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Abstract

Systems of equations of the form ϕj(X1, . . . ,Xn) = ψj(X1, . . . ,Xn) with 1 6

j 6 m are considered, in which the unknowns Xi are sets of natural numbers, while
the expressions ϕj , ψj may contain singleton constants and the operations of union
and pairwise addition S + T = {m + n | m ∈ S, n ∈ T}. It is shown that the
family of sets representable by unique (least, greatest) solutions of such systems is
exactly the family of recursive (r.e., co-r.e., respectively) sets of numbers. Basic
decision problems for these systems are located in the arithmetical hierarchy. The
same results are established for equations with addition and intersection.

1 Introduction

Consider equations, in which the variables assume values of sets of natural numbers,
and the left- and right-hand sides use Boolean operations and pairwise addition of sets
defined as S + T = {m+ n |m ∈ S, n ∈ T}. The simplest example of such an equation
is X = (X + X) ∪ {2}, with the set of all even numbers as the least solution. On one
hand, such equations constitute a basic mathematical object, which is closely related to
integer expressions introduced in the seminal paper by Stockmeyer and Meyer [19] and
later systematically studied by McKenzie and Wagner [11]. On the other hand, they
can be regarded as language equations over a one-letter alphabet, with the sum of sets
representing concatenation of such languages.

Language equations are equations with formal languages as unknowns, which recently
became an active area of research, with numerous connections to computability estab-
lished. Undecidability of the solution existence problem for language equations with
concatenation and Boolean operations was shown by Charatonik [1]. Later it was de-
termined by Okhotin [13, 15, 16] that the family of sets representable by unique (least,
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greatest) solutions of such equations is exactly the family of recursive languages (recur-
sively enumerable, co-recursively enumerable, respectively). Shortly thereafter, Kunc [8]
constructed a language equation of the form XL = LX, where L ⊆ {a, b}∗ is a finite
constant language, with a computationally universal greatest solution. A survey of the
area was recently given by Kunc [9].

The cited results essentially use languages over alphabets containing at least two
symbols, and, until recently, the seemingly trivial case of language equations over a unary
alphabet Σ = {a} received little attention. Systems of the form





X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

with union and concatenation represent context-free grammars, and their solutions over
a unary alphabet are well-known to be regular. Constructing any equation with a non-
regular unique solution is already not a trivial task. The first example of such an equation
using the operations of concatenation and complementation was presented by Leiss [10],
who however provided no insight into how his example was obtained. Not long ago Jeż [5]
constructed a system (*) using concatenation, union and intersection with a non-regular
solution, and this example had a clear explanation in terms of base-4 notation of numbers:
concatenating and intersecting several unknown sets ultimately allowed representing the
set of powers of 4. Using this method, a large class of unary languages was proved to
be representable by Jeż and Okhotin [6], who showed that equations (*) with concatena-
tion, union and intersection can simulate cellular automata of a certain simple kind [2]
recognizing positional notation of numbers. The membership of a number in a solution
can be straightforwardly tested in exponential time, and it was subsequently shown that
a particular EXPTIME-complete set of numbers can be represented by a system of this
form [7].

These recent advances suggest the task of understanding the exact limits of the ex-
pressive power of equations over sets of numbers (or language equations over a unary
alphabet) of the general form





ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

(**)

Unexpectedly, this paper establishes computational completeness of such systems, in which
ϕj, ψj use only addition and union, as well as singleton constants. The same result is
obtained for systems with addition and intersection. To be precise, it is proved that a set
is representable as a component of a unique solution of a system (**) if and only if this
set is recursive. Similar characterizations are obtained for least and greatest solutions (by
r.e. and co-r.e. sets, respectively). This characterizes the notion of a computable set by
extremely simple arithmetical equations.

The proof method can be described as a new kind of arithmetization of Turing ma-
chines, which uses addition of natural numbers as the only arithmetical operation. It is
worth mentioning that constructing any system of this restricted form with a non-periodic
unique, least or greatest solution is already a nontrivial task. No examples of their non-
triviality have been shown up to date, and it would seem expected that their solutions
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are always periodic. The first examples of such systems representing non-regular sets
constructed in this paper require quite extensive constructions.

The general line of the computational completeness argument presented in this paper
models upon the existing computational completeness results for language equations [13],
which are summarized in Section 2. The previous results on equations over sets of num-
bers [5, 6], explained in Section 3, are used as main building blocks. In the next Section 4,
it is shown how the computational completeness arguments for language equations can
be remade for a much more restricted object: equations over sets of numbers with union,
intersection and addition. These results are improved in Section 5 to use systems (**)
with either union or intersection, which requires re-implementing all core constructions
using these more restricted equations. Finally, decision problems for these equations are
considered in Section 6, and it is proved that, like in the case of language equations
[13, 16], testing existence of a solution of a given system (**) is undecidable (complete
for Π1 in the arithmetical hierarchy), testing solution uniqueness is Π2-complete, while
testing whether a system has finitely many solutions is Σ3-complete.

2 Language equations and their computational com-

pleteness

Let Σ be a finite alphabet and consider systems of equations of the form

ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn),

where the unknowns Xi are languages over Σ, while ϕj and ψj are expressions using union,
intersection and concatenation, as well as singleton constants. The following computa-
tional completeness result is known:

Theorem 1 (Okhotin [13, 15]). Let (**) be a system that has a unique (least, greatest)
solution (L1, . . . , Ln). Then each component Li is recursive (r.e., co-r.e., respectively).
Conversely, for every recursive (r.e., co-r.e.) language L ⊆ Σ∗ (with |Σ| > 2) there exists
a system (**) with the unique (least, greatest, respectively) solution (L, . . .).

As this paper considers a much more restricted family of equations, the first part of
Theorem 1 will apply as it is, while the lower bound proofs will have to be entirely remade.
The proof of the second part of Theorem 1 will serve as a model for the arguments for
the case of equations over sets of numbers. The following sketch of this proof is useful for
understanding the constructions presented later in this paper.

The main underlying device used for constructing such a system is the language of
computation histories of a Turing machine, defined and used by Hartmanis [4] to give sys-
tematical undecidability proofs for context-free grammars. In short, for every TM T over
an input alphabet Σ one can construct an alphabet Γ and an encoding of computations
CT : Σ∗ → Γ∗, so that for every w ∈ L(T ) the string CT (w) lists the configurations of T
at each step of its accepting computation on w, and the language

VALC(T ) = {w\CT (w) | CT (w) is an accepting computation},

where \ /∈ Σ ∪ Γ, is an intersection of two linear context-free languages. Since equations
(**) can directly simulate context-free grammars and are equipped with intersection, for
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every Turing machine it is easy to construct a system in variables (X1, . . . , Xn) with a
unique solution (L1, . . . , Ln), so that L1 = VALC(T ).

It remains to “extract” L(T ) out of VALC(T ) using a language equation. Let Y be a
new variable and consider the inequality

VALC(T ) ⊆ Y \Γ∗,

which can be formally rewritten as an equation X1 ∪ Y \Γ∗ = Y \Γ∗. This inequality
states that for every w ∈ L(T ), the string w\CT (w) should be in Y \Γ∗, that is, w should
be in Y . This makes L(T ) the least solution of this inequality and proves the second
part of Theorem 1 with respect to r.e. sets and least solutions. The construction for
a co-r.e. set and a greatest solution is established by a dual argument, and these two
constructions can then be combined to represent every recursive set [15]. Furthermore,
the same construction is used to establish the undecidability of the solution existence and
solution uniqueness problems for a given language equation [13, 16].

At the first glance, the idea that the above results could possibly hold if the alphabet
consists of a single letter sounds odd. However, this is what will be proved in this paper,
and, moreover, the general plan of the argument remains essentially the same.

3 Resolved systems with {∪,∩,+}

A formal language L over the alphabet Σ = {a} can be regarded as a set of numbers
{n | an ∈ L}, and so equations over sets of numbers represent a very special subclass of
language equations. Very little was known about this case, until the recent results on
resolved systems over sets of natural numbers, which are of the form

Xi = ϕ(X1, . . . , Xn) (1 6 i 6 n),

where the right-hand sides ϕi may contain union, intersection and addition, as well as
singleton constants. To minimize the number of brackets, assume that the addition has
the highest precedence, followed by intersection, while the precedence of union is the least.

If intersection is disallowed, such systems are basically context-free grammars over a
one-letter alphabet, and hence their solutions are ultimately periodic. Equations with
both union and intersection are equivalent to an extension of context-free grammars,
the conjunctive grammars [12], and the question whether any non-periodic set can be
specified by such a system of equations has been open for some years, until answered by
the following example:

Example 1 (Jeż [5]). The least solution of the system





X1 = (X1+X3 ∩ X2+X2) ∪ {1}
X2 = (X1+X1 ∩ X2+X6) ∪ {2}
X3 = (X1+X2 ∩ X6+X6) ∪ {3}
X6 = X1+X2 ∩ X3+X3

is
(
{ 4n | n > 0}, { 2 · 4n | n > 0}, { 3 · 4n | n > 0}, { 6 · 4n | n > 0}

)
.

To understand this construction, it is useful to consider positional notation of numbers.
Let Σk = {0, 1, . . . , k − 1} be digits in base-k notation. For every w ∈ Σ∗

k, let (w)k
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be the number defined by this string of digits. Define (L)k = { (w)k | w ∈ L}. Now
the solution of the above system can be conveniently represented in base-4 notation as(
(10∗)4, (20

∗)4, (30
∗)4, (120

∗)4

)
.

The following generalization of this example has been obtained:

Theorem 2 (Jeż [5]). For every k > 2 and for every regular language L ⊆ Σ+
k there

exists a resolved system over sets of natural numbers in variables X, Y2, . . . , Yn with the
least solution X = (L)k and Yi = Ki for some Ki ⊆ N.

A further extension of this result allows one to take a trellis automaton (one-way
real-time cellular automaton) recognizing a positional notation of a set of numbers, and
construct a system of equations representing this set of numbers.

A trellis automaton [2, 14], defined as a quintuple (Σ, Q, I, δ, F ), processes an input

string of length n > 1 using a uniform array of n(n+1)
2

nodes, as presented in the figure
below. Each node computes a value from a fixed finite set Q. The nodes in the bottom
row obtain their values directly from the input symbols using a function I : Σ → Q. The
rest of the nodes compute the function δ : Q×Q→ Q of the values in their predecessors.
The string is accepted if and only if the value computed by the topmost node belongs to
the set of accepting states F ⊆ Q.

Definition 1. A trellis automaton is a quintuple M = (Σ, Q, I, δ, F ), in which:
• Σ is the input alphabet,

• Q is a finite non-empty set of states,

• I : Σ → Q is a function that sets the initial states,

• δ : Q×Q→ Q is the transition function, and

• F ⊆ Q is the set of final states.

Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)),

while I is extended to a homomorphism I : Σ∗ → Q∗.

a1 a2 a3 a4

Let LM (q) = {w | δ(I(w)) = q} and define L(M) =
⋃

q∈F LM(q).

Theorem 3 (Jeż, Okhotin [6]). For every k > 2 and for every trellis automaton M over
Σk with L(M) ∩ 0Σ∗

k = ∅ there exists a resolved system over sets of natural numbers
in variables X, Y2, . . . , Yn with the least solution X = (L(M))k and Yi = Ki for some
Ki ⊆ N.

An important example of a set representable according to this theorem is the numerical
version of the set of computational histories of a given Turing machine. The symbols
needed to represent the standard language of computations of a Turing machine are
interpreted as digits, and then every string from this language is represented by a number.
Since the standard language of computations can be recognized by a trellis automaton, by
Theorem 3 there is a system of equations representing the corresponding set of numbers.
This set can be used straightforwardly to infer some undecidability results on conjunctive
grammars [6].
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In the next section, such a set of numbers will be used for the same purpose as the
standard language VALC in the computational completeness proofs for language equa-
tions [13, 15, 16].

4 Unresolved systems with {∪,∩,+}

Consider systems of equations of the form

ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn) (1 6 j 6 m),

where the unknowns Xi are sets of natural numbers and ϕj , ψj may use union, intersection
and addition, as well as singleton constants.

The ultimate result of this paper is the computational completeness of such systems
using either union or intersection, which is stated as follows:

Theorem 4. The family of sets of natural numbers representable by unique (least, great-
est) solutions of systems of equations of the form ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) with
union and addition, is exactly the family of recursive (r.e., co-r.e., respectively) sets. The
same result holds for systems with intersection and addition.

These solutions are recursive (r.e., co-r.e., respectively) because so are the solutions of
language equations with union, intersection and concatenation, as asserted by Theorem 1.
So the task is to take any recursive (r.e., co-r.e.) set of numbers and to construct two
systems of equations representing this set by a solution of the corresponding kind: one
system with union and addition, and the other using intersection and addition. In this
section, Theorem 4 is established in its weaker version, with the constructed systems using
both union and intersection.

The case of only one Boolean operation presents additional challenges, mainly because
the systems constructed in Theorems 2 and 3 already require both union and intersection,
and thus have to be reproved for the cases of only union and only intesection. Theorem 4
will be established in its full later in Section 5.

The construction for Theorem 4 is based upon a rather complicated arithmetization of
Turing machines, which proceeds in several stages. First, valid accepting computations of
a Turing machine are represented as numbers, so that these numbers could be recognized
by a trellis automaton working on base-6 positional notation of these numbers, which
are regarded as strings over the alphabet Σ6 = {0, 1, 2, 3, 4, 5}. While trellis automata
are rather flexible and could accept many different encodings of such computations, the
subsequent constructions require a set of numbers of a very specific form. This form will
now be defined.

Consider the following standard encoding of computations as strings:

Definition 2. Let T be a Turing machine recognizing numbers given to it in base-6 nota-
tion. Let V ⊃ Σ6 be its tape alphabet, let Q be its set of states, and define Γ = V ∪Q∪{]}.
Let S(T ) ⊆ N be the set of numbers accepted by T .

