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Abstract. Systems of equations with sets of integers as unknowns are
considered, with the operations of union, intersection and addition of
sets, S + T = {m + n | m ∈ S, n ∈ T}. These equations were recently
studied by the authors (“On equations over sets of integers”, STACS
2010 ), and it was shown that their unique solutions represent exactly
the hyperarithmetical sets. In this paper it is demonstrated that greatest
solutions of such equations represent exactly the Σ1

1 sets in the analytical
hierarchy, and these sets can already be represented by systems in the
resolved form Xi = ϕi(X1, . . . , Xn). Least solutions of such resolved
systems represent exactly the recursively enumerable sets.

1 Introduction

Consider equations ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn), in which the unknowns Xi

are sets of integers, and the expressions ϕ,ψ may contain addition S + T =
{m+ n | m ∈ S, n ∈ T}, Boolean operations and ultimately periodic constants.
At a first glance, they might appear as a simple arithmetical object. However,
already their simple special case, expressions and circuits over sets of integers,
have a non-trivial computational complexity, studied by McKenzie and Wag-
ner [10] in the case of nonnegative integers and by Travers [18] in the case of all
integers.

If only nonnegative integers are allowed in the equations, they become iso-
morphic to language equations [8] over a one-letter alphabet. Language equations
over multiple-letter alphabets are known to be computationally complete [15,14]:
their unique solutions represent exactly the recursive sets, while their least and
greatest solutions represent exactly the recursively enumerable sets and their
complements, respectively. This result has been subsequently re-created by the
authors [4,5] for the one-letter case, that is, for equations over sets of natural
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numbers. As recently shown by Lehtinen and Okhotin [9], this computational uni-
versality extends to systems of such a simple form as {X+X+C = X+X+D,
X + E = F}, with a unique unknown X.

The first study of equations over sets of integers, both positive and negative,
was recently conducted by the authors [6]. The main result was that a set is
representable by a unique solution of such a system if and only if it is hyper-
arithmetical. Hyper-arithmetical sets are defined as the intersection Σ1

1 ∩Π1
1 of

the two bottom classes of the analytical hierarchy, and are accordingly a proper
superset of the sets representable in first-order Peano arithmetic. The results
on unique solutions of such systems are recalled and commented in Section 2.
Concerning least and greatest solutions of these equations, one can easily see
that they must belong to Π1

1 and to Σ1
1 , respectively, though no lower bounds

are yet known.
This paper begins the study of least and greatest solutions of equations over

sets of integers with systems of the following form:
X1 = ϕ1(X1, . . . , Xn)

...
Xn = ϕn(X1, . . . , Xn)

(*)

This is the same general form as in the most well-known kind of language equa-
tions used to define context-free grammars [1]. It is known that such a system
has a least solution corresponding to the context-free derivation; it is a folklore
knowledge that greatest solutions are context-free as well. Least and greatest
solutions are obtained by the fixpoint iteration, in which a solution is always
reached after ω iterations. These results extend to a natural generalization of
the context-free grammars, the conjunctive grammars [11,12].

In this paper, the unknowns in a system (*) are sets of integers, and the
operations are union, intersection and addition. Tarski’s fixpoint theorem [17]
guarantees the existence of a least and a greatest solution, and, as explained
in Section 3, an iterative version of Tarski’s theorem asserts that a fixpoint is
always reachable in ω1 iterations, that is, iterating over countable ordinals. In
Section 4 it is shown that in the case of greatest solutions, all ω1 iterations are
actually used, and that every set in Σ1

1 can be represented by a greatest solution
of such a system. On the other hand, Section 5 demonstrates that least solutions
can be always reached in only ω iterations, and the family of sets represented by
these solutions is exactly the family of recursively enumerable sets.

2 Equations over sets of integers

Consider systems of equations of the resolved form Xi = ϕi(X1, . . . , Xn) with
i ∈ {1, . . . , n}, where the unknowns Xi are sets of integers, and the expressions
ϕi may use the operations of union, intersection and addition of sets, as well
as ultimately periodic constants4. When such a system has a unique solution, it

4 A set of integers S ⊆ Z is ultimately periodic if there exist such numbers n0 > 0 and
p > 1, that n ∈ S if and only if n+ p ∈ S for all n with |n| > n0.
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can be regarded as a definition of the sets in that solution. When a system of
this form has multiple solutions, it is known from Tarski’s fixpoint theorem [17]
that among them there is the least and the greatest solution with respect to the
partial order of componentwise inclusion.

