



max planck institut  
informatik

# Smallest grammar by recompression

**Artur Jeż**

**Max Planck Institute for Informatics**

17.06.2013

# Grammar based-compression

Represent  $w$  as a CFG generating it.



# Grammar based-compression

Represent  $w$  as a CFG generating it.

## Advantages

- it is usually small (at most quadratic vs. LZ)
- compression is fast
- it is exponential on good data



# Grammar based-compression

Represent  $w$  as a CFG generating it.

## Advantages

- it is usually small (at most quadratic vs. LZ)
- compression is fast
- it is exponential on good data
- extracts hierarchical structure
- it is easy to work on



# Grammar based-compression

Represent  $w$  as a CFG generating it.

## Advantages

- it is usually small (at most quadratic vs. LZ)
- compression is fast
- it is exponential on good data
- extracts hierarchical structure
- it is easy to work on
- related to LZW and LZ



# Smallest grammar

## Problem

Given  $w$  return **smallest CFG**  $G_w$  such that  $L(G_w) = w$ .



# Smallest grammar

## Problem

Given  $w$  return **smallest CFG**  $G_w$  such that  $L(G_w) = w$ .

With  $\mathcal{O}(1)$  increase in size, this is an SLP.

## Definition (SLP: Straight Line Programme)

CFG with

- ordered nonterminals  $X_1, X_2, \dots$
- Chomsky normal form
- for  $X_i \rightarrow X_j X_k$  we have  $j, k < i$



# What is known

## Best approximation ratio

$\mathcal{O}(\log(n/g))$ , where  $g$  is the size of the optimal grammar.



# What is known

## Best approximation ratio

$\mathcal{O}(\log(n/g))$ , where  $g$  is the size of the optimal grammar.

- Rytter

- represent  $w$  as LZ, size  $\ell \leq g$
- translation of LZ into SLP, size  $\mathcal{O}(\ell \log(n/\ell)) \leq \mathcal{O}(g \log(n/g))$
- the intermediate grammar is balanced (AVL-type condition)



# What is known

## Best approximation ratio

$\mathcal{O}(\log(n/g))$ , where  $g$  is the size of the optimal grammar.

- Rytter
  - represent  $w$  as LZ, size  $\ell \leq g$
  - translation of LZ into SLP, size  $\mathcal{O}(\ell \log(n/\ell)) \leq \mathcal{O}(g \log(n/g))$
  - the intermediate grammar is balanced (AVL-type condition)
- Charikar et al.:
  - similar as Rytter
  - different balance criterion (length of word)



# What is known

## Best approximation ratio

$\mathcal{O}(\log(n/g))$ , where  $g$  is the size of the optimal grammar.

- Rytter
  - represent  $w$  as LZ, size  $\ell \leq g$
  - translation of LZ into SLP, size  $\mathcal{O}(\ell \log(n/\ell)) \leq \mathcal{O}(g \log(n/g))$
  - the intermediate grammar is balanced (AVL-type condition)
- Charikar et al.:
  - similar as Rytter
  - different balance criterion (length of word)
- Sakamoto
  - local replacement rules (plus a global partition): pairs and blocks
  - analysis vs LZ



# What is known

## Best approximation ratio

$\mathcal{O}(\log(n/g))$ , where  $g$  is the size of the optimal grammar.

- Rytter
  - represent  $w$  as LZ, size  $\ell \leq g$
  - translation of LZ into SLP, size  $\mathcal{O}(\ell \log(n/\ell)) \leq \mathcal{O}(g \log(n/g))$
  - the intermediate grammar is balanced (AVL-type condition)
- Charikar et al.:
  - similar as Rytter
  - different balance criterion (length of word)
- Sakamoto
  - local replacement rules (plus a global partition): pairs and blocks
  - analysis vs LZ

Linear time.



# This talk

Very simple linear-time algorithm,  $\mathcal{O}(\log(n/g))$  approximation.



# This talk

Very simple linear-time algorithm,  $\mathcal{O}(\log(n/g))$  approximation.

- analysis in the recompression framework, vs. SLP
  - **very robust**
  - good: easier to show better approximation?
  - bad: might be in fact larger



# This talk

Very simple linear-time algorithm,  $\mathcal{O}(\log(n/g))$  approximation.

