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Equations over languages


ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)

...
ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Xi : subset of Σ∗.

ϕi : variables, constants, operations on sets.

Solutions: least, greatest, unique

Example

X = XX ∪ {a}X{b} ∪ {ε}

Least solution: the Dyck language.
Greatest solution: Σ∗.
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Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 3 / 1



Equations over languages


ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)

...
ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Xi : subset of Σ∗.

ϕi : variables, constants, operations on sets.

Solutions: least, greatest, unique

Example

X = XX ∪ {a}X{b} ∪ {ε}

Least solution: the Dyck language.
Greatest solution: Σ∗.
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Interesting special cases

Resolved equations

Xi = ϕi (X1, . . . ,Xn) for i = 1, . . . , n

I Least solutions
I Monotone operations (∩, ∪, ·)
I Connected with grammars (non-terminal X ↔ variable X )

Unary languages → numbers
I resolved
I unresolved
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Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 4 / 1



Numbers and the unary alphabet

Unary: Σ = {a}.

an ←→ number n

an · am ←→ n + m

Language ←→ set of numbers

K · L ←→ X + Y = {x + y | x ∈ X , y ∈ Y }
Language equations ←→ Equations over subsets of N

Remark

Focus: resolved (EQ) and unresolved equations over sets of natural
numbers with ∩,∪,+.
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Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 5 / 1



Numbers and the unary alphabet

Unary: Σ = {a}.

an ←→ number n

an · am ←→ n + m

Language ←→ set of numbers

K · L ←→ X + Y = {x + y | x ∈ X , y ∈ Y }
Language equations ←→ Equations over subsets of N

Remark

Focus: resolved (EQ) and unresolved equations over sets of natural
numbers with ∩,∪,+.
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Equations over sets of numbers


ψ1(X1, . . . ,Xn) = ϕ1(X1, . . . ,Xn)

...
ψm(X1, . . . ,Xn) = ϕm(X1, . . . ,Xn)

Xi : subset of N0 = {0, 1, 2, . . .}.

ϕi , ψi : variables, singleton constants, operations on sets.

For S ,T ⊆ N0,
I S ∪ T , S ∩ T .
I S + T = {x + y | x ∈ S , y ∈ T}.

Example

X =
(
X + {2}

)
∪ {0}

Unique solution: the even numbers
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Outline of the results

1 Resolved—expressive power
How complicated the sets can be?

I with regular notation
I much more

2 Resolved: complexity
How many resources are needed to recognise?
EXPTIME

3 General: universality
∩, · and ∪, · are computationally universal

4 One variable
How to encode results in one variable?

5 General: addition only
Can we use only addition?
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Positional notation

Base k.

Σk = {0, 1, . . . , k − 1}.
Numbers ←→ strings in Σ∗

k \ 0Σ∗
k .

Sets of numbers ←→ languages over Σk .

Example

(10∗)4 = {4n | n > 0}

We focus on properties in base-k notation
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Important example—(10∗)4

Example

X1 = (X2+X2 ∩ X1+X3) ∪ {1}
X2 = (X12+X2 ∩ X1+X1) ∪ {2}
X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

Least solution:

((10∗)4, (20∗)4, (30∗)4, (120∗)4)

Checking:

X2 + X2 = 20∗ + 20∗ = 10+ ∪ 20∗20∗

X1 + X3 = 10∗ + 30∗ = 10+ ∪ 10∗30∗ ∪ 30∗10∗,

(X2 + X2) ∩ (X1 + X3) = 10+.

Remark

Resolved equations with ∩,+ or ∪,+ specify only ultimately periodic sets.

Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 9 / 1



Important example—(10∗)4

Example

X1 = (X2+X2 ∩ X1+X3) ∪ {1}
X2 = (X12+X2 ∩ X1+X1) ∪ {2}
X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

Least solution:

((10∗)4, (20∗)4, (30∗)4, (120∗)4)

Checking:

X2 + X2 = 20∗ + 20∗ = 10+ ∪ 20∗20∗

X1 + X3 = 10∗ + 30∗ = 10+ ∪ 10∗30∗ ∪ 30∗10∗,

(X2 + X2) ∩ (X1 + X3) = 10+.

Remark

Resolved equations with ∩,+ or ∪,+ specify only ultimately periodic sets.
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Generalisation and how to apply it

Idea

We append digits from the left, controlling the sets of digits.

Using the idea

(ij0∗)k for every i , j , k

Theorem

For every k and R ⊂ {0, . . . , k − 1}∗ if R is regular then (R)k ∈ EQ.

Example (Application)

Let S ⊆ (10∗Σk0∗)k . How to obtain
S ′ = {(10n(d + 1)0m)k : (10nd0m)k ∈ S}?

S ′ =
⋃

d∈Σk

((
S ∩ (10∗d0∗)k

)
+ (10∗)k

)
∩ (10∗(d + 1)0∗)k
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Application: complexity

Definition

Complexity theory (of a set S)—how many resources are needed to answer
a question?
”Given n, does n ∈ S”

Resources:

space

time

non-determinism

For example EXPTIME.

Definition

Reduction: Problem P ≥ P ′ if we can answer P (fast) then we can answer
P ′ (fast).
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Problem

Given a resolved system with ∩,∪,+ and a number n, does n ∈ S1.

EXPTIME-complete

Idea

state of the machine is a string—encode as a number

easy to define final accepting computation

recurse back

transition is a local change

easily encoded using regular notation

Example

Machine abcdqe → abcd ′eq′

String (0a0b0cqd0e)k → (0a0b0c0d ′q′e)k

If (0a0b0c0d ′q′e)k is accepting we want to add ((qd0)k − (0d ′q′)k)

Using the trick with intersection with regular sets.
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Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 12 / 1



Problem

Given a resolved system with ∩,∪,+ and a number n, does n ∈ S1.

