g@@ Uniwersytet

Wroctawski

|

Word equations in nondeterministic linear
space

Artur Jez
Institute of Computer Science
International Colloquium on Automata, Languages and
Programming
Warszawa, 13.07.2017

,gl]@ Uniwersytet

LRIl \\/ord Equations

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?

Zia\ Uniwersytet
glﬁ]@ Wroctawski

Word Equations

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?

a X bXYbbb=X abaabY bY S(X) = aa, S(Y) = bb

&\ Uniwersytet
glﬁ]@ Wroctawski

Word Equations

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?

aXbXYbbb=X abaabYbY S(X)=aa,SY)="0b
aaabaabbbbb=aaabaabbbbbb

&\ Uniwersytet .
C Lo \\/ord Equations

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?

aXbXYbbb=X abaabYbY S(X)=aa,SY)="0b
aaabaabbbbb=aaabaabbbbbb

We extend S toa S: (X UX)* — X¥; identity on X.
S(U) is a solution word.
Lenght-minimal .S: minimises |S(U)|

&\ Uniwersytet .
C Lo \\/ord Equations

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?

aXbXYbbb=X abaabYbY S(X)=aa,SY)="0b
aaabaabbbbb=aaabaabbbbbb

We extend S toa S: (X UX)* — X¥; identity on X.
S(U) is a solution word.

Lenght-minimal S: minimises |S(U)|

This is important

» unification

» word combinatorics

» helpful in equations in free group (and other)

&\ Uniwersytet . .
\X/roc’fawski Algorithms and Complexity

Makanin '77 4ANEXPTIME

&\ Uniwersytet . .
\X/roc’fawski Algorithms and Complexity

Makanin '77 4ANEXPTIME

[..]

&\ Uniwersytet . .
\X/roc’fawski Algorithms and Complexity

Makanin '77 4ANEXPTIME

[..]

Gutierrez '98 EXPSPACE

Zia\ Uniwersytet . .
valcﬁ?ai\ésii Algorithms and Complexity

Makanin '77 4ANEXPTIME

[..]

Gutierrez '98 EXPSPACE

Plandowski & Rytter '98 new approach — using compression

&y Uniwersytet : :
v&‘r'&féiisii Algorithms and Complexity

Makanin '77 4NEXPTIME

Gutierrez '98 EXPSPACE

Plandowski & Rytter '98 new approach — using compression
Plandowski '99 PSPACE

&y Uniwersytet : :
v&‘r'&féiisii Algorithms and Complexity

Makanin '77 4NEXPTIME
Gutierrez '98 EXPSPACE
Plandowski & Rytter '98 new approach — using compression
Plandowski '99 PSPACE
J. '13 PSPACE

Zp) Uniwersytet : :
58 Wrociwski Algorithms and Complexity

Makanin '77 4NEXPTIME
Gutierrez '98 EXPSPACE
Plandowski & Rytter '98 new approach — using compression
Plandowski '99 PSPACE
J. '13 PSPACE

» NP-hard, believed to be in NP

Zp) Uniwersytet : :
58 Wrociwski Algorithms and Complexity

Makanin '77 4NEXPTIME
Gutierrez '98 EXPSPACE
Plandowski & Rytter '98 new approach — using compression
Plandowski '99 PSPACE
J. '13 PSPACE

» NP-hard, believed to be in NP

» Exact space complexity?

Zp) Uniwersytet : :
58 Wrociwski Algorithms and Complexity

Makanin 77 4ANEXPTIME
Gutierrez '98 EXPSPACE exponential
Plandowski & Rytter '98 new approach — using compression
Plandowski '99 PSPACE O(n®)
J.'13 PSPACE O(nlogn)

» NP-hard, believed to be in NP

» Exact space complexity?

by 0 U It) .
v;rlgce%gi\étsﬁ Algorithms and Complexity

Makanin 77 4ANEXPTIME
Gutierrez '98 EXPSPACE exponential
Plandowski & Rytter '98 new approach — using compression
Plandowski '99 PSPACE O(n®)
J.'13 PSPACE O(nlogn)

» NP-hard, believed to be in NP

» Exact space complexity?

