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Grammar based-compression

Represent w as a CFG generating it.

Advantages

it is usually small (at most quadratic vs. LZ)
compression is fast

it is exponential on good data

extracts hierarchical structure

it is easy to work on

related to LZW and LZ
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Smallest grammar

Given w return smallest CFG Gy such that L(Gy) = w. I
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Smallest grammar

Problem
Given w return smallest CFG Gy such that L(Gy) = w. ’

With O(1) increase in size, this is an SLP. ;

Definition (SLP: Straight Line Programme)
CFG with

= ordered nonterminals Xi, Xo, ...

= Chomsky normal form

= for Xj — XjXx we have j, k < i

ina p | [ o 17.06.2013 317



What is known

Best approximation ratio

O(log(n/g)), where g is the size of the optimal grammar.
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Best approximation ratio

O(log(n/g)), where g is the size of the optimal grammar.
= Rytter

— represent w as LZ, size ¢ < g
— translation of LZ into SLP, size O(¢log(n/¢)) < O(glog(n/g))
— the intermediate grammar is balanced (AVL-type condition)
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What is known

Best approximation ratio

O(log(n/g)), where g is the size of the optimal grammar.
= Rytter
— represent w as LZ, size ¢ < g

— translation of LZ into SLP, size O(¢log(n/¢)) < O(glog(n/g))
— the intermediate grammar is balanced (AVL-type condition)

® Charikar et al.:

— similar as Rytter
— different balance criterion (length of word)

® Sakamoto

— local replacement rules (plus a global partition): pairs and blocks
— analysis vs LZ

Linear time.
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This talk

Very simple linear-time algorithm, O(log(n/g)) approximation.
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— very robust

— good: easier to show better approximation?
— bad: might be in fact larger
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This talk
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This talk

Very simple linear-time algorithm, O(log(n/g)) approximation.
® analysis in the recompression framework, vs. SLP
— very robust

— good: easier to show better approximation?
— bad: might be in fact larger

® not balanced

— good: easier to show approximation?
— bad: worse for further processing

= height O(log n), when a‘ has height 1

Algorithm similar to Sakamoto, different analysis.
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Example

aaababcababbabcba
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Example

aaababcababbabcecba
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Example

a3z babcababbabcba
CL3—)CL3
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Example

asz b C a bo cba
a3—>a3,b2%b2
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Example

asz b C a bo cbha
as — a3,bs — b%,d — ab
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Example

asz b C a bo c e
as — a3, bs — b, d — ab,e — ba
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Example

az b d ¢ d a by d c e
as — a3, bs — b, d — ab,e — ba
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Example

az b d ¢ d a by d c e
as — a3,by — b%,d = ab,e — ba

Intuition

® Phases: compress only pairs and block from the beginning of a
phase.

= Treat nonterminals as letters.

= To speed up, we make some pair compression simultaneously
(partition X to ¥,, ¥, pairs from ¥,%,)
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Algorithm

1: while |T| > 1 do
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Algorithm
1: while |T| > 1 do
2: L < list of lettersin T
3: foreachae Ldo > Blocks compression
4: compress maximal blocks of a >O(|T))
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Algorithm

1: while |T| > 1 do

2: L < list of lettersin T

3: foreachae Ldo > Blocks compression
4: compress maximal blocks of a >O(|T))
5 P « list of pairs

6 find partition of ¥ into ¥, and %,

7 > Try to maximize the occurrences from ¥,%,in T.
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Algorithm

1: while |T| > 1 do

2: L « list of letters in T

3 for each a € L do > Blocks compression
4 compress maximal blocks of a >O(|T))
3 P « list of pairs

6 find partition of ¥ into ¥, and %,

7 > Try to maximize the occurrences from L,%,in T.
8 forabe PNn%¥,X,do > These pairs do not overlap
9 compress pair ab > Pair compression
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Algorithm

1: while |T| > 1 do

2: L < list of lettersin T

3 for each a € L do > Blocks compression
4 compress maximal blocks of a >O(|T))
3 P « list of pairs

6: find partition of ¥ into ¥, and %,
7 > Try to maximize the occurrences from ¥,%,in T.
8 forabe PNn%¥,X,do > These pairs do not overlap
9 compress pair ab > Pair compression
10:

return the constructed grammar
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Partition

1/4 appearances covered
A partition ¥,%, such that 1/4 of pairs is covered.
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Partition

1/4 appearances covered

A partition X,¥, such that 1/4 of pairs is covered.