For every number n ∈ S(T ), denote the instantaneous description of T after i steps
of computation on n as a string IDi = αqaβ ⊆ V ∗QV V ∗, where T is in state q scanning
a ∈ Γ and the tape contains αaβ. Define

C̃T (n) = ID0 · ] · ID1 · ] · . . . · ] · ID`−1 · ]] · ID` · ]] ·
(
ID`

)R
· ] · . . . · ] ·

(
ID1

)R
· ] ·

(
ID0

)R
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Next, consider any code h : Γ∗ → Σ∗
6, under which every codeword is in {30, 300}+. Define

CT (n) = h(C̃T (n))300.

The language { C̃T (n) | n ∈ S(T )} ⊆ Γ∗ is an intersection of two linear context-free
languages and hence is recognized by a trellis automaton [2, 14]. By the known closure of
trellis automata under codes [17], the language {CT (n) | n ∈ S(T )} ⊆ Σ+

6 is recognized
by a trellis automaton as well.

Now the set of accepting computations of a Turing machine is represented as the
following six sets of numbers:

Definition 3. Let T be a Turing machine recognizing numbers given in base-6 notation.
For every i ∈ {1, 2, 3, 4, 5}, the valid accepting computations of T on numbers n > 6 with
their base-6 notation beginning with the digit i is

VALCi(T ) = { (CT (n)1w)6 | n = (iw)6, n ∈ S(T )},

The computations of T on numbers n ∈ {0, 1, 2, 3, 4, 5}, provided that they are accepting,
are represented by the following finite set of numbers:

VALC0(T ) = { (CT (n))6 + n | n ∈ {0, 1, 2, 3, 4, 5} and n ∈ S(T )}

For example, under this encoding, the accepting computation on a number n =
(543210)6 will be represented by a number (30300300 . . . 30300143210)6 ∈ VALC5(T ),
where the whole computation is encoded by blocks of digits 30 and 300, the digit 1 acts
as a separator and the lowest digits 43210 represent n with its leading digit cut.

A crucial property of this encoding is that it allows simulating concatenation of strings
of digits representing the computation and the input number, which is simulated by
adding these numbers to each other. Clearly, the number representing the computation
of T on (iw)6 ∈ L(T ) is representable as a sum of (1w)6 and an appropriate number in
({30, 300}∗3000∗)6. What is important is that the converse statement holds as well: that
is, whenever the sum of a number (1w)6 and any number in ({30, 300}∗3000∗)6 is of the
form (x1u)6 with x ∈ {30, 300}∗300, the string u must be equal to w. The following
lemma rules out the hypothetical possibility that the number (x1u)6 could be obtained
in any other way.

Lemma 1. Let S ⊆ (1Σ+
6 )6. Then for all strings x ∈ {30, 300}∗300 and u ∈ Σ+

6 , if
(x1u)6 ∈ ({30, 300}∗3000∗)6 + S, then (1u)6 ∈ S.

Proof. Let (x1u)6 = (y0`)6 + (1v)6, where y ∈ {30, 300}∗300, ` > 0 and (1v)6 ∈ S. The
goal is to show that u = v, x = y and |1v| = `, that is, the only way by obtaining (x1u)6

is by adding (x0|u|+1)6 to (1u)6, and no other numbers from ({30, 300}∗3000∗)6 and S
could be used to fake this number. The proof is by the analysis of all “improper” cases
of addition.

In each case it will be shown that the base-6 notation of (y0`)6 + (1v)6 has a different
structure than x1u. Depending on the number of digits in |1v|, consider the following
cases:

1. |1v| < `. Then (y0`)6 + (1v)6 = (y0`−|1v|
1v)6, which is a number with a base-

6 notation containing at least three consecutive zeroes to the left of the leftmost
digit 1. Since (x1u)6 has two zeroes to the left of the leftmost 1, it follows that
(y0`)6 + (1v)6 6= (1u)6, which makes this case impossible.
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2. |1v| = `. This is the case of addition done as intended. Then (y0`)6+(1v)6 = (y1v)6,
and thus (y1v)6 = (x1u)6. The leftmost instance of 1 in (y1v)6 and in (x1u)6 is at
the first position of 1v and 1u, respectively. Therefore, y = x and 1v = 1u.

3. ` < |1v| 6 |y|+ `. Then the leading 1 from 1v is at the same position as some digit
of y in y10`. Let y = y1iy2, where |y2| + ` = |v|. The digit i is either 0 or 3.

• If i = 0, then y1 ends with 3 or 30. The sum (y1iy20
`)6 + (1v)6 is thus of the

form (y1i
′z)6, where i′ ∈ {1, 2} (2 can appear due to a possible carry from the

earlier position), and the prefix y1i
′ is in {30, 300}∗{31, 32, 301, 302}. On the

other hand, in (x1u)6, the leftmost occurrence of digits outside of {3, 0} must
be of the form 3001.

• If i = 3, then the sum (y1iy20
`)6 + (1v)6 is of the form (y1i

′z)6, where |z| = |v|
and i′ ∈ {4, 5} (5 can appear due to a possible carry from the earlier position).
Consider the leftmost digits of the numbers (y1i

′z)6 and (x1u)6 different from
0 and 3. For (x1u)6 it is 1, while for (y1i

′z)6 it is 4 or 5, and thus these
numbers cannot be the same.

In both cases it follows that (y1iy20
`)6 + (1v)6 and (x1u)6 must be different, and

the case is impossible.

4. |1v| > |y| + `. Then the leading digit of (y0`)6 + (1v)6 is 1 or 2 (due to a possible
carry). As the leading digits are different, (y0`)6 + (1v)6 6= (x1u)6, which rules out
this case.

It has thus been established that y = x and 1v = 1u in the only possible case, which
yields the claim.

A trellis automaton recognizing the base-6 notation of numbers in VALCi(T ), by
Theorem 3, can be used to obtain a system of equations with union, intersection and
addition representing VALCi(T ). The system given by Theorem 3 is actually resolved;
casting away that property, this result can be proved in the following stronger form using
only one Boolean operation:

Lemma 2. For every TM T recognizing numbers there exists a system of equations

ϕj(Y,X1, . . . , Xm) = ψj(Y,X1, . . . , Xm)

over sets of natural numbers using union and addition (intersection and addition), such
that its least solution is (S0, S1, . . . , S5, S6, . . . , Sn) with Si = VALCi(T ) for 0 6 i 6 5.

The lemma will be established in this form only in Section 5, but at the moment its
weaker form is known, which asserts representability of the sets VALCi(T ) by equations
with union, intersection and addition.

The next task is to use these sets of numbers as constants in order to construct
equations representing L(T ). The first case to be established is the case of least solutions
and r.e. sets.
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Lemma 3. For every TM T accepting a set S0 ⊆ N there exists a system of equations of
the form

ϕj(Y,X1, . . . , Xm) = ψj(Y,X1, . . . , Xm)

with union and addition (or equally with intersection and addition), which has the set of
solutions

{
(S, f1(S), . . . , fm(S))

∣∣ S0 ⊆ S
}

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers defined with
respect to S0. In particular, there is a least solution with Y = S0.

The below argument proves a weaker form of Lemma 3, with the constructed system
using both union and intersection. Most of the given equations are stated as inclusions
of the form V ⊆ V ′ or V ⊆ V ′ + V ′′, and thus can be equally expressed using union and
using intersection. There is only one equation in the proof that explicitly uses both union
and intersection, and it will be shown in Section 5 that this equation can be rephrased
using either union (Lemma 16) or intersection (Lemma 15). With that correction, the
below proof will establish Lemma 3 in its full form stated above.

Proof of Lemma 3 (weaker form). The proof is by constructing a system in variables
(Y, Y1, . . . , Y5, Y0, X7, . . . , Xm), where the number m will be determined below, and the
set of solutions of this system is defined by the following conditions, which ensure that
the statement of the lemma is fulfilled:

S(T ) ∩ {0, 1, 2, 3, 4, 5} ⊆ Y0 ⊆ {0, 1, 2, 3, 4, 5}, (1a)

{ (1w)6 | w ∈ Σ+
6 , (iw)6 ∈ S(T )} ⊆ Yi ⊆ (1Σ+

6 )6 (1 6 i 6 5), (1b)

Y = Y0 ∪

5⋃

i=1

{ (iw)6 | (1w)6 ∈ Yi}, (1c)

Xj = Kj (7 6 j 6 m). (1d)

The sets K7, . . . , Km are some constants needed for the construction to work. These
constants and the equations needed to specify them will be implicitly obtained in the
proof. The constructed system will use inequalities of the form ϕ ⊆ ψ, which can be
equivalently rewritten as equations ϕ ∪ ψ = ψ or ϕ ∩ ψ = ϕ.

For each i ∈ {1, 2, 3, 4, 5}, consider the above definition of VALCi(T ), which can be
constructed by Lemma 2, and define a variable Yi with the equations

Yi ⊆ (1Σ+
6 )6, (2a)

VALCi(T ) ⊆ ({30, 300}∗3000∗)6 + Yi. (2b)

Both constants are given by regular languages of base-6 representations, and therefore
can be specified by equations according to Theorem 2. It is claimed that this system is
equivalent to (1b).

Suppose (1b) holds for Yi. Then (2a) immediately follows. To check (2b), consider
any (Ci

T (iw)1w)6 ∈ VALCi(T ). Since this number represents the computation of T on
(iw)6, this implies (iw)6 ∈ S(T ), and hence (1w)6 ∈ Yi by (1b). Then (Ci

T (iw)1w)6 ∈
({30, 300}∗3000|1w|)6 + (1w)6 ⊆ ({30, 300}∗3000)6 + Yi, which proves the inclusion (2b).
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Conversely, assuming (2), it has to be proved that for every (iw)6 ∈ S(T ), where w ∈
Σ+

6 , the number (1w)6 is in Yi. Since (iw)6 ∈ S(T ), there exists an accepting computation
of T : (Ci

T (iw)1w)6 ∈ VALCi(T ). Hence, (Ci
T (iw)1w)6 ∈ ({30, 300}∗3000∗)6 + Yi due to

the inclusion (2b), and therefore (1w)6 ∈ Yi by Lemma 1.
Define one more variable Y0 with the equations

Y0 ⊆ {0, 1, 2, 3, 4, 5}, (3a)

VALC0(T ) ⊆ ({30, 300}∗300)6 + Y0. (3b)

The claim is that (3) holds if and only if (1a).
Assume (1a) and consider any number (CT (n))6 + n ∈ VALC0(T ), where n ∈

{0, 1, 2, 3, 4, 5} by definition. Then n is accepted by T , and, by (1a), n ∈ Y0.
Since (CT (n))6 ∈ ({30, 300}∗300)6, the addition of n affects only the last digit, and
(CT (w))6 + n ∈ ({30, 300}∗300)6 + n ⊆ ({30, 300}∗300)6 + Y0, which proves (3b).

The converse claim is that (3) implies that every n ∈ S(T ) ∩ {0, 1, 2, 3, 4, 5} must be
in Y0, The corresponding (CT (n))6 + n ∈ VALC0(T ) is in ({30, 300}∗300)6 + n by (3b).
Since n is represented by a single digit, the number (CT (n))6 + n ends with this digit.
The set ({30, 300}∗300)6 + Y0 contains a number of such a form only if n ∈ Y0.

Next, combine the above six systems together and add a new variable Y with the
following equation:

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
i′∈Σ6

(
(Yi ∩ (1i′Σ∗

6)6) + ((i− 1)0∗)6 ∩ (ii′Σ∗
6)6

)
. (4)

This equation has been borrowed from the authors’ previous paper [6, Lem.7], where it
was proved equivalent to Y = Y0 ∪ { (iw)6 | (1w)6 ∈ Yi}, that is, to (1c). Note that this
is the only equation in this proof that uses explicit union or intersection; it will be shown
later, in Lemmata 15–16, that this equation can be equivalently represented using only
one Boolean operation.

The final step of the construction is to express constants used in the above systems
through singleton constants, which can be done by Theorem 2 and Lemma 2. The variables
needed to specify these languages are denoted (X7, . . . , Xn), and the equations for these
variables have a unique solution Xj = Kj for all j.

This completes the description of the set of solutions of the system. It is easy to see
that there is a least solution in this set, with Y = S(T ), Y0 = S(T ) ∩ {0, 1, 2, 3, 4, 5},
Yi = { (1w)6 | w ∈ Σ+

6 , (iw)6 ∈ S(T )} and Xj = Kj .

The representation of co-recursively enumerable sets by greatest solutions is dual to
the case of least solutions and is established by an analogous argument.

Denote the complements of the languages VALCi(T ) (0 6 i 6 5) by INVALCi(T ).
Base-6 notations of numbers in these sets are recognized by trellis automata due to the
closure of trellis automata under complementation. Therefore, analogously to Lemma 2,
the sets INVALCi(T ) are representable by equations.

Lemma 4. For every TM T recognizing a recursively enumerable set of numbers S0 ⊆ N

there exists a system of equations of the form

ϕj(Z,X1, . . . , Xm) = ψj(Z,X1, . . . , Xm)

10



with union and addition (or equally with intersection and addition), which has the set of
solutions

{
(S, f1(S), . . . , fm(S))

∣∣ S ⊆ S0

}
,

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers defined with
respect to S0. In particular, there is a greatest solution with Z = S0.

As in the previous lemma, only a weaker form of Lemma 4 can be proved at the
moment, with the system using both union and intersection. The full version will follow
by improving one of the equations in the below argument according to the later established
Lemmata 15–16.

Proof of the weaker version. The system has a set of variables
(Z,Z1, . . . , Z5, Z0, X7, . . . , Xm), and its set of solutions will be characterized by the
following conditions:

Z0 ⊆ S0 ∩ {0, 1, 2, 3, 4, 5} (5a)

Zi ⊆ { (1w)6 | w ∈ Σ+
6 , (iw)6 /∈ S0} (1 6 i 6 5), (5b)

Z = Z0 ∪
5⋃

i=1

{ (iw)6 | (1w)6 ∈ Zi} (5c)

Xj = Kj (7 6 j 6 n) (5d)

The number m and the vector of languages (K7, . . . , Km) will be determined below. This
set of solutions will satisfy the statement of the lemma.

