A ¢-Competitive Algorithm for Collecting Items
with Increasing Weights from a Dynamic Queue

Marcin Bienkowski®2, Marek Chrobak®:!, Christoph Diirrd3, Mathilde Hurand®3, Artur Jez*2, Fukasz
Jez*®2, Grzegorz Stachowiak®?

4Institute of Computer Science, University of Wroctaw, 50-383 Wroctaw, Poland.
b Institute of Mathematics, Academy of Sciences of the Czech Republic, Zitnd 25, 115 67 Praha 1, Czech Republic
¢Department of Computer Science, University of California, Riverside, CA 92521, US.
dCNRS, LIP6, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France.
¢Google, 8002 Ziirich, Switzerland.

Abstract

The bounded-delay packet scheduling (or buffer management) problem is to schedule transmissions of pack-
ets arriving in a buffer of a network link. Each packet has a deadline and a weight associated with it. The
objective is to maximize the weight of packets that are transmitted before their deadlines, assuming that
only one packet can be transmitted in one time step. Online packet scheduling algorithms have been exten-
sively studied. It is known that no online algorithm can achieve competitive ratio better than ¢ ~ 1.618 (the
golden ratio), while the currently best upper bound on the competitive ratio is 2¢/2 — 1 ~ 1.824. Closing
the gap between these bounds remains a major open problem.

The above mentioned lower bound of ¢ uses instances where item weights increase exponentially over
time. In fact, all lower bounds for various versions of buffer management problems involve instances of
this type. In this paper, we design an online algorithm for packet scheduling with competitive ratio ¢ when
packet weights are increasing, thus matching this lower bound. Our algorithm applies, in fact, to a much
more general version of packet scheduling, where only relative order of the deadlines is known, not their
exact values.

Keywords: online algorithms, competitive analysis, buffer management, packet scheduling
2000 MSC: 68W01, 68W05, 68W20, 68W40, 68Q25

1. Introduction

The bounded-delay packet scheduling (or buffer management) problem is to schedule transmissions of
packets arriving at a network link. Arriving packets are stored in a buffer whose size is unbounded. Each
packet has a deadline and a weight associated with it. The time is discrete and only one packet can be
transmitted in one time step. The objective is to maximize the weight of packets that are transmitted before
their deadlines expire. Online packet scheduling algorithms have been extensively studied in the literature
[24 134 4L 151164 [7, 18] 9]]. It has been known for some time that no online algorithm can achieve competitive

IResearch supported by NSF grants OISE-0340752, CCE-0729071 and CCF-1217314.

2Supported by MNiSW grants N N206 368839, 2010-2013.

3Research supported by ANR Alpage and ANR Netoc. Most of the work was carried out while the author was at LIX Ecole
Polytechnique.

Preprint submitted to Theoretical Computer Science March 11, 2013

ratio better than ¢ ~ 1.618, the golden ratio [1} [3]. The greedy algorithm, which always transmits the
maximum weight pending packet, is 2-competitive [} 6] and, after a sequence of improvements, the best
upper bound on the competitive ratio has been now reduced to 2v/2 — 1 ~ 1.828 [4]. Online algorithms with
ratio ¢ have been developed for some special cases, including the 2-bounded case [6]], where each packet
must be transmitted within at most two steps, or the more general case of agreeable deadlines [§]], where
the items are released in order of non-decreasing deadlines. For the general case, closing the gap between
these bounds remains a major open problem in the area of online buffer management algorithms.

In the companion paper [10]], we introduced a more general version of packet scheduling, where only
relative order of the deadlines is known, not their exact values. This model is motivated by packet scheduling
problems in networks with tiered traffic, competition with other traffic streams, interference on wireless
links, or other situations where access to the communication channel is intermittent and unpredictable. In
[LO], the model is described as follows: we have a dynamic queue S that stores items with weights. At each
time step, some items can be inserted into S at arbitrary locations, and a prefix of S can be deleted. We can
collect one item from S at each step, with the restriction that each item can be collected at most once. (The
collected item stays in the queue. Put another way, we actually only collect the value of the item.) The
objective is to maximize the total weight of collected items. For brevity, we will refer to this problem as the
weighted item collection problem.

In the case of packet scheduling, items represent packets, with the queue S containing all packets that
have been released but have not yet expired, ordered by their deadlines. As new packets are released they
are inserted into S in appropriate locations, consistent with the ordering. At each step the expired packets
are removed from S. Due to their ordering, this will indeed result in removing a prefix of S. Collecting
an item represents transmitting the corresponding packet. (Note that the buffer will then contain the items
in § that have not been transmitted by the algorithm.) The difference between the two problems can be
delineated as follows: while in packet scheduling the arrivals of packets are unpredictable, once a packet
arrives its exact deadline is revealed. In the item collection problem, both arrival and expiration times are
not known; we only know that the items will expire in the order determined by the queue.

Since packet scheduling is a special case, a lower bound of ¢ applies to the weighted item collection
problem as well. In fact, in our setting the proof can be considerably simplified, as we will demonstrate
shortly. A stronger lower bound of ~ 1.633 was shown in [[10]. As for upper bounds, the greedy algorithm
generalizes naturally to the weighted item collection problem and it remains 2-competitive. The main result
of [[10] is a better upper bound of ~ 1.89.

In weighted item collection, the online algorithm faces the trade-off between the number of items it can
collect and their total weight. To collect more items, it is better to collect those early in the queue, since
they will be deleted first. On the other hand, items later in the queue may have higher weights, but if we
collect those items we may end up with fewer items overall, because the earlier items can get deleted. This
trade-off is illustrated by the example in Figure[I] where an online algorithm A collects items 25 and 35. In
hindsight, in the first step it would have been better to collect item 40, since it was deleted at the same time
as 25, and in the second step it would have been better to collect 20, since then A could still collect 35 in
the next step. In this example, A’s gain is 25 + 35 = 60, while the optimum gain is 40 420+ 35 =95.

