Fully compressed pattern matching by recompression

ARTUR JEŻ UNIVERSITY OF WROCŁAW

9 VII 2012

Definition (SLP: Straight Line Programme)

CFG generating exactly one word

$$X_i o X_j X_k$$
 or $X_i o a$

2 / 18

Definition (SLP: Straight Line Programme)

CFG generating exactly one word

$$X_i o X_j X_k$$
 or $X_i o a$

Example

$$X_0 = a$$
, $X_1 = b$, $X_{n+1} = X_{n-1}X_{n-2}$
a, b, ba, bab, babba, babbababb, . . .

ARTUR JEŻ FCPM by recompression 9 VII 2012 2 / 18

Definition (SLP: Straight Line Programme)

CFG generating exactly one word

$$X_i \rightarrow X_j X_k$$
 or $X_i \rightarrow a$

Example

$$X_0 = a$$
, $X_1 = b$, $X_{n+1} = X_{n-1}X_{n-2}$
a, b, ba, bab, babba, babbababb, ...

Relations to LZ and LZW

LZW rules $X_i \rightarrow aX_j$, text is $X_1X_2X_3...$

LZ LZ to SLP: from n to $\mathcal{O}(n \log(N/n))$

Definition (SLP: Straight Line Programme)

CFG generating exactly one word

$$X_i o X_j X_k$$
 or $X_i o a$

Example

$$X_0 = a$$
, $X_1 = b$, $X_{n+1} = X_{n-1}X_{n-2}$
a, b, ba, bab, babba, babbababb, ...

Relations to LZ and LZW

LZW rules $X_i \rightarrow aX_j$, text is $X_1X_2X_3...$

LZ LZ to SLP: from n to $\mathcal{O}(n \log(N/n))$

- many algorithms for SLPs
- CPM for LZ [Gawrychowski ESA'11]
- in theory (word equations, equations in groups, verification...)

This talk

Definition (CPM, FCPM)

Compressed pattern matching: text is compressed, pattern not.

Fully Compressed pattern matching: both text and pattern are compressed.

3 / 18

This talk

Definition (CPM, FCPM)

Compressed pattern matching: text is compressed, pattern not.

Fully Compressed pattern matching: both text and pattern are compressed.

Results

An $\mathcal{O}((n+m)\log M)$ algorithm for FCPM for SLP.

(Previously: $\mathcal{O}(nm^2)$, [Lifshits, CPM'07]).

This talk

Definition (CPM, FCPM)

Compressed pattern matching: text is compressed, pattern not.

Fully Compressed pattern matching: both text and pattern are compressed.

Results

An $\mathcal{O}((n+m)\log M)$ algorithm for FCPM for SLP.

(Previously: $\mathcal{O}(nm^2)$, [Lifshits, CPM'07]).

Different approach

A new technique; recompression.

- decompresses text and pattern
- compresses them again (in the same way)
- in the end: pattern is a single symbol

Technique

Where it comes from

Mehlhorn, Gawry

Technique

Where it comes from

Mehlhorn, Gawry

Applicable to

- Fully Compressed Membership Problem [∈ NP]
- Word equations [alternative PSPACE algorithm]
- Fully Compressed Pattern Matching [SLPs, LZ, $\mathcal{O}((n+m)\log M\log(n+m))$]
- construction of a grammar for a string [alternative log(N/n) approximation algorithm]
- other?

Equality of strings

How to test equality of strings?

a a a b a b c a b a b b a b c b a a a a b a b c a b a b b a b c b a

Equality of strings

How to test equality of strings?

a a a b a b c a b a b b a b c b a
a a a b a b c a b a b b a b c b a

Equality of strings

How to test equality of strings?

a₃ b a b c a b a b b a b c b a

a₃ b a b c a b a b b a b c b a

Equality of strings

How to test equality of strings?

5 / 18

Equality of strings

How to test equality of strings?

Equality of strings

How to test equality of strings?

Equality of strings

How to test equality of strings?

Equality of strings

How to test equality of strings?

$$a_3$$
 b d c d a b_2 d c e

$$a_3$$
 b d c d a b_2 d c e

Iterate!

How to generalise?

Idea

For both strings

- replace pairs of letters
- replace (maximal) blocks of the same letter

When every letter is compressed, the length reduces by half in an iteration.

ARTUR JEŻ FCPM by recompression

6 / 18

How to generalise?