= After block compression aa does not appear.
= Random partition: 1/4 pairs can be covered.
= derandomise (expected value)

= we need number of appearances of ab: RadixSort

O(| T1)-
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Size reduction

Size drop
= Consider set of two consecutive letters abin T.
= For 1/4 of them one letter is compressed in a phase.

= | ength drops by a constant factor.
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Size reduction

Size drop
= Consider set of two consecutive letters abin T.
= For 1/4 of them one letter is compressed in a phase.

— if a= b: it is compressed

— if a # b: 1/4 of those pairs is in XX,
When we consider ab we replace it, unless one letter was
already replaced.

= | ength drops by a constant factor.
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Size reduction

Size drop
= Consider set of two consecutive letters abin T.
= For 1/4 of them one letter is compressed in a phase.

— if a= b: it is compressed

— if a # b: 1/4 of those pairs is in XX,
When we consider ab we replace it, unless one letter was
already replaced.

= | ength drops by a constant factor.

Towards running time
It is enough to show that one round runs in O(| T|).
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Running time

O(|T)) time.

Block compression
By RadixSort, O(|T|) time.

Pair compression
By RadixSort, O(|T|) time.
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Number of nonterminals

Representation cost
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Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1
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Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

= when a*, a2, ..., a' are replaced with a,,, ay,, ..., a,
(£1 <Ulo... <€k):
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Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

= when a“, a, ..., a' are replaced with a;,, ay,, ..., a,
(£1 <Ulo... <€k):
— first represent a’2=%, a%~%, ... a1 asay, _,,an 4, ---,
Agy—ty_+

— do this by binary expansion
(make new rules a> — aa, as — acao, ag — asas, -..)
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Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

= when a“, a, ..., a' are replaced with a;,, ay,, ..., a,
(£1 <Ulo... <€k):
— first represent a’2=%, a%~%, ... a1 asay, _,,an 4, ---,
Agy—ty_+

— do this by binary expansion
(make new rules a> — aa, as — acao, ag — asas, -..)
— Qg — Apyy -0,y

i+1
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Number of nonterminals

Representation cost

= when c replaces ab we add rule ¢ — ab, representation cost 1

= when a“, a, ..., a' are replaced with a;,, ay,, ..., a,
(£1 <Ulo... <€k):
— first represent a’2=%, a%~%, ... a1 asay, _,,an 4, ---,
Agy—ty_+

— do this by binary expansion

(make new rules a> — aa, as — acao, ag — asas, -..)
— gy — ayy -0y
— representation cost

(9(kz1 log(£is1 — e,-))
i=1
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Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T
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Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T

— we apply the compression to G
— it is changed so that this can be done

= representation cost is calculated using G

= G is of more general form: X; — uXjvXw

explicit letters have credit
® representation cost is paid by released credit:
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Analysis outline

= We begin with a G generating T (mental experiment)
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— we apply the compression to G
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— abis replaced by ¢
— we need 1 representation cost
— each abin Gis replaced with ¢, 1 credit is released
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Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T
— we apply the compression to G
— it is changed so that this can be done

= representation cost is calculated using G

= G is of more general form: X; — uXjvXw

explicit letters have credit
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— abis replaced by ¢
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— each abin G is replaced with ¢, 1 credit is released
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Analysis outline

= We begin with a G generating T (mental experiment)
= in each moment we keep G generating the current T
— we apply the compression to G
— it is changed so that this can be done

= representation cost is calculated using G

= G is of more general form: X; — uXjvXw

explicit letters have credit

® representation cost is paid by released credit:

— abis replaced by ¢

— we need 1 representation cost

— each abin G is replaced with ¢, 1 credit is released
— (bit more tricky for blocks)

= we only need to count the number of created credit
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Pair compression