Let us consider another example, which is actually an adversary strategy that proves the lower bound of
¢ on the competitiveness of any online algorithm. Suppose that the queue initially contains two items, of
weights 1 and ¢, in this order. If the algorithm collects the item of weight 1, then let both items be deleted
after the first step, in which case the optimum gain is ¢. If the algorithm collects the item of weight ¢,
then let only the first item be deleted after the first step. As a result, the algorithm’s gain is ¢, while the
optimum gain is 1 4+ ¢ = ¢>. In both cases, the optimum gain is ¢ times the algorithm’s gain, proving a

deleted items queue S

Step 1: @ @ A collects 25
Step 2: @ @ A collects 35
sep 3 (@) ()

Figure 1: An example of an online algorithm A collecting items from a dynamic queue. Items are identified by their weights.
Collected items are shaded. Initially the queue contains items 25, 40 and 35. In the first step, A collects item 25. After the first step
items 25, 40 are deleted and item 20 is inserted right before item 35. In the second step, A collects item 35. After the second step
item 20 is deleted. In the last step (not shown) item 35 will be deleted, completing the computation.

lower bound of ¢ on the competitive ratio. Note that this lower bound strategy cannot be emulated in the
packet scheduling model, since the second item is released at the beginning but its expiration time depends
on the algorithm’s choice in the first step. (The lower bound of ¢ for packet scheduling in [} 3] is much
more involved.)

Our results. We design an online algorithm for weighted item collection with competitive ratio ¢ for in-
stances where item weights are increasing with respect to their ordering in the queue. (See the formal
definition in the next section.) Since the lower bound presented above uses an instance with increasing
weights, this establishes a tight bound of ¢ for such instances.

The assumption about increasing weights is motivated by the lower bound techniques for bounded-delay
packet scheduling [1} (3 |5], which use instances where the weights of packets increase with respect to their
deadlines. (In fact, these weights increase exponentially.) Our result implies that for such instances the
ratio of ¢ is tight. Lower bound strategies that use increasing weights are commonly used in various packet
buffering models; other examples include lower bounds for packet scheduling for 2-bounded instances and
2-uniform instances [[11]], or lower bounds for buffer management with bounded-size buffers [[1. 16l [12].

The significance of our contribution can be summarized as follows. If there exists a ¢-competitive
algorithm for packet scheduling, the ideas from our work should be useful in designing such an algorithm.
On the other hand, if the optimal ratio for packet scheduling is larger than ¢, then our proof shows that the
lower bound construction for a better bound will require new ideas, based on a non-increasing sequence. It
could be possible, for example, to adapt the approach from [[10] that uses a bitonic (U-shaped) sequence. We
also point out that for decreasing sequences the obvious greedy algorithm computes an optimum solution.

Note. A preliminary version of this work appeared in the Proceedings of the 20th ACM-SIAM Symposium
on Discrete Algorithms (SODA’09) [[13]]. Other results from [13]] have been published separately in the
companion paper [10].

2. Preliminaries

We adapt the notation and terminology from [10]. At any time step, the items currently in the queue S
(that is, the items already inserted but not yet deleted) are referred to as active. The queue ordering relation
is denoted “<1”, that is a <1 b means that a precedes b in the queue. Deleted items cannot be reinserted into

3

the queue, so this relation is well defined. We can extend “<1” to a linear order on the whole instance by
letting a <1 b if a was deleted from the queue before b was inserted. This is summarized in the following
observation.

Fact 1. At any time, relation “<1” is a total order on all already released items, with the currently active
items forming a suffix of this ordering.

The weight of an item x is denoted by w, or w(x). We extend this notation to sets: the total weight of
a set X of items is denoted by w(X). To simplify the arguments we assume that all weights are different;
otherwise we can modify the weight comparison relation so that for any two items of equal weight the one
later in the queue is considered heavier. We will say that an instance of the item collection problem is
monotone if any two items a, b with a < b satisfy w, < wp,. (By our assumption that there are no two items
of the same weight the latter is equivalent to w, < wy.) In particular, at any time step the weight of the active
items increases with respect to their position in the queue. Further, all already deleted items have smaller
weights than all active items.

We use standard terminology from competitive analysis. An algorithm A is called online if at each
step its decision as to what item from § to collect is independent of future queue updates. A is called R-
competitive if its gain on any instance [is at least the optimum gain on / divided by R. The competitive
ratio of A is the smallest R for which A is R-competitive.

An item is called pending for an online algorithm A at a given step if it is active but not yet collected
by A.

It is easy to show that, without loss of generality, optimal (the adversary’s) solutions satisfy the following
property:

Earliest-Expiration-First (EEF) Property: For any two active items a <1b, if the adversary collects b at the
current time step, then the adversary will not collect a in the future.

If such b is collected, we will say that the adversary forfeits a. We say that an item a is pending for the
adversary at a certain time step if it can be collected later by the adversary satisfying the EEF property. In
other words, this a is active, and neither collected nor forfeited by the adversary. Note that the concept of
pending items is different for online algorithms and the adversary.

3. Algorithm MARK&PICK

In this section, we present an online algorithm MARK&PICK that is ¢-competitive for monotone in-
stances, namely when item weights are increasing with respect to the queue order, as defined in the previous
section. Recall that all weights are assumed to be different.