The equations defining the value of each Zi (1 6 i 6 5) are as follows:

Zi ⊆ (1Σ+
6 )6 (6a)

({30, 300}∗3000∗)6 + Zi ⊆ INVALCi(T ), (6b)

It is claimed that (6) holds if and only if (5b).
If Zi satisfies (5b), then (6a) follows immediately, and in order to prove (6b), one has to

consider any number not in INVALCi(T ) and show that it is not in ({30, 300}∗3000∗)6 +
Zi. By definition, a number is not in INVALCi(T ) if it is in VALCi(T ), so take any number
n = (iw)6 ∈ S0, for which (CT (n)1w)6 ∈ VALCi(T ) with CT (iw) ∈ {30, 300}∗300.
Suppose (CT (iw)1w)6 ∈ ({30, 300}∗3000∗)6 +Zi. Then, by Lemma 1, (1w)6 ∈ Zi, hence
(iw)6 /∈ S0 by (5b), which yields a contradiction.

The converse is established as follows. Assuming (6), consider any number n ∈ S0 and
let n = (iw)6 for some i ∈ {1, 2, 3, 4, 5} and w ∈ Σ+

6 . It is sufficient to prove that (1w)6 /∈
Zi. Suppose (1w)6 ∈ Zi, then (CT (n)w)6 ∈ ({30, 300}∗3000∗)6 + Zi ⊆ INVALCi(T ) by
(6b). However, (CT (n)w)6 is in VALCi(T ) and thus cannot be in INVALCi(T ). The
contradiction obtained proves this case.

Define the following equations for the variable Z0:

Z0 ⊆ {0, 1, 2, 3, 4, 5} (7a)

({30, 300}∗300)6 + Z0 ⊆ INVALC0(T ) (7b)

Again, the claim is that these equations are equivalent to (5a).

11



Let Z0 be a subset of {0, 1, 2, 3, 4, 5} \ S0, as stated in (5a). This immediately
implies (7a). Consider any number not in INVALC0(T ); proving that it is not in
({30, 300}∗300)6 + Z0 will establish (7b). A number not in INVALC0(T ) must be in
VALC0(T ), so let CT (n) + n ∈ VALC0(T ) for any n ∈ {0, 1, 2, 3, 4, 5}, and suppose
CT (n) + n ∈ ({30, 300}∗300)6 + Z0. The last digit of CT (n) + n is n, and hence n ∈ Z0.
Therefore, by (5a), n /∈ S0, which contradicts the accepting computation CT (n).

Conversely, assume (7) and suppose there exists n ∈ {0, 1, 2, 3, 4, 5}, which is at the
same time in S0 and in Z0. Then there exists an accepting computation CT (n) + n ∈
VALC0(T ), that is, CT (n)+n /∈ INVALC0(T ). However, CT (n)+n ∈ ({30, 300}∗300)6 +
Z0, because CT (n) ∈ ({30, 300}∗300)6 and w ∈ Z0 by assumption, which contradicts
(7b). The contradiction obtained proves that no such w exists, which establishes (5a).

The equation for Z is the same as in Lemma 3:

Z = Z0 ∪ Z1 ∪
⋃

i∈{2,3,4,5}
i′∈Σ6

(
(Zi ∩ (1i′Σ∗

6)6) + ((i− 1)0∗)6 ∩ (ii′Σ∗
6)6

)
. (8)

As in the previous case, it is equivalent to (5c). Again, this is the only equation using union
and intersection, which will later be replaced by simpler equations given in Lemmata 15–
16.

To conclude the proof, linear conjunctive constants are expressed as in Theorem 3,
using extra variables (X7, . . . , Xn). The set of solutions has been described, and, clearly,
the greatest of them is Z0 = S0 ∩ {0, 1, 2, 3, 4, 5}, Zi = { (1w)6 | w ∈ Σ+

6 , (iw)6 /∈ S0},
Z = S0.

Finally, the case of recursive languages and unique solutions can be established by
combining the constructions of Lemmata 3 and 4 as follows:

Lemma 5. For every TM T halting on every input and recognizing a recursive set of
numbers S ⊆ N there exists a system of equations of the form ϕi(Y, Z,X1, . . . , Xn) =
ψi(Y, Z,X1, . . . , Xn) with union, intersection and addition, such that its unique solution
is Y = Z = S, Xi = Ki, where (K1, . . . , Kn) is some vector of sets.

Proof. A TM T ′ recognizing S is easily constructed out of T . Then Lemma 3 is applied to
T and Lemma 4 is applied to T ′. Consider both systems of language equations given by
these lemmata, let Y be the variable from Lemma 3, let Z be the variable from Lemma 4,
and let X1, . . . , Xn be the rest of the variables in these systems combined. The set of
solutions of the system obtained is

{
(Y, Z, f1(Y, Z), . . . , fn(Y, Z))

∣∣ S ⊆ Y and Z ⊆ S
}
,

that is {
(Y, Z, f1(Y, Z), . . . , fn(Y, Z))

∣∣ Z ⊆ S ⊆ Y
}
.

Adding one more equation
Y = Z

to the system collapses the bounds Z ⊆ S ⊆ Y to Z = S = Y , and the resulting system
has the unique solution {

(S, S, f1(S, S), . . . , fn(S, S))
}
,

which completes the proof.
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The weaker form of the above three lemmata yields a weaker form of Theorem 4, which
asserts computational completeness of equations with union, intersection and addition.

5 Unresolved systems with {∪,+} and {∩,+}

All results so far have been established for equations with addition, union and intersection.
In fact, the same results hold for equations using addition and either union or intersection.
Establishing all results in this stronger form, in particular, requires rewriting the basic
constructions of the previously known Theorems 2 and 3. The proof of the new Theorem 4
(to be specific, the constructions of Lemmata 3–4) also has to undergo some changes.

5.1 Two general translation lemmata

The first basic result is a simulation of a resolved system of a specific form using union,
intersection and addition by an unresolved system that does not use intersection.

Consider resolved systems of equations over sets of numbers, as in Section 3. They
are of the form

Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n),

where ϕi may contain union, intersection and addition, as well as singleton constants.
This subsection defines a syntactical transformation of resolved equations of a par-

ticular kind into unresolved equations using only one Boolean operation (that is, either
union or intersection).

A resolved system of equations is said to have a chain dependency of X from Y if the
equation defining X is of the form X = Y ∩ ϕ or X = Y ∪ ϕ, where ϕ is an arbitrary
expression.

The following fact about solutions of systems of resolved equations without 0 in the
constants can be easily proved using standard methods:

Proposition 1. If 0 is an element of some component of the least solution of a resolved
system of equations with only monotone and continuous operations, then at least one
constant used in this system contains 0.

Indeed, since the least solution of such a system is given by fixpoint iteration, the
number 0 may only appear in this process if it is contained in one of the constants.

Lemma 6. Let Xi = ϕi(X1, . . . , Xn) be a resolved system of equations with union, inter-
section and addition and with constants from a set C, where every constant contains only
positive integers. Let (S1, . . . , Sn) be its least solution. Assume that for every variable Xi0

there exists a subset of variables {Xi}i∈I containing Xi0, such that

• the sets {Si}i∈I are pairwise disjoint and their union is in C, and

• the equations for all {Xi}i∈I are either all of the form Xi =
⋃

j αij, or all of the
form Xi =

⋂
j αij ∪ C, where C is a constant and αij = A1 + . . . + Ak, with k > 1

and with each At being a constant or a variable.

In addition, assume that there are no cyclic chain dependencies in the system. Then there
exists an unresolved system with union and addition, with constants from C, which has
the unique solution (S1, . . . , Sn).
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Proof. Such a system is given directly by replacing each equation Xi =
⋂

j αij ∪Ci, where
each αi is a sum of constants and variables, by the following collection of inequalities:

Xi ⊆ αij ∪ Ci (for all j) (9)

In addition, for each group of variables {Xi}i∈I , whose union of the group is a constant
CI , the following equation is added:

⋃

i∈I

Xi = CI . (10)

The rest of the equations, which are of the form Xi =
⋃

j αij , with αij being a sum of
variables and constants, are left as they are. Clearly, the least solution (S1, . . . , Sn) of the
former system is a solution of the new system. It remains to prove that no other solutions
exist.

Assume for the sake of contradiction, that there is another solution (S ′
1, . . . , S

′
n). So

there is a number n ∈ Si ∆S ′
i for some i. Such a number is called wrong or wrong for Xi.

In particular, if n ∈ S ′
i \Si, then n is said to be an extra number for Xi, and if n ∈ Si \S

′
i,

then n is a missing number for Xi.
Note that the supposed solution must have 0 /∈ S ′

i for all i. Indeed, every i belongs
to some group of variables I, and then, by (10), S ′

i ⊆ CI . Since 0 /∈ CI , zero may not
be in S ′

i. This, in particular, means that 0 cannot be a wrong number (as 0 /∈ Si by
Proposition 1).

Fix n > 0 as the smallest wrong number. Then it can be proved that if this number is
obtained as a nontrivial sum of variables and constants, it is equally obtained under the
substitution of both solutions:

Claim 1. If n is the smallest wrong number and α = A1 + . . .+Ak, where k > 2 and all
Aj are variables and constants, then n ∈ α(. . . , Si, . . .) if and only if n ∈ α(. . . , S ′

i, . . .).

Proof. If n ∈ α(. . . , Si, . . .), then n = n1 + . . . + nk, with nj ∈ Aj(. . . , Si, . . .). As all
sets Aj(. . . , Si, . . .) are 0-free, each number nj must be positive. Furthermore, each of
them must be less than n because k > 2. Since n is the smallest wrong number, none of
n1, . . . , nk is wrong for its respective variable, and hence nj ∈ Aj(. . . , S

′
i, . . .). The same

argument applies for the converse implication.

Among all pairs (n,Xi), where n is the smallest wrong number and it is wrong for Xi,
choose a pair such that n is an extra number for Xi, and if it is not possible, then a pair
such that n is a missing number for Xi is chosen. Let us show that n must be wrong for
another variable Xi′ , with a chain dependency of Xi′ from Xi.

Suppose thatXi has an equation Xi =
⋃

j αij in the original system, which is preserved
in the new system. So Si =

⋃
j αij(. . . , St, . . .). Hence there exists αij , such that n ∈

αij(. . . , St, . . .) ∆αij(. . . , S
′
t, . . .). Clearly this αij cannot be a constant. If it is a variable

Xi′ then we replace Si by Si′. Note, that there is a chain dependency of Si from Si′ and n
is wrong for S ′

i′ and if n is an extra number, we can choose Si′ so that n is still an extra
number for Si′ . By Claim 1 αij cannot be a non-trivial sum of variables and constants.

Suppose now that the equation forXi in the original system is of the formXi =
⋂

j αij∪
Ci, and n is a missing number. We use (10) in this case—let i ∈ I and

⋃
j∈I Xj = CI .

Then by substituting Si into those equations we obtain that n ∈ CI . On the other hand
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by substituting S ′
i into those equations we obtain that n ∈ S ′

i′ for some i′ ∈ I and i′ 6= i.
As n ∈ Si then n /∈ Si′, as i, i′ ∈ I and by assumption sets in the same group are pairwise
disjoint. Hence we obtain a contradiction, as n is an extra number for Xi′ and we are
supposed to choose an extra number if there is any.

Let the equation for Xi in the original system be Xi =
⋂

j αij ∪ C and suppose
that n is an extra number. So in the new system there are equations Xi ⊆ αij ∪ Ci

for j ∈ I, hence n ∈ αij(. . . , S
′
t, . . .) ∪ Ci for j ∈ I. On the other hand n /∈ Si =⋂

j∈I αij(. . . , Si, . . .)∪Ci. And so there is j′ ∈ I such that n /∈ αij′(. . . , St, . . .)∪Ci. Hence
n ∈ αij′(. . . , S

′
t, . . .) \ αij′(. . . , St, . . .). Clearly αij′ cannot be a constant, assuming that

it is a non-trivial sum would again derive a contradiction by Claim 1. And so αij′ is a
variable Xi′. We replace Xi by Xi′ and continue the process. Note, that there is a chain
dependency of Xi from Xi′ and n is an extra number for Xi′ .

Now the same argument applies to the pair (n,Xi′), and in this way an infinite se-
quence of variables with a chain dependency to their successors is obtained. This is a
contradiction, as there are no cyclic chain dependencies in the system.

A similar construction produces equations with intersection instead of union. The
next lemma is very similar in spirit and proof technique to Lemma 6, but some technical
details are different, therefore it has to be proved separately.

Lemma 7. Under the assumptions of Lemma 6, there exists an unresolved system with
intersection and addition and with constants from C, which has a unique solution that
coincides with the least solution of the given system.

Proof. Here the new system is obtained by the following transformation. For every equa-
tion Xi =

⋃
j αij in the original system, where each αij is a sum of constants and variables,

the new system contains inequalities

αij ⊆ Xi for each j. (11)

For every subset of variables {Xi}i∈I , with union CI , the following equations are added:

Xi ∩Xj = ∅ for each i, j ∈ I with i 6= j, (12)

Xi ⊆ CI for each i ∈ I. (13)

The rest of the equations are of the form Xi =
⋂

j αij ∪ Ci, where Ci is a constant and
αij = A1 + . . . + Ak, with k > 1 and with each At being a constant or a variable. They
are changed in the way similar to the equations for union, i.e. are replaced by inequalities

Ci ⊆ Xi and
⋂

j

αi,j ⊆ Xi.

Clearly, the least solution (. . . , Si, . . .) of the former system is still a solution. It should
be proved that no other solution exists.

As in Lemma 6, Proposition 1 is used to show that the least solution (. . . , Si, . . .) of
the resolved system is 0-free. Also, since the assumptions of the lemma are the same as
those of Lemma 6, then Claim 1 holds.

Suppose that there is another solution (. . . , S ′
i, . . .). Note that 0 may not be in any S ′

i

by the equation (13).
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Define wrong numbers, missing numbers and extra numbers as in the proof of
Lemma 6. Let n be the smallest wrong number with n ∈ Si ∆S ′

i for some i. By the
above arguments, n must be positive. Among all pairs (n,Xi), such that n is the smallest
wrong number and it is wrong for Xi, choose the one in which n is a missing number, if
there is any such pair. If there is none, then choose a pair (n,Xi), where n is an extra
number for Xi. As in the proof of the previous lemma, the idea is to show that there
must be another variable Xi′ which has a chain dependence on Xi, so that n is a wrong
number of Xi′ .

