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Max Planck Institute for Informatics

17.06.2013



Grammar based-compression

Represent w as a CFG generating it.

Advantages
it is usually small (at most quadratic vs. LZ)
compression is fast
it is exponential on good data
extracts hierarchical structure
it is easy to work on
related to LZW and LZ
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Smallest grammar

Problem
Given w return smallest CFG Gw such that L(Gw ) = w .

With O(1) increase in size, this is an SLP.

Definition (SLP: Straight Line Programme)
CFG with

ordered nonterminals X1,X2, . . .

Chomsky normal form
for Xi → XjXk we have j , k < i
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What is known
Best approximation ratio
O(log(n/g)), where g is the size of the optimal grammar.

Rytter
– represent w as LZ, size ` ≤ g
– translation of LZ into SLP, size O(` log(n/`)) ≤ O(g log(n/g))
– the intermediate grammar is balanced (AVL-type condition)

Charikar et al.:
– similar as Rytter
– different balance criterion (length of word)

Sakamoto
– local replacement rules (plus a global partition): pairs and blocks
– analysis vs LZ

Linear time.
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This talk

Very simple linear-time algorithm, O(log(n/g)) approximation.

analysis in the recompression framework, vs. SLP
– very robust
– good: easier to show better approximation?
– bad: might be in fact larger

not balanced
– good: easier to show approximation?
– bad: worse for further processing

height O(log n), when a` has height 1

Algorithm similar to Sakamoto, different analysis.
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Example

a aa a bb a bc a bb a b c ab

Intuition
Phases: compress only pairs and block from the beginning of a
phase.
Treat nonterminals as letters.
To speed up, we make some pair compression simultaneously
(partition Σ to Σ`,Σr , pairs from Σ`Σr )

17.06.2013 6/17



Example

a aa a bb a bc a bb a b c ab

Intuition
Phases: compress only pairs and block from the beginning of a
phase.
Treat nonterminals as letters.
To speed up, we make some pair compression simultaneously
(partition Σ to Σ`,Σr , pairs from Σ`Σr )

17.06.2013 6/17



Example

a3 a bb a bc a bb a b c ab
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a3 a bb a bc a b2 a b c ab
a3 → a3, b2 → b2

Intuition
Phases: compress only pairs and block from the beginning of a
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Treat nonterminals as letters.
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Algorithm

1: while |T | > 1 do

2: L← list of letters in T
3: for each a ∈ L do . Blocks compression
4: compress maximal blocks of a . O(|T |)
5: P ← list of pairs
6: find partition of Σ into Σ` and Σr
7: . Try to maximize the occurrences from Σ`Σr in T .
8: for ab ∈ P ∩ Σ`Σr do . These pairs do not overlap
9: compress pair ab . Pair compression

10: return the constructed grammar
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Partition

1/4 appearances covered
A partition Σ`Σr such that 1/4 of pairs is covered.

After block compression aa does not appear.
Random partition: 1/4 pairs can be covered.
derandomise (expected value)
we need number of appearances of ab: RadixSort
O(|T |).
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Size reduction

Size drop
Consider set of two consecutive letters ab in T .
For 1/4 of them one letter is compressed in a phase.

– if a = b: it is compressed
– if a 6= b: 1/4 of those pairs is in Σ`Σr

When we consider ab we replace it, unless one letter was
already replaced.

Length drops by a constant factor.

Towards running time
It is enough to show that one round runs in O(|T |).
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Running time

Partition
O(|T |) time.

Block compression
By RadixSort, O(|T |) time.

Pair compression
By RadixSort, O(|T |) time.
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Number of nonterminals

Representation cost

when c replaces ab we add rule c → ab, representation cost 1
when a`1 , a`2 , . . . , a`k are replaced with a`1 , a`2 , . . . , a`k
(`1 < `2 . . . < `k ):

– first represent a`2−`1 , a`3−`2 , . . . , a`k−`k−1 as a`2−`1 , a`3−`2 , . . . ,
a`k−`k−1

– do this by binary expansion
(make new rules a2 → aa, a4 → a2a2, a8 → a4a4, . . . )

– a`i+1 → a`i+1−`i a`i

– representation cost

O
( k−1∑

i=1

log(`i+1 − `i )
)
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Analysis outline

We begin with a G generating T (mental experiment)
in each moment we keep G generating the current T

– we apply the compression to G
– it is changed so that this can be done

representation cost is calculated using G

G is of more general form: Xi → uXjvXkw
explicit letters have credit
representation cost is paid by released credit:

– ab is replaced by c
– we need 1 representation cost
– each ab in G is replaced with c, 1 credit is released
– (bit more tricky for blocks)

we only need to count the number of created credit
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Pair compression

X1 → ababcab, X2 → abcbX1abX1a

compression of ab: easy
compression of ba: problem

Definition (Non-crossing pairs)
ab is non-crossing pair iff none of the below happens

aX appears in a rule, X begins with b
Xb appears in a rule, X ends with a

When each pair from Σ`Σr is non-crossing,
replace all those pairs in G (no new credit).
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Making pairs non-crossing

When ab has a crossing appearance: aXi or Xib
Xi defines bw : change it to w , replace Xi by bXi

symmetrically for ending a

LeftPop(b)
1: for i ← 1 . .g − 1 do
2: if the first symbol in Xi → α is b then
3: remove this b
4: replace Xi in productions by bXi

Lemma
After LeftPop(b) and RightPop(a) the ab is non-crossing.

Can be done in parallel for all ab ∈ Σ`Σr .
Credit increases by O(g)
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Blocks & Wrap up

Idea
Similarly as pairs

Xi defines a`i wbri : change it to w
replace Xi in rules by a`i Xibri

analysis: more tricky but works
O(g)

In total
O(g) per phase
O(log n) phases
O(g log n) credit in total (= size of created grammar)
can be improved to O(g log(n/g))
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Open problems, related research

Open problems
better approximation
simpler computational model (no RadixSort)
addition chains (O( log n

log log n ) approximation known)

Other applications: recompression
compressed membership
fully compressed pattern matching
word equations
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