- analysis in the recompression framework, vs. SLP
  - **very robust**
  - good: easier to show better approximation?
  - bad: might be in fact larger
- not balanced
  - good: easier to show approximation?
  - bad: worse for further processing



# This talk

Very simple linear-time algorithm,  $\mathcal{O}(\log(n/g))$  approximation.

- analysis in the recompression framework, vs. SLP
  - **very robust**
  - good: easier to show better approximation?
  - bad: might be in fact larger
- not balanced
  - good: easier to show approximation?
  - bad: worse for further processing
- height  $\mathcal{O}(\log n)$ , when  $a^\ell$  has height 1



# This talk

Very simple linear-time algorithm,  $\mathcal{O}(\log(n/g))$  approximation.

- analysis in the recompression framework, vs. SLP
  - **very robust**
  - good: easier to show better approximation?
  - bad: might be in fact larger
- not balanced
  - good: easier to show approximation?
  - bad: worse for further processing
- height  $\mathcal{O}(\log n)$ , when  $a^\ell$  has height 1

Algorithm similar to Sakamoto, different analysis.



# Example

*a a a b a b c a b a b b a b c b a*



max planck institut  
informatik

17.06.2013

6/17

# Example

*a a a b a b c a b a b b a b c b a*



max planck institut  
informatik

17.06.2013

6/17

# Example

$a_3 \quad b \ a \ b \ c \ a \ b \ a \ b \ b \ a \ b \ c \ b \ a$   
 $a_3 \rightarrow a^3$



# Example

$a_3 \ b \ a \ b \ c \ a \ b \ a \ b_2 \ a \ b \ c \ b \ a$   
 $a_3 \rightarrow a^3, b_2 \rightarrow b^2$



# Example

$a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ b \ a$   
 $a_3 \rightarrow a^3, b_2 \rightarrow b^2, d \rightarrow ab$



## Example

$a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ e$   
 $a_3 \rightarrow a^3, b_2 \rightarrow b^2, d \rightarrow ab, e \rightarrow ba$



# Example

$a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ e$   
 $a_3 \rightarrow a^3, b_2 \rightarrow b^2, d \rightarrow ab, e \rightarrow ba$



# Example

$a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ e$   
 $a_3 \rightarrow a^3, b_2 \rightarrow b^2, d \rightarrow ab, e \rightarrow ba$

## Intuition

- Phases: compress only pairs and block from the beginning of a phase.
- Treat nonterminals as letters.
- To speed up, we make some pair compression simultaneously (partition  $\Sigma$  to  $\Sigma_\ell, \Sigma_r$ , pairs from  $\Sigma_\ell \Sigma_r$ )



# Algorithm

```
1: while  $|T| > 1$  do
```



# Algorithm

```
1: while  $|T| > 1$  do  
2:    $L \leftarrow$  list of letters in  $T$   
3:   for each  $a \in L$  do  
4:     compress maximal blocks of  $a$ 
```

▷ Blocks compression  
▷  $\mathcal{O}(|T|)$



## Algorithm

```

1: while  $|T| > 1$  do
2:    $L \leftarrow$  list of letters in  $T$ 
3:   for each  $a \in L$  do            $\triangleright$  Blocks compression
4:     compress maximal blocks of  $a$        $\triangleright \mathcal{O}(|T|)$ 
5:    $P \leftarrow$  list of pairs
6:   find partition of  $\Sigma$  into  $\Sigma_\ell$  and  $\Sigma_r$ 
7:    $\triangleright$  Try to maximize the occurrences from  $\Sigma_\ell \Sigma_r$  in  $T$ .