We think of each time step as consisting of two parts. In the first part a prefix of the queue is deleted
and some items are inserted into the queue. In the second part, the algorithm can collect an item.

Algorithm 1 MARK&PICK (single step)
/* update queue */
if there is no pending item then skip this step
m < the heaviest unmarked item (not necessarily active)
mark m
collect the earliest pending item ¢ with wy > w,,, /¢

It is not obvious that this algorithm is well defined. A formal proof, given in the next section, involves
defining a number of invariants and showing that they are preserved throughout the computation. To gain

4

some intuition, assume that in all previous steps the items m and ¢ were well-defined. Thus, at each previous
step, MARK&PICK marked a single item and collected a single item. The consequence of this is that at the
beginning of the current step the number of marked items is equal to the number of collected items. Thus, if
there is a pending item then there must also be an unmarked item in the instance (possibly already deleted
from the queue). This implies that m is well-defined. Furthermore, if m is pending, then m itself is a
candidate for ¢, so £ is also well-defined in this case. However, the proof of the existence of £ when m is not
pending is more involved.

3.1. Dominance Relation

Let U, V be two sets of real numbers. We say that V dominates U, denoted V > U, if and only if there is
an injection f : U — V such that f(u) > u for all u € U. From the definition, V = U implies that |V| > |U].
(To emphasize, we do not require that |U| = |V|.)

For a set X and an element x, we write X Ux = X U {x}, for simplicity. We now show that, under some
conditions, adding u to U and v to V may preserve the dominance relation V = U. In the lemma below, we
assume that max(0) = —oo.

Lemma 1. Let IT be a finite set of real numbers and U,V C II, where V = U. Consider two numbers
ucIl\Uandv eII\V.If v > uorv=max(IT\ V), then VUv > U Uu.

Proof. If v > u then the claim clearly holds: it is enough to take the injection f : U — V showing thatV = U
and extend it to u, by putting f(u) = v. So, in the following, we assume that v = max(IT\ V) < u.

For any X C ITand x € I, let |X|>, = |{z : z € X, z > x}| denote the number of elements in X that are
at least x. It is easy to see that V = U if and only if |V |, > |U|>, for all x € I1. We use this characterization
in the proof.

For x <'v, it holds that

VUV = VIze+ 12 Uz + 1= [UUul>x
For v < x note that, as v = max(IT\ V), it holds that |V |~ = |II|>, and so
VUV[ox = Vo =[]z 2 [UUul>x
This concludes the proof. O

It will be convenient to extend the dominance relation to sets of items A, B: We will write A = B if the
same relation holds for the weights in A and B, that is, {w,:a € A} > {w,:a € B}. Generalizing it further,
for any real numbers & and f3, we write A = BB if {aw,:a € A} = {Bw,:a € B}.

3.2. Correctness

We introduce several dynamic sets of items that will be used in the analysis. Let M;, L; and Z; denote,
respectively, the sets of items marked by MARK&PICK, collected by MARK&PICK, and collected by the
adversary up to and including step 7. Whenever we need to refer to specific items from these sets, m;, ¢;
and z; denote, respectively, the item m marked by MARK&PICK, the item ¢ collected by MARK&PICK, and
the item collected by the adversary in step 7. Note that for some steps ¢ each of items ¢;, m;, or z; may be
undefined.

Lemma 2. At each time #:
(i) if there is an item pending for MARK&PICK, then there is an unmarked item; further, if m, is the
heaviest unmarked item then there is a pending item ¢, such that ow(¢;) > w(m,),

5

(11) Ml i LI,
(iii) oL, > M, and
(iv) |M;| = |L,|.

Proof. The proof is by induction on the number of steps. The hypothesis trivially holds at the beginning
(for t = 0), when both sets My and Ly are empty and there are no active items.

For the induction step, suppose that # > 0 and that all claims (i)—(iv) hold right after time step ¢’ = ¢ — 1.
Insertions and deletions of items at the beginning of step ¢ do not affect the validity of claims of the lemma
for sets L,_1, M;_ and Z,_1, since they do not change these sets.

By the inductive assumption (iv) we have |L,_|| = |M;_|, so if there is an item pending for MARK&PICK
in step 7, then there is also an unmarked item (not necessarily pending), which proves the first part of (i),
i.e., the existence of m,. To prove the second part of (i), i.e., that ¢; exists as well, we consider two cases.
If m, is not active, then, by the monotonicity, any item a pending for MARK&PICK satisfies w(a) > w(m;),
so /; exists. Otherwise, when my; is active, let B be the set of all items b such that > m;. (So all items in B
except m; are in M,_;.) By Fact all items in B are active, and hence, by monotonicity, B contains the |B]|
heaviest items inserted till step 7. Since m, € B\ M,_1, the assumption that M, > L,_; implies that L,
contains at most |M;_;| = |B| — 1 items from B, so there is at least one item a € B\ L,_1. As w(a) > w(m,),
this proves the existence of ¢;, completing the proof of (i).

In this step, MARK&PICK marks m; and collects ¢;, so M; = M, Um,; and L, = L, U¥{;. We now apply
Lemma 1] with IT being the set of all items inserted in steps 1,2, ..., 7,V = M,;_1, v =m; = max(IT\ M,_;),
U =L,_;, and u = ¢,. This implies that M, > L,, showing (ii). Moreover, since ¢L,_; = M,_; and ¢w({,) >
w(m,) by (i), we also obtain that L, > M, as claimed in (iii).

Lastly, since ¢, and m, were chosen in step 7, and |L,_;| = |M;_1| by (iv), it follows that |L,| = |M;| and
so (iv) holds for step ¢, completing the inductive step and the proof of the lemma. O

Lemma [2]implies that Algorithm MARK&PICK is well-defined, that is, whenever MARK&PICK has a
pending item then the items m, and ¢, defined in the algorithm exist as well.

