

Equations over sets of natural numbers

Artur Jeż

Institute of Computer Science
University of Wrocław

May 22, 2008

Joint work

Joint work with Alexander Okhotin, University of Turku, Academy of Finland.

Equations over languages

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

Equations over languages

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Σ^* .

Equations over languages

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Σ^* .
- φ_i : variables, constants, operations on sets.

Equations over languages

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Σ^* .
- φ_i : variables, constants, operations on sets.

Solutions: least, greatest, unique

Equations over languages

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Σ^* .
- φ_i : variables, constants, operations on sets.

Solutions: least, greatest, unique

Example

$$X = XX \cup \{a\}X\{b\} \cup \{\varepsilon\}$$

Equations over languages

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Σ^* .
- φ_i : variables, constants, operations on sets.

Solutions: least, greatest, unique

Example

$$X = XX \cup \{a\}X\{b\} \cup \{\varepsilon\}$$

Least solution: the Dyck language.

Equations over languages

$$\left\{ \begin{array}{rcl} \varphi_1(X_1, \dots, X_n) & = & \psi_1(X_1, \dots, X_n) \\ & \vdots & \\ \varphi_m(X_1, \dots, X_n) & = & \psi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of Σ^* .
- φ_i : variables, constants, operations on sets.

Solutions: least, greatest, unique

Example

$$X = XX \cup \{a\}X\{b\} \cup \{\varepsilon\}$$

Least solution: the Dyck language.
Greatest solution: Σ^* .

Interesting special cases

- Resolved equations

$$X_i = \varphi_i(X_1, \dots, X_n) \quad \text{for } i = 1, \dots, n$$

Interesting special cases

- Resolved equations

$$X_i = \varphi_i(X_1, \dots, X_n) \quad \text{for } i = 1, \dots, n$$

- ▶ Least solutions

Interesting special cases

- Resolved equations

$$X_i = \varphi_i(X_1, \dots, X_n) \quad \text{for } i = 1, \dots, n$$

- ▶ Least solutions
- ▶ Monotone operations (\cap , \cup , \cdot)

Interesting special cases

- Resolved equations

$$X_i = \varphi_i(X_1, \dots, X_n) \quad \text{for } i = 1, \dots, n$$

- ▶ Least solutions
- ▶ Monotone operations (\cap , \cup , \cdot)
- ▶ Connected with grammars (non-terminal $X \leftrightarrow$ variable X)

Interesting special cases

- Resolved equations

$$X_i = \varphi_i(X_1, \dots, X_n) \quad \text{for } i = 1, \dots, n$$

- ▶ Least solutions
- ▶ Monotone operations (\cap , \cup , \cdot)
- ▶ Connected with grammars (non-terminal $X \leftrightarrow$ variable X)
- Unary languages \rightarrow numbers
 - ▶ resolved
 - ▶ unresolved

Numbers and the unary alphabet

Unary: $\Sigma = \{a\}$.

Numbers and the unary alphabet

Unary: $\Sigma = \{a\}$.

• a^n

number n

Numbers and the unary alphabet

Unary: $\Sigma = \{a\}$.

- a^n

 \longleftrightarrow

number n

- $a^n \cdot a^m$

 \longleftrightarrow

$n + m$

Numbers and the unary alphabet

Unary: $\Sigma = \{a\}$.

- $a^n \longleftrightarrow$ number n
- $a^n \cdot a^m \longleftrightarrow$ $n + m$
- Language \longleftrightarrow set of numbers

Numbers and the unary alphabet

Unary: $\Sigma = \{a\}$.

- $a^n \longleftrightarrow$ number n
- $a^n \cdot a^m \longleftrightarrow$ $n + m$
- Language \longleftrightarrow set of numbers
- $K \cdot L \longleftrightarrow X + Y = \{x + y \mid x \in X, y \in Y\}$

Numbers and the unary alphabet

Unary: $\Sigma = \{a\}$.