If the unknowns are sets of natural numbers, such equations were first studied
by Jeż [2], who established their nontriviality by representing the set {4n |n > 0}:

Example 1 (Jeż [2]). The system of equations
X1 =

[
(X1 +X3) ∩ (X2 +X2)

]
∪ {1}

X2 =
[
(X1 +X1) ∩ (X2 +X6)

]
∪ {2}

X3 =
[
(X1 +X2) ∩ (X6 +X6)

]
∪ {3}

X6 = (X1 +X2) ∩ (X3 +X3)

over sets of natural numbers has a least solution with X1 = {4n | n > 0},
X2 = {2 · 4n | n > 0}, X3 = {3 · 4n | n > 0} and X6 = {6 · 4n | n > 0}.

To understand this construction, it is useful to consider positional notation of
numbers. Let Γk = {0, 1, . . . , k − 1} be digits in base-k notation. For every
w ∈ Γ ∗k , let (w)k be the number defined by this string of digits. For a language
L ⊆ Γ ∗k of positional notations, define (L)k = {(w)k | w ∈ L}. Now the so-
lution of the above system can be conveniently represented in base-4 notation
as
(
(10∗)4, (20

∗)4, (30∗)4, (120
∗)4
)
. Substituting these four sets into the first

equation, one obtains(
(10∗)4+(30∗)4

)
∩
(
(20∗)4+(20∗)4

)
=

=
(
(10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4

)
∩
(
(10+)4 ∪ (20∗20∗)4

)
= (10+)4,

that is, both sums contain some“garbage”, yet the garbage in the sums is disjoint,
and is accordingly “filtered out” by the intersection. Finally, the union with {1}
yields the set {4n | n > 0}, turning the first equation into an equality. The rest
of the equations are verified similarly [2].

The idea of this example was generalised by the authors [3] by representing
every set of numbers with their positional notation recognised by a certain kind of
cellular automata. These are one-way real-time cellular automata, known under
a proper name of trellis automata [13].

Proposition 1 (Jeż, Okhotin [3, Thm. 3]). For every k > 2 and for every
trellis automaton M over Γk = {0, . . . , k− 1}, such that L(M)∩ 0Γ ∗k = ∅, there
exists and can be effectively constructed a resolved system of equations over sets
of natural numbers using the operations of union, intersection and addition and
singleton constants, such that its least solution contains a component (L(M))k.

Trellis automata are notable, in particular, for recognising the language of
computation histories of a Turing machine, which is generally defined in the form
VALC(T ) = {CT (w)\w | w ∈ L(T )}, where CT (w) is a sequence of consecutive
configurations in the accepting computation of T on w, encoded in a suitable



4 Artur Jeż and Alexander Okhotin

way. This follows from the fact that trellis automata can recognise any finite
intersections of linear context-free languages, and VALC(T ) is representable as
such an intersection. Assume that VALC(T ) is defined over an alphabet of k-
ary digits Γk. Then, any computation represents a number (CT (w)\w)k, and
Proposition 1 asserts that the set of such numbers is a solution of some system
of equations [3]. A more complicated construction on top of (VALC(T ))k allows
extracting (L)k out of VALC(T ), leading to a representation of every recursive
(r.e., co-r.e.) set by unique (least, greatest, respectively) solution of a system
ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) over sets of natural numbers [4].

When constructing equations over sets of integers, applying Proposition 1
to VALC(T ) remains a useful technique. As in the authors’ previous work on
systems of equations over sets of integers [6], VALC(T ) shall be defined over the
alphabet of digits in base-7 notation, with each computation encoded by a string
CT (w) ∈ {3, 6}+, and with

VALC(T ) = {CT (w)1w | w ∈ T}.

The exact details of the encoding are not important, as trellis automata are
flexible enough to recognise such a variant of VALC(T ). Then the corresponding
set of numbers

{(CT (w)1w)7 | (w)7 ∈ L(T )}
is representable by the unique solution of a resolved system of equations over
sets of natural numbers with union, intersection and addition [3, Thm. 3]. If
every occurrence of every variable X is replaced with X ∩ (N + 1), the system
will have the same unique solution if interpreted over sets of integers.