This talk
Word Equations are in NLinSPACE

A\ Uniwersytet ..
\X/rodawski Main idea

» Recompression algorithm [J. 2013]

» Huffman coding of letters

A\ Uniwersytet ..
'gflﬁ‘?@ Wroctawski Main idea

» Recompression algorithm [J. 2013]
» Huffman coding of letters

The proof is more complex
» how letters depend on fragments of original equation
» special coding (so worse than Huffman)

» technically involved

&ia\ Uniwersytet .)
glﬁ‘@ Wroctawski Compressmn operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

&ia\ Uniwersytet .)
«%‘@ Wroctawski Compressmn operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay. (a’ is a maximal block when it is in w and
cannot be extended by a).

&ia\ Uniwersytet .)
«%‘@ Wroctawski Compressmn operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay. (a’ is a maximal block when it is in w and
cannot be extended by a).

{b, ¢} block compression

&ia\ Uniwersytet .)
«%‘@ Wroctawski Compressmn operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay. (a’ is a maximal block when it is in w and
cannot be extended by a).

{b, ¢} block compression

aaabbcccbbeccbbb

&ia\ Uniwersytet .)
«%‘@ Wroctawski Compressmn operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay. (a’ is a maximal block when it is in w and
cannot be extended by a).

{b, ¢} block compression

aaabbcccbbeccbbb
aaabg C3 b2 C3 b3

Uniwersytet
Wroctawski

Compression operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay. (a’ is a maximal block when it is in w and
cannot be extended by a).

{b, ¢} block compression {a,c},{b} pair compression

aaabbcccbbeccbbb
aaabg C3 b2 C3 b3

Uniwersytet
Wroctawski

Compression operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay. (a’ is a maximal block when it is in w and
cannot be extended by a).

{b, ¢} block compression {a,c},{b} pair compression

aaabbcccbbeccbbb aaabbcecbbeechbb
aaabg C3 b2 C3 b3

Uniwersytet
Wroctawski

Compression operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay. (a’ is a maximal block when it is in w and
cannot be extended by a).

{b, ¢} block compression {a,c},{b} pair compression

aaabbcccbbeccbbb aaabbcecbbeechbb
aaaby ¢ by 3 by aa d bee e bee e bb

Uniwersytet
Wroctawski

Compression operations

Compression operations

Given a word w:

(X, 3,) pair compression replace each ab € ¥;3, in w with fresh ¢y
(X, X, are disjoint)

¥ block compression replace each maximal block a’ € ¥* in w by a
fresh ay. (a’ is a maximal block when it is in w and
cannot be extended by a).

{b, ¢} block compression {a,c},{b} pair compression
aaabbcceebbeccbbb aaabbcecbbeecbbb
aaaby ¢ by 3 by aa d bee e bee e bb

» We want to perform it on S(U) and S(V).
» Occurrence can be partially in the equation and in the variable.

A\ Uniwersytet . . . _
C RSN D rcliminaries: explicit word

Checking equality of two explicit words

Require: two words u, v to be tested for equality

1: while |u| > 1 or |v| > 1 do

2: 3 < letters in u,v

3 perform Y-block compression

4 while some pair in £2 was not considered do
5: guess partition of ¥ to (3, %)
6
7

perform (X,, X,) pair compression

. test equality

A\ Uniwersytet . . . _
\ L NSO P rcliminaries: explicit word

Checking equality of two explicit words

Require: two words u, v to be tested for equality
1: while |u| > 1 or |v| > 1 do

2: 3 < letters in u,v

3 perform Y-block compression

4 while some pair in £2 was not considered do
5 guess partition of ¥ to (3, %)

6: perform (X,, X,) pair compression

7: test equality

Phase: one iteration of the main loop.