- $a^n \longleftrightarrow$ number n
- $a^n \cdot a^m \longleftrightarrow$ $n + m$
- Language \longleftrightarrow set of numbers
- $K \cdot L \longleftrightarrow X + Y = \{x + y \mid x \in X, y \in Y\}$
- Language equations \longleftrightarrow Equations over subsets of \mathbb{N}

Numbers and the unary alphabet

Unary: $\Sigma = \{a\}$.

- $a^n \longleftrightarrow$ number n
- $a^n \cdot a^m \longleftrightarrow$ $n + m$
- Language \longleftrightarrow set of numbers
- $K \cdot L \longleftrightarrow X + Y = \{x + y \mid x \in X, y \in Y\}$
- Language equations \longleftrightarrow Equations over subsets of \mathbb{N}

Remark

Focus: resolved (*EQ*) and unresolved equations over sets of natural numbers with $\cap, \cup, +$.

Equations over sets of numbers

$$\left\{ \begin{array}{rcl} \psi_1(X_1, \dots, X_n) & = & \varphi_1(X_1, \dots, X_n) \\ & \vdots & \\ \psi_m(X_1, \dots, X_n) & = & \varphi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of $\mathbb{N}_0 = \{0, 1, 2, \dots\}$.

Equations over sets of numbers

$$\left\{ \begin{array}{rcl} \psi_1(X_1, \dots, X_n) & = & \varphi_1(X_1, \dots, X_n) \\ & \vdots & \\ \psi_m(X_1, \dots, X_n) & = & \varphi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of $\mathbb{N}_0 = \{0, 1, 2, \dots\}$.
- φ_i, ψ_i : variables, singleton constants, operations on sets.

Equations over sets of numbers

$$\left\{ \begin{array}{rcl} \psi_1(X_1, \dots, X_n) & = & \varphi_1(X_1, \dots, X_n) \\ & \vdots & \\ \psi_m(X_1, \dots, X_n) & = & \varphi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of $\mathbb{N}_0 = \{0, 1, 2, \dots\}$.
- φ_i, ψ_i : variables, singleton constants, operations on sets.
- For $S, T \subseteq \mathbb{N}_0$,
 - ▶ $S \cup T, S \cap T$.
 - ▶ $S + T = \{x + y \mid x \in S, y \in T\}$.

Equations over sets of numbers

$$\left\{ \begin{array}{rcl} \psi_1(X_1, \dots, X_n) & = & \varphi_1(X_1, \dots, X_n) \\ & \vdots & \\ \psi_m(X_1, \dots, X_n) & = & \varphi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of $\mathbb{N}_0 = \{0, 1, 2, \dots\}$.
- φ_i, ψ_i : variables, singleton constants, operations on sets.
- For $S, T \subseteq \mathbb{N}_0$,
 - ▶ $S \cup T, S \cap T$.
 - ▶ $S + T = \{x + y \mid x \in S, y \in T\}$.

Example

$$X = (X + \{2\}) \cup \{0\}$$

Equations over sets of numbers

$$\left\{ \begin{array}{rcl} \psi_1(X_1, \dots, X_n) & = & \varphi_1(X_1, \dots, X_n) \\ & \vdots & \\ \psi_m(X_1, \dots, X_n) & = & \varphi_m(X_1, \dots, X_n) \end{array} \right.$$

- X_i : subset of $\mathbb{N}_0 = \{0, 1, 2, \dots\}$.
- φ_i, ψ_i : variables, singleton constants, operations on sets.
- For $S, T \subseteq \mathbb{N}_0$,
 - ▶ $S \cup T, S \cap T$.
 - ▶ $S + T = \{x + y \mid x \in S, y \in T\}$.

Example

$$X = (X + \{2\}) \cup \{0\}$$

Unique solution: the even numbers

Outline of the results

① Resolved—**expressive power**

How complicated the sets can be?

- ▶ with regular notation
- ▶ much more

Outline of the results

① Resolved—**expressive power**

How complicated the sets can be?

