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Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?

aXbXYbbb=X abaabYbY S(X)=aa,SY)="0b
aaabaabbbbb=aaabaabbbbbb

We extend S toa S: (X UX)* — X¥; identity on X.
S(U) is a solution word.

Lenght-minimal S: minimises |S(U)|

This is important

» unification

» word combinatorics

» helpful in equations in free group (and other)
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Makanin 77 4ANEXPTIME
Gutierrez '98 EXPSPACE  exponential
Plandowski & Rytter '98 new approach — using compression
Plandowski '99 PSPACE  O(n®)
J.'13 PSPACE  O(nlogn)

» NP-hard, believed to be in NP

» Exact space complexity?

This talk
Word Equations are in NLinSPACE
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» Recompression algorithm [J. 2013]
» Huffman coding of letters

The proof is more complex
» how letters depend on fragments of original equation
» special coding (so worse than Huffman)

» technically involved
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Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay.  (a’ is a maximal block when it is in w and
cannot be extended by a).

{b, ¢} block compression {a,c},{b} pair compression
aaabbcceebbeccbbb aaabbcecbbeecbbb
aaaby ¢ by 3 by aa d bee e bee e bb

» We want to perform it on S(U) and S(V).
» Occurrence can be partially in the equation and in the variable.
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7

perform (X,, X,) pair compression

. test equality
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Phase: one iteration of the main loop.
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Checking equality of two explicit words

Require: two words u, v to be tested for equality
1: while |u| > 1 or |v| > 1 do

2: 3 < letters in u,v

3 perform Y-block compression

4 while some pair in £2 was not considered do
5 guess partition of ¥ to (3, %)

6: perform (X,, X,) pair compression

7: test equality

Phase: one iteration of the main loop.
Shortening

Consider consecutive ab in u, v at the beginning of the phase
a = b compressed as a block

a # b considered and compressed, or
one of them was compressed earlier
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In a solution word S(U) or S(V):
» pair is from the equation: OK, we replace it
» it is from the substitution for a variable: OK, solution changes

> partially here and there: just pop the problematic letter out

PairCompression (%, %,.)

1. for X € X do

2: let b: first letter of S(X) > Guess
3 if b € X, then

4: replace each occurrence of X by bX > Pop
5 if S(X) = e then > Guess
6: remove X from the equation

s let a: last ... > symmetrically for the last letter and X,
8: perform pair compression on sides of the equation
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BlockCompression

1: for X € X do

2: let S(X) = a‘wb" > Guess
3: replace X with a’Xb"

4: if S(X) = e then > Guess
5: remove X from the equation

6: perform block compression on sides of the equation
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1: while sides of the equation are nontrivial do

2 > < letters in the equation

3 perform Y-block compression

4:  while some pair in X2 was not considered do

5 guess partition of X to (X, 3,) > Important
6 perform (3,, X,) pair compression
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Main algorithm

1: while sides of the equation are nontrivial do

2 > < letters in the equation

3 perform Y-block compression

4:  while some pair in X2 was not considered do

5 guess partition of X to (X, 3,) > Important
6 perform (3,, X,) pair compression

A phase is one iteration of the main loop

Encoding

We use Huffman coding for letters. (Need to recalculate it.)
We use different encoding in the analysis.
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We modify the equation, but think that we operate on S(U) = S(V).
We fix a solution for a phase.

In NLinSPACE we can analyse only “good choices™
if we exceed the space then we reject.
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Definition (Dependency interval)

An interval of positions in the input equation is called a dependency
interval (depint).
We associate a depint to each symbol in the equation; D = dep(p).

Assigning depints
» Technical, operational manner.
» \We expand the depints by taking unions with neighbouring ones.
» Popped letters have depints of their variables.

» Depints of letters introduced due to compression do not change.
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> letter at position p — UV[dep(p)]

> letters with this interval assigned are numbered 1,2,... k

> we assign to them codes UV [D|#1,UV[D]#2,...,UV[D]#k
» formally not encoding: assigns different codes to the same letter
» never assigns the same code to different letters

» worse than Huffman coding; enough to estimate its bit-size
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Depints: positions to indices

Index to positions Pos(7)

Pos(i) are intervals

Pos(i) grows: extending, popping letters

Pos(i) shrinks: compressions

Fresh letters block:

Letter to the left of Pos(i) is new — no extensions
Left letter in S(X) is new — no popping
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» Our only choice that affects size is the partition.
» Choose the partitions to minimise bit size.
» If Pos(i) = O(1) then everything works.

Random partition to expectation

» Random compresses a pair with probability 1/4.
» Each blocking is with probability 1/4.

» Turn this into expectation: calculate what to minimise:
length, frequency, new letters, number of occurrences, . ..

1
27,
i>0

i’ log i
Z 2 - O(l)

i>0
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how to make block compression (no explicit numbers — known)

v

what happens with the solution

v

ending markers with special treatment
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Some other technicalities

» need to change Huffman coding

» how to make block compression (no explicit numbers — known)
» what happens with the solution
» ending markers with special treatment

> ..

Works for Huffman coding of the input.
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Open questions

» Are word equations in NP?

» Can this be generalised to other equations?
(constraints, involution, commutation)



