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Equations over languages

01(X1,..., Xn) =
om(Xi,..., Xn) =
@ X;: subset of X*.
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Equations over languages

01( X1, ..., Xn) = v1(Xe, ..., Xn)

em(Xt, .. Xn) = Um(Xi,..., Xn)

@ X;: subset of X*.

@ (p;: variables, constants, operations on sets.
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Equations over languages

Sol(Xla"'vXn) = 1/}1(X15---7Xn)

em(Xt, .. Xn) = Um(Xi,..., Xn)

@ X;: subset of X*.

@ (p;: variables, constants, operations on sets.

Solutions: least, greatest, unique
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Sol(Xla"'vXn) = 1/}1(X15---7Xn)

em(Xt, .. Xn) = Um(Xi,..., Xn)

@ X;: subset of X*.

@ (p;: variables, constants, operations on sets.

Solutions: least, greatest, unique

Example
X = XX U {a}X{b} U {e}

Artur Jez (Wroctaw) Equations over sets of natural numbers May 22, 2008

3/1



Equations over languages

Sol(le"'vXn) = wl(Xla--an)

em(Xt, .. Xn) = Um(Xi,..., Xn)

@ X;: subset of >*.

@ (p;: variables, constants, operations on sets.

Solutions: least, greatest, unique

Example
X = XX U{a}X{b} U{e}
Least solution: the Dyck language.
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Equations over languages

Spl(le"'vXn) = wl(Xla--an)

em(Xt, .. Xn) = Um(Xi,..., Xn)

@ X;: subset of >*.

@ (p;: variables, constants, operations on sets.

Solutions: least, greatest, unique

Example
X = XX U{a}X{b} U{e}
Least solution: the Dyck language.
Greatest solution: X*.
Artur Jez (Wroctaw) Equations over sets of natural numbers May 22, 2008 3/1



Interesting special cases

@ Resolved equations

Xi = @i(X1,...,Xn)
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Interesting special cases

@ Resolved equations

Xi = pi(X1,..., Xp)
» |east solutions
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Interesting special cases

@ Resolved equations

X,'IQO,‘(Xl,...,Xn) fori:l,...,n

» Least solutions
» Monotone operations (N, U, -)
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Interesting special cases

@ Resolved equations

X,':go,'(Xl,...,Xn) fori:l,...,n

> Least solutions
» Monotone operations (N, U, -)
» Connected with grammars (non-terminal X < variable X)

@ Unary languages — numbers

» resolved
» unresolved
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Numbers and the unary alphabet

Unary: ¥ = {a}.
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Unary: ¥ = {a}.

e a"

Artur Jez (Wroctaw)

Equations over sets of natural numbers

number n



Numbers and the unary alphabet

Unary: ¥ = {a}.
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Numbers and the unary alphabet

Unary: X = {a}

e a" number n
e a".a™m
o Language —

n+m

set of numbers
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Numbers and the unary alphabet

Unary: X = {a}.
@ 3" — number n
e 3" -a" — n+m
@ Language — set of numbers
o K-L — X+ Y={x+y|xeX,yeY}

Artur Jez (Wroctaw) Equations over sets of natural numbers May 22, 2008 5/1



Numbers and the unary alphabet

Unary: ¥ = {a}.
@ 3" e number n
e 3" -a" — n+m
@ Language — set of numbers
o K-L — X+Y={x+y|xeX,yeY}
o Language equations «— Equations over subsets of N

Artur Jez (Wroctaw) Equations over sets of natural numbers May 22, 2008 5/1



Numbers and the unary alphabet

Unary: ¥ = {a}.
@ 3" — number n
e 3" -a" — n+m
o Language — set of numbers
o K-L — X+Y={x+y|xeX,yeY}
o Language equations «— Equations over subsets of N
Remark

Focus: resolved (EQ) and unresolved equations over sets of natural
numbers with N, U, +.
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Equations over sets of numbers

P1( X1, ..., Xn) = e1(X, ..., Xn)

7;Z}m()<17- . 7Xn) = ‘Pm(Xla ce 7Xn)

@ X;: subset of Ng = {0,1,2,...}.
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Equations over sets of numbers

P1( X1, ..., Xn) = e1(X, ..., Xn)

T;Z}m(Xla cee 7Xn) = ‘Pm(Xla ce 7Xn)

@ X;: subset of Ng = {0,1,2,...}.