Using equations over sets of integers, the set (L(T ))7 can be obtained out of
(VALC(T ))7 generally by subtracting the computation history from each number
in VALC(T ) as follows: (CT (w)1w)7 − (CT (w)10|w|)7 = (w)7. This has to be
done by adding a set of negative numbers to VALC(T ), and filtering out numbers
of the form (CT (w)1w)7−(x)7 with x 6= (CT (w)10|w|)7. Since CT (w) is a string
of digits 3 and 6, this subtraction can be regarded as the removal of the prefix
{3, 6}+, or as an existential quantification over such prefixes:

Lemma 1 (Representing the existential quantifier [6, Lemma E]). The
value of the expression[

(X ∩ ({3, 6}+1Γ ∗7 )7) + (−({3, 6}+0∗)7)
]
∩ (1Γ ∗7 )7

on any S ⊆ ({3, 6}+1Γ ∗7 )7 is E(S) = {(1w)7 | ∃x ∈ {3, 6}∗ (x1w)7 ∈ S}.

Then E(VALC(T )) = {(1w)7 |w ∈ L(T )}, and it is left to remove the leading
digit 1, which is performed by the expression in the next lemma:

Lemma 2 (Removing leading digit 1 [6]). The value of the expression⋃
i∈Γ7\{0}

⋃
t∈{0,1}

[
(X ∩ (1iΓ t7(Γ 2

7 )∗)7) + (−10∗)7
]
∩ (iΓ t7(Γ 2

7 )∗)7

on any S ⊆ (1(Γ+
7 \ 0Γ ∗7 ))7 is {(w)7 | (1w)7 ∈ S}.
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The two above lemmata yield a representation of r.e. sets:

Theorem 1. Every r.e. set S ⊆ Z is the unique solution of a resolved system
of equations over sets of integers using union, intersection and addition, as well
as singleton constants and the constants N, −N.

Proof (sketch). Assume first that S ⊆ N and let T be a Turing machine accepting
S. Then, as long as the constant VALC(T ), and the constants in Lemmata 1
and 2 are given, the expression Remove1(E(VALC(T ))) yields the set S.

The constant VALC(T ) ⊆ N, as well as the constant sets of natural numbers
in the Lemmata, are representable by equations over sets of natural numbers by
Proposition 1. This construction is replicated for equations over sets of integers,
by applying an intersection with a constant N. The constant sets of negative in-
tegers in Lemmata 1 and 2 are represented as if the sets of the opposite numbers,
negating all constants in the system.

This construction can be applied to any r.e. set of negative integers by rep-
resenting the set of opposite numbers as above, and then by replacing every
constant C by −C. Finally, any r.e. set of integers S ⊆ Z is represented as
a union of its positive and negative subsets. ut

The natural counterpart of the “existential quantifier” E(X) is the func-
tion A(X), defined as A(S) = {(1w)7 | ∀x ∈ {3, 6}∗ (x1w)7 ∈ S}. Equations
of the general form ϕi(X1, . . . , Xn) = ψ(X1, . . . , Xn) representing A(X) were
constructed by the authors [6]. Then, applying A(X) and E(X) to a recursive
set finitely many times allowed constructing every set from the arithmetical
hierarchy, and doing this iteratively led to the representation of every hyper-
arithmetical set as a unique solution of such a system [6]. Intuitively, that
system implemented an equation X = A(E(X)) ∪ C, for a recursive constant
C ⊆ ((1{3, 6}+)∗10Γ ∗7 )7, in which the digit blocks {3, 6}+ correspond to the
quantified variables, 1 is a separator, while 10 marks the end of the quantifier
prefix. Processing the latter requires an extra equation:

Lemma 3 (Removing leading digits 10 [6]). The value of the expression

Remove10(Z) = (Z ∩ {(10)7} − {(10)7})
∪

⋃
i∈Γ7\{0}

⋃
t∈{0,1,2}

(Z ∩ (10iΓ t7(Γ 3
7 )∗)7)− (10∗)7 ∩ (iΓ t7(Γ 3

7 )∗)7

on any S ⊆ (10(Γ ∗7 \ 0Γ ∗7 ))7 is Remove10(S) = {(w)7 | (10w)7 ∈ S}.