```

# Algorithm

```
1: while  $|T| > 1$  do
2:    $L \leftarrow$  list of letters in  $T$ 
3:   for each  $a \in L$  do           ▷ Blocks compression
4:     compress maximal blocks of  $a$            ▷  $\mathcal{O}(|T|)$ 
5:    $P \leftarrow$  list of pairs
6:   find partition of  $\Sigma$  into  $\Sigma_\ell$  and  $\Sigma_r$ 
7:   ▷ Try to maximize the occurrences from  $\Sigma_\ell \Sigma_r$  in  $T$ .
8:   for  $ab \in P \cap \Sigma_\ell \Sigma_r$  do           ▷ These pairs do not overlap
9:     compress pair  $ab$            ▷ Pair compression
```



# Algorithm

```
1: while  $|T| > 1$  do
2:    $L \leftarrow$  list of letters in  $T$ 
3:   for each  $a \in L$  do           ▷ Blocks compression
4:     compress maximal blocks of  $a$            ▷  $\mathcal{O}(|T|)$ 
5:    $P \leftarrow$  list of pairs
6:   find partition of  $\Sigma$  into  $\Sigma_\ell$  and  $\Sigma_r$ 
7:   ▷ Try to maximize the occurrences from  $\Sigma_\ell \Sigma_r$  in  $T$ .
8:   for  $ab \in P \cap \Sigma_\ell \Sigma_r$  do           ▷ These pairs do not overlap
9:     compress pair  $ab$            ▷ Pair compression
10:  return the constructed grammar
```



# Partition

1/4 appearances covered

A partition  $\Sigma_\ell \Sigma_r$  such that 1/4 of pairs is covered.



# Partition

1/4 appearances covered

A partition  $\Sigma_\ell \Sigma_r$  such that 1/4 of pairs is covered.

- After block compression  $aa$  does not appear.
- Random partition: 1/4 pairs can be covered.
- derandomise (expected value)
- we need number of appearances of  $ab$ : RadixSort
- $\mathcal{O}(|T|)$ .



# Size reduction

## Size drop

- Consider set of two consecutive letters  $ab$  in  $T$ .
- For 1/4 of them one letter is compressed in a phase.
- Length drops by a constant factor.



# Size reduction

## Size drop

- Consider set of two consecutive letters  $ab$  in  $T$ .
- For 1/4 of them one letter is compressed in a phase.
  - if  $a = b$ : it is compressed
- Length drops by a constant factor.



# Size reduction

## Size drop

- Consider set of two consecutive letters  $ab$  in  $T$ .
- For  $1/4$  of them one letter is compressed in a phase.
  - if  $a = b$ : it is compressed
  - if  $a \neq b$ :  $1/4$  of those pairs is in  $\Sigma_\ell \Sigma_r$   
When we consider  $ab$  we replace it, unless one letter was already replaced.
- Length drops by a constant factor.



# Size reduction

## Size drop

- Consider set of two consecutive letters  $ab$  in  $T$ .
- For  $1/4$  of them one letter is compressed in a phase.
  - if  $a = b$ : it is compressed
  - if  $a \neq b$ :  $1/4$  of those pairs is in  $\Sigma_\ell \Sigma_r$   
When we consider  $ab$  we replace it, unless one letter was already replaced.
- Length drops by a constant factor.

## Towards running time

It is enough to show that one round runs in  $\mathcal{O}(|T|)$ .



# Running time

## Partition

$\mathcal{O}(|T|)$  time.

## Block compression

By RadixSort,  $\mathcal{O}(|T|)$  time.

## Pair compression

By RadixSort,  $\mathcal{O}(|T|)$  time.



# Number of nonterminals

## Representation cost



# Number of nonterminals

## Representation cost

- when  $c$  replaces  $ab$  we add rule  $c \rightarrow ab$ , representation cost 1



# Number of nonterminals

## Representation cost

- when  $c$  replaces  $ab$  we add rule  $c \rightarrow ab$ , representation cost 1
- when  $a^{\ell_1}, a^{\ell_2}, \dots, a^{\ell_k}$  are replaced with  $a_{\ell_1}, a_{\ell_2}, \dots, a_{\ell_k}$  ( $\ell_1 < \ell_2 \dots < \ell_k$ ):



# Number of nonterminals

## Representation cost

- when  $c$  replaces  $ab$  we add rule  $c \rightarrow ab$ , representation cost 1
- when  $a^{\ell_1}, a^{\ell_2}, \dots, a^{\ell_k}$  are replaced with  $a_{\ell_1}, a_{\ell_2}, \dots, a_{\ell_k}$  ( $\ell_1 < \ell_2 \dots < \ell_k$ ):
  - first represent  $a^{\ell_2 - \ell_1}, a^{\ell_3 - \ell_2}, \dots, a^{\ell_k - \ell_{k-1}}$  as  $a_{\ell_2 - \ell_1}, a_{\ell_3 - \ell_2}, \dots, a_{\ell_k - \ell_{k-1}}$
  - do this by binary expansion  
(make new rules  $a_2 \rightarrow aa, a_4 \rightarrow a_2a_2, a_8 \rightarrow a_4a_4, \dots$ )