@ i, variables, singleton constants, operations on sets.
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Equations over sets of numbers

P1(X1,.... Xn) = o1(X1,..., Xn)

T;Z}m(Xla cee 7Xn) = ‘Pm(Xla ce 7Xn)

@ X;: subset of Ng = {0,1,2,...}.
@ i, variables, singleton constants, operations on sets.
@ For 5, T C Ny,

» SUT,SNT.
» S+ T={x+y|xeS, yeT}
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Equations over sets of numbers

P1( X1, ..., Xn) = e1(X, ..., Xn)

T;Z}m(Xla cee 7Xn) = ‘Pm(Xla ce 7Xn)

@ X;: subset of Ng = {0,1,2,...}.
@ i, variables, singleton constants, operations on sets.
@ For 5, T C Ny,

» SUT,SNT.
» S+ T={x+y|xeS, yeT}

Example
X = (X +{2}) u {0} J
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Equations over sets of numbers

P1(X1,.... Xn) = o1(X1,..., Xn)

T;Z}m(Xla cee 7Xn) = ‘Pm(Xla ce 7Xn)

@ X;: subset of Ng = {0,1,2,...}.
@ i, variables, singleton constants, operations on sets.
@ For 5, T C Ny,

» SUT,SNT.
» S+ T={x+y|xeS, yeT}

Example
X = (X+{2})u{o} Unique solution: the even numbers
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Outline of the results

© Resolved—expressive power
How complicated the sets can be?

» with regular notation
» much more
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How complicated the sets can be?

» with regular notation
» much more
@ Resolved: complexity
How many resources are needed to recognise?
EXPTIME
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Outline of the results

© Resolved—expressive power
How complicated the sets can be?
» with regular notation
» much more

@ Resolved: complexity
How many resources are needed to recognise?
EXPTIME

© General: universality
N, - and U, - are computationally universal

@ One variable
How to encode results in one variable?
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Outline of the results

© Resolved—expressive power
How complicated the sets can be?

» with regular notation
» much more
@ Resolved: complexity
How many resources are needed to recognise?
EXPTIME
© General: universality
N, - and U, - are computationally universal
@ One variable
How to encode results in one variable?
© General: addition only
Can we use only addition?
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Positional notation

@ Base k.
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Positional notation

@ Base k.

o ¥, ={0,1,... . k—1}.
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Positional notation

@ Base k.
e ¥, ={0,1,....k—1}.

o Numbers «— strings in X} \ 0X}.
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Positional notation

Base k.
Tk =1{0,1,..., k—1}.
Numbers «— strings in X} \ 0X}.

Sets of numbers «— languages over X .
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Positional notation

Base k.

Y, ={0,1,...,k—1}.

Numbers «— strings in X} \ 0X}.

Sets of numbers «— languages over X .

Example

(10%)s ={4" | n> 0}
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Positional notation

Base k.
Tk =1{0,1,..., k—1}.
Numbers «— strings in X} \ 0X}.

Sets of numbers «— languages over X .

Example
(10*)4 = {4" | n > 0}

@ We focus on properties in base-k notation
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Important example—(10%),4

Example
X1 = (X2+X2 N X1—|—X3) U {1}
Xo = (X12+X2 N Xy +X1) U {2}
X3 = (X12+X12 N Xi +X2) U {3}
X2 = X3+X3 N X1 +X5
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Example
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Important example—(10%),4

Example

X1 = (X2+X2 N X1—|—X3) U {1}

Xo = (Xo+Xo N X1+X1) U {2}

X3 = (X12+X12 n X +X2) U {3}
X1 = X3+ X3N X1+ X

Least solution:

((10%)4, (207)4, (30)4, (120)4)
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Important example—(10%),4

Example

X1 = (X2-|-X2 N X1—|—X3) U {1}

Xo = (Xo+Xo N X1+X1) U {2}

X3 = (X12+X12 n X +X2) U {3}
X1 = X3+ X3N X1+ X

Least solution:

((10%)4, (207)4, (30)4, (120)4)

Checking:
e Xo + Xo = 20* +20* = 10" U 20*20*
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Important example—(10%),4

Example

X1 = (X2-|-X2 N X1—|—X3) U {1}

Xo = (Xo+Xo N X1+X1) U {2}

X3 = (X12+X12 n X +X2) U {3}
X2 = X3+ X3 N X1+ X2

Least solution:

((10%)4, (207)4, (30)4, (120)4)

Checking:
e Xo + Xo = 20* +20* = 10" U 20*20*
e X1+ Xz =10* +30* = 10" U 10*30* U 30*10*,
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Important example—(10%),4

Example

X1 = (X2-|-X2 N X1—|—X3) U {1}

Xo = (Xo+Xo N X1+X1) U {2}

X3 = (X12+X12 n X +X2) U {3}
X12 = X3+ X3 N X1+ X2

Least solution:

((10%)4, (207)4, (30)4, (120)4)

Checking:
e Xo + Xp = 20* + 20* = 10" U 20*20*
e X; + X3 =10* 4+ 30* = 10" U 10*30* U 30*10*,
° (X2 + Xz) N (Xl + X3) =10".
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Important example—(10%),4