Suppose first that n is an extra number. We use the (12) and (13) in this case:
substituting (. . . , St, . . .) into (13) one obtains that n ∈ CI , where i ∈ I. On the other
hand, by the assumption of the Lemma

⋃
j∈I Sj = CI , hence there exists i′ 6= i such that

n ∈ Si′ . But by (12): n /∈ S ′
i′, as S ′

i ∩ S ′
i′ = ∅. Hence n is a missing number for i′, a

contradiction, as we were supposed to choose a missing number if there was any.
Assume now that n is a missing number and in the original resolved system the

equation defining Si is of the from Xi =
⋃

j αij . By the construction there are equations
αij ⊆ Xi for j ∈ I, hence n /∈ αij(. . . , S

′
t, . . .) for j ∈ I. On the other hand n ∈ Si =⋃

j∈I αij(. . . , St, . . .). Hence there is i′ ∈ I such that n ∈ αi′j(. . . , St, . . .) and therefore
n ∈ αi′j(. . . , St, . . .)\αi′j(. . . , S

′
t, . . .). By Claim 1 αi′j cannot be a non-trivial sum. Clearly

it cannot be a constant, hence it is a variable. And so αi′j = Xi′. We swap Si for Si′.
Note that there is a chain dependency of Xi from Xi′ and n is a missing number for X ′

i′.
Suppose now that n is a missing number and in the original system the equation for

Si is of the form Xi =
⋂
αij ∪ Ci. The construction assures that there are equations⋂

j αij ⊆ Xi and Ci ⊆ Xi in the new system. Then n /∈
⋂

j αij(. . . , S
′
t, . . .) and n /∈ Ci.

On the other hand, as n ∈ Li, it holds that n ∈
⋂

j αij(. . . , St, . . .) ∪ Ci. Since n /∈ Ci

by previous observation, n ∈
⋂

j αij(. . . , St, . . .). Thus there exists i′ ∈ I such that
n ∈ αi′j(. . . , St, . . .) \ αi′j(. . . , S

′
t, . . .). Similarly to the analysis in the previous case, αi′j

cannot be a constant and by Claim 1 it cannot be a non-trivial sum as well. Hence
αi′j = Xi′ , for some variable Xi′, i.e. there is a chain dependency of Xi from Xi′. We
replace Si with Si′ , nota that n is a missing number for Xi′ .

And so for every n and Xi for which it is wrong we are able of finding another Xi′

such that n is wrong for it as well and there is a chain dependency of Si from Si′. As
there are no cyclic chain dependencies in the system we obtain a contradiction.

The next task is to apply Lemmata 6 and 7 to resolved systems constructed in the
proofs of Theorems 2 and 3. For the lemmata to be applicable, the equations given by
Jeż [5] and Jeż and Okhotin [6] need to be decomposed into smaller parts and slightly
changed. Then the variables can be grouped into subsets, as required by the lemmata.

5.2 Sets with a regular positional notation

Using the lemmata from the previous section, the resolved equations of Jeż [5] and Jeż and
Okhotin [6] will now be converted to unresolved equations with sum and either union or
intersection. The first task is to reformulate them so that Lemmata 6 and 7 are applicable.

The following known properties of equations over sets of numbers will be used in the
constructions:

Lemma 8 ([6, Lem.3]). Let S ⊆ N be a set of numbers, let k and km (with k > 2, m > 2)
be two bases of positional notation. Then the language L ⊆ Σ∗

k \ 0Σ
∗
k of base-k notations
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of numbers in S is regular (linear conjunctive) if and only if the language L′ ⊆ Σ∗
km \0Σ∗

km

of their base-km notations is regular (linear conjunctive, respectively).

Lemma 9 ([6, Lem.4]). Let ϕ(X) be an expression defined as a composition of the fol-
lowing operations: (i) the variable X; (ii) constant sets; (iii) union; (iv) intersection with
a constant set; (v) addition of a constant set. Then ϕ is distributive over infinite union,
that is, ϕ(X) =

⋃
n∈X ϕ({n}).

In addition, two transformations of systems of equations, which are intuitively obvious
meta-theorems, will be used to convert equations over sets of numbers to the form required
by Lemmata 6 and 7. One of them states that any components of a least solution may
be replaced by constants with the same value:

Proposition 2. Let a system

ϕi(X1, . . . , Xm, Y1, . . . , Yn) = ψi(X1, . . . , Xm, Y1, . . . , Yn)

have a least solution Xi = Ki, Yj = Lj. Then the system

ϕi(K1, . . . , Km, Y1, . . . , Yn) = ψi(K1, . . . , Km, Y1, . . . , Yn)

in variables {Y1, . . . , Yn} has the least solution Yj = Lj.

The other transformation is a decomposition of complex right-hand sides by introduc-
ing extra variables:

Proposition 3. Let (. . . , St, . . .) be the least solution of a system of equations in variables
(. . . , Xt, . . .) using union, intersection and addition, and let

ϕ(. . . , Xt, . . . ;ψ(. . . , Xt, . . .)) = η(. . . , Xt, . . .)

be one of its equations. Then a system with a new variable Y , a new equation Y =
ψ(. . . , Xt, . . .), and with the above equation replaced by

ϕ(. . . , Xt, . . . ;Y ) = η(. . . , Xt, . . .)

has the least solution (. . . , St, . . . ;ψ(. . . , St, . . .)).

Note that the property of having a least solution is maintained because the subexpres-
sion ψ contains only monotone operations on sets.

Now the first result on the expressive power of equations with one Boolean operation
asserts representability of finite and co-finite sets of numbers.

Lemma 10. Every finite or co-finite subset of N is representable by a unique solution of a
resolved system with union and addition, as well as by a unique solution of an unresolved
system with intersection and addition.

Proof. The case of union follows from the fact that every ultimately periodic unary lan-
guage can be specified by a resolved system of language equations with union, one-sided
concatenation and constants {a} and {ε}.
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Let us prove the lemma in the case of intersection, where the use of unresolved equa-
tions becomes essential. Let K = {n1, n2, . . . , nm}, with 0 6 n1 < . . . < nm, be any finite
set of numbers. First define the following equations for a variable X:

nm + 1 ⊆ X (14a)

X + 1 ⊆ X (14b)

nm ∩X = ∅ (14c)

Here (14b) ensures that the solution is of the form {n | n > k} for some k (or empty),
(14a) states that nm + 1 is in X, while (14c) ensures that n is not in X. Thus the unique
solution of these equations is X = {n | n > nm}. Using this variable, define three more
equations for a new variable Y :

X ∩ Y = ∅ (14d)

ni ⊆ Y for i ∈ {1, 2, . . . , m} (14e)

n ∩ Y = ∅ for each n < nm with n /∈ K (14f)

By (14d), Y must be a subset of {0, . . . , nm}. The next two equations state the mem-
bership of every number between 0 and nm in Y : it should be in Y if and only if it is in
K. Hence, the unique solution is Y = K. Finally, define one more variable Z, with the
following equations:

X ⊆ Z (14g)

ni ∩ Z = ∅ for i = 1, 2, . . . , m (14h)

ni ⊆ Z for ni < nm, ni /∈ {n1, . . . , nm} (14i)

The equation (14g) states that every number greater than ni must be in Z. The next
two equations define, similarly to the equations for Y , for each number not exceeding nm,
that it should be in Z if and only if it is not in K. Altogether these equations specify
Z = N \K, which completes the proof.

Consider a set of natural numbers with base-k notation ij0∗ for i 6= 0. It is known
that such sets are representable by resolved systems with union, intersection and sum [5].
This result will now be reconstructed to use only one Boolean operation, at the expense
of turning the resolved equations into unresolved ones. The new construction is based
upon a slightly modified version of equations from the original paper [5]. The proof that
they have a stated solution is omitted, as it is exactly the same as the original one.

Theorem 5. For every k > 9, there exists an unresolved system with union (intersection),
sum and singleton constants, which has a unique solution with some of its components
being

(ij0∗)k (for all i, j ∈ Σk with i > 0).

Proof. It is known that there exists a resolved system of equations with union, intersection
and addition representing the sets Sij = (ij0∗)k through each other [5, Thm.14]. However,
this system would not be sufficient for the present paper, since these sets cannot be
grouped to match the conditions of Lemmata 6 and 7. The proposed construction relies
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on representing both these sets and the complementary sets S̃ij = (ij(Σ∗
k \ 0∗))k. Then

all sets Sij and S̃ij will be pairwise disjoint and their union will be co-finite, making the
lemmata applicable.

Define the set of variables Xi,j, Yi,j, Xi,j,` and Yi,j,`, with i, j, ` ∈ Σk and i 6= 0, and
consider the following resolved system of equations:

X1,j =
2⋂

n=1

Xk−n,0+Xj+n,0 ∪ (1j)k for j = 0, 1, 2

Xi,j =
2⋂

n=1

Xi−1,k−n+Xj+n,0 ∪ (ij)k for j = 0, 1, 2, i > 2

Xi,j =
( 2⋂

n=1

Xi,j−n+Xn,0

)

∩ Xi,0+Xj,0 ∪ (ij)k for j > 3

Xi,j,` =

3⋂

n=0

Xi,n+Xj−n,` for j > 4, i 6= 0, ` ∈ Σk,

Xi,j,` =

4⋂

n=1

Xi−1,j+n+Xk−n,` for j 6 3, i 6= 0, 1, ` ∈ Σk,

X1,j,` =

4⋂

n=1

Xk−n,0+Xj+n,` for j 6 3, ` ∈ Σk,

Yi,j =
⋃

` 6=0

Xi,j,` ∪
⋃

`∈Σk

Yi,j,` for j ∈ Σk, i 6= 0,

Yi,j,` =
3⋂

n=0

Xi,n+Yj−n,` for j > 4, i 6= 0, ` ∈ Σk,

Yi,j,` =
4⋂

n=1

Xi−1,j+n+Yk−n,` for j 6 3, i 6= 0, 1, ` ∈ Σk,

Y1,j,` =
4⋂

n=1

Xk−n,0+Yj+n,` for j 6 3, ` ∈ Σk.

It is claimed that the least solution of those equations is:

Xi,j = (ij0∗)k,

Xi,j,` = (ij`0∗)k,

Yi,j = (ij(Σ∗
k \ 0

∗))k,

Yi,j,` = (ij`(Σ∗
k \ 0

∗))k.

The equations for Xi,j are already known [5, Thm.14] and their least solution has been
proved to be (ij0∗)k, as claimed. The rest of the equations implicitly occur in a proof
of an earlier more general result [5, Lem.17], yet some explanations are due in order to
recognize them in the above system. This is in fact the construction of Theorem 2, used
to represent a set of numbers (L(M))k for a given finite automaton M . Consider that
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Σ∗
k \ 0

∗ is a regular language recognized by a finite automaton reading the string of digits
from the right to the left. The automaton has two states, q0 and q1; it is in state q0 while
all digits encountered so far are zeroes, and once any non-zero digit is read, it enters state
q1 and remains there. Applying the known construction [5, Lem.17] to this automaton
gives a system in variables Xi,j and Yi,j, with the X-variables corresponding to the state
q0 and with the Y -variables representing the state q0. A straightforward transformation
of that system

It remains to show that these equations satisfy the assumptions of Lemmata 6 and 7,
with the variables separated into the following two groups:

{Xi,j, Yi,j | i, j ∈ Σk, i 6= 0}, {Xi,j,`, Yi,j,` | i, j, ` ∈ Σk, i 6= 0}.

The unions of the corresponding sets in the least solution for the former group is {n |n >

k}, and for the latter group it is {n | n > k2}; both are co-finite sets. Clearly, in either
group all the components are pairwise disjoint. The only chain dependencies are those of
variables Xi,j on (some) variables Xi,j,`, as well as of Yi,j on some Yi,j,`; hence there are
no cyclic chain dependencies. And so by Lemma 6 and Lemma 7 there exist unresolved
systems with union (intersection), sum and finite and co-finite constants, whose unique
solution has the requested components. Co-finite and finite constants are eliminated by
expressing them according to Lemma 10.

Now the construction of Theorem 2 can be remade using unresolved equations using
only one Boolean operation.

Lemma 11. For every deterministic finite automaton M = (Σ, Q, q0, δ, F ) there exists an
unresolved system of equations using union (intersection), sum and singleton constants,
in which some of the components of the unique solution are

Si,j,q := { (ijw)k | δ(q0, w
R) = q} for i, j ∈ Σk, i 6= 0, q ∈ Q.

Proof. Consider the following resolved language equations [5, Lem. 17] with constants of
the form (ij0∗)k:

Xi,j,q =
⋃

(x,q′):δ(q′,`,q)

Xi,j,`,q′ ∪ { (ij)k | if q = q0} for j > 4, i > 1,

Xi,j,`,q =

3⋂

n=0

(in0∗)k +Xj−n,`,q for j > 4, i > 1,

Xi,j,q =
⋃

(`,q′):δ(q′,`,q)

Xi,j,`,q′ ∪ { (ij)k | if q = q0} for j 6 3, i > 2,

Xi,j,`,q =
4⋂

n=1

((i− 1)(j + n)0∗)k +Xk−n,`,q for j 6 3, i > 2,

X1,j,q =
⋃

(`,q′):δ(q′,`,q)

X1,j,`,q′ ∪ { (ij)k | if q = q0} for j 6 3,

X1,j,`,q =

4⋂

n=1

((k − n)00∗)k +Xj+n,`,q for j 6 3
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For these equations, it was proved that their least solution is

Xi,j,q = { (ijw)k | δ(q0, w
R) = q}, Xi,j,`,q = { (ij`w)k | δ(q0, w

R) = q}.

The rest of the proof shows how to obtain an unresolved system of equations with the
same unique solution, which is done similarly to the proof of Theorem 5.

The plan is to apply Lemmata 6 and 7 to the above system. To this end, the variables
of the system have to be grouped. Again, there will be two groups,

{Xi,j,q | i, j ∈ Σk, i 6= 0, q ∈ Q} and {Xi,j,`,q | i, j, ` ∈ Σk, i 6= 0, q ∈ Q}.

The union of the least solution in the first group is {n | n > k}, and {n | n > k2} for the
second group. The sets within each group are clearly disjoint.