# Number of nonterminals

## Representation cost

- when  $c$  replaces  $ab$  we add rule  $c \rightarrow ab$ , representation cost 1
- when  $a^{\ell_1}, a^{\ell_2}, \dots, a^{\ell_k}$  are replaced with  $a_{\ell_1}, a_{\ell_2}, \dots, a_{\ell_k}$  ( $\ell_1 < \ell_2 \dots < \ell_k$ ):
  - first represent  $a^{\ell_2 - \ell_1}, a^{\ell_3 - \ell_2}, \dots, a^{\ell_k - \ell_{k-1}}$  as  $a_{\ell_2 - \ell_1}, a_{\ell_3 - \ell_2}, \dots, a_{\ell_k - \ell_{k-1}}$
  - do this by binary expansion  
(make new rules  $a_2 \rightarrow aa, a_4 \rightarrow a_2a_2, a_8 \rightarrow a_4a_4, \dots$ )
  - $a_{\ell_{i+1}} \rightarrow a_{\ell_{i+1} - \ell_i} a_{\ell_i}$



# Number of nonterminals

## Representation cost

- when  $c$  replaces  $ab$  we add rule  $c \rightarrow ab$ , representation cost 1
- when  $a^{\ell_1}, a^{\ell_2}, \dots, a^{\ell_k}$  are replaced with  $a_{\ell_1}, a_{\ell_2}, \dots, a_{\ell_k}$  ( $\ell_1 < \ell_2 \dots < \ell_k$ ):
  - first represent  $a^{\ell_2 - \ell_1}, a^{\ell_3 - \ell_2}, \dots, a^{\ell_k - \ell_{k-1}}$  as  $a_{\ell_2 - \ell_1}, a_{\ell_3 - \ell_2}, \dots, a_{\ell_k - \ell_{k-1}}$
  - do this by binary expansion  
(make new rules  $a_2 \rightarrow aa, a_4 \rightarrow a_2a_2, a_8 \rightarrow a_4a_4, \dots$ )
  - $a_{\ell_{i+1}} \rightarrow a_{\ell_{i+1} - \ell_i} a_{\ell_i}$
  - representation cost

$$\mathcal{O}\left(\sum_{i=1}^{k-1} \log(\ell_{i+1} - \ell_i)\right)$$



# Analysis outline

- We begin with a  $G$  generating  $T$  (mental experiment)
- in each moment we keep  $G$  generating the current  $T$



# Analysis outline

- We begin with a  $G$  generating  $T$  (mental experiment)
- in each moment we keep  $G$  generating the current  $T$ 
  - we apply the compression to  $G$
  - it is changed so that this can be done



# Analysis outline

- We begin with a  $G$  generating  $T$  (mental experiment)
- in each moment we keep  $G$  generating the current  $T$ 
  - we apply the compression to  $G$
  - it is changed so that this can be done
- representation cost is calculated using  $G$



# Analysis outline

- We begin with a  $G$  generating  $T$  (mental experiment)
- in each moment we keep  $G$  generating the current  $T$ 
  - we apply the compression to  $G$
  - it is changed so that this can be done
- representation cost is calculated using  $G$

  

- $G$  is of more general form:  $X_i \rightarrow uX_j vX_k w$
- explicit letters have credit
- representation cost is paid by released credit:



# Analysis outline

- We begin with a  $G$  generating  $T$  (mental experiment)
- in each moment we keep  $G$  generating the current  $T$ 
  - we apply the compression to  $G$
  - it is changed so that this can be done
- representation cost is calculated using  $G$

  

- $G$  is of more general form:  $X_i \rightarrow uX_j vX_k w$
- explicit letters have credit
- representation cost is paid by released credit:
  - $ab$  is replaced by  $c$
  - we need 1 representation cost
  - each  $ab$  in  $G$  is replaced with  $c$ , 1 credit is released