Example
X1 = (X2-|-X2 N X1-|—X3) U {1}
Xo = (X12‘|‘X2 N Xy +X1) U {2}
X3 = (X12+X12 N Xi +X2) U {3}
X1 = X3+ X3N X1+ X

Least solution:

((10%)4, (207)4, (30)4, (120)4)

Checking:
e Xo + Xp = 20* 4+ 20* = 10" U 20*20*
e Xi + X3 =10* +30* = 10" U 10*30* U 30*10*,
o (Xo+Xo)N(X1+ X3) = 107",
Remark
Resolved equations with N, 4+ or U, + specify only ultimately periodic sets.J
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Generalisation and how to apply it
Idea

We append digits from the left, controlling the sets of digits.
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Generalisation and how to apply it
Idea

We append digits from the left, controlling the sets of digits.
Using the idea
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Generalisation and how to apply it

Idea
We append digits from the left, controlling the sets of digits. J

Using the idea
o (ij0*), for every i,j, k
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Generalisation and how to apply it

Idea

We append digits from the left, controlling the sets of digits.

Using the idea
o (ij0*), for every i,j, k

Theorem

For every k and R C {0, ...,k — 1}* if R is regular then (R)x € EQ.
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Generalisation and how to apply it

Idea
We append digits from the left, controlling the sets of digits.

Using the idea
o (ij0*), for every i,j, k

Theorem

For every k and R C {0, ...,k — 1}* if R is regular then (R)x € EQ.

Example (Application)

Let S C (10"%40")k. How to obtain
§' = {(10"(d + 1)0™); : (10"d0™), € S}?

s=J <(Sﬂ(10*d0*)k) +(10*)k) N (10%(d + 1)0%)«

dexy
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Application: complexity

Definition

Complexity theory (of a set S)—how many resources are needed to answer
a question?

"Given n, does n € §”
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Application: complexity

Definition
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a question?

"Given n, does n € §”

Resources:

@ space

@ time

@ non-determinism )
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Application: complexity

Definition
Complexity theory (of a set S)—how many resources are needed to answer
a question?
"Given n, does n € §”
Resources:
@ space

@ time

@ non-determinism )

For example EXPTIME.
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Application: complexity

Definition

Complexity theory (of a set S)—how many resources are needed to answer
a question?

"Given n, does n € §”

Resources:

@ space

@ time

@ non-determinism

For example EXPTIME.

Definition
Reduction: Problem P > P’ if we can answer P (fast) then we can answer
P’ (fast).
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Problem

Given a resolved system with N,U, + and a number n, does n € 5;.
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Problem

Given a resolved system with N,U, + and a number n, does n € 5;.

EXPTIME-complete
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@ state of the machine is a string—encode as a number
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EXPTIME-complete

Idea
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Given a resolved system with N,U, + and a number n, does n € 5;.

EXPTIME-complete

Idea

@ state of the machine is a string—encode as a number
easy to define final accepting computation
recurse back

transition is a local change

easily encoded using regular notation
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Problem J

Given a resolved system with N,U, + and a number n, does n € 5;.

EXPTIME-complete

Idea

@ state of the machine is a string—encode as a number
easy to define final accepting computation
recurse back

transition is a local change

easily encoded using regular notation

Example
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Problem J

Given a resolved system with N,U, + and a number n, does n € 5;.

EXPTIME-complete
Idea

@ state of the machine is a string—encode as a number
easy to define final accepting computation
recurse back

transition is a local change

easily encoded using regular notation

Example

@ Machine abcd9e — abcd'e?
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Given a resolved system with N,U, + and a number n, does n € 5;.

Problem J

EXPTIME-complete
Idea

@ state of the machine is a string—encode as a number
easy to define final accepting computation
recurse back

transition is a local change

easily encoded using regular notation

Example

@ Machine abcd9e — abcd'e?

@ String (0a0b0cqdOe), — (0a0b0c0d’q’e)

v
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Problem J

Given a resolved system with N,U, + and a number n, does n € 5;.

EXPTIME-complete
Idea

@ state of the machine is a string—encode as a number
easy to define final accepting computation
recurse back

transition is a local change

easily encoded using regular notation

Example
@ Machine abcde — abed'e9
@ String (0a0b0cqdOe), — (0a0b0c0d’q’e)
o If (0a0b0c0d’q’e) is accepting we want to add ((gd0)x — (0d'q")«)

v
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Problem J

Given a resolved system with N,U, + and a number n, does n € 5;.

EXPTIME-complete
Idea

@ state of the machine is a string—encode as a number
easy to define final accepting computation
recurse back

transition is a local change

easily encoded using regular notation

Example

Machine abcd9e — abcd’e?

