l l I I I max planck institut
informatik

Smallest grammar by recompression
Artur Jez
Max Planck Institute for Informatics

17.06.2013

Grammar based-compression

Represent w as a CFG generating it. J

ina p | I otk 17.06.2013 217

Grammar based-compression

Represent w as a CFG generating it.

)

Advantages

® jt is usually small (at most quadratic vs. LZ)
® compression is fast

= it is exponential on good data

ina p | I otk 17.06.2013 217

Grammar based-compression

Represent w as a CFG generating it.

)

Advantages

® jt is usually small (at most quadratic vs. LZ)
® compression is fast

= it is exponential on good data

= extracts hierarchical structure

= jt is easy to work on

ina p | I otk 17.06.2013 217

Grammar based-compression

Represent w as a CFG generating it.

Advantages

it is usually small (at most quadratic vs. LZ)
compression is fast

it is exponential on good data

extracts hierarchical structure

it is easy to work on

related to LZW and LZ

(] p | | O 17.06.2013

)

2/17

Smallest grammar

Given w return smallest CFG Gy such that L(Gy) = w. I

i p || e 17.06.2013 317

Smallest grammar

Problem
Given w return smallest CFG Gy such that L(Gy) = w. ’

With O(1) increase in size, this is an SLP. ;

Definition (SLP: Straight Line Programme)
CFG with

= ordered nonterminals Xi, Xo, ...

= Chomsky normal form

= for Xj — XjXx we have j, k < i

ina p | [o 17.06.2013 317

What is known

Best approximation ratio

O(log(n/g)), where g is the size of the optimal grammar.

ina p | [e 17.06.2013 417

What is known

Best approximation ratio

O(log(n/g)), where g is the size of the optimal grammar.
= Rytter

— represent w as LZ, size ¢ < g
— translation of LZ into SLP, size O(¢log(n/¢)) < O(glog(n/g))
— the intermediate grammar is balanced (AVL-type condition)

ina p | [e 17.06.2013 417

What is known

Best approximation ratio

O(log(n/g)), where g is the size of the optimal grammar.

= Rytter
— represent w as LZ, size ¢ < g
— translation of LZ into SLP, size O(¢log(n/¢)) < O(glog(n/g))
— the intermediate grammar is balanced (AVL-type condition)

= Charikar et al.:

— similar as Rytter
— different balance criterion (length of word)

ina p | [e 17.06.2013 417

What is known

Best approximation ratio

O(log(n/g)), where g is the size of the optimal grammar.
= Rytter
— represent w as LZ, size ¢ < g
— translation of LZ into SLP, size O(¢log(n/¢)) < O(glog(n/g))
— the intermediate grammar is balanced (AVL-type condition)
= Charikar et al.:
— similar as Rytter
— different balance criterion (length of word)
= Sakamoto

— local replacement rules (plus a global partition): pairs and blocks
— analysis vs LZ

ina p | [e 17.06.2013 417

What is known

Best approximation ratio

O(log(n/g)), where g is the size of the optimal grammar.
= Rytter
— represent w as LZ, size ¢ < g

— translation of LZ into SLP, size O(¢log(n/¢)) < O(glog(n/g))
— the intermediate grammar is balanced (AVL-type condition)

® Charikar et al.:

— similar as Rytter
— different balance criterion (length of word)

® Sakamoto

— local replacement rules (plus a global partition): pairs and blocks
— analysis vs LZ

Linear time.

(] p | [e e 17.06.2013 417

This talk

Very simple linear-time algorithm, O(log(n/g)) approximation.

ina p | [e 17.06.2013 517

This talk

Very simple linear-time algorithm, O(log(n/g)) approximation.
® analysis in the recompression framework, vs. SLP
— very robust

— good: easier to show better approximation?
— bad: might be in fact larger

ina p | [e 17.06.2013 517

This talk

Very simple linear-time algorithm, O(log(n/g)) approximation.
® analysis in the recompression framework, vs. SLP

— very robust

— good: easier to show better approximation?