Uniwersytet

Nl Preliminaries: explicit word

Checking equality of two explicit words

Require: two words u, v to be tested for equality
1: while |u| > 1 or |v| > 1 do

2: 3 < letters in u,v

3 perform Y-block compression

4 while some pair in £2 was not considered do
5 guess partition of ¥ to (3, %)

6: perform (X,, X,) pair compression

7: test equality

Phase: one iteration of the main loop.
Shortening

Consider consecutive ab in u, v at the beginning of the phase
a = b compressed as a block

a # b considered and compressed, or
one of them was compressed earlier

A\ Uniwersytet . . .
\X/roc’fawski Pair Compression on word equation

In a solution word S(U) or S(V):

» pair is from the equation: OK, we replace it

A\ Uniwersytet . . .
\X/rodawski Pair Compression on word equation

In a solution word S(U) or S(V):
» pair is from the equation: OK, we replace it

» it is from the substitution for a variable: OK, solution changes

A\ Uniwersytet . . .
\X/roc’fawski Pair Compression on word equation

In a solution word S(U) or S(V):
» pair is from the equation: OK, we replace it
» it is from the substitution for a variable: OK, solution changes

> partially here and there: just pop the problematic letter out

A\ Uniwersytet . . .
glﬁlg Wroctawski Pair Compressmn on WOI’CI equatlon

In a solution word S(U) or S(V):
» pair is from the equation: OK, we replace it
» it is from the substitution for a variable: OK, solution changes

> partially here and there: just pop the problematic letter out

PairCompression (%, %,.)

1. for X € X do

2: let b: first letter of S(X) > Guess
3 if b € X, then

4: replace each occurrence of X by bX > Pop
5 if S(X) = e then > Guess
6: remove X from the equation

s let a: last ... > symmetrically for the last letter and X,
8: perform pair compression on sides of the equation

&\ Uniwersytet ,
55 wocansi S Compression

BlockCompression

1: for X € X do

2: let S(X) = a‘wb" > Guess
3: replace X with a’Xb"

4: if S(X) = e then > Guess
5: remove X from the equation

6: perform block compression on sides of the equation

&\ Uniwersytet .
LISl The algorithm

Main algorithm

1: while sides of the equation are nontrivial do

2 > < letters in the equation

3 perform Y-block compression

4: while some pair in X2 was not considered do

5 guess partition of X to (X, 3,) > Important
6 perform (3,, X,) pair compression

&\ Uniwersytet .
LISl The algorithm

Main algorithm

1: while sides of the equation are nontrivial do

2 > < letters in the equation

3 perform Y-block compression

4: while some pair in X2 was not considered do

5 guess partition of X to (X, 3,) > Important
6 perform (3,, X,) pair compression

A phase is one iteration of the main loop

a2\ Uni tet .
(LAl The algorithm

Main algorithm

1: while sides of the equation are nontrivial do

2 > < letters in the equation

3 perform Y-block compression

4: while some pair in X2 was not considered do

5 guess partition of X to (X, 3,) > Important
6 perform (3,, X,) pair compression

A phase is one iteration of the main loop

Encoding

We use Huffman coding for letters. (Need to recalculate it.)
We use different encoding in the analysis.

A\ Uniwersytet .
\X/roc’fawski Notes on analysis

We modify the equation, but think that we operate on S(U) = S(V).
We fix a solution for a phase.

&\ Uniwersytet .
(. /LNYOA N otes on analysis

We modify the equation, but think that we operate on S(U) = S(V).
We fix a solution for a phase.

In NLinSPACE we can analyse only “good choices™
if we exceed the space then we reject.

&\ Uniwersytet .
58) wrociawski Dependency interval

Definition (Dependency interval)
An interval of positions in the input equation is called a dependency

interval (depint).
We associate a depint to each symbol in the equation; D = dep(p).

&\ Uniwersytet .
58) wrociawski Dependency interval

Definition (Dependency interval)

An interval of positions in the input equation is called a dependency
interval (depint).
We associate a depint to each symbol in the equation; D = dep(p).

Assigning depints
» Technical, operational manner.
» \We expand the depints by taking unions with neighbouring ones.
» Popped letters have depints of their variables.

» Depints of letters introduced due to compression do not change.

&\ Uniwersytet .)
(/LMY Depints and encoding

> letter at position p — UV[dep(p)]
> letters with this interval assigned are numbered 1,2,... k&
> we assign to them codes UV [D|#1,UV [D]#2,..., UV [D]#k

&\ Uniwersytet .)
(/LMY Depints and encoding

Encoding

» letter at position p — UV[dep(p)]
> letters with this interval assigned are numbered 1,2,... k
> we assign to them codes UV [D|#1,UV[D]#2,...,UV[D]#k

&\ Uniwersytet .)
(/LMY Depints and encoding

» letter at position p — UV[dep(p)]
> letters with this interval assigned are numbered 1,2,... k
> we assign to them codes UV [D|#1,UV[D]#2,...,UV[D]#k