EXPTIME-complete

Idea

state of the machine is a string—encode as a number

easy to define final accepting computation

recurse back

transition is a local change

easily encoded using regular notation

Example

Machine abcdqe → abcd ′eq′

String (0a0b0cqd0e)k → (0a0b0c0d ′q′e)k

If (0a0b0c0d ′q′e)k is accepting we want to add ((qd0)k − (0d ′q′)k)

Using the trick with intersection with regular sets.
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Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 12 / 1



Problem

Given a resolved system with ∩,∪,+ and a number n, does n ∈ S1.

EXPTIME-complete

Idea

state of the machine is a string—encode as a number

easy to define final accepting computation

recurse back

transition is a local change

easily encoded using regular notation

Example

Machine abcdqe → abcd ′eq′

String (0a0b0cqd0e)k → (0a0b0c0d ′q′e)k

If (0a0b0c0d ′q′e)k is accepting we want to add ((qd0)k − (0d ′q′)k)

Using the trick with intersection with regular sets.
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More results—greater expressive power

Problem

Regular sets are very easy. Slow growth, decidable properties etc. Can we
do better?

Idea

For regular languages we expanded numbers to the left. Maybe we can
expand in both directions?

We can. But this is not easy.

Theorem

For every k and R ⊂ {0, . . . , k − 1}∗ if R is recognised by a trellis
automaton M then (R)k ∈ EQ.
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Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
M = (Σ,Q, I , δ,F ) where:

Σ: input alphabet;

Q: finite set of states;

I : Σ→ Q sets initial states;

δ : Q × Q → Q, transition function;

F ⊆ Q: accepting states.

Closed under ∪,∩,∼, not closed under concatenation.

Can recognize {wcw}, {anbncn}, {anb2n}, VALC.

Theorem

For every k and R ⊂ {0, . . . , k − 1}∗ if R is recognised by a trellis
automaton M then (R)k ∈ EQ.
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Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 14 / 1



Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
M = (Σ,Q, I , δ,F ) where:

Σ: input alphabet;

Q: finite set of states;

I : Σ→ Q sets initial states;

δ : Q × Q → Q, transition function;

F ⊆ Q: accepting states.

Closed under ∪,∩,∼, not closed under concatenation.
Can recognize {wcw}, {anbncn}, {anb2n}, VALC.

Theorem

For every k and R ⊂ {0, . . . , k − 1}∗ if R is recognised by a trellis
automaton M then (R)k ∈ EQ.
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Computational completeness of language equations

Model of computation: Turing Machine

Recursive sets:

Definition

S is recursive if there exists M, such that M[w ] = 1 for w ∈ S and
M[w ] = 0 for w /∈ S

Language equations over Σ, with |Σ| > 2.

Theorem

L ⊆ Σ∗ is given by unique solution of a system with {∪,∩,∼, ·}
if and only if

L is recursive.

Multiple-letter alphabet essentially used.

X Remaking the argument for sets of numbers!
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Outline of the construction

Theorem

S ⊆ N0 is given by unique solution of a system with {∪,+} ({∩,+})
if and only if

S is recursive.

Turing Machine T for S

VALC(T ) (transcription of computation): recognised by a trellis
automaton

Trellis automata → resolved equations over sets of numbers

Technical trick: resolved equations with ∩,∪,+ → unresolved with
∪,+ (or ∩,+)

Extracting numbers with notation L(T )
from numbers with notation VALC(T )

Remark

Least (greatest) solution—RE-sets (co-RE-sets).

Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 16 / 1



Outline of the construction

Theorem

S ⊆ N0 is given by unique solution of a system with {∪,+} ({∩,+})
if and only if

S is recursive.

Turing Machine T for S

VALC(T ) (transcription of computation): recognised by a trellis
automaton

Trellis automata → resolved equations over sets of numbers

Technical trick: resolved equations with ∩,∪,+ → unresolved with
∪,+ (or ∩,+)

Extracting numbers with notation L(T )
from numbers with notation VALC(T )

Remark

Least (greatest) solution—RE-sets (co-RE-sets).
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One variable

Problem

How many variables are needed to define something interesting?

Idea

Encoding

(S1, . . . ,Sk)→
k⋃

i=1

p · Si − di .

EXPTIME holds for X = ϕ(X )

unique solution ϕ(X ) = ψ(X )—recursively-hard (∩,∪,+)

Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 17 / 1



One variable

Problem

How many variables are needed to define something interesting?

Idea

Encoding

(S1, . . . ,Sk)→
k⋃

i=1

p · Si − di .

EXPTIME holds for X = ϕ(X )

unique solution ϕ(X ) = ψ(X )—recursively-hard (∩,∪,+)
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Addition only

Problem

Is addition enough to define something interesting? (general case)

Idea

Encoding

(S1, . . . ,Sk)→
k⋃

i=1

p · Si − di .

plus something extra simulates ∪ and +.

unique solution ϕ(X ) = ψ(X )—recursively-hard (∩,∪,+)
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Conclusion

A basic mathematical object.

Using methods of theoretical computer science.

cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

1 A Diophantine equation with PRIMES as the range of x .

2 An equation over sets of numbers with PRIMES as the unique value of X .

Any number-theoretic methods?

Problem

Construct a set not representable by equations with {∪,∩,+}.
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Artur Jeż (Wroc law) Equations over sets of natural numbers May 22, 2008 19 / 1



Conclusion

A basic mathematical object.

Using methods of theoretical computer science.

cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

1 A Diophantine equation with PRIMES as the range of x .

2 An equation over sets of numbers with PRIMES as the unique value of X .

Any number-theoretic methods?

Problem

Construct a set not representable by equations with {∪,∩,+}.
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