The resulting system uses two co-finite constants obtained as unions of the groups, as
well as constants of the form (ij0∗)k. The former are expressed as in Lemma 10, while
the latter are replaced by references to equations from Theorem 5.

Theorem 6. For every k > 2 and for every regular language L ⊆ Σ∗
k \ 0Σ

∗
k there exists

an unresolved system with union (intersection), addition and singleton constants, which
has a unique solution with (L)k as one of its components.

Proof. First consider the case of 2 6 k < 9. Then, by Lemma 8, there exists a regular
language L′ ⊆ Σ∗

k′ for k′ = k4 > 9, such that (L′)k′ = (L)k. Hence it is sufficient to
establish the theorem for k > 9.

Let M = (Σ, Q, q0, δ, F ) be a deterministic finite automaton recognizing LR. By
Lemma 11, there exists an unresolved system of the specified form, in which every variable
Xi,j,q in the unique solution equals { (ijw)k | δ(q0, w

R) = q}. Then the set (L)k can be
obtained as the following union:

(L)k =
(
(L)k ∩ {n | n < k}︸ ︷︷ ︸

finite constant

)
∪

⋃

i,j,q:
δ(q,ji)∈F

{ (ijw)k | δ(q0, w
R) = q}︸ ︷︷ ︸

Xi,j,q

. (15)

In the case of unresolved equations with union, the equality (15) can be directly
specified by introducing a new variable Y and adding the following equation:

Y =
(
(L)k ∩ {n | n < k}

)
∪

⋃

i,j,q:
δ(q,ji)∈F

Xi,j,q.

The finite constant {n | n < k} is expressed according to Lemma 10.
For the case of intersection, consider that the sets { (ijw)k | δ(q0, w

R) = q}, along with
the finite set {n | n < k}, form a partition of N. Then a new variable Y is added, and its
intersection with every element of this partition is expressed:

Y ∩ {n | n < k} = (L ∩ Σ61
k )k

Y ∩Xi,j,q = ∅ for (i, j, q) with δ(q, ji) /∈ F

Y ∩Xi,j,q = Xi,j,q for (i, j, q) with δ(q, ji) ∈ F

Because these equalities state the membership of every natural number in Y , this repre-
sentation is equivalent to (15), and hence the system has a unique solution with Y = (L)k.
Both finite constants are again replaced according to Lemma 10.
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5.3 Any linear conjunctive language

The next task is to remake another key construction of a system of equations using
only one Boolean operation. As stated in Theorem 3, for every trellis automaton M
with L(M) ⊆ Σ+

k \ 0Σ∗
k, there exists a resolved system of equations over sets of natural

numbers with (L(M))k as one of the components of its least solution. This construction
essentially uses both union and intersection, and the goal is again to refine the known
construction [6] so that Lemmata 6 and 7 could be applied to it.

This construction essentially uses the operations of symbolic addition and subtraction
of 1 on positional notations of numbers. For every base k > 2 and for every string
w ∈ Σ∗

k \ (k − 1)∗, the string w′ = w � 1 is defined as the unique string with |w| = |w′|
and (w)k + 1 = (w′)k. Similarly, for every w ∈ Σ∗

k \ 0
∗, define w′ = w � 1 as the unique

string with |w| = |w′| and (w)k − 1 = (w′)k.
For example, in decimal notation, 0099 � 1 = 0100. and 0100 � 1 = 0099. This

notation shall never be used for strings on which it is undefined, such as 999 � 1 and
000 � 1. This notation is extended to languages in the natural way:

L� 1 = {w � 1 | w ∈ L \ (k − 1)∗}

L� 1 = {w � 1 | w ∈ L \ 0∗}

This operation obviously preserves regularity, hence it can be used inside regular expres-
sions for sets of positional notations, and the sets thus defined remain regular.

The original construction of a resolved system simulating a trellis automaton went
in three stages: first, the set (1(L(M) � 1)10∗)k was represented [6, Lem.5]; next, (1 ·
L(M))k [6, Lem.6]; and finally, a system for (L(M))k was obtained [6, Lem.7]. This
composition will be followed in the below proof, and each part of the known construction
will be carefully remade.

Lemma 12. For every k > 4 and for every trellis automaton M over Σk = {0, . . . , k−1}
with L(M)∩0Σ∗

k = ∅, there exists and can be effectively constructed an unresolved system
of equations over sets of natural numbers using union and addition (or intersection and
addition) and singleton constants, such that the unique solution of this system contains a
component

(1(LM(q) � 1)10∗)k = { (1w10`)k | ` > 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)}.

Proof. Let M = (Σk, Q, I, δ, F ) be any trellis automaton and consider the known resolved
system of equations representing the given sets of numbers [6, Lem.5]. It uses variables
Xq over all q ∈ Q and contains the equations

Xq = Rq ∪
⋃

q,q′:δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′) (for all q ∈ Q)
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where

Rq = { (1(w � 1)10∗)k | w ∈ 0
∗(Σk \ 0) ∪ (Σk \ 0)0

∗, w ∈ LM (q)}

κi′(X) =
(
X ∩ (1i′Σ∗

k10
∗)k

)
+(10∗)k ∩ (2i′Σ∗

k)k, for all i′ ∈ Σk

λi(X) =
⋃

i′∈Σk

(
κi′(X) + ((k + i− 2)0∗)k ∩ (1iΣ∗

k)k

)
, for i = 0, 1

λi(X) =
⋃

i′∈Σk

(
κi′(X) + (1(i− 2)0∗)k ∩ (1iΣ∗

k)k

)
, for i > 2

πj′(X) =
(
X ∩ (1Σ∗

kj
′
10

∗)k

)
+(10∗)k ∩ (1Σ∗

kj
′
20

∗)k, for all j′ ∈ Σk

ρj(X) =
⋃

j′∈Σk

(
πj′(X) + ((k + j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
, for j = 0, 1

ρj(X) =
⋃

j′∈Σk

(
πj′(X) + (1(j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
, for 2 6 j 6 k − 2

ρk−1(X) =
⋃

j′∈Σk

(
πj′(X) + ((k − 3)10∗)k ∩ (1Σ∗

k(k − 1)10∗)k

)

All constants used in the system have regular base-k notation.
The least solution is Xq = Sq [6, Main Claim], where

Sq = (1((LM (q) \ 0∗) � 1)10∗)k = { (1w10`)k | ` > 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)}.

These sets are pairwise disjoint and their union is a set with a regular base-k notation.
In order to prove this, let us establish a more general statement that will be used several
times in the following:

Claim 2. Let x ∈ Σ∗
k \ 0Σ

∗
k and y ∈ Σ+

k \ 0∗ be strings of digits, let K1, . . . , Km ⊆ Σ+
k be

any pairwise disjoint languages. Let S1, . . . , Sm be sets of numbers defined by

St = { (xuy0`)k | ` > 0, u ∈ Kt}.

Then these sets are pairwise disjoint and their union is

m⋃

t=1

St = (x(
⋃m

t=1 Kt)y0
∗)k.

Proof. Consider any two sets St and St′ with t 6= t′, and suppose there is a number
n belonging to both sets. Then n = (xuy0`)k for some u ∈ Kt and n = (xu′y0`′)k

with u′ ∈ Kt′ . Since y contains a non-zero digit, the length of the tail of zeroes in n is
independent of u and u′, and therefore ` = `′. Then u and u′ must be the same string,
which is impossible since Kt ∩Kt′ = ∅ by assumption. This proves that St ∩ St′ = ∅.

The union of these sets is
⋃

t

St =
⋃

t

(xKty0
∗)k = (x(

⋃
tKt)y0

∗)k,

as stated.

Now Claim 2 can be applied to the particular case of the sets Sq to obtain the following
result:
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Claim 3. The sets of numbers Sq with different q ∈ Q are pairwise disjoint, and their
union is ⋃

q

Sq = (1(Σ+
k \ (k − 1)∗)10∗)k.

Proof. As a trellis automaton computes a uniquely determined state δ(I(w)) ∈ Q on each
string w ∈ Σ+

k , it induces a partition of Σ+
k into classes corresponding to different states.

Define Kq = (LM(q)\0∗)�1; these sets are pairwise disjoint and their union for all q ∈ Q
is Σ∗

k \ (k − 1)∗, since every string w ∈ Σ+
k belongs to some LM(q). The rest is given by

Claim 2 with x = y = 1.

Though the values of the variables Xq as they are already satisfy Lemma 6 and
Lemma 7, the right-hand sides of the above equations are not of the required simple
form. Now the goal is to transform the system, splitting the existing equations into
smaller parts and introducing new variables, so that it satisfies the assumptions of the
lemmata.

The first step is to construct equations of the required form representing λ and ρ.
Each occurrence of λi(Xq) will be replaced by a new variable Zλ

i,q, and similarly κi′(Xq)
is replaced by W λ

i′,q, where the new variables have the following equations:

Uλ
i′,q = Xq ∩ (1i′Σ∗

k10
∗)k (16)

W λ
i′,q = Uλ

i′,q + (10∗)k ∩ (2i′Σ∗
k)k (17)

Y λ
i,i′,q = W λ

i′,q + (1(i− 2)0∗)k ∩ (1iΣ∗
k)k for i > 3 (18)

Y λ
i,i′,q = W λ

i′,q + ((k + i− 2)0∗)k ∩ (1iΣ∗
k)k for i 6 2 (19)

Zλ
i,q =

⋃

i′

Y λ
i,i′,q (20)

Since the equation for Zλ
i,q represents the expression λi(Xq) broken into pieces, the “old

variables” {Xq} have the same values in the least solution of the new system as in the
least solution of the old system. The newly introduced variables are arranged into the
following four groups:

{Uλ
i′,q | i

′ ∈ Σk, q ∈ Q}, {W λ
i′,q | i

′ ∈ Σk, q ∈ Q},

{ Y λ
i,i′,q | i, i

′ ∈ Σk, q ∈ Q}, {Zλ
i,q | i ∈ Σk, q ∈ Q}.

Let us calculate the values of these variables in the least solution. For every variable
V , let µ(V ) be the set corresponding to V in the least solution of the new system of
equations.

Claim 4. For all (i′1, q1) 6= (i′2, q2) sets µ(Uλ
i′
1
,q1

) and µ(Uλ
i′
2
,q2

) are disjoint and and their
union is ⋃

i′,q

µ(Uλ
i′,q) = (1(Σ+

k \ (k − 1)∗)10∗)k.

Proof. It is already known [6, Eq. (3)] that

µ(Uλ
i′,q) = { (1i′w10`)k | ` > 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)}.
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These sets are obtained from the languages Kλ
i′,q = ((LM(q) \ 0∗) � 1)∩ i′Σ∗

k with i′ ∈ Σk

and q ∈ Q as in the statement of Claim 2. To see that the sets Kλ
i′,q are pairwise disjoint,

consider Kλ
i1,q1

and Kλ
i2,q2

: if i1 6= i2, then the words in these sets start from different
digits, and if q1 6= q2, then Kλ

i1,q1
⊆ LM(q1) � 1 and Kλ

i2,q2
⊆ LM(q2) � 1. In both cases,

Kλ
i1,q1

∩Kλ
i2,q2

= ∅.
Therefore, Claim 2 with x = y = 1 asserts that µ(Uλ

i′,q) are pairwise disjoint and the
union of this group of sets is

⋃

i′,q

µ(Uλ
i′,q) = (1(

⋃
i′,q Ki′,q)10

∗)k = (1
(⋃

i′,q((LM(q) \ 0∗) � 1) ∩ i′Σ∗
k

)
10

∗)k =

= (1((
⋃

q LM(q) \ 0∗) � 1)10∗)k = (1((Σ∗
k \ 0

∗) � 1)10∗)k = (1(Σ+
k \ (k − 1)∗)10∗)k,

which completes the proof.

Similar statements will now be proved for the other three groups of variables.

Claim 5. For all (i1, q1) 6= (i2, q2) the sets µ(W λ
i1,q1

) and µ(W λ
i1,q1

) are disjoint and the
union of all sets in the group is:

⋃

i′,q

W λ
i′,q = (2(Σ+

k \ (k − 1)∗)10∗)k.

Proof. It is known [6, Eq. (4)] that

µ(W λ
i′,q) = { (2i′w10`)k | ` > 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)}.

These sets are induced by Kλ
i′,q = ((LM(q) \ 0∗) � 1) ∩ i′Σ∗

k with i′ ∈ Σk and q ∈ Q as

in Claim 2 with x = 2 and y = 1. It has been proved in Claim 4 that Kλ
i′,q are pairwise

disjoint and their union is Σ+
k \ (k−1)+. Both statements of the present claim follow.

Claim 6. For all (i1, i
′
1, q1) 6= (i2, i

′
2, q2) it holds that µ(Y λ

i1,i′
1
,q1

) ∩ µ(Y λ
i1,i′

1
,q1

) = ∅. Their
union is: ⋃

i,i′,q

µ(Y λ
i,i′,q) = (1Σk(Σ

+
k \ (k − 1)∗)10∗)k.

Proof. It is known [6, Eqs. (5,6)] that

µ(Y λ
i,i′,q) = { (1ii′w10`)k | ` > 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM(q)}.

Then, for each fixed i, those sets are obtained from the languages Kλ
i′,q = ((LM(q) \

0
∗) � 1) ∩ i′Σ∗

k as in Claim 2 with x = 1i and y = 1. It was shown in Claim 4 that Kλ
i′,q

are pairwise disjoint and their union is Σ+
k \ (k − 1)∗. Thus, for each i,

⋃

i′,q

µ(Y λ
i,i′,q) = (1i(Σ+

k \ (k − 1)∗)10∗)k,

and for all (i′1, q1) 6= (i′2, q2) the sets µ(Y λ
i,i′

1
,q1

) and µ(Y λ
i,i′

2
,q2

) are disjoint. Then, clearly,
⋃

i,i′,q

µ(Y λ
i,i′,q) =

⋃

i

(1i(Σ+
k \ (k − 1)∗)10∗)k = (1Σk(Σ

+
k \ (k − 1)∗)10∗)k,

What is left to show is that for (i1, i
′
1, q1) 6= (i2, i

′
2, q2), the sets µ(Yi1,i′

1
,q1

) and µ(Yi2,i′
2
,q2

)
are disjoint. If i1 = i2, then (i′1, q1) 6= (i′2, q2), and such sets were already shown to have
empty intersection. If i1 6= i2, then these sets consist of numbers with a different second
leading digit, and are bound to be disjoint as well.
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Claim 7. For all (i1, q1) 6= (i2, q2), the sets µ(Zλ
i1,q1

) and µ(Zλ
i2,q2

) are disjoint, and their
union equals ⋃

i,q

µ(Zλ
i,q) = (1Σk(Σ

+
k \ (k − 1)∗)10∗)k.