3.3. Partition into Phases

We now show that, without loss of generality, we can divide the computation into a sequence of disjoint
and independent phases. In each phase the adversary collects items in each step, while MARK&PICK
collects items up to a certain step and then stays idle till the end of this phase. The intuition behind the
phase partition is that if MARK&PICK does not have any pending items at some step then we can postpone
all queue updates until the adversary completes collecting all his pending items.

We now formalize the definition of phase partitioning. Specifically, we want to show that, without loss
of generality, we can assume that the input instance consists of a sequence of disjoint phases, where each
phase satisfies the properties (a)—(e) below (where T denotes the number of steps of a phase and the steps
in the phase are numbered 1, ..., T):

(a) Both the adversary and MARK&PICK collect only items that were released in this phase.
(b) MARK&PICK marks only items that were released in this phase.

(c) MARK&PICK collects an item in each step 1, 2, ..., T —k, for some k, and has no pending items in
steps T —k+1,...,T.

(d) The adversary collects an item in each step 1, ..., 7. Further, at step T — k4 1, there are k active items
not collected by the adversary, and the adversary collects these items in steps T —k+1, ..., T. (Thus
right after step T all active items are collected by the adversary.)

(e) There are no insertions nor deletions in steps T —k+1, ..., T.

Note that we do not assume that all active items are deleted after step 7'; we explain the reason at the
end of this section. The properties above are shown in the following lemma.

Lemma 3. Each instance I can be converted into an instance I’ that has a partition into phases that sat-
isfy properties (a)—(e). The gain of the adversary on I’ is at least as large as that on / and the gain of
MARK&PICK on [’ is at most as large as that on 1.

Proof. In the proof we will modify both the instance and the schedules of MARK&PICK and the adversary,
so that the new schedules satisfy the conditions (a)—(e).

Our modifications of the adversary schedule may produce schedules that may not have the EEF property.
Hence, for the purpose of our construction we will ignore the concept of the adversary forfeiting some items,
and allow him to collect any item that is active but not yet collected. As explained earlier, the modified
schedule can be converted into one that satisfies the EEF property, without decreasing the adversary’s gain.

We first show the first property in (d): that it is possible to modify the instance and the adversary’s
strategy, so that he collects an item in each step. Note that we can assume that the adversary always collects
an item if there exists an active and not yet collected item, for otherwise the adversary can collect such an
item now rather than later (or not at all). Thus, we only need to be concerned with steps where all active
items have already been collected by the adversary.

Consider an arbitrary instance, and choose s such that MARK&PICK collects items in steps 1, 2, ...,
s and does not have a pending item after step s. We can assume that s > 1, since otherwise no item was
released at step 1 and we can simply remove this step from the instance.

Claim A. Without loss of generality, the adversary collects items in each step 1,2,...,s.

To prove this claim, we show that if there is a step #, 1 <t < s, where the adversary is idle, then we can
modify the adversary strategy so that he collects all items collected before, plus one additional item; thus
increasing his gain.

So suppose that such step ¢ exists. We construct a sequence fy = t,11,1,...,t, of different time steps
suchthat 1 <t;<tandz, =¥, fori=1,2,...,qand th ¢ Z;_1. This is quite straightforward: By our
earlier argument, at step ¢ all active items are already in Z;_1; in particular ¢; € Z,_;. It means that ¢, = z;,
for some 1 <t <. If ¢, ¢ Z;,_; then ¢ = 1. Otherwise, we find #, such that z;,, = ¢, and so on. Since
|L;| > |Z;—1], such chain will eventually be found. We modify the adversary schedule by collecting each ¢,
atstep t;, i =1, 2, ..., ¢, and leaving other steps unchanged. Note that /,, ..., E,q are active in these steps,
as MARK&PICK collects them at these steps. As a result, the adversary collects all items collected before,
plus the item Z,q that was not collected in the previous schedule (because ﬁtq ¢ 7, and é,q is not active at
time #). The resulting schedule can be then converted into the EEF form.

This completes the proof of Claim A, and at this point we can assume that both MARK&PICK and the
adversary collect items in steps 1,2,...,s, and that MARK&PICK has no pending items right after step s.

Let k be the number of items that are active right after step s that have not been yet collected by the
adversary.

Claim B. Without loss of generality, the instance contains steps s+ 1, ..., s+ k. Furthermore,
(i) these steps do not involve any queue updates,
(i1) the adversary collects one item in each of these steps,

(iii) MARK&PICK is idle in these steps since it has no pending items.

Let g, 0 < g <k, be the largest integer for which steps s+ 1, ..., s+ ¢ satisfy the conditions in Claim B.
Suppose that g < k. Then right after step s + ¢ there are still active items not collected by the adversary.

If step s+ g+ 1 does not exist, add another step to the instance, with no queue updates, in which the
adversary will collect another available item. Suppose that step s+ ¢+ 1 exists. If there are queue updates
in step s+ ¢+ 1 (deletions or insertions), we do this: we “insert” a new step between s+ ¢ and s + g+ 1
with no updates and have the adversary collect any active uncollected item. We then modify the subsequent
collection schedule to take into account that this item is no longer available for the adversary after this step.

By iterating the above process, we will modify the computation so that Claim B is satisfied. We now
define the first phase to consist of steps 1,2,...,T = s+ k. As needed, the adversary collects all items that
were collected before, and perhaps collects more items, while MARK&PICK will mark and collect exactly
the same set of items.