— bad: might be in fact larger
= not balanced

— good: easier to show approximation?
— bad: worse for further processing

ina p | [e 17.06.2013 517

This talk

Very simple linear-time algorithm, O(log(n/g)) approximation.
® analysis in the recompression framework, vs. SLP
— very robust

— good: easier to show better approximation?
— bad: might be in fact larger

= not balanced
— good: easier to show approximation?
— bad: worse for further processing

= height O(log n), when a‘ has height 1

ina p | [e 17.06.2013 517

This talk

Very simple linear-time algorithm, O(log(n/g)) approximation.
® analysis in the recompression framework, vs. SLP
— very robust

— good: easier to show better approximation?
— bad: might be in fact larger

® not balanced

— good: easier to show approximation?
— bad: worse for further processing

= height O(log n), when a‘ has height 1

Algorithm similar to Sakamoto, different analysis.

ina p | [e 17.06.2013 517

Example

aaababcababbabcba

i p || 17.06.2013 617

Example

aaababcababbabcecba

i p || 17.06.2013 617

Example

a3z babcababbabcba
CL3—)CL3

i p || 17.06.2013 617

Example

asz b C a bo cba
a3—>a3,b2%b2

i p || 17.06.2013 617

Example

asz b C a bo cbha
as — a3,bs — b%,d — ab

17.06.2013 6/17

lllpll:

Example

asz b C a bo c e
as — a3, bs — b, d — ab,e — ba

17.06.2013 6/17

lllpll:

Example

az b d ¢ d a by d c e
as — a3, bs — b, d — ab,e — ba

in p | | O 17.06.2013 6/17

Example

az b d ¢ d a by d c e
as — a3,by — b%,d = ab,e — ba

Intuition

® Phases: compress only pairs and block from the beginning of a
phase.

= Treat nonterminals as letters.

= To speed up, we make some pair compression simultaneously
(partition X to ¥,, ¥, pairs from ¥,%,)

ina p | I otk 17.06.2013 617

Algorithm

1: while |T| > 1 do

17.06.2013 mv

lllpll”'

Algorithm
1: while |T| > 1 do
2: L < list of lettersin T
3: foreachae Ldo > Blocks compression
4: compress maximal blocks of a >O(|T))

ina p | I otk 17.06.2013 717

Algorithm

1: while |T| > 1 do

2: L < list of lettersin T

3: foreachae Ldo > Blocks compression
4: compress maximal blocks of a >O(|T))
5 P « list of pairs

6 find partition of ¥ into ¥, and %,

7 > Try to maximize the occurrences from ¥,%,in T.

ina p | [e e 17.06.2013 717

Algorithm

1: while |T| > 1 do

2: L « list of letters in T

3 for each a € L do > Blocks compression
4 compress maximal blocks of a >O(|T))
3 P « list of pairs

6 find partition of ¥ into ¥, and %,

7 > Try to maximize the occurrences from L,%,in T.
8 forabe PNn%¥,X,do > These pairs do not overlap
9 compress pair ab > Pair compression

ina p | [e 17.06.2013 717

Algorithm

1: while |T| > 1 do

2: L < list of lettersin T

3 for each a € L do > Blocks compression
4 compress maximal blocks of a >O(|T))
3 P « list of pairs

6: find partition of ¥ into ¥, and %,
7 > Try to maximize the occurrences from ¥,%,in T.
8 forabe PNn%¥,X,do > These pairs do not overlap
9 compress pair ab > Pair compression
10:

return the constructed grammar

ina p | [e e 17.06.2013 717

Partition

1/4 appearances covered
A partition ¥,%, such that 1/4 of pairs is covered.

in p | | O 17.06.2013 817

Partition

1/4 appearances covered

A partition X,¥, such that 1/4 of pairs is covered.

= After block compression aa does not appear.
= Random partition: 1/4 pairs can be covered.
= derandomise (expected value)

= we need number of appearances of ab: RadixSort

O(| T1)-

l l I I I max planck institut
informatik

17.06.2013

8/17

Size reduction

Size drop
= Consider set of two consecutive letters abin T.
= For 1/4 of them one letter is compressed in a phase.

= | ength drops by a constant factor.

RN LR LR 17.06.2013

917

Size reduction

Size drop

= Consider set of two consecutive letters abin T.

= For 1/4 of them one letter is compressed in a phase.
— if a= b: it is compressed

= | ength drops by a constant factor.

RN LR LR 17.06.2013

917

Size reduction

Size drop
= Consider set of two consecutive letters abin T.
= For 1/4 of them one letter is compressed in a phase.

— if a= b: it is compressed

— if a # b: 1/4 of those pairs is in XX,
When we consider ab we replace it, unless one letter was
already replaced.

= | ength drops by a constant factor.

ina p | [e 17.06.2013 917

Size reduction

Size drop
= Consider set of two consecutive letters abin T.
= For 1/4 of them one letter is compressed in a phase.