# Analysis outline

- We begin with a  $G$  generating  $T$  (mental experiment)
- in each moment we keep  $G$  generating the current  $T$ 
  - we apply the compression to  $G$
  - it is changed so that this can be done
- representation cost is calculated using  $G$

  

- $G$  is of more general form:  $X_i \rightarrow uX_j vX_k w$
- explicit letters have credit
- representation cost is paid by released credit:
  - $ab$  is replaced by  $c$
  - we need 1 representation cost
  - each  $ab$  in  $G$  is replaced with  $c$ , 1 credit is released
  - (bit more tricky for blocks)



# Analysis outline

- We begin with a  $G$  generating  $T$  (mental experiment)
- in each moment we keep  $G$  generating the current  $T$ 
  - we apply the compression to  $G$
  - it is changed so that this can be done
- representation cost is calculated using  $G$

- $G$  is of more general form:  $X_i \rightarrow uX_j vX_k w$
- explicit letters have credit
- representation cost is paid by released credit:
  - $ab$  is replaced by  $c$
  - we need 1 representation cost
  - each  $ab$  in  $G$  is replaced with  $c$ , 1 credit is released
  - (bit more tricky for blocks)
- we only need to count the number of created credit



# Pair compression

$X_1 \rightarrow ababcbab, X_2 \rightarrow abcbX_1 abX_1 a$



# Pair compression

$X_1 \rightarrow abab\mathbf{cab}$ ,  $X_2 \rightarrow abcbX_1\mathbf{ab}X_1a$

- compression of  $ab$ : easy



# Pair compression

$X_1 \rightarrow ababca\textcolor{red}{b}$ ,  $X_2 \rightarrow abcbX_1ab\textcolor{red}{X_1a}$

- compression of  $ab$ : easy
- compression of  $ba$ : problem



# Pair compression

$X_1 \rightarrow ababcbab, X_2 \rightarrow abcbX_1 abX_1 a$

- compression of  $ab$ : easy
- compression of  $ba$ : problem

## Definition (Non-crossing pairs)

$ab$  is **non-crossing pair** iff none of the below happens

- $aX$  appears in a rule,  $X$  begins with  $b$
- $Xb$  appears in a rule,  $X$  ends with  $a$



# Pair compression

$X_1 \rightarrow ababcbab, X_2 \rightarrow abcbX_1 abX_1 a$

- compression of  $ab$ : easy
- compression of  $ba$ : problem

## Definition (Non-crossing pairs)

$ab$  is **non-crossing pair** iff none of the below happens

- $aX$  appears in a rule,  $X$  begins with  $b$
- $Xb$  appears in a rule,  $X$  ends with  $a$

When each pair from  $\Sigma_\ell \Sigma_r$  is non-crossing,  
replace all those pairs in  $G$  (no new credit).



# Making pairs non-crossing

When  $ab$  has a crossing appearance:  $aX_i$  or  $X_i b$

- $X_i$  defines  $bw$ : change it to  $w$ , replace  $X_i$  by  $bX_i$
- symmetrically for ending  $a$



# Making pairs non-crossing

When  $ab$  has a crossing appearance:  $aX_i$  or  $X_i b$

- $X_i$  defines  $bw$ : change it to  $w$ , replace  $X_i$  by  $bX_i$
- symmetrically for ending  $a$

## LeftPop(b)

- 1: **for**  $i \leftarrow 1 \dots g - 1$  **do**
- 2:   **if** the first symbol in  $X_i \rightarrow \alpha$  is  $b$  **then**
- 3:     remove this  $b$
- 4:     replace  $X_i$  in productions by  $bX_i$

## Lemma

After LeftPop(b) and RightPop(a) the  $ab$  is non-crossing.



# Making pairs non-crossing

When  $ab$  has a crossing appearance:  $aX_i$  or  $X_i b$

- $X_i$  defines  $bw$ : change it to  $w$ , replace  $X_i$  by  $bX_i$
- symmetrically for ending  $a$

## LeftPop(b)

- 1: **for**  $i \leftarrow 1 \dots g - 1$  **do**
- 2:   **if** the first symbol in  $X_i \rightarrow \alpha$  is  $b$  **then**
- 3:     remove this  $b$
- 4:     replace  $X_i$  in productions by  $bX_i$

## Lemma

After LeftPop(b) and RightPop(a) the  $ab$  is non-crossing.