Iterating this procedure leads to a partition of all steps into subsequent phases. Properties (c))-(e) follow
straight from the construction. To see that (@) holds as well notice that, according to the transformation, right
after the last step of the phase, but before insertions in the next phase, both the adversary and MARK&PICK
do not have any pending items. Thus, they cannot collect any item from this phase in the following phases.

Showing property (b)) is a little more involved. One snag is that some items could be active during several
phases, although only in the first of these phases they can be pending for the adversary or for MARK&PICK.
First we show the following:

Claim C. When a phase ends, all active items are marked.

Consider the set A of the active items right after the current phase ends. By the definition of phases,
they are all already collected by MARK&PICK, that is A C L;, where 7 is the total number of steps up to
and including the current phase. By Fact[I] all deleted items are before each item in A in the queue order
“<J”. In other words, items of A form a suffix of all items released so far, i.e., they are the heaviest items
released so far. Since also L; < M; (from Lemma , and |L¢| = |M|, we can conclude that A C M, as well.
Thus Claim C holds.

Claim C gives us the following separation property: at the beginning of a phase, unmarked items from
the previous phases are already deleted, and therefore they are lighter than the items inserted in the current
phase. This allows us to show property (b): consider a 7-th step of a phase, for t < T —k. At least 7 items
were inserted in this phase till step ¢, and in step ¢ at least one of them is not marked. As mentioned above,
this item is heavier than all unmarked items from the previous phases, so MARK&PICK will not mark any
item from the previous phases. O

Properties (a)—(e) imply that there is no interaction between phases: in each phase items are marked and
collected as if both MARK&PICK and the adversary started a new instance in this phase. For this reason,
throughout the rest of the paper, we restrict our attention and the analysis to instances that consist of a single
phase. Notice that there is a little subtlety here: it might happen that some items from previous phases are
still active, though they cannot be marked nor collected by MARK&PICK or the adversary in this phase.
Thus we can simply disregard these items in our analysis, as they do not affect the actions of the adversary

8

and MARK&PICK; the computation in each phase would be identical if the previous phases did not exist at
all. Hence, in the rest of the paper, whenever we write “active” or “deleted”, we in fact mean “active and
released in this phase” or “released in this phase and deleted”, respectively.

A reader might ask at this point why we cannot simply delete all active items after a phase ends, thus
making the phases completely disjoint. The reason is that this could violate the assumption about the weight
monotonicity if items released in the next phase are lighter than the active items from the previous phase.

3.4. Competitive Analysis

As explained in the previous sub-section, we can assume from now on that the instance consists of one
phase of T steps satisfying properties (a)—(e), with MARK&PICK collecting 7 — k items in steps 1,2, ..., T —
k, for some k, and the adversary collecting an item at each step.

Define L, C L, to be the set of items collected by MARK&PICK that are going to be collected by the
adversary in the future, i.e.:

L=LnN(Zr\Z%Z) .

We are particularly interested in the set L., .

Lemma 4. L/T,k = ZT \ZT—k = {ZT—k—H yous ,ZT}.

Proof. Since L, = Ly_ N (Zr \ Zr—y), it is enough to show that Z7 \ Zy_x C Ly, i.e., that the items
Zr—k+1» - - -, 27 Were collected by MARK&PICK before step T — k. This is quite straightforward: all these
items are active in step 7 — k+ 1, because they are pending for the adversary. As MARK&PICK has no
pending items at step 7 — k + 1, it must have collected these items before step 7 — k + 1. O

In some sense, the items in L., are “extra” for the adversary: in the last & steps, the adversary collects
these k items while MARK&PICK is idle. A reader may wonder whether L., simply contains the k heaviest
items collected by MARK&PICK (in the current phase). However, this is not true: Fix any adversarial
strategy for a single phase, and modify it by prepending it with k additional steps. At the beginning of these
steps, the adversary releases a set H of k very heavy items that will be collected by both the adversary and
MARK&PICK during initial k steps. The behavior of the algorithm and the adversary on the steps from the
original strategy remains unchanged. This way, L/, _, and H will be disjoint.

We would like to keep track of the steps that contribute extra items. Simply looking at the increases of
|L;| does not serve our purpose because this value may fluctuate, increasing and decreasing over time, while
we need a quantity that increases monotonically. So for¢ =1,...,T — k we define

. I
&= min |L].
By definition, & € {&_1,&_1+ 1} forallt = 1,...,T —k (we assume that & = 0), and 7 _; = k. Now, the
steps can be classified using the values of &. A step ¢ is increasing, if t <T —k and § = & _ + 1. All other
steps are non-increasing; this includes steps t > T — k. Moreover, let

z} = {zj : j <t, jis anincreasing step}, and

Z. ={zj : j <t, jis anon-increasing step}.
Thus |Zf| = & and |Z°| =1 — & fort < T —k.

We now describe the fundamental idea of the proof. We begin by presenting two simple instances, on
which the competitive ratio of Algorithm MARK&PICK is not better than ¢.

9

Example 1. Consider an instance in which all items are inserted at the beginning at once. There are 2n items
in total, n items of weight 1 followed by n items of weight ¢. (To simplify description, we allow items of
equal weight in our examples.) After n steps all items are deleted. MARK&PICK will mark the n heavy
items and collect the n light items, while the adversary can collect the n heavy items.

Example 2. The second instance is very similar: » items of weight 1 followed by n items of weight ¢ + &€,
for some small € > 0, with all items inserted at the beginning. After the first n steps all items of weight 1
are deleted and the items of weight ¢ + € are deleted after 2n steps. In the first n steps MARK&PICK will
mark and collect the n heavy items, after which it will remain idle. The adversary can collect all items. The
competitive ratio tends to ¢ with € — 0.