— if a= b: it is compressed

— if a # b: 1/4 of those pairs is in XX,
When we consider ab we replace it, unless one letter was
already replaced.

= | ength drops by a constant factor.

Towards running time
It is enough to show that one round runs in O(| T|).

ina p BN i 17.06.2013 917

Running time

O(|T)) time.

Block compression
By RadixSort, O(|T|) time.

Pair compression
By RadixSort, O(|T|) time.

ina p | [e 17.06.2013 1017

Number of nonterminals

Representation cost

TR RE e 17.06.2013 1747

Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

RN L LR R 17.06.2013 147

Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

= when a*, a2, ..., a' are replaced with a,,, ay,, ..., a,
(£1 <Ulo... <€k):

RN L LR R 17.06.2013 147

Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

= when a“, a, ..., a' are replaced with a;,, ay,, ..., a,
(£1 <Ulo... <€k):
— first represent a’2=%, a%~%, ... a1 asay, _,,an 4, ---,
Agy—ty_+

— do this by binary expansion
(make new rules a> — aa, as — acao, ag — asas, -..)

17.06.2013 1117

inn p |

Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

= when a“, a, ..., a' are replaced with a;,, ay,, ..., a,
(£1 <Ulo... <€k):
— first represent a’2=%, a%~%, ... a1 asay, _,,an 4, ---,
Agy—ty_+

— do this by binary expansion
(make new rules a> — aa, as — acao, ag — asas, -..)
— Qg — Apyy -0,y

i+1

17.06.2013 1117

Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

= when a“, a, ..., a' are replaced with a;,, ay,, ..., a,
(£1 <Ulo... <€k):
— first represent a’2=%, a%~%, ... a1 asay, _,,an 4, ---,
Agy—ty_+

— do this by binary expansion

(make new rules a> — aa, as — acao, ag — asas, -..)
— gy — ayy -0y
— representation cost

(9(kz1 log(£is1 — e,-))
i=1

17.06.2013 1117

Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T

ina p | I otk 17.06.2013 12717

Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T

— we apply the compression to G
— itis changed so that this can be done

(] p | I otk 17.06.2013 12717

Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T

— we apply the compression to G
— itis changed so that this can be done

= representation cost is calculated using G

(] p | I otk 17.06.2013 12717

Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T

— we apply the compression to G
— it is changed so that this can be done

= representation cost is calculated using G

= G is of more general form: X; — uXjvXw

explicit letters have credit
® representation cost is paid by released credit:

ini p | | R 17.06.2013 12117

Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T
— we apply the compression to G
— it is changed so that this can be done

= representation cost is calculated using G

= G is of more general form: X; — uXjvXw

explicit letters have credit
® representation cost is paid by released credit:

— abis replaced by ¢
— we need 1 representation cost
— each abin Gis replaced with ¢, 1 credit is released

ini p | | R 17.06.2013 12117

Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T
— we apply the compression to G
— it is changed so that this can be done

= representation cost is calculated using G

= G is of more general form: X; — uXjvXw

explicit letters have credit

® representation cost is paid by released credit:

— abis replaced by ¢

— we need 1 representation cost

— each abin G is replaced with ¢, 1 credit is released
— (bit more tricky for blocks)

ini p | | O 17.06.2013 12117

Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T
— we apply the compression to G
— it is changed so that this can be done

= representation cost is calculated using G

= G is of more general form: X; — uXjvXw

explicit letters have credit

® representation cost is paid by released credit:

— abis replaced by ¢

— we need 1 representation cost

— each abin G is replaced with ¢, 1 credit is released
— (bit more tricky for blocks)

= we only need to count the number of created credit
ini p | | O 17.06.2013 12117

Pair compression

Xy — ababcab, Xo — abcbX;abX;a

(] p | [17.06.2013 13117

Pair compression

Xy — ababcab, Xo — abcbX;abX;a
= compression of ab: easy

(] p | [17.06.2013 13117

Pair compression

Xy — ababcab, Xo — abcbX;abX;a
= compression of ab: easy
= compression of ba: problem

(] p | [17.06.2013 13117

Pair compression

Xy — ababcab, Xo — abcbX;abX;a
= compression of ab: easy
= compression of ba: problem

Definition (Non-crossing pairs)

ab is non-crossing pair iff none of the below happens

= gX appears in a rule, X begins with b
= Xb appears in a rule, X ends with a

l l I I I max planck institut
informatik

17.06.2013

13117

Pair compression

Xy — ababcab, Xo — abcbX;abX;a
= compression of ab: easy
= compression of ba: problem