Idea

For both strings

- replace pairs of letters
- replace (maximal) blocks of the same letter

When every letter is compressed, the length reduces by half in an iteration.

TODO

- formalise
- for SLPs
- for pattern matching
- running time

In one phase

In one phase

• $L \leftarrow$ list of letters, $P \leftarrow$ list of pairs of letters

7 / 18

In one phase

- $L \leftarrow$ list of letters, $P \leftarrow$ list of pairs of letters
- **for** every letter $a \in L$ **do** replace (maximal) blocks a^{ℓ} with a_{ℓ}

7 / 18

In one phase

- $L \leftarrow$ list of letters, $P \leftarrow$ list of pairs of letters
- **for** every letter $a \in L$ **do** replace (maximal) blocks a^{ℓ} with a_{ℓ}
- **for** every pair of letter $ab \in P$ **do** replace pairs ab with c

In one phase

- L ←list of letters, P ←list of pairs of letters
- **for** every letter $a \in L$ **do** replace (maximal) blocks a^{ℓ} with a_{ℓ}
- **for** every pair of letter $ab \in P$ **do** replace pairs ab with c

It will shorten the strings by constant factor.

In one phase

- $L \leftarrow$ list of letters, $P \leftarrow$ list of pairs of letters
- **for** every letter $a \in L$ **do** replace (maximal) blocks a^{ℓ} with a_{ℓ}
- **for** every pair of letter $ab \in P$ **do** replace pairs ab with c

It will shorten the strings by constant factor.

Loop, while nontrivial. $(\mathcal{O}(\log M))$ iterations).

SLPs

Grammar form

More general rules: $X_i \rightarrow uX_jvX_kw$, j, k < i.

ARTUR JEŻ

8 / 18

SLPs

Grammar form

More general rules: $X_i \rightarrow uX_ivX_kw$, j, k < i.

Lemma

There are |G| + 4n different maximal lengths of blocks in G.

Proof.

- blocks contained in explicit words: assign to explicit letters
- blocks not contained in explicit words: at most 4 per rule

SLPs

Grammar form

More general rules: $X_i \rightarrow uX_ivX_kw$, j, k < i.

Lemma

There are |G| + 4n different maximal lengths of blocks in G.

Proof.

- blocks contained in explicit words: assign to explicit letters
- blocks not contained in explicit words: at most 4 per rule

Lemma

There are |G| + 4n different pairs of letters in G.

Compression of a

Compression of a

ullet $X_1 o baaba, \ X_2 o aaX_1baX_1baa$

9 VII 2012

9 / 18

Compression of a

ullet $X_1
ightarrow baaba$, $X_2
ightarrow aa X_1 ba X_1 baa$ (no problem)

Artur Jeż

Compression of a

- ullet $X_1 o baaba$, $X_2 o aaX_1baX_1baa$ (no problem)
- ullet $X_1
 ightarrow a$, $X_2
 ightarrow a X_1 a X_1 a$

9 / 18

Compression of a

- ullet $X_1
 ightarrow baaba$, $X_2
 ightarrow aa X_1 ba X_1 baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1aX_1a$ (problem)

9 / 18

Compression of a

- $X_1 \rightarrow baaba$, $X_2 \rightarrow aaX_1baX_1baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1aX_1a$ (problem)
- ullet $X_1 o abaaba, \ X_2 o aX_1aX_1a$

9 / 18

Compression of a

- ullet $X_1 o baaba$, $X_2 o aaX_1baX_1baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1aX_1a$ (problem)
- $X_1 \rightarrow abaaba$, $X_2 \rightarrow aX_1aX_1a$ (problem)

9 / 18

Blocks compression

Compression of a

- ullet $X_1 o baaba$, $X_2 o aaX_1baX_1baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1aX_1a$ (problem)
- $X_1 \rightarrow abaaba$, $X_2 \rightarrow aX_1aX_1a$ (problem)

Definition (Crossing block)

a has a crossing block if some of its maximal blocks is contained in X_i but not in explicit words in X_i 's rule.

Blocks compression

Compression of a

- ullet $X_1 o baaba$, $X_2 o aaX_1baX_1baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1aX_1a$ (problem)
- ullet $X_1
 ightarrow abaaba$, $X_2
 ightarrow a X_1 a X_1 a$ (problem)

Definition (Crossing block)

a has a crossing block if some of its maximal blocks is contained in X_i but not in explicit words in X_i 's rule.