&\ Uniwersytet .)
(/LMY Depints and encoding

> letter at position p — UV[dep(p)]

> letters with this interval assigned are numbered 1,2,... k

> we assign to them codes UV [D|#1,UV[D]#2,...,UV[D]#k
» formally not encoding: assigns different codes to the same letter
» never assigns the same code to different letters

» worse than Huffman coding; enough to estimate its bit-size

A\ Uniwersytet . .
Sl Depints size

Depints: positions to indices

A\ Uniwersytet . .
Sl Depints size

Depints: positions to indices

A\ Uniwersytet . .
Sl Depints size

Depints: positions to indices

A\ Uniwersytet .)
Sl Depints size

4|

Depints: positions to indices
Index to positions Pos(7)

A\ Uniwersytet .)
Sl Depints size

4|

Depints: positions to indices
Index to positions Pos(7)
Pos(i) are intervals

gI%]@ Uniwersytet

IR U Depints size

Depints: positions to indices

Index to positions Pos(7)

Pos(i) are intervals

Pos(i) grows: extending, popping letters

gI%]@ Uniwersytet

IR U Depints size

Depints: positions to indices

Index to positions Pos(7)

Pos(i) are intervals

Pos(i) grows: extending, popping letters

&\ Uniwersytet . :
58) wrociawski Depints size

LI Ll TP T TTT]

||||||(J,§ba HEEEEEEEEE

Depints: positions to indices

Index to positions Pos(7)

Pos(i) are intervals

Pos(i) grows: extending, popping letters
Pos(i) shrinks: compressions

&\ Uniwersytet . :
58) wrociawski Depints size

LI Ll TP TP TTT]

(LIl lelXle TTTTTTTTTTTT]

Depints: positions to indices

Index to positions Pos(7)

Pos(i) are intervals

Pos(i) grows: extending, popping letters
Pos(i) shrinks: compressions

&\ Uniwersytet . :
58) wrociawski Depints size

Depints: positions to indices

Index to positions Pos(7)

Pos(i) are intervals

Pos(i) grows: extending, popping letters

Pos(i) shrinks: compressions

Fresh letters block:

Letter to the left of Pos(i) is new — no extensions

&\ Uniwersytet . :
58) wrociawski Depints size

Depints: positions to indices

Index to positions Pos(7)

Pos(i) are intervals

Pos(i) grows: extending, popping letters

Pos(i) shrinks: compressions

Fresh letters block:

Letter to the left of Pos(i) is new — no extensions

&\ Uniwersytet . :
58) wrociawski Depints size

Depints: positions to indices

Index to positions Pos(7)

Pos(i) are intervals

Pos(i) grows: extending, popping letters

Pos(i) shrinks: compressions

Fresh letters block:

Letter to the left of Pos(i) is new — no extensions
Left letter in S(X) is new — no popping

A\ Uniwersytet o
\X/rodawski How to choose partitions

» Our only choice that affects size is the partition.
» Choose the partitions to minimise bit size.
» If Pos(i) = O(1) then everything works.

&\ Uniwersytet .
G RN o to choose partitions

» Our only choice that affects size is the partition.
» Choose the partitions to minimise bit size.
» If Pos(i) = O(1) then everything works.

Random partition to expectation

» Random compresses a pair with probability 1/4.
» Each blocking is with probability 1/4.

» Turn this into expectation: calculate what to minimise:
length, frequency, new letters, number of occurrences, . ..

1
27,
i>0

i’ log i
Z 2 - O(l)

i>0

A\ Uniwersytet . . .
) Wrocrawski Other technicalities

Some other technicalities

need to change Huffman coding

v

v

how to make block compression (no explicit numbers — known)

v

what happens with the solution

v

ending markers with special treatment

A\ Uniwersytet . . .
) Wrocrawski Other technicalities

Some other technicalities

» need to change Huffman coding

» how to make block compression (no explicit numbers — known)
» what happens with the solution
» ending markers with special treatment

> ..

Works for Huffman coding of the input.

A\ Uniwersytet .
et Open questions

Open questions

» Are word equations in NP?

» Can this be generalised to other equations?
(constraints, involution, commutation)