Proof. The equation (20) defines Zλ
i,q as the union of Y λ

i,i′,q for all i′, and the values of the

latter variables are known from Claim 6. Then the value of Zλ
i,q is calculated as follows:

⋃

i,q

µ(Zλ
i,q) =

⋃

i,q

(
⋃

i′ µ(Y λ
i,i′,q)) =

⋃

i,i′,q

µ(Y λ
i,i′,q) = (1Σ(Σ+

k \ (k − 1)∗)10∗)k.

The sets µ(Zλ
i,q) are pairwise disjoint as unions of pairwise disjoint sets.

The equations for ρ will now undergo a similar reconstruction. Every ρj(Xq) is replaced
by Uρ

j,q and each πj′(Xq) by W ρ
j′,q(Xq). The new variables are defined by the following

resolved equations:

Uρ
j′,q = Xq ∩ (1Σ∗

kj
′
10

∗)k (21)

W ρ
j′,q = Uρ

j′,q+(10∗)k ∩ (1Σ∗
kj

′
20

∗)k (22)

Y ρ
j,j′,q = W ρ

j′,q+(1(k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k for j < 2 (23)

Y ρ
j,j′,q = W ρ

j′,q+(1(j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k for 2 6 j < k − 1 (24)

Y ρ
k−1,j′,q = W ρ

j′,q+((k − 3)10∗)k ∩ (1Σ∗
k(k − 1)10∗)k (25)

Zρ
j,q =

⋃

j′

Y ρ
j,j′,q (26)

As the new equations represent the subexpressions of ρj(Xq), the values of the variables
Xq in the least solution of the new system are the same as in the least solution of the old
system.

These variables are grouped as follows:

{Uρ
j′,q | j

′ ∈ Σk, q ∈ Q}, {W ρ
j′,q | j

′ ∈ Σk, q ∈ Q},

{ Y ρ
j,j′,q | j, j

′ ∈ Σk, q ∈ Q}, {Zρ
j,q | j ∈ Σk, q ∈ Q}.

As in the case of λ, the values of the variables in each group are pairwise disjoint, and
the union of each group is a set with a regular notation.

Claim 8. For all (j′1, q1) 6= (j′2, q2), the sets µ(Uρ

j′
1
,q1

) and µ(Uρ

j′
2
,q2

) are disjoint, and their
union is ⋃

j′,q

µ(Uρ
j′,q) = (1(Σ+

k \ (k − 1)∗)10∗)k.

Proof. It was proved [6, Eq. (8)] that

µ(Uρ
j′,q) = { (1wj′10`)k | ` > 0, wj′ /∈ (k − 1)∗, wj′ � 1 ∈ LM(q)}.

These sets can be obtained from the languages Kρ
j,q = (LM(q)�1)∩Σ∗

kj as in Claim 2 with
x = 1 and y = 1. The languages Kρ

j1,q1
and Kρ

j2,q2
are disjoint for all (j1, q1) 6= (j2, q2),

as for j1 6= j2 their last digits are different, while for q1 6= q2 it holds that Kρ
j1,q1

⊆
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LM(q1) � 1 and Kρ
j2,q2

⊆ LM (q2) � 1, and the supersets are disjoint. Then, by Claim 2,
µ(Uρ

j1,q1
) ∩ µ(Uρ

j2,q2
) = ∅ for (j1, q1) 6= (j2, q2), while the union of these sets is

⋃

j∈Σk,q∈Q

µ(Uρ
j,q) = (1(

⋃
j∈Σk,q∈QK

ρ
j,q)10

∗)k = (1(
⋃

j∈Σk,q∈Q(LM(q) � 1) ∩ Σ∗
kj

)
10

∗)k =

= (1(
⋃

q∈Q(LM(q) � 1) ∩Σ+
k )10∗)k = (1((Σ∗

k \ 0
∗) � 1)10∗)k = (1(Σ+

k \ (k − 1)∗)10∗)k,

and the claim follows.

Claim 9. For (j′1, q1) 6= (j′2, q2), the sets µ(W ρ

j′
1
,q1

) abd µ(W ρ

j′
2
,q2

) are disjoint, and

⋃

j′,q

µ(W ρ
j′,q) = (1(Σ+

k \ (k − 1)∗)20∗)k.

Proof. It was proved [6, Eq. (9)] that

µ(W ρ
j′,q) = { (1wj′20`)k | wj

′ � 1 ∈ LM (q), wj′ /∈ (k − 1)∗, ` > 0}.

These sets are induced by the languages Kρ
j,q = (LM(q) � 1) ∩ Σ∗

kj as in Claim 2 with
x = 1 and y = 2. These languages appeared already in Claim 8, where it was shown
that they are pairwise disjoint and their union is Σ+

k \ (k− 1)∗. Then, by Claim 2, for all
(j′1, q

′
1) 6= (j′2, q

′
2), the sets µ(W ρ

j′
1
,q1

) and µ(W ρ

j′
2
,q2

) are disjoint, and

⋃

j′,q

µ(W ρ
j′,q) = (1(

⋃
j′,q K

ρ
j′,q)20

∗)k = (1(Σ+
k \ (k − 1)∗)20∗)k,

which completes the proof.

Claim 10. The sets µ(Y ρ

j1,j′
1
,q1

) and µ(Y ρ

j2,j′
2
,q2

) are disjoint for all (j1, j
′
1, q1) 6= (j2, j

′
2, q2),

and the union in the group equals
⋃

j,j′,q

µ(Y ρ
j,j′,q) = (1((Σ∗

k \ 0
∗)Σk � 1)10∗)k.

Proof. It is known [6, Eqs. (10, 11, 12)] that

µ(Y ρ
j,j′,q) = { (1(w′j′ � 1)j10`−1)k | ` > 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM(q)}

for all j 6= k − 1, and

µ(Y ρ
k−1,j′,q) = { (1w′j′(k − 1)10`−1)k | ` > 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)}.

Fix any j 6= k − 1. Then the sets µ(Y ρ
j,j′,q) are obtained from the languages Kρ

j,j′,q =
(LM(q) \ 0∗) ∩ (Σ∗

kj
′ � 1) as in Claim 2 with x = 1 and y = j1. Then, for all (j′1, q1) 6=

(j′2, q2), the languages Kρ

j,j′
1
,q1

and Kρ

j,j′
2
,q2

are disjoint, as for q1 6= q2 K
ρ

j,j′
1
,q1

⊆ LM(q1) and

Kρ

j,j′
1
,q1

⊆ LM (q2), and the supersets are disjoint. If j′1 6= j′2, then the strings from these

languages differ in the last digit. Therefore, by Claim 2,

⋃

j′,q

µ(Y ρ
j,j′,q) = (1(

⋃
j′,q K

ρ
j,j′,q)j10

∗)k = (1(
⋃

j′,q(LM (q) \ 0∗) ∩ (Σ∗
kj

′ � 1))j10∗)k =

= (1(
⋃

j′(Σ
+
k \ 0∗) ∩ (Σ∗

kj
′ � 1))j10∗)k = (1((Σ+

k \ 0∗) ∩ (Σ+
k � 1))j10∗)k =

= (1(Σ+
k \ 0∗)j10∗)k = (1((Σ+

k \ 0∗)(j + 1) � 1)10∗)k,
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and µ(Y ρ

j,j′
1
,q1

) ∩ µ(Y ρ

j,j′
2
,q2

) = ∅ for all (j′1, q1) 6= (j′2, q2).

Next, consider the case of j = k−1 and recall the languages Kρ
j′,q = (LM(q)�1)∩Σ∗

kj
introduced in Claim 8, where it was shown that these languages are pairwise disjoint and
their union is ⋃

j′,q

Kρ
j′,q = Σ+

k \ (k − 1)∗.

Now the sets µ(Y ρ

k−1,j′
1
,q1

) can be obtained from the languages Kρ
j′,q by the method of

Claim 2 with x = 1 and y = (k − 1)1. Therefore,

⋃

j′,q

µ(Y ρ

k−1,j′
1
,q1

) = (1(Σ+
k \ (k − 1)∗)(k − 1)10∗)k = (1((Σ+

k \ 0∗)0 � 1)10∗)k,

where the the first equality comes from Claim 2 and the second one is a simple calculation.
Also, for different (j′1, q1) 6= (j′2, q2), the sets µ(Y ρ

k−1,j′
1
,q1

) and µ(Y ρ

k−1,j′
1
,q1

) are disjoint.

Finally, in order to prove the claim, consider any two sets µ(Y ρ

j1,j′
1
,q1

) and µ(Y ρ

j2,j′
2
,q2

)

with (j1, j
′
1, q1) 6= (j2, j

′
2, q2). If j1 6= j2, then these sets are disjoint, as their elements

differ in the second from the last non-zero digit. If j1 = j2 and (j′1, q1) 6= (j′2, q2), then
these two sets have been proved to be disjoint in one of the cases above.

The union of all these sets is

⋃

j,j′,q

µ(Y ρ
j,j′,q) =

⋃

j 6=k−1

⋃

j′,q

µ(Y ρ
j,j′,q) ∪

⋃

j′,q

µ(Y ρ
k−1,j′,q) =

⋃

j 6=k−1

(1((Σ+
k \0∗)(j+1)�1)10∗)k ∪(1((Σ+

k \0∗)0�1)10∗)k = (1((Σ+
k \0∗)Σk �1)10∗)k,

which establishes the claim.

Claim 11. The sets µ(Zρ
j1,q1

) and µ(Zρ
j2,q2

) are disjoint for (j1, q1) 6= (j2, q2). Their union
equals ⋃

j,q

µ(Zρ
j,q) = (1((Σ∗

k \ 0
∗)Σk � 1)10∗)k.

Proof. The variable Zρ
j,q is defined by the equation (26) as the union of Y ρ

j,j′,q for all j′.
Then

⋃

j,q

µ(Zρ
j,q) =

⋃

j,q

⋃

j′

µ(Y ρ
j,j′,q) =

⋃

j,j′,q

µ(Y ρ
j,j′,q) = (1((Σ∗

k \ 0
∗)Σk � 1)10∗)k,

where the second equality is given by Claim 10. The latter claim also states that the sets
µ(Y ρ

j,j′,q) are pairwise disjoint, and hence so are the sets µ(Zρ
j,q).

Thus the expressions λi(Xq) and ρj(Xq) have been expressed by equations of the
form satisfying the assumptions of Lemma 6 and Lemma 7. It remains to transform the
equation defining Xq to the same form. The original equation [6] was

Xq = Rq ∪
⋃

q′,q′′: δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′),
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The subexpression corresponding to every i, q′′, j and q′ shall be represented by a new
variable Xi,q′′,j,q′ with the equation

Xi,q′′,j,q′ = Zλ
i,q′′ ∩ Z

ρ
j,q′, (27)

while the equation for Xq is accordingly replaced by

Xq = Rq ∪
⋃

q′,q′′: δ(q′,q′′)=q
i,j∈Σk

Xi,q′′,j,q′ (28)

The variables are divided into two groups,

{Xi,q′′,j,q′ | i, j ∈ Σk, q
′, q′′ ∈ Q}, {Xq | q ∈ Q}

and it remains to show the required properties of the variables in each group.

Claim 12. For all (i1, q
′′
1 , j1, q

′
1) 6= (i2, q

′′
2 , j2, q

′
2), the sets µ(Xi1,q′′

1
,j1,q′

1
) and µ(Xi2,q′′

2
,j1,q′

2
)

are disjoint, and the union of all these sets is

⋃

i,q′′,j,q′

µ(Xi,q′′,j,q′) = (1((Σ∗
k \ 0

∗) � 1)10∗)k \
⋃

q Rq.

Proof. According to the equation (27), µ(Xi,q′′,j,q′) = µ(Zλ
i,q′′) ∩ µ(Zρ

j,q′). By Claim 7,

µ(Zλ
i1,q′′

1

)∩µ(Zλ
i2,q′′

2

) = ∅ for (i1, q
′′
1) 6= (i2, q

′′
2). Similarly, by Claim 11, µ(Zρ

j1,q′
1

)∩µ(Zρ

j2,q′
2

) =

∅ for (j1, q
′
1) 6= (j2, q

′
2). Thus for (i1, q

′′
1 , j1, q

′
1) 6= (i2, q

′′
2 , j2, q

′
2) it holds that µ(Xi1,q′′

1
,j1,q′

1
)∩

µ(Xi2,q′′
2
,j2,q′

2
) = ∅.

By the equation (27), the union of all these sets is

⋃

i,q′′,j,q′

µ(Xi,q′′,j,q′) =
⋃

i,q′′,j,q′

µ(Zλ
i,q′′) ∩ µ(Zρ

j,q′) =
( ⋃

i,q′′

µ(Zλ
i,q′′)

)
∩

(⋃

j,q′

µ(Zρ
j,q′)

)
,

and using the values of both unions given by Claim 7 and Claim 11, this can be calculated
as follows:

(1Σk(Σ
+
k \ (k − 1)∗)10∗)k ∩ (1((Σ+

k \ 0∗)Σk � 1)10∗)k =

= (1(Σk(Σ
+
k \ 0∗) � 1)10∗)k ∩ (1((Σ+

k \ 0∗)Σk � 1)10∗)k =

= ((1((Σ+
k \ 0∗) � 1)10∗))k \ (((1(Σk0

∗ ∪ 0
∗Σk) � 1)10∗))k =

= ((1((Σ+
k \ 0∗) � 1)10∗))k \

⋃
q∈QRq,

which concludes the proof.

Since the new equations represent the subexpressions of the original system, the value
of the least solution of the common variables (i.e., Xq) remains the same, that is µ(Xq) =
Sq. Moreover, Claim 3 asserts that the sets Sq are pairwise disjoint and that their union
is a set with a regular notation. Thus the only thing remaining to be checked is that there
are no cyclic chain dependencies in the defined system.