- ▶ with regular notation
- ▶ much more

② Resolved: **complexity**

How many resources are needed to recognise?

EXPTIME

Outline of the results

① Resolved—**expressive power**

How complicated the sets can be?

- ▶ with regular notation
- ▶ much more

② Resolved: **complexity**

How many resources are needed to recognise?

EXPTIME

③ General: **universality**

\cap, \cdot and \cup, \cdot are computationally universal

Outline of the results

① Resolved—**expressive power**

How complicated the sets can be?

- ▶ with regular notation
- ▶ much more

② Resolved: **complexity**

How many resources are needed to recognise?

EXPTIME

③ General: **universality**

\cap, \cdot and \cup, \cdot are computationally universal

④ **One variable**

How to encode results in one variable?

Outline of the results

① Resolved—**expressive power**

How complicated the sets can be?

- ▶ with regular notation
- ▶ much more

② Resolved: **complexity**

How many resources are needed to recognise?

EXPTIME

③ General: **universality**

\cap, \cdot and \cup, \cdot are computationally universal

④ One variable

How to encode results in one variable?

⑤ General: **addition only**

Can we use only addition?

Positional notation

- Base k .

Positional notation

- Base k .
- $\Sigma_k = \{0, 1, \dots, k - 1\}$.

Positional notation

- Base k .
- $\Sigma_k = \{0, 1, \dots, k - 1\}$.
- Numbers \longleftrightarrow strings in $\Sigma_k^* \setminus 0\Sigma_k^*$.

Positional notation

- Base k .
- $\Sigma_k = \{0, 1, \dots, k - 1\}$.
- Numbers \longleftrightarrow strings in $\Sigma_k^* \setminus 0\Sigma_k^*$.
- Sets of numbers \longleftrightarrow languages over Σ_k .

Positional notation

- Base k .
- $\Sigma_k = \{0, 1, \dots, k-1\}$.
- Numbers \longleftrightarrow strings in $\Sigma_k^* \setminus 0\Sigma_k^*$.
- Sets of numbers \longleftrightarrow languages over Σ_k .

Example

$$(10^*)_4 = \{4^n \mid n \geq 0\}$$

Positional notation

- Base k .
- $\Sigma_k = \{0, 1, \dots, k-1\}$.
- Numbers \longleftrightarrow strings in $\Sigma_k^* \setminus 0\Sigma_k^*$.
- Sets of numbers \longleftrightarrow languages over Σ_k .

Example

$$(10^*)_4 = \{4^n \mid n \geq 0\}$$

- We focus on properties in base- k notation

Important example— $(10^*)_4$

Example

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

Important example— $(10^*)_4$

Example

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

Important example— $(10^*)_4$

Example

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

Least solution:

$$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$$

Important example— $(10^*)_4$

Example

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

Least solution:

$$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$$

Checking:

- $X_2 + X_2 = 20^* + 20^* = 10^+ \cup 20^*20^*$

Important example— $(10^*)_4$

Example

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

Least solution:

$$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$$

Checking:

- $X_2 + X_2 = 20^* + 20^* = 10^+ \cup 20^*20^*$
- $X_1 + X_3 = 10^* + 30^* = 10^+ \cup 10^*30^* \cup 30^*10^*$,

Important example— $(10^*)_4$

Example

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

Least solution:

$$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$$

Checking:

- $X_2 + X_2 = 20^* + 20^* = 10^+ \cup 20^*20^*$
- $X_1 + X_3 = 10^* + 30^* = 10^+ \cup 10^*30^* \cup 30^*10^*$,
- $(X_2 + X_2) \cap (X_1 + X_3) = 10^+$.