Let us now examine these two examples more closely and relate it to the notations introduced earlier.
In Example (1} T = n and the algorithm collects the same number of items as the adversary, that is, k = 0.
Furthermore, in each step L; is empty, hence all steps are non-increasing. Since w(¢;) > w(m,)/¢ at each
step, MARK&PICK’s gain is at least the weight of the marked items divided by @, that is ¢w(Ly) > w(Mr).
On the other hand, no feasible schedule can have its gain larger than the total weight of the set of marked
items (which may not even be feasible), whence the ¢-competitiveness of MARK&PICK follows.

Example [2| represents the other extreme scenario, where the adversary collects twice as many items as
MARK&PICK. Here we have T = 2n and k = n. For all 1 < T — k we have L, = L}, and all the first n
steps are increasing. It can be shown that for such instances My, = L, i.e. MARK&PICK collects the

T /2 heaviest available items. The idea here is that the items in Zﬁ P
the item z, was available for MARK&PICK but not chosen. Hence w(z,) < w(m,)/¢. Summing over all
t <T/2 gives w(Zy)p) < w(Mg)/, the latter is equal to Ly ,/¢, by our earlier observation. The items
collected by the adversary in the “extra” steps are exactly the items collected by MARK&PICK, i.e. My 5.
Thus, the total gain of the adversary is at most w(Zz) +w(Mr)2) < w(Mr2) /¢ +w(Mrg) = ¢w(My2),
as claimed.

In both instances MARK&PICK’s gain is only 1/¢ times the gain of the adversary, although in the first
instance MARK&PICK collects as many items as the adversary, whereas in the second one only half as
many. The competitive analysis for these two types of instances requires different accounting: in the first
case, each item a of the adversary is charged, one to one, to an item collected by MARK&PICK of weight at
least w,/¢; in the second case, we need to charge disjoint pairs of adversary’s items, each to a different item
of MARK&PICK, such that a pair a,b is charged to an item of weight at least (w, +wy;,)/@. An arbitrary
instance could be a mixture of such two types of instances, in which case constructing such mappings
becomes challenging. The rough idea of the analysis is to use the classification into non-increasing and
increasing steps to define the two mappings. In a non-increasing step ¢, we would like to charge z; to ¢,
since then w(¢;) > w(z)/¢. For an increasing step ¢, we would like to charge z; and ¢, (which will be
collected by the adversary later) to ¢; = m,, since then w(¢;) > (w(z;) +w(m,))/¢. But there are several
difficulties that need to be overcome. For example, unlike in Example[2] in general it is not necessarily true
that m, = ¢; in increasing steps; as a matter of fact, m, may not be collected by MARK&PICK at all, or it
could be collected at some other step (increasing or non-increasing).

Although this intuition reflects the fundamental idea behind our argument, in the formal proof that
follows we will not give an explicit construction of these two mappings; instead, we show how to relate the
adversary gain and the algorithm’s gain to the weight of marked items. Precisely speaking, we will show
that My_ = 0Z7 and My = Z3.

Lemma 5. If t is an increasing step, then
(i) 4; € Zr \ Z; (and thus ¢, € L] as well),
(ii) z; ¢ L;, and

= Zrp are light: in each stept < T /2

10

(iii) pw(z) < w(my).

Proof. Denoting Z' = Zy \ Z;, the definition of L] gives us that
L = (Li1u6)NZ and L, = L1N(Z'Uz) .

Thus, both these sets have cardinalities either |L,_; NZ'| or |L,_; NZ'| 4+ 1. Since 7 is an increasing step,
|L;| > |L,_,|, and therefore |Lj| = |L,_;NZ'|+ 1 and |L,_,| = |L,_; NZ'|. The first equality implies that
b, € Z' =Zr \ Z;, completing the proof of (i). The second equality implies that z; ¢ L,_;. Since ¢; ¢ Z, and
7t € Z;, these two items are different, i.e., ¢; # z;. Therefore z; ¢ L,_; U¥{; = L,, proving (ii).

Finally, we prove (iii). By (ii), z; ¢ L,. Further, z; must be active, because z; is pending for the adversary
at the beginning of step ¢. Therefore z; is pending for MARK&PICK as well. By already proved (i), ¢; = zy
for some ' > t. Both z and z; are pending for the adversary at step ¢, yet the adversary collects z;, which
implies that z; < zy, by the EEF assumption. Also, both z» and z; are pending for MARK&PICK at the
beginning of step 7 so, since MARK&PICK chooses ¢; = zy, we can conclude that ¢w(z,) < w(m,). The
proof is now complete. 0

Corollary 1. My_ = ¢Z}.

Proof. Since steps T —k—+1, ..., T are non-increasing, ZTj = Zﬁf - We prove a more general claim, namely
that M, = ¢Z} fort =0, ..., T —k.

The proof is by induction on ¢. The claim is clearly true for # = 0. Consider any step ¢ > 0. If step ¢
is non-increasing then Ztﬁ = Ztﬁ_1 and M, = M,_; Umy, so the claim follows trivially. If step ¢ is increasing,

then by Lemma (iii) and Lemma M, =M,_{Um, = (j)(Zil Uz) = (])Z,ﬁ. O

The innocent-looking lemma below is in fact the critical part of our analysis, as it will allow us to bound
the adversary gain in non-increasing steps by the weight of marked items.