Claim 13. There are no cyclic chain dependencies in the equations (16)–(28).

Proof. The constructed system contains the following chain dependencies:
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• there may be a chain dependency of Uλ
i′,q from Xq or Uρ

j′,q from Xq

• of Xq from (some) Xi,q′′,j,q′

• of Xi,q′′,j,q′ from Zλ
i,q′′ and from Zρ

i,q′

• of Zλ
i,q from Y λ

i,i′,q

• of Zρ
j,q from Y ρ

j,j′,q

Consider the following groups of variables:

G1 = {Xq | q ∈ Q}

G2 = {Uλ
i′,q, U

ρ
j′,q | q ∈ Q; i′, j′′ ∈ Σk}

G3 = {Zλ
i,q, Z

ρ
j,q | q ∈ Q; i, j ∈ Σk}

G4 = {Xi,q′′,j,q′ | q
′, q′′ ∈ Q; i, j ∈ Σk}

G5 = { Y λ
i,i′,q, Y

ρ
j,j′,q | q ∈ Q; i, j, i′, j′ ∈ Σk}

Then it can be easily seen that if a variable from a group Gm depends on a variable in a
group Gn, then m < n. Therefore, there are no chain dependencies in the system.

According to the above claims, there exists a resolved system of equations satisfying
the assumption of Lemma 6 and Lemma 7, such that one of the components in its least
solution is

(1(LM(q) � 1)10∗)k = { (1w10`)k | ` > 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)}.

Then, by the aforementioned lemmata, there exist unresolved systems either with union
and sum, or with intersection and sum, which have the same unique solution. Finally,
using Theorem 6, regular constants used in these systems are replaced by singleton con-
stants, which completes the proof of Lemma 12.

The next task is to represent the set (1LM(q))k for any trellis automaton M and its
state q. Similarly to Lemma 12, this will be done by transforming an existing construc-
tion [6, Lem.6].

Lemma 13. For every k > 4 and for every trellis automaton M over Σk there exists and
can be effectively constructed an unresolved system of equations over sets of numbers using
the operations of union (or intersection) and addition, as well as singleton constants,
such that its unique solution contains a component (1LM(q))k for each state q of this
automaton.

Proof. The argument will use a simple technical claim, similar to Claim 2 in the proof of
Lemma 12.

Claim 14. Let x ∈ Σ∗
k \ 0Σ∗

k and y ∈ Σ∗
k be a string of digits (possibly empty), let

K1, . . . , Km ⊆ Σ+
k be any pairwise disjoint languages, and let S1, . . . , Sm be sets of numbers

defined by
St = { (xuy)k | u ∈ Kt}.

Then these sets are pairwise disjoint and their union is
m⋃

t=1

St = (x
⋃m

t=1Kty)k.
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The proof is nearly obvious and is omitted. A stronger statement will be proved in
the following as Claim 17.

Consider the trellis automatonM over Σk. For every state q and for every digit j ∈ Σk,
construct a trellis automaton Mq,j with the set of states Qq,j recognizing the language
LM(q){j}−1 using the known transformation [14]. Then, by Lemma 12, there is a system
of equations using addition and either union or intersection, which contains a variable Yq,j,p

for each state p of Mq,j , and has a unique solution with Yq,j,p = (1((LMq,j
(p)\0∗)�1)10∗)k.

The first goal is to combine these systems into a larger system of equations containing
variables Yq,j for each state q of M and for each digit j, so that it has Yq,j = (1((L(Mq,j)\
0
∗) � 1)10∗)k in its unique solution.

When union and addition are allowed, the construction is immediate: if Fq,j is the set
of accepting states of Mq,j , then

Yq,j =
⋃

p∈Fq,j

Yq,j,p (29)

merged with subsystems defining Yq,j,p satisfies the goal.
If the allowed operations are intersection and addition, then the following system is

constructed:

Yq,j ∩ Yq,j,p = ∅ for p 6∈ Fq,j (30)

Yq,j ∩ Yq,j,p = Yq,j,p for p ∈ Fq,j (31)

Yq,j ∩
[
N \ (1((Σ∗

k \ 0
∗) � 1)10∗))k

]
= ∅, (32)

where the variables Yq,j,p are defined in subsystems. As the sets {(1((LMq,j
(p) \ 0

∗) �

1)10∗)k}p∈Qq,j
together with N\(1((Σ+

k \0
∗)�1)10∗))k form a partition of natural numbers,

these equations effectively represent the union of Yq,j,p for all p. The additional constant
(1((Σ∗

k \ 0
∗) � 1)10∗))k used in the construction is a set of numbers with a regular base-k

positional notation, and hence it can be expressed by Theorem 6.
The sets (1(((LM (q){j}−1)\0∗)�1)10∗)k are used in a known construction [6, Lem.6]

of an equation representing the set (1 · LM(q))k. This equation is of the form

Zq = Cq ∪

k−1⋃

j=0

(Yq,j ∩ (1Σ∗
k1)k) + (1j � 1)k,

which uses the constant Cq = (1LM(q))k∩(10∗Σk)k with a regular base-k notation. These
constants are similar to the constants Rq in Lemma 12, in the sense that they represent
strings of digits of a simple form not handled by the main formula. This equation also
refers to variables Yq,j defined in their own subsystems, so that their least solution satisfies

µ(Yq,j) = (1(((LM(q){j}−1) \ 0∗) � 1)10∗)k.

It is already known [6, Eq. (15)] that this equation, together with the aforementioned
subsystems for variables Yq,j, has a least solution with

µ(Zq) = (1 · LM(q))k.

Then, by Proposition 2, the equation for Zq with variables Yq,j replaced by constants
Yq,j = (1(((LM(q){j}−1) \ 0∗) � 1)10∗)k has the least solution with µ(Zq) = (1 ·LM(q))k.
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The equations for Zq for all q ∈ Q can be turned into a system satisfying the assumption
of Lemma 6 and Lemma 7 by introducing new variables Zq,j and rewriting the equations
as:

Zq,j = Yq,j ∩ (1Σ∗
k1)k

Zq = Cq ∪
k−1⋃

j=0

Zq,j + (1j � 1)k

The grouping of variables required by Lemmata 6 and 7 is

{Zq | q ∈ Q}, {Zq,j | q ∈ Q}j∈Σk
.

It has to be proved that the sets in each group form a disjoint partition of a certain set
with a regular notation.

Claim 15. For every j ∈ Σk and q1 6= q2, the sets µ(Zq1,j) and µ(Zq2,j) are disjoint and

⋃

q

µ(Zq,j) = (1(Σ∗
k \ (k − 1)∗)1)k

Proof. The value of Zq,j is determined from its equation as follows:

µ(Zq,j) = µ(Yq,j) ∩ (1Σ∗
k1)k = (1(((LM(q){j}−1) \ 0∗) � 1)10∗)k ∩ (1Σ∗

k1)k =

(1(((LM(q){j}−1) \ 0∗) � 1)10∗ ∩ 1Σ∗
k1)k = (1(((LM(q){j}−1) \ 0∗) � 1)1)k

Fix any digit j. The sets µ(Zq,j) satisfy the assumption of Claim 14 with Kq =
((LM(q){j}−1) \ 0

∗) � 1 and x = y = 1. For q1 6= q2 the languages LM(q1) and
LM(q2) are disjoint, and hence the sets also Kq1

= ((LM (q1){j}
−1) \ 0

∗) � 1 and
Kq2

= ((LM(q2){j}
−1) \ 0

∗) � 1 are disjoint as well. Thus µ(Zq1,j) ∩ µ(Zq2,j) = ∅ by
Claim 14. Also ⋃

q

µ(Zq,j) = (1(
⋃

q Kq)1)k = (1Σ+
k \ (k − 1)∗1)k,

since every string not in (k − 1)∗ belongs to some Kq.

Claim 16. For all q1 6= q2, the sets µ(Zq1
) and µ(Zq2

) are disjoint and

⋃

q

µ(Zq) = (1Σ+
k )k.

Proof. By Proposition 3, µ(Zq) remains the same as in the original system, hence µ(Zq) =
(1LM(q))k. Thus µ(Zq) satisfy the assumption of Claim 14 with K ′

q = LM (q), x = 1

and y = ε. Clearly, the languages {K ′
q} are pairwise disjoint, as trellis automata are

deterministic. Also each non-empty string belongs to some K ′
q, hence

⋃
q∈QK

′
q = Σ+

k .
Therefore, by Claim 14, µ(Zq1

) ∩ µ(Zq2
) = ∅ for q1 6= q2 and

⋃

q

µ(Zq) = (1(
⋃

q∈QK
′
q))k = (1Σ+

k )k.

as claimed.
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Lemma 6 and Lemma 7 require that there are no chain cyclic dependencies in the
constructed system. As the only chain dependencies are those of Zq from (some) Zq,j,
there are no cycles among them.

Therefore, the new system satisfies the assumption of the Lemma 6 and Lemma 7,
and accordingly, there exists an unresolved system using addition and either union or
intersection, which has a unique solution with (1 ·LM(q))k as one of its components. The
system uses regular constants, which can be eliminated using Theorem 6, and constants
Yq,j, which are represented in (29) in the case of union and addition, and in (30–32) using
intersection and addition.

The final step of the known construction [6] was to specify the set (L(M))k with
minimal assumptions on the language L(M). This step will now be similarly replicated
using unresolved systems.

Lemma 14. For every k > 4 and for every trellis automaton M over Σk, such that
L(M) ∩ 0Σ∗

k = ∅, there exists and can be effectively constructed an unresolved system
of equations over sets of numbers using the operations of union (or intersection) and
addition, as well as singleton constants, such that its unique solution contains a component
(L(M))k.

Proof. The following slightly more complicated version of Claim 14 will be used in the
proof:

Claim 17. Let x ∈ Σ+
k \ 0Σ∗

k and y, z ∈ Σ∗
k be strings of digits (possibly empty), let

K1, . . . , Km ⊆ Σ+
k be any pairwise disjoint languages, and let S1, . . . , Sm be sets of numbers

defined by
St = { (x(z−1u)y)k | u ∈ Kt}.

Then these sets are pairwise disjoint and their union is

m⋃

t=1

St = (x(z−1(
⋃m

t=1Kt))y)k.

Proof. Let St and St′ be any two sets with t 6= t′ and suppose there is a number n
belonging to both of them. Then n = (x(z−1u)y)k for some u ∈ Kt and n = (x(z−1u′)y)k

with u′ ∈ Kt′ . Clearly, z is a prefix of both u and u′, that is, u = zv and u′ = zv′. Then
n = (x(z−1)uy)k = (xvy)k and n = (x(z−1)u′y)k = (xv′y)k, and therefore v′ = v and
u = u′. It is a contradiction, as Kt and Kt′ are disjoint. This proves that St ∩ St′ = ∅.

The union of these sets is
⋃

t

St =
⋃

t

(x(z−1Kt)y)k = (x(z−1
⋃

tKt)y)k,

as desired.

The proof of Lemma 14 begins with the following system of equations [6, Eqs. (16,19)]:

Tq = (LM(q) ∩ Σk)k ∪ Z1,p ∪
⋃

i∈Σk\{0,1}

τi(Zi,q), where

τi(X) =
⋃

i′∈Σk

(
(X ∩ (1i′Σ∗

k)k)+((i− 1)0∗)k ∩ (ii′Σ∗
k)k

)
(for i 6= 0, 1).
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The system refers to the variables Zi,p; the values of these variables are defined in their
own subsystems with the solution µ(Zi,q) = (1{i}−1LM(q))k.

It is known [6, Eqs. (16,19)], that

τi({n}) =

{
{(iw)k}, if n = (1w)k w ∈ Σ+

k ,

∅, otherwise,

and that the system of equations formed by the above equation for Tq and the subsystems
for all variables Zi,p has a least solution with

µ(Tq) = (LM(q) \ 0∗)k.

Consider the following decomposition of this equation:

Ui,i′,q = Zi,q ∩ (1i′Σ∗
k)k for i > 2

Wi,i′,q = Ui,i′,q + ((i− 1)0∗)k ∩ (ii′Σ∗
k)k for i > 2

Tq =
⋃

i>2,i′

Wi,i′,q ∪ Z1,q ∪ (LM(q) ∩ Σk)k

Let the set of variables be split into the following 2k − 3 groups:

{Ui,i′,q | i
′ ∈ Σk, q ∈ Q}26i<k, {Wi,i′,q | i, i

′ ∈ Σk, q ∈ Q}26i<k, { Tq | q ∈ Q}.

As in the previous proofs, it is claimed that the union of each group is a set with a regular
base-k notation, and that the sets in each group are pairwise disjoint.

It it known from the previous work [6, Eq. (16)] that

µ(Ui,i′,q) = { (1i′w)k | ii
′w ∈ LM (q)}.

Fix i > 2. Then the sets {µ(Ui,i′,q)} for all i′ ∈ Σk and q satisfy the assumption of Claim 17
with Ki′,q = ii′Σ∗

k ∩ LM (q), x = 1, y = ε and z = i. The intersection Ki′
1
,q1

∩ Ki′
2
,q2

is
empty, as for i′1 6= i′2 it holds that 1i′1Σ

∗
k ∩ 1i′2Σ

∗
k = ∅, and LM(q1) ∩ LM(q2) = ∅ for

q1 6= q2, because trellis automata is deterministic. Hence,
⋃

i′,q

µ(Ui,i′,q) = (1(i−1
⋃

i′,q

Ki′,q))k = (1(i−1iΣ+
k ))k = (1Σ+

k )k for each i > 2.

It is also known [6, Eq. (17)] that

µ(Wi,i′,q) = { (ii′w)k | ii
′w ∈ LM(q)} = (LM(q))k ∩ (ii′Σ∗

k)k.