Important example— $(10^*)_4$

Example

$$X_1 = (X_2 + X_2 \cap X_1 + X_3) \cup \{1\}$$

$$X_2 = (X_{12} + X_2 \cap X_1 + X_1) \cup \{2\}$$

$$X_3 = (X_{12} + X_{12} \cap X_1 + X_2) \cup \{3\}$$

$$X_{12} = X_3 + X_3 \cap X_1 + X_2$$

Least solution:

$$((10^*)_4, (20^*)_4, (30^*)_4, (120^*)_4)$$

Checking:

- $X_2 + X_2 = 20^* + 20^* = 10^+ \cup 20^*20^*$
- $X_1 + X_3 = 10^* + 30^* = 10^+ \cup 10^*30^* \cup 30^*10^*$,
- $(X_2 + X_2) \cap (X_1 + X_3) = 10^+$.

Remark

Resolved equations with $\cap, +$ or $\cup, +$ specify only ultimately periodic sets.

Generalisation and how to apply it

Idea

We append digits from the left, controlling the sets of digits.

Generalisation and how to apply it

Idea

We append digits from the left, controlling the sets of digits.

Using the idea

Generalisation and how to apply it

Idea

We append digits from the left, controlling the sets of digits.

Using the idea

- $(ij0^*)_k$ for every i, j, k

Generalisation and how to apply it

Idea

We append digits from the left, controlling the sets of digits.

Using the idea

- $(ij0^*)_k$ for every i, j, k

Theorem

For every k and $R \subset \{0, \dots, k-1\}^*$ if R is regular then $(R)_k \in EQ$.

Generalisation and how to apply it

Idea

We append digits from the left, controlling the sets of digits.

Using the idea

- $(ij0^*)_k$ for every i, j, k

Theorem

For every k and $R \subset \{0, \dots, k-1\}^*$ if R is regular then $(R)_k \in EQ$.

Generalisation and how to apply it

Idea

We append digits from the left, controlling the sets of digits.

Using the idea

- $(ij0^*)_k$ for every i, j, k

Theorem

For every k and $R \subset \{0, \dots, k-1\}^*$ if R is regular then $(R)_k \in EQ$.

Example (Application)

Let $S \subseteq (10^* \Sigma_k 0^*)_k$. How to obtain

$S' = \{(10^n(d+1)0^m)_k : (10^n d 0^m)_k \in S\}$?

$$S' = \bigcup_{d \in \Sigma_k} \left((S \cap (10^* d 0^*)_k) + (10^*)_k \right) \cap (10^* (d+1) 0^*)_k$$

Application: complexity

Definition

Complexity theory (of a set S)—how many resources are needed to answer a question?

"Given n , does $n \in S$ "

Application: complexity

Definition

Complexity theory (of a set S)—how many resources are needed to answer a question?

"Given n , does $n \in S$ "

Resources:

- space
- time
- non-determinism

Application: complexity

Definition

Complexity theory (of a set S)—how many resources are needed to answer a question?

"Given n , does $n \in S$ "

Resources:

- space
- time
- non-determinism

For example EXPTIME.

Application: complexity

Definition

Complexity theory (of a set S)—how many resources are needed to answer a question?

"Given n , does $n \in S$ "

Resources:

- space
- time
- non-determinism

For example EXPTIME.

Definition

Reduction: Problem $P \geq P'$ if we can answer P (fast) then we can answer P' (fast).

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- *state of the machine is a string—encode as a number*

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- *state of the machine is a string—encode as a number*
- *easy to define final accepting computation*

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- state of the machine is a string—encode as a number
- easy to define final accepting computation
- recurse back

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- *state of the machine is a string—encode as a number*
- *easy to define final accepting computation*
- *recurse back*
- *transition is a local change*

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- *state of the machine is a string—encode as a number*
- *easy to define final accepting computation*
- *recurse back*
- *transition is a local change*
- *easily encoded using regular notation*

Problem

Given a resolved system with $\cap, \cup, +$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- *state of the machine is a string—encode as a number*
- *easy to define final accepting computation*
- *recurse back*
- *transition is a local change*
- *easily encoded using regular notation*

Example

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- state of the machine is a string—encode as a number
- easy to define final accepting computation
- recurse back
- transition is a local change
- easily encoded using regular notation