Xy — ababcab, Xo — abcbX;abX;a
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Pair compression

Xy — ababcab, Xo — abcbX;abX;a
= compression of ab: easy
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Pair compression

Xy — ababcab, Xo — abcbX;abX;a
= compression of ab: easy
= compression of ba: problem
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Pair compression

Xy — ababcab, Xo — abcbX;abX;a
= compression of ab: easy
= compression of ba: problem

Definition (Non-crossing pairs)

ab is non-crossing pair iff none of the below happens

= gX appears in a rule, X begins with b
= Xb appears in a rule, X ends with a
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Pair compression

Xy — ababcab, Xo — abcbX;abX;a
= compression of ab: easy
= compression of ba: problem

Definition (Non-crossing pairs)

ab is non-crossing pair iff none of the below happens
= gX appears in a rule, X begins with b

= Xb appears in a rule, X ends with a

When each pair from ¥,%, is non-crossing,
replace all those pairs in G (no new credit).
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Making pairs non-crossing

When ab has a crossing appearance: aX; or X;b
= X; defines bw: change it to w, replace X; by bX;
= symmetrically for ending a
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Making pairs non-crossing

When ab has a crossing appearance: aX; or X;b
= X; defines bw: change it to w, replace X; by bX;
= symmetrically for ending a

LeftPop(b)
1: fori<1..g—1do
2: if the first symbol in X; — a is b then
3: remove this b
4: replace X; in productions by bX;

Lemma
After LeftPop(b) and RightPop(a) the ab is non-crossing.
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Making pairs non-crossing

When ab has a crossing appearance: aX; or Xib
= X; defines bw: change it to w, replace X; by bX;
= symmetrically for ending a

LeftPop(b)
1: fori<1..g—1do
2: if the first symbol in X; — a is b then
3: remove this b
4: replace X; in productions by bJX;

Lemma

After LeftPop(b) and RightPop(a) the ab is non-crossing.

= Can be done in parallel for all ab € ¥,%,.
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Making pairs non-crossing

When ab € ¥,>, has a crossing appearance: aX; or Xjb
= X; defines bw: change it to w, replace X; by aX;
= symmetrically for ending a

LeftPop
1: fori<1..g—1do
2: if the first symbol in X; — « is b € =, then
3: remove this b
4: replace X; in productions by bJX;

Lemma

After LeftPop and RightPop the pairs 3,5, are non-crossing.

= Can be done in parallel for all ab € X,%,.
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Making pairs non-crossing

When ab € ¥,>, has a crossing appearance: aX; or Xjb
= X; defines bw: change it to w, replace X; by aX;
= symmetrically for ending a

LeftPop
1: fori<1..g—1do
2: if the first symbol in X; — « is b € =, then
3: remove this b
4: replace X; in productions by bJX;

Lemma
After LeftPop and RightPop the pairs 3,5, are non-crossing.

= Can be done in parallel for all ab € X,%,.
= Credit increases by O(9g)
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Blocks & Wrap up
(dea

Similarly as pairs
= X; defines a’iwb’i: change it to w
= replace X; in rules by &' X;b'i

[ f p | [ e 17.06.2013 15117



Blocks & Wrap up

Similarly as pairs
X; defines a‘iwb'i: change it to w
= replace X; in rules by &' X;b'i

= analysis: more tricky but works
0(9)

[ f ] p | [ e e 17.06.2013 1517



Blocks & Wrap up
(dea

Similarly as pairs
X; defines a‘iwb'i: change it to w

= replace X; in rules by &' X;b'i
= analysis: more tricky but works
0(9)

In total

O(9g) per phase

O(log n) phases

O(glog n) credit in total (= size of created grammar)
= can be improved to O(glog(n/g))
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Open problems, related research

Open problems
= better approximation
= simpler computational model (no RadixSort)

= addition chains (O(=23) approximation known
loglog n
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Open problems, related research

Open problems
= better approximation
= simpler computational model (no RadixSort)

= addition chains (O(=23) approximation known
loglog n

Other applications: recompression
= compressed membership

= fully compressed pattern matching
= word equations
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