Proposition 2 (Jeż, Okhotin [6, Thm. 2]). For every hyper-arithmetical set
S ⊆ Z there is a system of equations over subsets of Z using union, addition,
singleton constants and the constants N and −N, with a unique solution (S, . . .).

This representation result has a matching upper bound: whenever such a
system has a unique solution, it is a hyper-arithmetical set [6]. The proof of this
upper bound can actually be split into two statements: first, least solutions are
demonstrated to be in the class Π1

1 , and second, greatest solutions always belong
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to Σ1
1 . As unique solutions are both least and greatest at the same time, they

are in the class Π1
1 ∩Σ1

1 = ∆1
1, that is, are hyper-arithmetical. These bounds are

based upon the following translation of equations into an arithmetical formula:

Proposition 3 (Jeż, Okhotin [6]). For every system of equations in variables
X1, . . . , Xn using operations expressible in first-order arithmetic there exists an
arithmetical formula Eq(X1, . . . , Xn), where X1, . . . , Xn are free second-order
variables, such that Eq(S1, . . . , Sn) is true if and only if Xi = Si is a solution
of the system.

Constructing this formula is only a matter of reformulation. As an example, an
equation Xi = Xj +Xk is represented by

(∀n)
[
n ∈ Xi ↔ (∃`)(∃m) n = `+m ∧ ` ∈ Xj ∧ m ∈ Xk

]
.

Applying existential quantification to the set variables produces a Σ1
1 -formula

ϕ(x) = (∃X1) . . . (∃Xn)Eq(X1, . . . , Xn) ∧ (x ∈ X1) representing the great-
est solution, while universal quantification leads to a Π1

1 -formula ϕ′(x) =
(∀X1) . . . (∀Xn)Eq(X1, . . . , Xn)→ (x ∈ X1) for the least solution:

Proposition 4. For every system of equations in variables X1, . . . , Xn using
operations expressible in first-order arithmetic that has a least (greatest) solution
Xi = Si, the sets Si are in the class Π1

1 (in Σ1
1 , respectively).

3 Resolved systems and their properties

A system of equations is called explicit or resolved if it is of the form

Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n). (1)

When the unknowns are formal languages, such equations are used to define the
context-free grammars and their generalization, the conjunctive grammars [11].

It is convenient to regard (1) as a single equation X = ϕ(X), where X is
an unknown n-tuple of sets, while ϕ = (ϕ1, . . . , ϕn) is an operator on the set of
such n-tuples. A solution of such equation is known as a fixpoint of the operator
ϕ. As long as ϕ is monotone under some partial ordering, that is, if

A 4 A′ =⇒ ϕ(A) 4 ϕ(A′),

a least and a greatest fixpoint exists by Tarski’s [17] theorem.
In case of vectors of sets of integers, the partial ordering is defined by

(S1, . . . , Sn) v (T1, . . . , Tn) if Si ⊆ Ti for each i. The operations of union, inter-
section and addition are all monotone with respect to this ordering.

Another general property of operators is continuity. A sequence of sets
{An}n>0 is convergent if for every element x ∈

⋃
nAn the set {n|x ∈ An} is either

finite or co-finite; in such a case limn→∞An = {x |x is in infinitely many An’s}.
Now ϕ is continuous, if for every convergent sequence {An}∞n=1,

lim
n→∞

ϕ(An) = ϕ( lim
n→∞

An).
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A composition of monotone (continuous) operators is monotone (continuous).
Provided that a system (1) has monotone and continuous right-hand sides, its
least solution is reached by ω iterations of ϕ, beginning with a vector of empty
sets:

⊔∞
k=1 ϕ

k(∅, . . . ,∅). If the iteration begins with the top element (∅, . . . ,∅),
then the greatest solution is similarly reached after ω steps of a similar iteration,
with intersection instead of union. This is the case with language equations
using concatenation, union and intersection [1,12], or similar equations over sets
of natural numbers [3].