Lemma 6. The set Z; can be collected in the steps 1, ..., T —k.
Proof. Note that the steps T —k+1, ..., T are non-increasing by definition. Thus, by Lemmaf]
Z7 =275 ULy . (1)

(The sum above is disjoint). We give a strategy of collecting items in steps 1, ..., T —k. By ¢; we will
denote the item collected in step ¢, and we let C; = {cy,¢z,...,¢ }. For each t, set C; will satisfy

Z° CC Cz UL . 2)

Note that the sets Z° and L] are disjoint: the former is a subset of Z, and the latter of Z7 \ Z;. Further,
|Z°| =t — & because exactly t — & steps among 1, ..., t are non-increasing. This in turn implies that

GNL| =& 3)

forallt =1,2,...,T — k. See Figure [2|for illustration.
Next, let us check that condition (2) is sufficient to show the lemma. From (@) we have |Cr_x ML} | =
Er_i =k and, by LemmaEI, |L;_| = k. Thus, (2) and (TJ) imply that

Crx = Zr Ul = Zr

11

Ct Etitems
o o
[[m Ny
[J m]
o] En - g o
Zt [J Y n g Lt g O

Figure 2: The relations between sets Z°, C; and L;. Items in Z? are drawn as discs and those in L] as squares, with items in C; filled
solid.

proving the lemma. It thus remains to show how the items in Cr_y can be collected.

The rest of the proof gives the strategy for collecting items cy, ..., cy_x. Consider a step ¢, and assume
that condition (2)) holds in steps 1, 2, ..., 7 — 1. The choice of ¢, depends on whether 7 is an increasing step
and whether z; € C;_;.

Case 1: ¢ is an increasing step. By the case assumption,
Zto = t(il) 4)
and moreover, by LemmaE] (1),
L =1L Ul .)

In this case, we will choose ¢; = ¢;. Trivially, ¢, ¢ L] | and, again by Lemma (i), 4; ¢ Z;. Therefore the
choice of ¢, is valid, that is, ¢; ¢ C,_;. So

Cl‘ — Cl‘—l Ugt . (6)

By (), the induction assumption that (2) holds for r — 1, and by (€), we have Z° =Z° |, C C;—; C C,.
Similarly, using (6), the inductive assumption, (@), and (§), we get C; =G, U¢, CZ° (UL, Ul =ZUL;.
Thus (2) holds for step ¢.

Case 2: ¢ is a non-increasing step. By the case assumption,
Z> =27,Uz . (7
Furthermore,
L, C LUz . (8)
We now distinguish two sub-cases. If z; ¢ C;_1, then we we can choose ¢; = z; obtaining
G =C_1Uz . 9)
Using (7)), the inductive assumption, and (9), we have Z° =Z° | Uz, C C;—; Uz = C;. Similarly, from (),

the inductive assumption, (§)), and (7), we have C;, = C,_1 Uz CZ° UL/ Uz CZ° UL Uz =Z2 UL,
Therefore (2)) holds for # in this sub-case.

12

The second sub-case is when z, € C;—;. By the inductive assumption that (2)) holds for step t — 1,
Z° CZ_y,and L] NZ_; =0, we obtain that C;_; \ Z,_; = C,_1 NL,_,. Obviously, z; ¢ Z,_, and thus
using (3)),

|Ct71 \Zt| = ‘thl \Zt71| -1 = étfl -1 = ét -1.
But |L]| > &, s0 L]\ (C,—1\ Z;) # 0. This, in turn, implies that L] \ C,_; # 0, because L; N Z, = 0. We choose
as ¢; any item from L, \ C;_1, and thus
C,=C_1Uc, forc el . (10)

From (7)), the inductive assumption, z; € C;_1, and (I0), we get Z° =Z° Uz CC;_1Uz = Ci—1 C C;. To
obtain the second inclusion in (2)), we use (10), the inductive assumption, (), (7), and the fact that ¢, € L,
getting G; =C—1Uc; CZ° UL, Uc; CZ° UL Uz Uc, = Z2 ULy, This proves that (2)) holds for step ¢,
completing the proof. 0

Corollary 2. Mr_y = Zy.

Proof. We prove the following, more general claim: if a set C of T —k items can be collected in steps
1,2,...,T — k then My_; = C. This will imply the lemma because in Lemma [we proved that the items in

Z7 can be collected in steps 1, ..., T —k.

Fix a schedule for collecting the items in C. Let ¢, be the item collected in step # and C; = {cy,¢2,. .., ¢ }.
So, in particular, C = Cy_y.

To prove our claim, we show that M; > C; after each step ¢t =0, ..., T — k. The proof is by induction
on ¢. The claim trivially holds for # = 0. In any step r > 0 it is enough to apply Lemma [T with V = M,_;,
U=Cr_1,v=m =max(IT\ M,_), u = ¢;, where I is the set of items inserted in steps 1, 2, ..., . O

Theorem 1. MARK&PICK is ¢-competitive.

Proof. For the purpose of this proof let my, ..., my_; denote the elements of My_; in order of decreasing
weights. A similar convention is used for Ly_; = Ly. Recall that by the definition of a phase, monotonicity,
and the marking scheme, my,...,m; are the heaviest k items released in a phase. We first show that these
items will be collected by MARKANDPICK, i.e., that

(i,mme) = (61,) (11)

By Lemma (i), My_g = Ly—x = L}, _,. By Lemmad] |L}_,| = k, and thus this dominance relation
implies that {my,...,m} = L’Tik. As all items in L’Tik are active in step T — k+ 1, so must be the items
iy, ..., my, due to weight monotonicity and Fact[I] Since MARK&PICK has no pending item at this step,
these items were already collected, which implies (TT).