Example

- Machine $abcd^q e \rightarrow abcd' e^{q'}$

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- state of the machine is a string—encode as a number
- easy to define final accepting computation
- recurse back
- transition is a local change
- easily encoded using regular notation

Example

- Machine $abcd^q e \rightarrow abcd'e^{q'}$
- String $(0a0b0cqd0e)_k \rightarrow (0a0b0c0d'q'e)_k$

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- state of the machine is a string—encode as a number
- easy to define final accepting computation
- recurse back
- transition is a local change
- easily encoded using regular notation

Example

- Machine $abcd^q e \rightarrow abcd'e^{q'}$
- String $(0a0b0cqd0e)_k \rightarrow (0a0b0c0d'q'e)_k$
- If $(0a0b0c0d'q'e)_k$ is accepting we want to add $((qd0)_k - (0d'q')_k)$

Problem

Given a resolved system with \cap , \cup , $+$ and a number n , does $n \in S_1$.

EXPTIME-complete

Idea

- state of the machine is a string—encode as a number
- easy to define final accepting computation
- recurse back
- transition is a local change
- easily encoded using regular notation

Example

- Machine $abcd^q e \rightarrow abcd'e^{q'}$
- String $(0a0b0cqd0e)_k \rightarrow (0a0b0c0d'q'e)_k$
- If $(0a0b0c0d'q'e)_k$ is accepting we want to add $((qd0)_k - (0d'q')_k)$
- Using the trick with intersection with regular sets.

More results—greater expressive power

Problem

Regular sets are very easy. Slow growth, decidable properties etc. Can we do better?

More results—greater expressive power

Problem

Regular sets are very easy. Slow growth, decidable properties etc. Can we do better?

Idea

*For regular languages we expanded numbers to the left. Maybe we can expand in **both** directions?*

More results—greater expressive power

Problem

Regular sets are very easy. Slow growth, decidable properties etc. Can we do better?

Idea

*For regular languages we expanded numbers to the left. Maybe we can expand in **both** directions?*

We can. But this is not easy.

More results—greater expressive power

Problem

Regular sets are very easy. Slow growth, decidable properties etc. Can we do better?

Idea

*For regular languages we expanded numbers to the left. Maybe we can expand in **both** directions?*

We can. But this is not easy.

Theorem

For every k and $R \subset \{0, \dots, k-1\}^$ if R is recognised by a **trellis automaton** M then $(R)_k \in EQ$.*

Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;

Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;

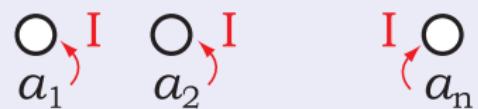
Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- $I : \Sigma \rightarrow Q$ sets initial states;



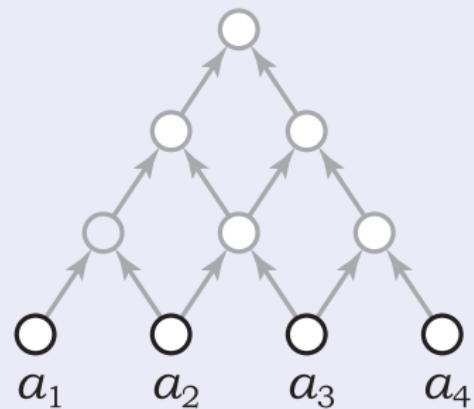
Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- $I : \Sigma \rightarrow Q$ sets initial states;



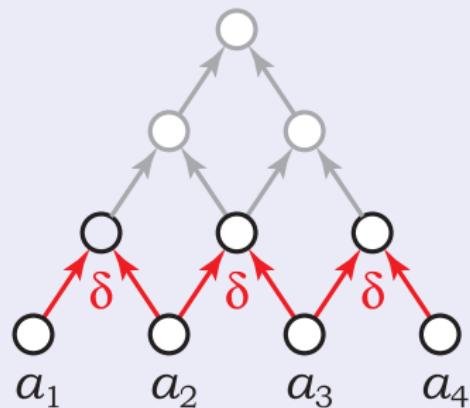
Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- $I : \Sigma \rightarrow Q$ sets initial states;
- $\delta : Q \times Q \rightarrow Q$, transition function;