However, when equations over sets of integers are considered (that is, if neg-
ative numbers are allowed), the addition of such sets is no longer continuous:
consider ϕ(X) = X + X and a sequence Xn = {−n, n}. Then limn→∞Xn = ∅
and ϕ(limn→∞Xn) = ∅. On the other hand, 0 ∈ Xn + Xn for each n, and
accordingly 0 ∈ limn→∞ ϕ(Xn). This makes the above ω-step fixpoint iteration
inapplicable to such systems, as the vector obtained after ω steps need not be
a solution.

When all is known about a system (1) is that its right-hand sides are mono-
tone, Tarski’s [17] fixpoint theorem asserts that it has a least and a greatest
solution. This result can be shown using a transfinite induction as follows. De-
note by ω1 the first uncountable ordinal. For each ordinal α 6 ω1, define the
vector of sets after α iterations of ϕ:

S(0) = (∅, . . . ,∅) (2a)

S(α+1) = ϕ(S(α)) (2b)

S(α) =
⊔
γ<α

S(γ) when α is a limit ordinal (2c)

Lemma 4. S(ω1) is the least fixpoint of the system (1).

The proof proceeds along the following steps. First it is shown that S(α)

is a weakly increasing sequence, that is, S(α) v S(γ) for all ordinals α < γ.
Then it is proved that there are countably many ordinals α with S(α) @ S(α+1),
and accordingly the sequence converges to a fixpoint in fewer than ω1 steps.
This fixpoint is then proved to be the least. All arguments are by a transfinite
induction on the ordinals.

Similarly, for the greatest solutions define

T (0) = (Z, . . . ,Z) (3a)

T (α+1) = ϕ(T (α)) (3b)

T (α) = ⊔

γ<α

T (γ) when α is a limit ordinal (3c)

Lemma 5. T (ω1) is the greatest fixpoint of the system (1).
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4 Greatest solutions

The greatest solution of any system of equations over sets of integers is in Σ1
1 in

the analytical hierarchy. It shall now be proved that, conversely, every set S ⊆ N
in Σ1

1 is representable. The construction combines the definition of a certain
Σ1

1 -complete set T ⊆ N with a reduction function from S to T . Representing
any Σ1

1 -subset of Z is achieved by a simple additional step.
The announced Σ1

1 -hard set contains the yes-instances of the following prob-
lem (its complement is Π1

1 -complete [16, Thm. 16-XX]): “Given a Turing ma-
chine M working on natural numbers, determine whether there exists an infinite
sequence of strings {xi}∞i=1 with xi ∈ {3, 6}+, such that, for all k > 0, the
number (1xk1xk−11 . . . 1x11)7 is in L(M)”. Base-7 notations of these numbers
encode finite sequences of natural numbers, and are formatted for processing by
Lemmata 1 and 2. Now for any Σ1

1 set S there exists a total recursive reduction
function fS , such that

n ∈ S ⇐⇒ ∃{xi}∞i=1∀k > 0 (1xk1xk−11 . . . 1x11)7 ∈ L(MfS(n)),

where M0,M1, . . . ,Mi, . . . is any effective enumeration of Turing machines.
Fix S and its reduction fS witnessing S 6rec T . Define the set

C =
{
(1xk1xk−11 . . . 1x110s)7

∣∣ s ∈ Γ ∗7 \ 0Γ ∗7 ,
∀k′ 6 k (1xk′1xk′−11 . . . 1x11)7 ∈ L(MfS((s)7))

}
,

which is r.e.: given a number (1xk1xk−11 . . . 1x110s)7, a Turing machine calcu-
lates its base-7 notation, extracts (s)7, constructs MfS((s)7) and simulates it on
each input (1)7, . . . , (1xk1xk−11 . . . 1x11)7. If they are all accepted, this num-
ber belongs to C. By Theorem 1, C can be represented as a unique (and, in
particular, the greatest) solution of a resolved system of equations.

For any fixed number (s)7 ∈ N, the set C induces a set of finite sequences{
(n1, . . . , nk−1, nk)

∣∣ (1xk1xk−11 . . . 1x110s)7 ∈ C, where each xi represents

the binary notation of ni, using 3 for zero and 6 for one
}
.