Definition (Non-crossing pairs)

ab is non-crossing pair iff none of the below happens
= gX appears in a rule, X begins with b

= Xb appears in a rule, X ends with a

When each pair from ¥,%, is non-crossing,
replace all those pairs in G (no new credit).

ina p | [e 17.06.2013 13117

Making pairs non-crossing

When ab has a crossing appearance: aX; or X;b
= X; defines bw: change it to w, replace X; by bX;
= symmetrically for ending a

[f p | I otk 17.06.2013 14717

Making pairs non-crossing

When ab has a crossing appearance: aX; or X;b
= X; defines bw: change it to w, replace X; by bX;
= symmetrically for ending a

LeftPop(b)
1: fori<1..g—1do
2: if the first symbol in X; — a is b then
3: remove this b
4: replace X; in productions by bX;

Lemma
After LeftPop(b) and RightPop(a) the ab is non-crossing.

[f p | [e 17.06.2013 14117

Making pairs non-crossing

When ab has a crossing appearance: aX; or Xib
= X; defines bw: change it to w, replace X; by bX;
= symmetrically for ending a

LeftPop(b)
1: fori<1..g—1do
2: if the first symbol in X; — a is b then
3: remove this b
4: replace X; in productions by bJX;

Lemma

After LeftPop(b) and RightPop(a) the ab is non-crossing.

= Can be done in parallel for all ab € ¥,%,.

ini p | | 17.06.2013 1417

Making pairs non-crossing

When ab € ¥,>, has a crossing appearance: aX; or Xjb
= X; defines bw: change it to w, replace X; by aX;
= symmetrically for ending a

LeftPop
1: fori<1..g—1do
2: if the first symbol in X; — « is b € =, then
3: remove this b
4: replace X; in productions by bJX;

Lemma

After LeftPop and RightPop the pairs 3,5, are non-crossing.

= Can be done in parallel for all ab € X,%,.

ini p | | 17.06.2013 14117

Making pairs non-crossing

When ab € ¥,>, has a crossing appearance: aX; or Xjb
= X; defines bw: change it to w, replace X; by aX;
= symmetrically for ending a

LeftPop
1: fori<1..g—1do
2: if the first symbol in X; — « is b € =, then
3: remove this b
4: replace X; in productions by bJX;

Lemma
After LeftPop and RightPop the pairs 3,5, are non-crossing.

= Can be done in parallel for all ab € X,%,.
= Credit increases by O(9g)
i p | | 17.06.2013 14117

Blocks & Wrap up
(dea

Similarly as pairs
= X; defines a’iwb’i: change it to w
= replace X; in rules by &' X;b'i

[f p | [e 17.06.2013 15117

Blocks & Wrap up

Similarly as pairs
X; defines a‘iwb'i: change it to w
= replace X; in rules by &' X;b'i

= analysis: more tricky but works
0(9)

[f] p | [e e 17.06.2013 1517

Blocks & Wrap up
(dea

Similarly as pairs
X; defines a‘iwb'i: change it to w

= replace X; in rules by &' X;b'i
= analysis: more tricky but works
0(9)

In total

O(9g) per phase

O(log n) phases

O(glog n) credit in total (= size of created grammar)
= can be improved to O(glog(n/g))

(] p | [e 17.06.2013 1517

Acknowledgments

Suggesting the analysis.

inl p | | O 17.06.2013 1617

Acknowledgments

Suggesting the analysis.

P. Gawrychowski

® introducing to the topic
® |iterature
— K. Mehlhorn, R. Sundar and Ch. Uhrig, Maintaining Dynamic
Sequences under Equality Tests in Polylogarithmic Time, ‘97
— H. Sakamoto, A fully linear-time approximation algorithm for
grammar-based compression, ‘05
— M. Lohrey and Ch. Mathissen, Compressed Membership in
Automata with Compressed Labels, ’11

ina p | [17.06.2013 16/17

Open problems, related research

Open problems
= better approximation
= simpler computational model (no RadixSort)

= addition chains (O(=23) approximation known
loglog n

ina p [I otk 17.06.2013 17717

Open problems, related research

Open problems
= better approximation
= simpler computational model (no RadixSort)

= addition chains (O(=23) approximation known
loglog n

Other applications: recompression
= compressed membership

= fully compressed pattern matching
= word equations

ina p [I otk 17.06.2013 17717