When a has no crossing block

- 1: **for** all maximal blocks a^{ℓ} of a **do**
- 2: let $a_{\ell} \in \Sigma$ be an unused letter
- 3: replace each explicit maximal a^{ℓ} in rules' bodies by a_{ℓ}

9 / 18

Idea

- change the rules
- when X_i defines $a^{\ell_i}wa^{r_i} \mapsto w$
- replace X_i in rules by $a^{\ell_i}wa^{r_i}$

Idea

- change the rules
- when X_i defines $a^{\ell_i}wa^{r_i} \mapsto w$
- replace X_i in rules by $a^{\ell_i}wa^{r_i}$

CutPrefSuff(a)

- 1: **for** $i \leftarrow 1$ to n **do**
- 2: calculate and remove a-prefix a^{ℓ_i} and a-suffix a^{r_i} of X_i
- 3: replace each X_i in rules bodies by $a^{\ell_i}X_ia^{r_i}$

Idea

- change the rules
- when X_i defines $a^{\ell_i}wa^{r_i} \mapsto w$
- replace X_i in rules by $a^{\ell_i}wa^{r_i}$

CutPrefSuff(a)

- 1: **for** $i \leftarrow 1$ to n **do**
- 2: calculate and remove a-prefix a^{ℓ_i} and a-suffix a^{r_i} of X_i
- 3: replace each X_i in rules bodies by $a^{\ell_i}X_ia^{r_i}$

Lemma

After CutPrefSuff(a) letter a has no crossing block.

Idea

- change the rules
- when X_i defines $a^{\ell_i}wa^{r_i} \mapsto w$
- replace X_i in rules by $a^{\ell_i}wa^{r_i}$

CutPrefSuff(a)

- 1: **for** $i \leftarrow 1$ to n **do**
- 2: calculate and remove a-prefix a^{ℓ_i} and a-suffix a^{r_i} of X_i
- 3: replace each X_i in rules bodies by $a^{\ell_i}X_ia^{r_i}$

Lemma

After CutPrefSuff(a) letter a has no crossing block.

So a's blocks can be easily compressed.

Idea

- change the rules
- when X_i defines $a^{\ell_i}wa^{r_i} \mapsto w$
- replace X_i in rules by $a^{\ell_i}wa^{r_i}$

CutPrefSuff(a)

- 1: **for** $i \leftarrow 1$ to n **do**
- 2: calculate and remove a-prefix a^{ℓ_i} and a-suffix a^{r_i} of X_i
- 3: replace each X_i in rules bodies by $a^{\ell_i}X_ia^{r_i}$

Lemma

After CutPrefSuff(a) letter a has no crossing block.

So a's blocks can be easily compressed.

Parallelly for many letters!

Idea

- change the rules
- when X_i defines $a^{\ell_i}wb^{r_i} \mapsto w$
- replace X_i in rules by $a^{\ell_i} w b^{r_i}$

CutPrefSuff

- 1: **for** $i \leftarrow 1 \rightarrow n$ **do**
- 2: let X_i begin with a and end with b
- 3: calculate and remove a-prefix a^{ℓ} and b-suffix b^{r} of X_{i}
- 4: replace each X_i in rules bodies by $a^{\ell}X_ib^r$

Lemma

After CutPrefSuff no letter has a crossing block.

So all blocks can be easily compressed.

$$X_1
ightarrow ababcab, \ X_2
ightarrow abcb X_1 ab X_1 a$$

$$X_1
ightarrow ababcab$$
, $X_2
ightarrow abcb X_1 ab X_1 a$

• compression of ab: easy

 $X_1
ightarrow ababcab$, $X_2
ightarrow abcbX_1abX_1a$

- compression of ab: easy
- compression of ba: problem

 $X_1
ightarrow ababcab, \ X_2
ightarrow abcb X_1 ab X_1 a$

- compression of ab: easy
- compression of ba: problem
- pairs may overlap (problem: sequentially, not parallely)

When ab has a 'crossing' appearance: aX_i or X_ib

- X_i defines $bw \mapsto w$, replace X_i by bX_i
- symmetrically for ending a

12 / 18

When ab has a 'crossing' appearance: aX_i or X_ib

- X_i defines $bw \mapsto w$, replace X_i by bX_i
- symmetrically for ending a

LeftPop(b)

- 1: **for** i=1 to n **do**
- 2: **if** the first symbol in $X_i \to \alpha$ is b **then**
- 3: remove this b
- 4: replace X_i in productions by bX_i

Lemma

After LeftPop(b) and RightPop(a) the ab is no longer crossing.

