring ones.
- ▶ Popped letters have depints of their variables.
- Depints of letters introduced due to compression do not change.

- ▶ letter at position $p \to UV[dep(p)]$
- \blacktriangleright letters with this interval assigned are numbered $1,2,\ldots,k$
- lacktriangle we assign to them codes $UV[D]\#1, UV[D]\#2, \dots, UV[D]\#k$

Depints and encoding

- ▶ letter at position $p \to UV[\operatorname{dep}(p)]$
- lack letters with this interval assigned are numbered $1,2,\ldots,k$
- \blacktriangleright we assign to them codes $UV[D]\#1, UV[D]\#2, \ldots, UV[D]\#k$

Depints and encoding

- ▶ letter at position $p \to UV[\operatorname{dep}(p)]$
- lacktriangle letters with this interval assigned are numbered $1,2,\ldots,k$
- \blacktriangleright we assign to them codes $UV[D]\#1, UV[D]\#2, \ldots, UV[D]\#k$

- ▶ letter at position $p \to UV[\operatorname{dep}(p)]$
- lacktriangle letters with this interval assigned are numbered $1,2,\ldots,k$
- \blacktriangleright we assign to them codes $UV[D]\#1, UV[D]\#2, \ldots, UV[D]\#k$
- formally not encoding: assigns different codes to the same letter
- never assigns the same code to different letters
- worse than Huffman coding; enough to estimate its bit-size

Depints: positions to indices Index to positions Pos(i)

Depints: positions to indices Index to positions Pos(i) Pos(i) are intervals

Index to positions $\operatorname{Pos}(i)$

 $\mathsf{Pos}(i)$ are intervals

 $\mathsf{Pos}(i)$ grows: extending, popping letters

Index to positions $\mathsf{Pos}(i)$

 $\mathsf{Pos}(i)$ are intervals

 $\mathsf{Pos}(i)$ grows: extending, popping letters

Index to positions $\mathsf{Pos}(i)$

 $\mathsf{Pos}(i)$ are intervals

 $\mathsf{Pos}(i)$ grows: extending, popping letters

Pos(i) shrinks: compressions

Index to positions $\mathsf{Pos}(i)$

 $\mathsf{Pos}(i)$ are intervals

 $\mathsf{Pos}(i)$ grows: extending, popping letters

Pos(i) shrinks: compressions

Index to positions Pos(i)

 $\mathsf{Pos}(i)$ are intervals

 $\mathsf{Pos}(i)$ grows: extending, popping letters

 $\mathsf{Pos}(i)$ shrinks: compressions

Fresh letters block:

Letter to the left of Pos(i) is new — no extensions

Index to positions Pos(i)

 $\mathsf{Pos}(i)$ are intervals

 $\mathsf{Pos}(i)$ grows: extending, popping letters

Pos(i) shrinks: compressions

Fresh letters block:

Letter to the left of Pos(i) is new — no extensions

Index to positions Pos(i)

 $\mathsf{Pos}(i)$ are intervals

 $\mathsf{Pos}(i)$ grows: extending, popping letters

 $\mathsf{Pos}(i)$ shrinks: compressions

Fresh letters block:

Letter to the left of Pos(i) is new — no extensions

Left letter in S(X) is new — no popping

How to choose partitions

- ► Our only choice that affects size is the partition.
- ► Choose the partitions to minimise bit size.
- If $Pos(i) = \mathcal{O}(1)$ then everything works.

How to choose partitions

- ► Our only choice that affects size is the partition.
- ► Choose the partitions to minimise bit size.
- If $Pos(i) = \mathcal{O}(1)$ then everything works.

Random partition to expectation

- ▶ Random compresses a pair with probability 1/4.
- Each blocking is with probability 1/4.
- Turn this into expectation: calculate what to minimise: length, frequency, new letters, number of occurrences, . . .

$$\sum_{i \ge 0} \frac{1}{2^i} = 2$$

$$\sum_{i \ge 0} \frac{i^2 \log i}{2^i} = \mathcal{O}(1)$$

Some other technicalities

- need to change Huffman coding
- ▶ how to make block compression (no explicit numbers known)
- what happens with the solution
- ending markers with special treatment

Some other technicalities

- need to change Huffman coding
- ▶ how to make block compression (no explicit numbers known)
- what happens with the solution
- ending markers with special treatment

Works for Huffman coding of the input.

Open questions

- ► Are word equations in NP?
- ► Can this be generalised to other equations? (constraints, involution, commutation)