String (0a0b0cqdOe), — (0a0b0cOd’q e)«

If (0a0b0c0d’q’e) is accepting we want to add ((gd0)x — (0d'q")«)
Using the trick with intersection with regular sets.

v
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More results—greater expressive power

Problem

Regular sets are very easy. Slow growth, decidable properties etc. Can we
do better?
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More results—greater expressive power

Problem

Regular sets are very easy. Slow growth, decidable properties etc. Can we
do better?

Idea

For regular languages we expanded numbers to the left. Maybe we can
expand in both directions?
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More results—greater expressive power

Problem
Regular sets are very easy. Slow growth, decidable properties etc. Can we
do better? )

Idea
For regular languages we expanded numbers to the left. Maybe we can
expand in both directions?

We can. But this is not easy.
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More results—greater expressive power

Problem

Regular sets are very easy. Slow growth, decidable properties etc. Can we
do better?

Idea
For regular languages we expanded numbers to the left. Maybe we can
expand in both directions?

We can. But this is not easy.

Theorem

For every k and R C {0,...,k — 1}* if R is recognised by a trellis
automaton M then (R)y € EQ.
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Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
M= (%,Q,1,6,F) where:
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A trellis automaton is a
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@ X input alphabet;
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Trellis automata
Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
M= (%,Q,1,6,F) where:
@ X input alphabet;

@ Q: finite set of states;
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Trellis automata
Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
M= (%,Q,1,6,F) where:
@ X input alphabet;

@ Q: finite set of states;

e [ : Y — @ sets initial states;

O.I O, IO
Cll3 a23
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Trellis automata
Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a @)
M= (%,Q,1,6,F) where:
@ X input alphabet; C/ ¥\C)
@ Q: finite set of states; V »\C)
e [ : Y — @ sets initial states; ({4 V \)
a

a, as ay

v
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Trellis automata
Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a
M= (%,Q,1,6,F) where:
@ X input alphabet;
@ Q: finite set of states;
e [ : Y — @ sets initial states;

@ §: Q x @ — Q, transition function;
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o | : Y — Q sets initial states;
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Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a é F
M= (%,Q,l,6,F) where:

@ XY : input alphabet;

@ @: finite set of states;

o | : Y — Q sets initial states;

@ 0: Qx Q — Q, transition function;

@ F C Q: accepting states. a; a, as aq

v

@ Closed under U, N, ~, not closed under concatenation.
o Can recognize {wew}, {a"b"c"}, {a"b?*"}, VALC.
Theorem

For every k and R C {0,...,k — 1}* if R is recognised by a trellis
automaton M then (R)x € EQ.
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@ Model of computation: Turing Machine
@ Recursive sets:
Definition

S is recursive if there exists M, such that M[w] =1 for w € S and
Mw] =0 for w ¢ S

e Language equations over X, with |X| > 2.

Theorem

L C ¥* is given by unique solution of a system with {U,N, ~, -}
if and only if
L is recursive.

o Multiple-letter alphabet essentially used.

v" Remaking the argument for sets of numbers!
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Outline of the construction
Theorem
S C Ny is given by unique solution of a system with {U,+} ({N,+})

if and only if
S is recursive.
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Outline of the construction

Theorem

S C Ny is given by unique solution of a system with {U,+} ({N,+})
if and only if
S is recursive.

Turing Machine T for S

VALC(T) (transcription of computation): recognised by a trellis
automaton

Trellis automata — resolved equations over sets of numbers
Technical trick: resolved equations with N, U, + — unresolved with
U,+ (or N,+)

Extracting numbers with notation L(T)

from numbers with notation VALC(T)
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Outline of the construction

Theorem

S C Ny is given by unique solution of a system with {U,+} ({N,+})
if and only if

S is recursive.

Turing Machine T for S

VALC(T) (transcription of computation): recognised by a trellis
automaton

Trellis automata — resolved equations over sets of numbers
Technical trick: resolved equations with N, U, + — unresolved with
U,+ (or N,+)

Extracting numbers with notation L(T)

from numbers with notation VALC(T)

Remark
Least (greatest) solution—RE-sets (co-RE-sets). J
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One variable

Problem

How many variables are needed to define something interesting?
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Problem
How many variables are needed to define something interesting?

Idea
Encoding

k
(517"'7Sk)—>Up'Si_di-

i=1
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One variable

Problem
How many variables are needed to define something interesting?

Idea
Encoding

k
(Sla"'ask)HUp'Si_di-

i=1

o EXPTIME holds for X = ¢(X)
@ unique solution ¢(X) = 1 (X)—recursively-hard (N, U, +)
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Conclusion

@ A basic mathematical object.
@ Using methods of theoretical computer science.

o cf. Diophantine equations.

Example
Let PRIMES be the set of all primes.
© A Diophantine equation with PRIMES as the range of x.
@ An equation over sets of numbers with PRIMES as the unique value of X.

@ Any number-theoretic methods?

Problem J

Construct a set not representable by equations with {U,N, +}.
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