Consider any two variables Wi1,i′
1
,q1

and Wi2,i′
2
,q2

with (i1, i
′
1, q1) 6= (i2, i

′
2, q2). If q1 6= q2,

then LM (q1) ∩ LM(q2) = ∅. If (i1, i
′
1) 6= (i2, i

′
2) then i1i

′
1Σ

∗
k ∩ i2i

′
2Σ

∗
k = ∅. In both cases

µ(Wi1,i′
1
,q1

) ∩ µ(Wi2,i′
2
,q2

) = ∅. The union of these sets equals:

⋃

i,i′,q

µ(Wi,i′,q) =
⋃

i,i′,q

(LM(q))k ∩ (ii′Σ∗
k)k = (Σ>2

k )k.

The proof any sets Tq1
and Tq2

with q1 6= q2 are disjoint is immediate, as the new
equations represent subexpressions of the former system, hence µ(Tq) = (LM(q) \ 0∗)k.
Thus for all q1 6= q2

µ(Tq1
) ∩ µ(Tq2

) ⊆ (LM(q1))k ∩ (LM(q2))k = ∅,
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while the union of all these sets is
⋃

q

µ(Tq) =
⋃

q

(LM(q) \ 0∗)k = (Σ+
k \ 0∗)k.

The only chain dependency in the constructed system is that of Tq from Wi,i′,q. Hence
there are no cyclic chain dependencies and the system obtained satisfies the assumptions
of Lemma 6 and Lemma 7 with constants Zi,q and regular constants.

Hence there exists an unresolved system of the required form with one of the compo-
nents of its unique solution equal to (L(M))k. This system uses constants Zi,q and regular
constants. The former are expressed using Lemma 13 and the latter by Theorem 6.

5.4 Universality

Using the above Lemma 12 instead of Theorem 3 immediately proves Lemma 2 in its full
form stated above, that the sets VALCi(T ) are representable by equations using, along
with addition, either union or intersection. The final step of the argument is to modify
the systems defined in the proofs of Lemmata 3 and 4 to use these sets of operations.

The only equations using Boolean operations in those proofs are (4) and (8), and since
they are identical, it is sufficient to rephrase a single equation (4). Its reformulation using
addition and intersection is immediate:

Lemma 15. Let Yi ⊆ (1Σ+
6 )6 for 1 6 i 6 5 and let Y0 ⊆ {0, 1, 2, 3, 4, 5}. Then, for every

set Y ⊆ N,

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
(33)

if and only if

Y ∩ (ijΣ∗
6)6 = (Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6 (i, j ∈ Σ6, i 6= 0, 1),

Y0 = Y ∩ {0, 1, 2, 3, 4, 5},

Y1 = Y ∩ (1Σ+
6 )6.

Proof. ⇐© Assume that the sets Yi satisfy the latter three equations. Then, since N =
{0, . . . , 5} ∪ (1Σ+

6 )6 ∪
⋃

i>1,j(ijΣ
∗
6)6,

Y = (Y ∩ {0, . . . , 5}) ∪ (Y ∩ (1Σ+
6 )6) ∪

⋃

i>1,j

(Y ∩ (ijΣ∗
6)6) =

Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
.

⇒© Conversely, assume that (33) holds. Then, intersecting both sides of (33) with
(ijΣ∗

6)6, {0, . . . 5} and (1Σ+
6 )6, one obtains:

Y ∩ (ijΣ∗
6)6 = (Yi ∩ (1jΣ∗

6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

Y ∩ {0, . . . 5} = Y0

Y ∩ (1Σ+
6 )6 = Y1.
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An analogous result for addition and union requires introducing new variables, and so
the statement looks more complicated:

Lemma 16. There exist monotone functions fi,j, gi,j, hi,j : 2N → 2N, with i ∈
{2, . . . , 5} and j ∈ {0, . . . , 5} and a system of equations in variables {Y, Y0, . . . , Y5} ∪
{ Yi,j, Y

′
i,j, Y

′′
i,j |2 6 i 6 5, 0 6 j 6 5} using the operations of union and addition, such that

Y = S, Yi = Si, Yi,j = Si,j, Y
′
i,j = S ′

i,j, Y
′′
i,j = S ′′

i,j with i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5} is
a solution of that system if and only if S0 ⊆ {0, 1, 2, 3, 4, 5}, S1, S2, S3, S4, S5 ⊆ (1Σ+

6 )6,
and Y = S, Yi = Si is a solution of the equation

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
,

and Si,j = fi,j(Si), S
′
i,j = gi,j(Si) and S ′′

i,j = hi,j(Si) for i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5}.

Proof. Define

fi,j(X) = X ∩ (1jΣ∗
6)6,

gi,j(X) = fi,j(X)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6,

hi,j(X) = fi,j(X)+((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ

∗
6)6.

Note that these are monotone functions. The system of equations is constructed as follows:

Y = Y0 ∪ Y1 ∪
⋃

i,j

Y ′
i,j (34)

Y0 ⊆ {0, 1, 2, 3, 4, 5} (35a)

Y1 ⊆ (1Σ+
6 )6 (35b)

5⋃

j=0

Yi,j = Yi (36a)

Yi,j ⊆ (1jΣ∗
6)k (36b)

Y ′
i,j ⊆ Yi,j + ((i− 1)0∗)6 (37a)

Y ′
i,j ⊆ (ijΣ∗

6)6 (37b)

Y ′′
i,j ⊆ Yi,j + ((i− 1)0∗)6 (37c)

Y ′′
i,j ⊆ (Σ∗

6 \ ijΣ
∗
6)6 (37d)

Y ′
i,j ∪ Y

′′
i,j = Yi,j + ((i− 1)0∗)6 (37e)

The statement of the lemma is proved separately in two directions.
⇒© Suppose (S, S0 . . . , S5, . . . , Si,j, S

′
i,j, S

′′
i,j, . . .) is a solution of the system (34–37e).

Then, by (36b), for each i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5},

Si,j ⊆ (1jΣ∗
6)k,
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and taking into account that
⋃5

j=0 Si,j = Si for 2 6 i 6 5, it follows that Si ⊆ (1Σ+
6 )k

holds for S2, . . . , S5. The inclusions S0 ⊆ {0, 1, 2, 3, 4, 5} and S1 ⊆ (1Σ+
6 )6 are explicitly

stated in the system as (35a) and (35b).
To see that Si,j = fi,j(Si), consider that, by (36a), Si =

⋃
j Si,j, and further, by

(36a) and (36b), for each j it holds that Si,j ⊆ Si ∩ (1jΣ∗
6)6. Taking the union over j⋃

j Si,j ⊆
⋃

j Si ∩ (1jΣ∗
6)6. The latter is, clearly, a subset of Si, and thus

Si =
⋃

j

Si,j ⊆
⋃

j

Si ∩ (1jΣ∗
6)6 ⊆ Si.

hence the inequalities are in fact equalities. Since Si,j ⊆ (1jΣ∗
6)6 and for j 6= j′ the sets

(1jΣ∗
6)6 and (1j′Σ∗

6)6 are disjoint, for each j it holds that Si,j = Si ∩ (1jΣ∗
6)6, that is

Si,j = fi,j(Si).
The proof of S ′

i,j = gi,j(Si) and S ′′
i,j = hi,j(Si) is by a similar chain of inclusions:

Si,j + ((i− 1)0∗)6
(37e)
= S ′

i,j ∪ S
′′
i,j

(37a–37d)

⊆

⊆
(
Si,j+((i− 1)0∗)6 ∩ (ijΣ∗

k)6

)
∪

(
Si,j+((i− 1)0∗)6 ∩ (Σ∗

6 \ ijΣ
∗
k)6

)
=

= Si,j + ((i− 1)0∗)6.

Therefore, the inequalities turn into equalities:

S ′
i,j = Si,j + ((i− 1)0∗)6 ∩ (ijΣ∗

6)6 = gi,j(Si)

S ′′
i,j = Si,j + ((i− 1)0∗)6 ∩ (Σ∗

6 \ ijΣ
∗
6)6 = hi,j(Si).

Since (S, . . . , Si, . . . , Si,j, . . . , S
′
i,j, . . . , S

′′
i,j, . . .) satisfies (34),

S = S0 ∪ S1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

S ′
i,j,

and it can be concluded that

S = S0 ∪ S1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

S ′
i,j = S0 ∪ S1 ∪

⋃

i∈{2,3,4,5}
j∈Σ6

gi,j(Si) =

= S0 ∪ S1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Si ∩ (1jΣ∗

6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
.

Hence (S, S0, . . . , S5) is a solution of the equation.
⇐© Conversely, assume that (S, S0 . . . , S5) with S0 ⊆ {0, 1, 2, 3, 4, 5},

S1, S2, S3, S4, S5 ⊆ (1Σ+
6 )6. is a solution of the equation. To show that

(S, S0 . . . , S5, . . . , fi,j(Si), . . . , gi,j(Si), . . . , hi,j(Si), . . .) is a solution of the former
system, these values should be substituted into (34)–(37). For (36), the equality holds
by the following calculations:

fi,j(Si) = Si ∩ (1jΣ∗
6)6 ⊆ (1jΣ∗

6)6⋃

j

fi,j(Si) =
⋃

j

Si ∩ (1jΣ∗
6)6 = Si ∩

⋃

j

(1jΣ∗
6)6 = Si ∩ (1jΣ∗

6)6 = Si.
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In the same manner, all five equations in (37) hold true:

gi,j(Si) = fi,j(Si) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

⊆ fi,j(Si) + ((i− 1)0∗)6

gi,j(Si) = fi,j(Si) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

⊆ (ijΣ∗
6)6

hi,j(Si) = fi,j(Si) + ((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ

∗
6)6

⊆ fi,j(Si) + ((i− 1)0∗)6

hi,j(Si) = fi,j(Si) + ((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ

∗
6)6

⊆ (Σ∗
6 \ ijΣ

∗
6)6

gi,j(Si) ∪ hi,j(Si) =
(
fi,j(Si) + ((i− 1)0∗)6 ∩ (ijΣ∗

6)6

)

∪
(
fi,j(Si) + ((i− 1)0∗)6 ∩ (Σ∗

6 \ ijΣ
∗
6)6

)

= fi,j(Si) + ((i− 1)0∗)6

The equality (34) follows by the assumption that (S, S0, . . . , S5) is a solution of the original
system:

S0 ∪ S1 ∪
⋃

i,j

gi,j(Si) = S0 ∪ S1 ∪
⋃

i,j

fi,j(Si) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6 =

= S0 ∪ S1 ∪
⋃

i,j

(Si ∩ (1jΣ∗
6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗

6)6 = S.

Finally, (35) is explicitly stated in the former system, so it clearly holds.

Using these equivalent reformulations of equations (4) and (8), the constructions in the
proofs of Lemmata 3 and 4 can be modified to use either union only or intersection only,
thus proving those lemmata in their full form. This completes the proof of Theorem 4.

6 Decision problems

Consider basic properties of equations, such as the existence and the uniqueness of solu-
tions. For the more general case of language equations it is known that these and a few
other properties are undecidable [13, 15, 16], and their exact position in the arithmetical
hierarchy has been determined. These results will now be re-created for equations over
sets of numbers, based upon the constructions from the previous section.

Theorem 7. The problem of whether a system of equations ϕi(X1, . . . , Xn) =
ψi(X1, . . . , Xn) over sets of natural numbers has a solution is Π1-complete. It remains
Π1-hard if the allowed operations are union and addition, or intersection and addition.

Proof. The problem is in Π1 in the more general case of language equations [13].
Its Π1-hardness is proved by a reduction from the emptiness problem for Tur-

ing machines. Let T be a TM and construct a system of equations in variables
(Y0, . . . , Y5, X1, . . . , Xm) with the unique solution Yi = VALCi(T ), Xj = Kj ⊆ N. Since
S(T ) = ∅ if and only

⋃5
i=0 VALCi(T ) = ∅, it is sufficient to add six new equations

Yi = ∅ for i ∈ {0, 1, . . . , 5}, so that the resulting system has a solution if and only if
S(T ) = ∅.
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Theorem 8. Testing whether a system ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) over sets of
natural numbers has a unique solution is a Π2-complete problem. It is still Π2-hard if the
operations are limited to union (intersection) and addition.

Proof. The Π2 upper bound is known from the case of language equations [13].
Π2-hardness is proved by a reduction from the known Π2-complete Turing machine

universality problem, which can be stated as follows: “Given a TM M working on natural
numbers, determine whether it accepts every n ∈ N0”. Given M , construct the system of
equations as in Lemma 3. It has a unique solution if and only if the bounds S(T ) ⊆ S ⊆ N

are tight, that is, if and only if the TM accepts every number. This completes the
reduction.

Theorem 9. The problem whether a system ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) over sets of
natural numbers has finitely many solutions is Σ3-complete. Its Σ3-hardness is maintained
for the operations of union (intersection) and addition.

Proof. The problem is in Σ3 for language equations [16].
To prove Σ3-hardness, consider the co-finiteness problem for Turing machines, which

is stated as “Given a TM T working on natural numbers, determine whether N \ S(T ) is
finite”, which is known to be Σ3-complete [18, Cor. 14-XVI]. Given M , use Lemma 3 to
construct the system of equations with the set of solutions { (S, f1(S), . . . , fk(S)) |S(T ) ⊆
S}. This set is finite if and only if N \ S(T ) is finite, which completes the reduction.

7 Conclusion

The equations considered in this paper are a pure mathematical object and apparently a
rather simple one: constructing any system with a non-periodic solution is a challenging
task in itself. Unexpectedly, it turned out to be equivalent to the notion of effective
computability.

This can be compared to Diophantine equations, which have been proved to be com-
putationally complete by Matiyasevich. Due to this result, it is known, for instance, that
there is a Diophantine equation for which the range of admissible values of a certain
variable x is exactly the set of primes. Similarly, our Lemma 3 allows one to construct a
system of equations over sets of natural numbers, which has a unique solution with one
of its components being exactly the set of primes.

Among the applications of this result, it settles the expressive power of a generalization
of integer circuits [11], as well as shows that language equations are computationally
complete even in the seemingly trivial case of a unary alphabet.
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Informatique Théorique et Applications, 38:1 (2004), 69–88.

[15] A. Okhotin, “Unresolved systems of language equations: expressive power and deci-
sion problems”, Theoretical Computer Science, 349:3 (2005), 283–308.

[16] A. Okhotin, “Strict language inequalities and their decision problems”, Mathemat-
ical Foundations of Computer Science (MFCS 2005, Gdańsk, Poland, August 29–
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