This set of sequences is closed under taking prefixes, and thus may be regarded
as a tree. Each sequence is a node of the tree. A node (n1, n2, . . . , nk−1, nk) is a
child of the node (n1, n2, . . . , nk−1), which is its parent. The empty sequence is
the unique node without a parent, that is, the root of the tree; a node is a leaf
if it has no children. A tree has an infinite path if there exists such a sequence
(n1, n2, . . . , nk, . . . ) that all of its finite prefixes belong to the tree. This tree
terminology shall be adopted for a fixed (s)7 when referring to C: for example,
(1xk1xk−11 . . . 1x110s)7 ∈ C is the parent of (1xk+11xk1 . . . 1x110s)7 ∈ C, etc.

In this terminology, an element (1xk1xk−11 . . . 1x110s)7 ∈ C is said to have
an infinite path if the tree corresponding to s has an infinite path beginning with
the node corresponding to this element; or, equivalently, if

∃{xk+i}∞i=0 ∀` > 0 (1xk+`1xk+`−11 . . . 1x110s)7 ∈ C
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In particular, a number (s)7 is in S if and only if the element (10s)7 has an
infinite path. The goal is to construct an equation with the greatest solution
comprised exactly of numbers with an infinite path. Since the greatest solution
is a limit of a descending chain of sets, see Lemma 5 and (3), the equation shall
iteratively shorten finite paths, so that the numbers without an infinite path are
eventually eliminated.

For every node with finitely many descendants there is a well-defined height
of its subtree. This concept is generalised to trees with infinite paths and infinite
degrees of nodes as follows. The rank of an element of C, see Rogers [16, §16],
is an ordinal defined by

r(x) =

{
1, if x is a leaf,

sup{r(y) + 1 | y is a child of x}, otherwise.
(4a)

For some elements of C the recursion does not terminate, and the definition is
extended by

r(x) = ω1, when r(x) is not defined by (4a). (4b)

Lemma 6. The rank of an element (1xk1xk−11 . . . 1x110s)7 ∈ C is not defined
by (4a) if and only if it has an infinite path.

As argued by Rogers [16, Thm. 16-XVIII(a)], all ordinals assigned by (4a)
are countable. By definition, ω1 > α for every countable ordinal α, that is, for
every rank defined in (4a). Now it can be said that the elements without an
infinite path are those with a countable rank. There exists a natural approach of
removing these elements by an iterative removal of the leaves. While it is easily
seen that this works for elements with a finite rank, it is not so obvious, what
happens for elements ranked with an infinite ordinal. Nevertheless, it turns out
that this approach works in the general case of countable ordinals.

Consider an equation

X = C ∩ E(Remove1(X)),

Denote its right-hand side by ϕ(X) = C ∩ E(Remove1(X)), and consider the
sequence T (α) corresponding to this equation, see (3). Note, that T (0) = Z,
T (1) = C and T (α) ⊆ C for every ordinal α. Every step of this sequence contains
the fathers of all elements occurring at the previous step:

Lemma 7. For every countable ordinal α, x ∈ T (α+1) if and only if x =
(1xk1xk−11 . . . 1x110s)7 and there is xk+1 with (1xk+11xk1 . . . 1x110s)7 ∈ T (α).

Intuitively, the rank of an element specifies how many times this transforma-
tion can be applied until the element disappears. This is formalised as follows:

Lemma 8. For every countable ordinal α, (1xk1xk−11 . . . 1x110s)7 ∈ T (α) if
and only if r((1xk1xk−11 . . . 1x110s)7) > α.
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The proof is by an iterative application of Lemma 7 in a transfinite induction
on α.

After ω1 iterations, all elements with a countable rank are eliminated, and
the greatest fixed point T (ω1) consist exactly of the elements with an infinite
path, as they are invariant under ϕ.

Lemma 9. (1xk . . . 1x110s)7 ∈ T (ω1) if and only if r((1xk . . . 1x110s)7) = ω1.

Taking Lemma 6 into account, (1xk . . . 1x110s)7 ∈ T (ω1) if and only if
there exists an infinite sequence xk+1, . . .xk+`, . . ., such that for each ` > 0,
(1xk+`1xk+`−1 . . . 1x110s)7 ∈ C. It remains to extract the set S out of T (ω1).
This is done using the expression Remove10(F ) = {(w)7 | (10w)7 ∈ F} defined
in Lemma 3. Consider a new variable Y with an new equation, which forms the
following system: {

X = C ∩ E(Remove1(X))
Y = Remove10(X)

(5)

Main Lemma. The system (5) has a greatest solution with Y = S.