To prove the theorem, we will show that w(Zr) < ¢w(L7). We now give a derivation of this inequality
and later justify each step:

w(Zr) = w(Zf)+w(Z7)

1 k T—k
< 5Zw(%)+ Y w(m) (12)
i=1 i=1
k T—k
=0) wim)+ Y w(m) (13)
i=1 i=k+1
ko T—k
< oY wli)+¢ Y wti) = ow(Lr) (14)
i=1 i=k+1

We now justify steps (12)-(14). By Corollary w(Zp) <w(Mr_i) =Y. Fw(m;). Similarly, by Corollary
and]Zle| =k, it holds that {my,...,m;} > ¢Z \. and hence w(ZTﬂ) < éﬂ‘:l w(m;). Together, these bounds
imply (12). Equation (13)) follows from 1+ 1/¢ = ¢ and simple algebra.

By (TT)), it holds that YX_, w(7;) = Y5, w(¥;), and Lemma(iii) implies that w(7;) < ¢w(¥;) for each i.
(Here we use the fact that there is a mapping supporting the dominance ¢Ly_; = My _; which maps /; to
m;, for each i.) Inequality (I4)) follows, and the proof is now complete. O

4. Conclusion

We have given a ¢-competitive algorithm for collecting items with increasing weights from a dynamic
queue, matching the lower bound for such instances. While attaining this competitive ratio for the general
item collection problem is not possible [10], the best lower bound for a well-studied restriction of item
collection, namely the bounded-delay packet scheduling problem, uses monotone instances [1} 13} 5]]. There-
fore, our results imply that if no ¢-competitive packet scheduling algorithm exists, then the lower bound
strategy used in the proof must be non-monotone. Additionally, if it is possible to achieve the ratio of ¢
for packet scheduling, the techniques introduced in this paper may be of help in designing a ¢-competitive
algorithm.

One interesting idea to pursue (as suggested by an anonymous referee) would be to study the dependence
of the competitive ratio on the maximum number of items that can expire at any given step. If at most
one packet is allowed to expire, then the algorithm that always collects the first item in the queue is 1-
competitive. If more than one item is allowed to expire per step, the optimum ratio for monotone instances
is ¢ (whether only two or more items can expire), as demonstrated by MARK&PICK and the trivial lower
bound we have given in the Introduction. For general instances, the lower bound of = 1.633 from [10] holds
even if at most four items are allowed to expire at each step. Of course, the same question can be studied
for the packet scheduling problem as well, where it is closely related to the study of so-called s-bounded
instances [2, [14]]. For s-bounded instances one can, without loss of generality, restrict attention to instances
where at most s packets expire at each step.

Acknowledgements. We are grateful to the anonymous referees for numerous comments and suggestions
regarding the presentation of the paper.

References

[1] N. Andelman, Y. Mansour, A. Zhu, Competitive queueing policies in QoS switches, in: Proc. 14th Symp. on Discrete
Algorithms (SODA), ACM/SIAM, pp. 761-770.

[2] E Y.L.Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall, T. Tichy, Online competitive algorithms for maximizing weighted
throughput of unit jobs, Journal of Discrete Algorithms 4 (2006) 255-276.

[3] E Y. L. Chin, S. P. Y. Fung, Online scheduling for partial job values: Does timesharing or randomization help?, Algorithmica
37 (2003) 149-164.

[4] M. Englert, M. Westermann, Considering suppressed packets improves buffer management in QoS switches, in: Proc. 18th
Symp. on Discrete Algorithms (SODA), ACM/SIAM, pp. 209-218.

[5] B. Hajek, On the competitiveness of online scheduling of unit-length packets with hard deadlines in slotted time, in: Proc.
Conference on Information Sciences and Systems, pp. 434—438.

[6] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, M. Sviridenko, Buffer overflow management in QoS
switches, SIAM J. Comput. 33 (2004) 563-583.

[7] A.Kesselman, Y. Mansour, R. van Stee, Improved competitive guarantees for QoS buffering, Algorithmica 43 (2005) 63-80.

[8] F. Li,J. Sethuraman, C. Stein, An optimal online algorithm for packet scheduling with agreeable deadlines, in: Proc. 16th
Symp. on Discrete Algorithms (SODA), ACM/SIAM, pp. 801-802.

14

(9]
(10]
(11]
[12]
[13]

(14]

F. Li, J. Sethuraman, C. Stein, Better online buffer management, in: Proc. 18th Symp. on Discrete Algorithms (SODA),
ACM/SIAM, pp. 199-208.

M. Bienkowski, M. Chrobak, C. Diirr, M. Hurand, A. Jez, L. Jez, G. Stachowiak, Collecting weighted items from a dynamic
queue, 2012. To appear in Algorithmica, http://dx.doi.org/10.1007/s00453-011-9574-6.

M. Chrobak, W. Jawor, J. Sgall, T. Tichy, Improved online algorithms for buffer management in QoS switches, ACM Trans.
on Algorithms 3 (2007).

W. Aiello, Y. Mansour, S. Rajagopolan, A. Rosén, Competitive queue policies for differentiated services, J. of Algorithms
55 (2005) 113-141.

M. Bienkowski, M. Chrobak, C. Diirr, M. Hurand, A. Jez, L. Jez, G. Stachowiak, Collecting weighted items from a dynamic
queue, in: Proc. 20th Symp. on Discrete Algorithms (SODA), ACM/SIAM, pp. 1126-1135.

L. Jez, One to Rule Them All: A General Randomized Algorithm for Buffer Management with Bounded Delay, in: Proc.
19th European Symp. on Algorithms (ESA), pp. 239-250.

15

http://dx.doi.org/10.1007/s00453-011-9574-6

	Introduction
	Preliminaries
	Algorithm Mark&Pick
	Dominance Relation
	Correctness
	Partition into Phases
	Competitive Analysis

	Conclusion