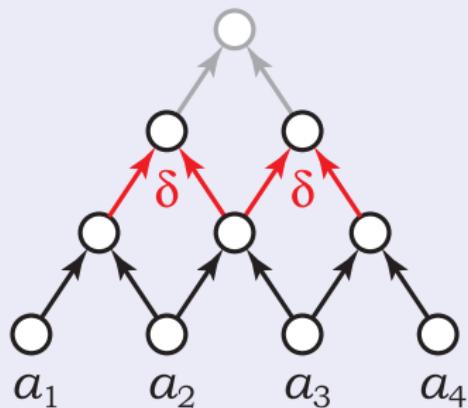
Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- $I : \Sigma \rightarrow Q$ sets initial states;
- $\delta : Q \times Q \rightarrow Q$, transition function;



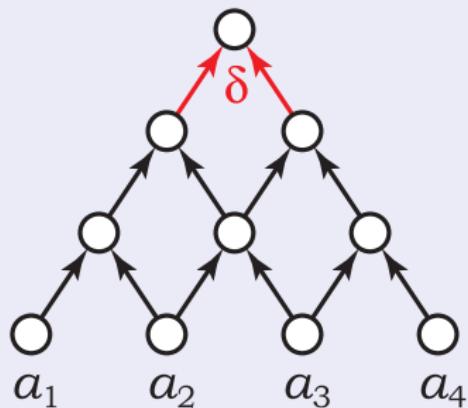
Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- $I : \Sigma \rightarrow Q$ sets initial states;
- $\delta : Q \times Q \rightarrow Q$, transition function;



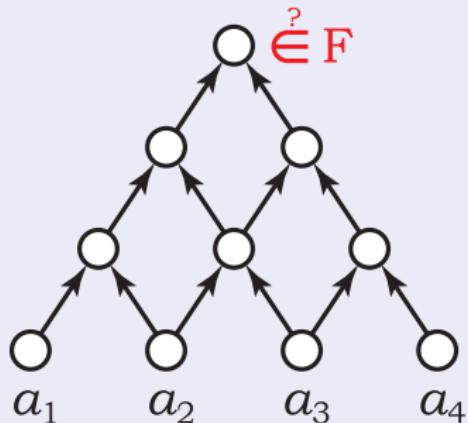
Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- $I : \Sigma \rightarrow Q$ sets initial states;
- $\delta : Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: accepting states.



Trellis automata

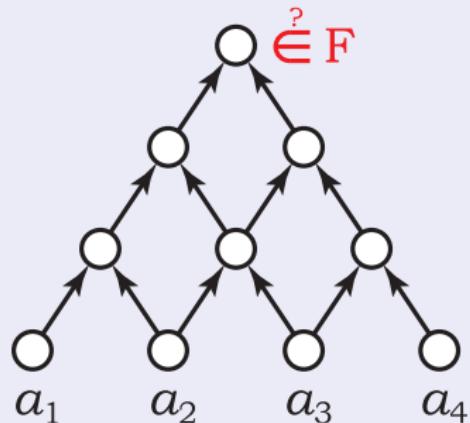
Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- $I : \Sigma \rightarrow Q$ sets initial states;
- $\delta : Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: accepting states.

- Closed under \cup, \cap, \sim , not closed under concatenation.



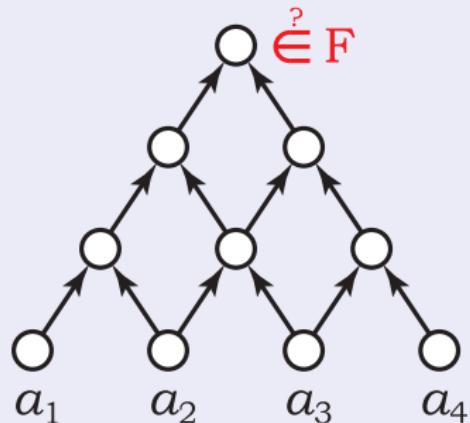
Trellis automata

Definition (Culik, Gruska, Salomaa, 1981)

A **trellis automaton** is a

$M = (\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- $I : \Sigma \rightarrow Q$ sets initial states;
- $\delta : Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: accepting states.