The system constructed in this section uses a recursively enumerable constant
set C ⊆ N, as well as several constants required by Lemmata 1, 2 and 3. The
former constant is representable by Theorem 1, while the rest of the constants are
expressed as in the proof of that theorem. The method in the proof of Theorem 1
is also used to represent a set of integers from its positive and negative part. This
yields the following result:

Theorem 2. Every Σ1
1 -set S ⊆ Z is a unique solution of a resolved system of

equations over sets of integers using union, intersection and addition, as well as
singleton constants and the constants N, −N.

The construction in the this section essentially used the infinite constants N
and −N. It turns out that at least one infinite constant is needed, as otherwise
only trivial greatest solutions can be obtained.

Lemma 10. For every solution of a resolved system of equations over Z using
union, intersection, addition and finite constants, there is a greater solution with
each component either finite or equal to Z.

5 Least solutions of resolved systems

As mentioned in Section 3, whenever a monotone operator is also continuous,
reaching its least fixed point does not require a transfinite number of iterations:
S(ω) is always the least solution. In fact, this holds for a weaker property than
continuity.

An operator ϕ is said to be ∪-continuous if ϕ
(⊔

i∈NBi
)

=
⊔
i∈N ϕ(Bi) holds

for every increasing sequence Bi. A composition of ∪-continuous operators is
∪-continuous as well. It turns out that while addition of sets of integers is not
continuous, it possesses this weaker property.
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least unique greatest

unresolved over 2N, with {+,∪} Σ0
1 (r.e.) [4] ∆0

1 (rec.) [4] Π0
1 (co-r.e.) [4]

resolved over 2Z, with {+,∪,∩} Σ0
1 Σ0

1 Σ1
1

unresolved over 2Z, with {+,∪} ? ∆1
1 (HA) [6] Σ1

1

Table 1. Expressive power of solutions.

Lemma 11. A function over sets of integers defined as a composition of union,
intersection, addition and any constants is ∪-continuous.

Then it is known that the least fixpoint of any such function is reached in ω
iterations. This leads to the following theorem:

Theorem 3. The least solution of every resolved system of equations Xi =
ϕi(X1, . . . , Xn) over sets of integers using union, intersection, addition and r.e.
constants is an r.e. set.

For singleton constants, an algorithm constructs S(α) for all α < ω, until the
input number is found. The case of r.e. constants is reduced to the former case
by encoding the constants as in Theorem 1.

Conversely, by Theorem 1, every r.e. set is represented by such a unique
solution of a system with singleton constants and constants N and −N, and
hence by a least solution of such a system. Furthermore, the sets N and −N can
be expressed as least solutions of the following equations:

X = (X + 1) ∪ {0} X ′ = (X ′ + {−1}) ∪ {0}.

Altogether, the following characterization is obtained:

Corollary 1. Least solutions of resolved systems of equations Xi =
ϕi(X1, . . . , Xn) over sets of integers using union, intersection, addition and con-
stants {1} and {−1} represent exactly the r.e. sets. If all r.e. constants are al-
lowed, only r.e. sets can be represented.

6 Conclusion

The new results on the expressive power of least and greatest solutions of equa-
tions over sets of integers are summarised and compared to related results
in Table 1. The same results extend to a slightly different model: equations
over sets of natural numbers with union, intersection, addition and subtraction:
A−· B = {a− b | a ∈ A, b ∈ B, a > b} their least solutions represent exactly the
r.e. sets, while their greatest solutions represent all sets in Σ1

1 . These equations
are isomorphic to language equations over a unary alphabet, with the opera-
tions of union, intersection, concatenation and quotient. Furthermore, the same
results could be extended to language equations over multiple-letter alphabets,
by a technically much simpler construction than presented in this paper.
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Of the decision problems for these equations, solution existence is trivial (as
there is always a least and a greatest solution), while the complexity of testing
whether a system has a unique solution is left as an open problem.
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2. A. Jeż, “Conjunctive grammars can generate non-regular unary languages”, Inter-
national Journal of Foundations of Computer Science, 19:3 (2008), 597–615.
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