- Can be done in parallel for all  $ab \in \Sigma_\ell \Sigma_r$ .



# Making pairs non-crossing

When  $ab \in \Sigma_\ell \Sigma_r$  has a crossing appearance:  $aX_i$  or  $X_i b$

- $X_i$  defines  $bw$ : change it to  $w$ , replace  $X_i$  by  $aX_i$
- symmetrically for ending  $a$

## LeftPop

- 1: **for**  $i \leftarrow 1 \dots g - 1$  **do**
- 2:   **if** the first symbol in  $X_i \rightarrow \alpha$  is  $b \in \Sigma_r$  **then**
- 3:     remove this  $b$
- 4:     replace  $X_i$  in productions by  $bX_i$

## Lemma

After LeftPop and RightPop the *pairs*  $\Sigma_\ell \Sigma_r$  are non-crossing.

- Can be done in parallel for all  $ab \in \Sigma_\ell \Sigma_r$ .

# Making pairs non-crossing

When  $ab \in \Sigma_\ell \Sigma_r$  has a crossing appearance:  $aX_i$  or  $X_i b$

- $X_i$  defines  $bw$ : change it to  $w$ , replace  $X_i$  by  $aX_i$
- symmetrically for ending  $a$

## LeftPop

- 1: **for**  $i \leftarrow 1 \dots g - 1$  **do**
- 2:   **if** the first symbol in  $X_i \rightarrow \alpha$  is  $b \in \Sigma_r$  **then**
- 3:     remove this  $b$
- 4:     replace  $X_i$  in productions by  $bX_i$

## Lemma

After LeftPop and RightPop the *pairs*  $\Sigma_\ell \Sigma_r$  are non-crossing.

- Can be done in parallel for all  $ab \in \Sigma_\ell \Sigma_r$ .
- Credit increases by  $\mathcal{O}(g)$



# Blocks & Wrap up

## Idea

Similarly as pairs

- $X_i$  defines  $a^{\ell_i}wb^{r_i}$ : change it to  $w$
- replace  $X_i$  in rules by  $a^{\ell_i}X_ib^{r_i}$



# Blocks & Wrap up

## Idea

Similarly as pairs

- $X_i$  defines  $a^{\ell_i}wb^{r_i}$ : change it to  $w$
- replace  $X_i$  in rules by  $a^{\ell_i}X_ib^{r_i}$
- analysis: more tricky but works
- $\mathcal{O}(g)$



# Blocks & Wrap up

## Idea

Similarly as pairs

- $X_i$  defines  $a^{\ell_i}wb^{r_i}$ : change it to  $w$
- replace  $X_i$  in rules by  $a^{\ell_i}X_ib^{r_i}$
- analysis: more tricky but works
- $\mathcal{O}(g)$

## In total

- $\mathcal{O}(g)$  per phase
- $\mathcal{O}(\log n)$  phases
- $\mathcal{O}(g \log n)$  credit in total (= size of created grammar)
- can be improved to  $\mathcal{O}(g \log(n/g))$



# Acknowledgments

M. Lohrey

Suggesting the analysis.



max planck institut  
informatik

17.06.2013

16/17

# Acknowledgments

M. Lohrey

Suggesting the analysis.

P. Gawrychowski

- introducing to the topic
- literature
  - K. Mehlhorn, R. Sundar and Ch. Uhrig, *Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time*, '97
  - H. Sakamoto, *A fully linear-time approximation algorithm for grammar-based compression*, '05
  - M. Lohrey and Ch. Mathissen, *Compressed Membership in Automata with Compressed Labels*, '11



# Open problems, related research

## Open problems

- better approximation
- simpler computational model (no RadixSort)
- addition chains ( $\mathcal{O}(\frac{\log n}{\log \log n})$  approximation known)



# Open problems, related research

## Open problems

- better approximation
- simpler computational model (no RadixSort)
- addition chains ( $\mathcal{O}(\frac{\log n}{\log \log n})$  approximation known)

## Other applications: recompression

- compressed membership
- fully compressed pattern matching
- word equations