- Closed under \cup, \cap, \sim , not closed under concatenation.
- Can recognize $\{wcw\}$, $\{a^n b^n c^n\}$, $\{a^n b^{2^n}\}$, VALC.

Theorem

For every k and $R \subset \{0, \dots, k-1\}^*$ if R is recognised by a **trellis automaton** M then $(R)_k \in EQ$.

Computational completeness of language equations

- Model of computation: Turing Machine

Computational completeness of language equations

- Model of computation: Turing Machine
- Recursive sets:

Definition

S is recursive if there exists M , such that $M[w] = 1$ for $w \in S$ and $M[w] = 0$ for $w \notin S$

Computational completeness of language equations

- Model of computation: Turing Machine
- Recursive sets:

Definition

S is recursive if there exists M , such that $M[w] = 1$ for $w \in S$ and $M[w] = 0$ for $w \notin S$

- Language equations over Σ , with $|\Sigma| \geq 2$.

Computational completeness of language equations

- Model of computation: Turing Machine
- Recursive sets:

Definition

S is recursive if there exists M , such that $M[w] = 1$ for $w \in S$ and $M[w] = 0$ for $w \notin S$

- Language equations over Σ , with $|\Sigma| \geq 2$.

Theorem

$L \subseteq \Sigma^*$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$
if and only if

L is recursive.

Computational completeness of language equations

- Model of computation: Turing Machine
- Recursive sets:

Definition

S is recursive if there exists M , such that $M[w] = 1$ for $w \in S$ and $M[w] = 0$ for $w \notin S$

- Language equations over Σ , with $|\Sigma| \geq 2$.

Theorem

$L \subseteq \Sigma^*$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$
if and only if

L is recursive.

- Multiple-letter alphabet essentially used.

Computational completeness of language equations

- Model of computation: Turing Machine
- Recursive sets:

Definition

S is recursive if there exists M , such that $M[w] = 1$ for $w \in S$ and $M[w] = 0$ for $w \notin S$

- Language equations over Σ , with $|\Sigma| \geq 2$.

Theorem

$L \subseteq \Sigma^*$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$
if and only if

L is recursive.

- Multiple-letter alphabet essentially used.
- ✓ Remaking the argument for sets of numbers!

Outline of the construction

Theorem

$S \subseteq \mathbb{N}_0$ is given by unique solution of a system with $\{\cup, +\}$ ($\{\cap, +\}$)
if and only if

S is recursive.

Outline of the construction

Theorem

$S \subseteq \mathbb{N}_0$ is given by unique solution of a system with $\{\cup, +\}$ ($\{\cap, +\}$)
if and only if

S is recursive.

- Turing Machine T for S

Outline of the construction

Theorem

$S \subseteq \mathbb{N}_0$ is given by unique solution of a system with $\{\cup, +\}$ ($\{\cap, +\}$)
if and only if

S is recursive.

- Turing Machine T for S
- $\text{VALC}(T)$ (transcription of computation): recognised by a trellis automaton

Outline of the construction

Theorem

$S \subseteq \mathbb{N}_0$ is given by unique solution of a system with $\{\cup, +\}$ ($\{\cap, +\}$)
if and only if

S is recursive.

- Turing Machine T for S
- $\text{VALC}(T)$ (transcription of computation): recognised by a trellis automaton
- Trellis automata \rightarrow resolved equations over sets of numbers

Outline of the construction

Theorem

$S \subseteq \mathbb{N}_0$ is given by unique solution of a system with $\{\cup, +\}$ ($\{\cap, +\}$)
if and only if

S is recursive.