When ab has a 'crossing' appearance: aX_i or X_ib

- X_i defines $bw \mapsto w$, replace X_i by bX_i
- symmetrically for ending a

LeftPop(b)

- 1: **for** i=1 to n **do**
- 2: **if** the first symbol in $X_i \to \alpha$ is b **then**
- 3: remove this b
- 4: replace X_i in productions by bX_i

Lemma

After LeftPop(b) and RightPop(a) the ab is no longer crossing.

Can be done in parallel!

When $ab \in \Sigma_1\Sigma_2$ has a crossing appearance: aX_i or X_ib

- X_i defines $bw \mapsto w$, replace X_i by aX_i
- symmetrically for ending a

LeftPop

- 1: **for** i=1 to n **do**
- 2: **if** the first symbol in $X_i \to \alpha$ is $b \in \Sigma_2$ then
- 3: remove this b
- 4: replace X_i in productions by bX_i

Lemma

After LeftPop and RightPop the pairs $\Sigma_1\Sigma_2$ are no longer crossing.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

- ullet Blocks compression: $\mathcal{O}(|\mathcal{G}|)$ time
- non-crossing pairs: $\mathcal{O}(|G|)$ time
- crossing pairs: $\mathcal{O}(n+m)$ time per partition (Σ_1, Σ_2)

- Blocks compression: $\mathcal{O}(|G|)$ time
- ullet non-crossing pairs: $\mathcal{O}(|\mathcal{G}|)$ time
- ullet crossing pairs: $\mathcal{O}(n+m)$ time per partition (Σ_1,Σ_2)

Lemma

There are $\mathcal{O}(n+m)$ crossing pairs.

- ullet Blocks compression: $\mathcal{O}(|\mathcal{G}|)$ time
- ullet non-crossing pairs: $\mathcal{O}(|G|)$ time
- ullet crossing pairs: $\mathcal{O}(n+m)$ time per partition (Σ_1,Σ_2)

Lemma

There are $\mathcal{O}(n+m)$ crossing pairs.

• crossing pairs: $\mathcal{O}((n+m)^2)$ time.

- ullet Blocks compression: $\mathcal{O}(|\mathcal{G}|)$ time
- ullet non-crossing pairs: $\mathcal{O}(|G|)$ time
- crossing pairs: $\mathcal{O}(n+m)$ time per partition (Σ_1, Σ_2)

Lemma

There are $\mathcal{O}(n+m)$ crossing pairs.

• crossing pairs: $\mathcal{O}((n+m)^2)$ time.

Running time

Running time: $\mathcal{O}(|G| + (n+m)^2)$.

Shortening of the string

- consider pair ab in the text
- if a = b: it is compressed
- if $a \neq b$: it is compressed unless a or b was compressed already
- consider four consecutive symbols: something in them is compressed
- text compresses by a constant factor in each phase
- $\mathcal{O}(|\log M|)$ phases

Overall running time and grammar size

Grammar size

- In each phase size of grammar increases by $\mathcal{O}((n+m)^2)$
 - CutPrefSuff
 - ► LeftPop, RightPop
- shortening G: the same analysis as for pattern
 - shortens by a constant factor in a phase
- G is $\mathcal{O}((n+m)^2)$
- Running time is $\mathcal{O}((n+m)^2 \log M)$
- Can be reduced to $\mathcal{O}((n+m)\log M)$

Turning to the pattern matching

Problem with the ends

- text: abababab, pattern baba, compression of ab
- text: abababab, pattern aba, compression of ab
- text: aaaaaaaa, pattern aaa, compression of a blocks

Turning to the pattern matching

Problem with the ends

- text: abababab, pattern baba, compression of ab
- text: abababab, pattern aba, compression of ab
- text: aaaaaaaa, pattern aaa, compression of a blocks

Fixing the ends

- Compress the starting and ending pair, if possible (so ba in the first case)
- not possible, when the first and last letter is the same, say a
- replace leading a by a_L , ending by a_R
- spawn a into a_Ra_L

- Questions?
- Other applications?