- Turing Machine T for S
- $\text{VALC}(T)$ (transcription of computation): recognised by a trellis automaton
- Trellis automata \rightarrow resolved equations over sets of numbers
- Technical trick: resolved equations with $\cap, \cup, +$ \rightarrow unresolved with $\cup, +$ (or $\cap, +$)

Outline of the construction

Theorem

$S \subseteq \mathbb{N}_0$ is given by unique solution of a system with $\{\cup, +\}$ ($\{\cap, +\}$) if and only if

S is recursive.

- Turing Machine T for S
- $\text{VALC}(T)$ (transcription of computation): recognised by a trellis automaton
- Trellis automata \rightarrow resolved equations over sets of numbers
- Technical trick: resolved equations with $\cap, \cup, +$ \rightarrow unresolved with $\cup, +$ (or $\cap, +$)
- Extracting numbers with notation $L(T)$ from numbers with notation $\text{VALC}(T)$

Outline of the construction

Theorem

$S \subseteq \mathbb{N}_0$ is given by unique solution of a system with $\{\cup, +\}$ ($\{\cap, +\}$) if and only if

S is recursive.

- Turing Machine T for S
- $\text{VALC}(T)$ (transcription of computation): recognised by a trellis automaton
- Trellis automata \rightarrow resolved equations over sets of numbers
- Technical trick: resolved equations with $\cap, \cup, +$ \rightarrow unresolved with $\cup, +$ (or $\cap, +$)
- Extracting numbers with notation $L(T)$ from numbers with notation $\text{VALC}(T)$

Remark

Least (greatest) solution—RE-sets (co-RE-sets).

One variable

Problem

How many variables are needed to define something interesting?

One variable

Problem

How many variables are needed to define something interesting?

Idea

Encoding

$$(S_1, \dots, S_k) \rightarrow \bigcup_{i=1}^k p \cdot S_i - d_i .$$

One variable

Problem

How many variables are needed to define something interesting?

Idea

Encoding

$$(S_1, \dots, S_k) \rightarrow \bigcup_{i=1}^k p \cdot S_i - d_i .$$

- EXPTIME holds for $X = \varphi(X)$

One variable

Problem

How many variables are needed to define something interesting?

Idea

Encoding

$$(S_1, \dots, S_k) \rightarrow \bigcup_{i=1}^k p \cdot S_i - d_i .$$

- EXPTIME holds for $X = \varphi(X)$
- unique solution $\varphi(X) = \psi(X)$ —recursively-hard ($\cap, \cup, +$)

Addition only

Problem

Is addition enough to define something interesting? (general case)

Addition only

Problem

Is addition enough to define something interesting? (general case)

Idea

Encoding

$$(S_1, \dots, S_k) \rightarrow \bigcup_{i=1}^k p \cdot S_i - d_i .$$

plus something extra simulates \cup and $+$.

Addition only

Problem

Is addition enough to define something interesting? (general case)

Idea

Encoding

$$(S_1, \dots, S_k) \rightarrow \bigcup_{i=1}^k p \cdot S_i - d_i .$$

plus something extra simulates \cup and $+$.

- unique solution $\varphi(X) = \psi(X)$ —recursively-hard ($\cap, \cup, +$)

Conclusion

- A basic mathematical object.

Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.

Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

- ① A Diophantine equation with PRIMES as the range of x .

Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

- ① A Diophantine equation with PRIMES as the range of x .
- ② An equation over sets of numbers with PRIMES as the unique value of X .

Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

- ① A Diophantine equation with PRIMES as the range of x .
- ② An equation over sets of numbers with PRIMES as the unique value of X .

- Any number-theoretic methods?

Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

- ① A Diophantine equation with PRIMES as the range of x .
- ② An equation over sets of numbers with PRIMES as the unique value of X .

- Any number-theoretic methods?

Problem

Construct a set not representable by equations with $\{\cup, \cap, +\}$.